
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Bryan E. Strauss,
Institute of Cancer of São Paulo, University
of São Paulo, Brazil

REVIEWED BY

Francesca Maria Consonni,
University of Milan, Italy

*CORRESPONDENCE

Ziwen Liu

liuziwen@pumch.cn

†These authors have contributed equally to
this work

RECEIVED 20 March 2023

ACCEPTED 14 April 2023

PUBLISHED 18 May 2023

CITATION

Han J, Wu M and Liu Z (2023)
Dysregulation in IFN-g signaling and
response: the barricade to tumor
immunotherapy.
Front. Immunol. 14:1190333.
doi: 10.3389/fimmu.2023.1190333

COPYRIGHT

© 2023 Han, Wu and Liu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 18 May 2023

DOI 10.3389/fimmu.2023.1190333
Dysregulation in IFN-g signaling
and response: the barricade to
tumor immunotherapy
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1Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
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Interferon-gamma (IFN-g) has been identified as a crucial factor in determining

the responsiveness to immunotherapy. Produced primarily by natural killer (NK)

and T cells, IFN-g promotes activation, maturation, proliferation, cytokine

expression, and effector function in immune cells, while simultaneously

inducing antigen presentation, growth arrest, and apoptosis in tumor cells.

However, tumor cells can hijack the IFN-g signaling pathway to mount IFN-g
resistance: rather than increasing antigenicity and succumbing to death, tumor

cells acquire stemness characteristics and express immunosuppressive

molecules to defend against antitumor immunity. In this review, we summarize

the potential mechanisms of IFN-g resistance occurring at two critical stages:

disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or

preferential expression of specific interferon-stimulated genes (ISGs).

Elucidating the molecular mechanisms through which tumor cells develop

IFN-g resistance help identify promising therapeutic targets to improve

immunotherapy, with broad application value in conjugation with targeted,

antibody or cellular therapies.

KEYWORDS
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Introduction

To date, over twenty distinct interferon (IFN) genes and proteins have been identified,

typically categorized into three classes: Type I IFN (IFN-a and IFN-b), Type II IFN (IFN-

g), and Type III IFN (IFN-l). IFN-g is a notably different member characterized by unique

receptor activity and distinct intracellular signaling pathway: type I IFNs depends on the

interferon-stimulated gene factor-3 (ISGF3) complex containing STAT1/STAT2/IRF9,

which binds to interferon-sensitive response elements (ISREs), whereas the

phosphorylated signal transducer and activator of transcription 1 (STAT1) homodimer

downstream of IFN-g binds to interferon-gamma activation sites (GASs). However, these

members share common interferon-stimulated genes (ISGs), but also have distinct gene

profiles (1). For example, IFN-g preferentially induces the expression of IRF1, while HIF-1
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1190333/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1190333/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1190333/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1190333&domain=pdf&date_stamp=2023-05-18
mailto:liuziwen@pumch.cn
https://doi.org/10.3389/fimmu.2023.1190333
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1190333
https://www.frontiersin.org/journals/immunology


Han et al. 10.3389/fimmu.2023.1190333
responses primarily to IFN-b (2). IFN-g signaling and ISG

expression is marked by extensive interaction with regulatory

molecules, epigenetic modifications and chromatin remodeling,

constituting multiple positive and negative feedbacks (3, 4). IFN-g
also produce variable effects at different duration and concentration

of exposure, with acute exposure to high concentrations of IFN-g
leading to growth arrest and apoptosis, while chronic exposure to

low concentrations promotes cell survival (5). The IFN-g signaling
pathway has extensive crosstalks with the PI3K, MAPK/p38, and

other cellular pathways (6). Collectively, these mechanisms

maintain immunological homeostasis, ensuring an effective

immune response while keeping the immune activity in check to

avoid damage from over activation. However, these regulatory

mechanisms can also be exploited by tumors to mount IFN-

g resistance.
IFN-g in tumor

Source

IFN-g in tumors is primarily produced by activated immune

cells, particularly NK, cytotoxic CD8+ and Th1 cells (7, 8). Evidence

also suggests that macrophages, dendritic cells (DC), and innate B

cells can produce IFN-g (9–13). While tumor cells have been

reported to rely on autocrine secretion of IFN-b (5, 14), further

investigation is required to determine whether tumor cells secrete

IFN-g (15). IFN-g production is stimulated by specific cytokines,

including interleukin-12 (IL-12), interleukin-18 (IL-18), and

macrophage colony-stimulating factor (M-CSF) (9, 16, 17), as

well as receptor signaling by activating natural killer cell receptors

(NKRs) and CD16 in NK cells and the T cell receptor (TCR) in T

cells (17). These stimulations activate the Src/MAPK/ERK/p38

pathway (18), ultimately inducing IFNG expression through

transcription factors STAT4, T-bet, AP-1, Eomes, Fos, and Jun

(18, 19). Notably, GAS is present in the promoter IRF1 (20, 21),

STAT1, IFNGR, and IFN-g (22), imposing positive feedback and

self-sustained inflammation (3, 19). The most recent report

identified the interaction between GATA3 and CNS-28 silencer as

a restrainer of IFN-y mRNA transcription by diminishing

enhancer-promoter interactions within the gene locus (23).
Effect

IFN-g is known to regulate the expression of hundreds of ISGs,

whose differential expression patterns confer various effects

including growth suppression, induction of apoptosis, but also

activation and secretion of pro-inflammatory cytokines, and other

functions such as expression of immunosuppressive genes.

However, the mechanisms underlying these opposing effects

under the same set of signals, receptors, and main signaling

molecules require further investigation.
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Immune cells
In CD8 T cells, IFN-g is crucial in T cell expansion (24), induces

the differentiation of precursor T cells into effector T cells (25),

further enhances their cytotoxicity and motility (26), and

participates in the formation of immunological memory (27). In

CD4 T cells, IFN-g is pro-Th1 and antitumor, repressing Th2 and

Th17 polarization (7, 28). In NK cells, IFN-g induces CXCR3

expression to allow tumor infiltration (29) and TRAIL expression

to promote cytotoxicity (30). In myeloid cells, IFN-g promotes

polarization toward the inflammatory cDC1 (31) and M1 (7, 32,

33). In B cells, IFN-g not only cooperates with IL-12 to mediate class

switching (34), but also aids germinal center formation through

BCL6 (35).

Interestingly, IFN-g also exerts suppressive effects on certain

immune cells, producing both wanted and unwanted effects. IFN-g
stimulation generates ‘fragile’ regulatory T cells (Tregs) with

impaired suppressive activity yet maintained Treg phenotype in

terms of FOXP3+ (7, 36). However, chronic exposure and

constitutive signaling of IFN-g impair T cell functions and lead to

exhaustion (37), not only through the well-studied induction of

IDO1 and PD-L1 expression, but also through direct inhibition of T

cell stemness, proliferation, clonal diversity, and maintenance (38–

40), along with pro-apoptotic effect in the contraction phase

through FAS and BIM (41, 42). Additionally, IFN-g inhibits

memory formation by limiting IL-7Ra in models of influenza

virus infection (42).

Tumor cells
In general, IFN-g exerts antitumor actions in two ways: directly

through growth inhibition and indirectly through increased killing

by immune cells (43). IFN-g has growth-inhibitory effect through

cell death induction by apoptosis (44–46) and necroptosis (47), and

growth arrest by senescence (48–51). The immunostimulatory

effects of increased MHC-I, antigen presentation, and antigenicity

has been extensively characterized in both infection and tumor

models (52).

On the other hand, IFN-g itself and ISG signatures are pro-

tumor in various cancer types including breast cancer (46, 53) and

glioblastoma (54). Mechanistically, IFN-g directly acts on tumor

cells to maintain survival (BCL2 and surviving expression) and

stemness (55–57), decreases antigen presentation (58), enhances the

expression of immunosuppressive molecules markedly ICBs and

IDO (58–60), and leads to infiltration of tumor-associated

neutrophil (46). Additionally, chronic exposure to IFN-g
inevitably induce immunosuppressive cells, such as myeloid-

derived suppressor cells (MDSCs), Tregs and exhausted T cells,

ultimately leading to immune evasion and tumor growth.
Resistance

Ideally, IFN-g stimulation would force the tumor cells to

increase their antigenicity and secrete pro-inflammatory

cytokines, along with growth arrest and pro-apoptosis. However,

tumor cells can suppress these immunogenic ISGs and favor the
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expression immunosuppressive and pro-tumor ISGs instead. IFN-g
resistance is a major obstacle in cancer immunotherapy, offering

protection against T cell cytotoxicity and ICBs, and allowing tumor

cells to exploit IFN-g signaling for survival advantage rather than

succumb to antitumor immunity. Elucidating the mechanisms of

interferon resistance and developing new strategies to tackle it are

important areas of research, with great potential to identify effective

therapeutic target as adjuvant to current cancer immunotherapy.

Briefly, there are two principle mechanisms though which tumor

cells mount IFN-g resistance: 1) disruption in the primary signaling

pathway, IFNGR/JAK/STAT, responsible for effector functions of

IFN-g stimulation; and 2) epigenetic or regulatory background

leading to favorable expression of some ISGs over others.

Therefore, we next summarize recent findings regarding the

molecular mechanisms behind the aberrant IFN-g response in

tumor cells. It is important note the limitation in generalizability

across different experimental models, as these mechanisms are often

context-specific.
IFN-g signaling

The canonical pathway of IFNGR/JAK1/STAT1/ISGs is the

main effector downstream of IFN-g signaling. Signal transduction
along this pathway is affected by genomic mutation, transcriptional
Frontiers in Immunology 03
regulation of expression, post-translational modifications and

protein-protein interaction, and sub-cellular localization

(Figure 1), along with further complexity due to homologous

members of the same family with overlapping but distinct

functions (7, 61–63).
IFNGR

IFN-gR is composed of two subunits: IFNGR1 (a-subunit) has
high affinity to IFN-g and a major role in ligand binding, while

IFNGR2 (b-subunit) is predominantly responsible for downstream

signaling via JAK recruitment (61, 64). Upregulation of IFNGR on

colorectal cancer stem cell confers sensitivity to chemotherapy

through apoptosis (56), but increased IFNGR expression on CD8

+ T cells leads to T cell apoptosis and ICB resistance (38). Th1 cells

can downregulate IFNGR to enhance survival and maintain

antitumor effects (28), but tumor cells also developed multiple

mechanisms to abrogate IFNGR function. At the genomic level,

IFNGR has high mutation frequency of 12%, comparable with

JAK1, JAK2, and IRF1, in melanoma patients resistant to anti-

CTLA4 therapy (65). At the transcription level, IFN-gR is under

dynamic regulation by transcription factors. EGR and NFkB (66)

and SP1 in breast cancer (67) have been reported to induce the

mRNA expression of IFNGR, while AP2 in breast cancer (67) and
FIGURE 1

Summary of alterations in the conventional downstream signaling pathway of IFNGR/JAK/STAT that lead to IFN-g resistance. (1) At the IFNGR level:
transcriptionally, EGR, NFkB and SP1 promote the transcription of IFNGR mRNA, while AP2 and IRF2 are suppressive transcription factors. Post-
transcriptionally, N-glycosylation stabilizes plasma membrane IFNGR, while degradation is promoted by ubiquitination and palmitoylation. (2) At the
JAK level, SOCS and small molecule inhibitors abrogate signaling, and ALPNR is crucial for normal functioning. (3) At the STAT1 level, post-
translational modification by PIAS, A20, and CBP/TCP45 suppress signaling activity through deposphorylation of p-STAT1, while PRMT1, ERK/bTRCP,
and USP13/22 regulate STAT1 activity or stability independent of its phosphorylation status.
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IRF2-mediated negative feedback in esophageal cancer (68) have

suppressive roles. Chronic IFN-g stimulation in colorectal cancer

cell line mounts IFNGR resistance through DNA methylation, a

process fully reversible by 5-Aza-deoxycytidine (69). At the post-

translational level, IFNGR dynamically localizes between plasma,

endosomal and nuclear membranes, leading to three potential

fates: 1) recycling back to plasma membrane for further signaling,

2) degradation to attenuates function, 3) nuclear translocation. The

degradation of IFNGR is under extensive regulation. IFNGR is

subjected to degradation by the proteasome through GSK3b (70),

ELF5/FBXW7 (46) and N-glycosylation (reversible by all-trans

retinoic acid induces MGAT expression) (71) mediated

ubiquitination in monocytic cell lines, breast cancer, and

colorectal cancer respectively. Optineurin/AP3D1 mediated

Cys122 palmitoylation targets IFNGR for lysosomal degradation

in colorectal cancer (72). Furthermore, the nuclear import of

IFNGR has been recently reported be functionally significant in

breast cancer (51), mechanistically by bringing STAT1 into the

nucleus (73–75) and direct GAS binding (76, 77).
JAKs

As IFNGR lacks intrinsic kinase activity and only functions as a

scaffold upon dimerization induced by IFN-g, the four members of

tyrosine kinase adaptors, JAK1, JAK2, JAK3, and TYK2, are needed

to carry out subsequent signaling by recruitment and

phosphorylation of STAT1. Loss-of-function mutations in JAK1

and JAK2 are extensively reported to be the cause of ICB resistance

in melanoma patients (65, 78–82) and gynecologic cancers (83).

JAKs are also the primary brake for negative regulation of IFN-g
activity by protein-protein interactions. The well-studied

suppressor of cytokine signaling (SOCS) proteins bind to

activated JAK catalytic sites (84) and are constantly active in

melanoma cell lines to suppress interferon response (85).

Disruption of APLNR-JAK1 interaction (81) both capable of

abrogating IFN-g activity. However, JAKs are often reported to

have pro-tumor roles, highly expressed and correlated with poor

survival in pancreatic cancer (86). The activating mutation (S703I)

of JAK1 elevates p-STAT3 and STAT5 in liver cancer, driving

tumor progression (87). Hence, lots of JAK inhibitors have been

developed and put under clinical testing (88, 89). A phase II study

(NCT01423604) of ruxolitinib and capecitabine/gemcitabine

improved survival of metastatic pancreatic cancer patients with

CRP>13 mg/L (90), and a phase Ib/II study (NCT01858883) of

itacitinib and nab-paclitaxel and gemcitabine achieved objective

response rate of 24% in patients with solid tumors (91). However,

subsequent Phase III trials JANUS 1 (NCT02117479) and JANUS 2

(NCT02119663) (92), along with phase I trials of other agents

inc luding the se lec t ive JAK1 inhib i tor INCB047986

(NCT01929941) (89) and momelotinib + gemcitabine and nab-

paclitaxel (NCT02101021) (93) or capecitabine and oxaliplatin

(NCT02244489), have all been terminated due to lack of efficacy.
Frontiers in Immunology 04
Despite much failure, there are still ongoing studies awaiting results,

such as the phase Ib study of ruxolitinib and trametinib (MEK

inhibitor) in patients with RAS mutations (NCT04303403).

Another agent, AG490, was effective in preclinical model of

mouse pancreatic cancer but awaits clinical validation (94).

The challenge in clinical application of JAK inhibitors suggested

the need for more specific interventions such as STAT3 inhibitors

(95, 96), or better selection of patients that may benefit from

JAK inhibitors.
STATs

The seven members of the STAT family, STAT1, STAT2,

STAT3, STAT4, STAT5A, STAT5B and STAT6, are often

simultaneously activated, leading to diverse, cell-specific effects

depending on abundance and availability of each member.

Among them, STAT3 and STAT5 are often considered pro-tumor

(97), while STAT1 is generally considered the key downstream

effector of IFN-g, capable binding GAS and inducing ISG

transcriptions. STAT1 has been reported to be protective in

gastric cancer (98), liver cancer (99), and melanoma (100), but

hazardous in glioblastoma (101) and sarcoma (102), and

controversial in breast (103–106) and pancreatic cancer. STAT1 is

under extensive post-translational modifications: 1) STAT1 is

targeted for proteasomal degradation by ERK/bTRCP (107, 108)

and stabilized by USP13 (109) and USP22 (110) mediated

deubiquitination; 2) aberrant phosphorylation of STAT1 due to

negative regulators PIAS (111), A20 (112) and CBP/TCP45 (113);

and 3) functional impairment due to arginine methylation by

PRMT1 (114) and loss of the helper PTPN2 (115). Interestingly,

unphosphorylated STAT1 (u-STAT1) is also functional (116).

Marked by persistence for several days post-IFN-g stimulation, u-

STAT1 are reservoir for phosphorylation-activation, allowing IFN-g
stimulation to prime for IFN-a response (117, 118). u-STAT1 is

also responsible for the constitutive baseline expression caspases,

conferring sensitivity to apoptotic signals (119). These functions of

u-STAT1 further suggest the importance of expression control by

epigenetic modifications of the STAT1 promoter: suppressed by

methylation (120) and enhanced by HDAC3 mediated

deacetylation (121).
ISGs

IFN-g stimulation changes the expression of hundred of genes,

collectively producing a wide spectrum of effects. The large number

and dynamic nature of ISGs render a consensus definition

challenging. It is important to acknowledge the context-specific

expression pattern of ISGs, who spearhead changes in cellular

pathways and activities, directly corresponding to the effector

functions of IFN-g (Figure 2). Several key members of ISGs with

important functional consequences, such as IRF1, CXCL9/10,
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MHC-I/II, and PDL1, have been extensively studied. The general

pattern and mechanism behind the simultaneous expression of

multiple ISGs must also be kept in mind, as simple protein-protein

interactions may be insufficient to characterize such extensive

regulation. Epigenetic remodeling such as histone and promoter

modifications, chromatin conformation and accessibility,

transcription-factor binding, latent enhancer and promoter

regulations have crucial but rather unelucidated roles (122).
Definition

Being able to clearly define ISGs would aid in selecting the

appropriate therapeutic target. There are currently two approaches:

in silicon or in vitro. The in silicon definition of ISGs rely on GAS, a

consensus, palindromic DNA pattern (TTCN2-4 GAA) found in

the promoters of ISGs. Its recognition and binding by p-STAT1

dimer produce profound effect in modulating the expression of its

downstream genes. Hence, the SABioscience website, the

Transcription Factor binding site search tools and the

REFINEMENT program can identify GAS distributed throughout

the human and mouse genome, theoretically denoting the

downstream genes as ISGs (123). In vitro definitions of ISGs are

primarily based on high-throughput characterization of gene

expression changes after IFN-g stimulation. Microarray analysis

identified more than 300 ISGs assigned into categories (124).

Human fibrosarcoma cell line treated with IFN-a, IFN-b and

IFN-g identified shared and distinct ISGs between these classes

(2). ISGs have also been characterized in the Huh7 and Huh7.5

hepatocellular cell lines (125). However, these results are heavily

dependent on the model and background, limiting their
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generalizability. The large number of ISGs, dynamic and context-

dependent expression profile affected by epigenetic modification

and chromatin remodeling, the degeneration and non-redundancy

between the three classes of IFNs (126), and different STAT and IRF

isoforms all pose challenges to a consensus definition of ISGs (127).
Key members

Interferon regulatory factors (IRFs) are major ISGs (128). The

nine members of the IRF family share similar structures. The

homologous N-terminal DNA-binding domain (DBD) recognizes

the helix-loop-helix motif of IRF-element (IRFE) motifs upstream

of their effector genes; while the C-terminal, responsible for protein

interaction confer the diversity of regulation. IRF1/5/6/8/9 have

been reported to be protective and pro-apoptotic, while IRF2/3/4/7

are often considered hazardous (20). Among the IRF members,

IRF1 is the major driver of the expression of many ISGs (129, 130).

With a GAS but not ISRE in its promoter, IRF1 is induced by IFN-g
rather than IFN-a and IFN-b, as a major distinction between the

effects of type I and II IFNs (131). IRF8, whose expression is often

jointed with IRF1, enhances the pro-apoptotic effect of IRF1 (132).

IFN-g exerts antiproliferative effects through cell cycle control and

cell death induction. IFN-g mainly depends on STAT1 activity to

induce pro-death molecules including p53 in ovarian cancer (133,

134), caspase 1/3/8 in pancreatic cancer (135–137) and FAS/FASL

(138), and the necroptotic RIP1 (47). IFN-g also arrest growth

through p16/p21-induced senescence (48, 51, 139) and inhibition of

PI3K/AKT pathway (140). IFN-g increases antigenicity through

antigen processing and presentation, upregulating both MHC-I/II

themselves (141, 142), as well as antigen processing machinery
FIGURE 2

IFN-g exerts a variety of effects through diverse expression pattern of ISGs, which is often dysregulated in cancer cells: (1) IRF1 is a major downstream
effector of IFN-g with diverse functions. (2) IFN-y represses tumor through apoptosis, senescence, growth arrest, secretion of inflammatory cytokines, and
MHC-I expression. (3) IFN-g signaling may also promote tumor through proliferation and PD-L1 expression.
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including TAP1/2, invariant chain, and the expression and activity

of the proteasome (143), and the MHC class II transactivator

(CIITA) (144). IFN-g pathway directly transcribes pro-

inflammatory cytokines especially CXCL9/10/11 (145). However,

IFN-g also induces the expression of the ICBs including but not

limited to PDL1 and CTLA4 (146, 147), along with other

immunosuppressive mechanisms such as IDO (148). Favorable

expression of these key ISGs with drastically different functions

profoundly influence the outcome of IFN-g stimulation.
Regulation

The importance of the SWI/SNF complex mediated chromatin

remodeling in IFN-y response was further supported by its crucial rolel

in the coordination of T cell activation and exhaustion (149). RNF138

mediated K48-linked polyubiquitination at position Lys643 of

SMARCC1 drives proteasomal degradation, inhibiting chromatin

remodeling at SWI/SNF-regulated gene loci, suppress transcription

of late inflammatory genes of macrophages in innate immune

activation (150). On a global scale, differences in genomic

accessibility due to chromatin remodeling allow the preferential

expression of some ISGs over others. In melanoma cell lines, the

PBAF form of the SWI/SNF chromatin remodeling complex

suppresses IFN-g signaling and cytokine gene transcription to resist

T cell infiltration and cytotoxicity (151). Employment of CRISPR

screening, Chip-seq and ATAC-seq may further identify other

regulatory mechanisms of chromatin remodeling in different models

(126), shedding light on comprehensive. More specifically, many

molecules have been reported to selectively affect key ISGs,

rendering them potential therapeutic targets for precise modulation

of IFN-g response. ZBED2 antagonizes IRF1 and drives T cell

dysfunction (4, 152). Important antitumor cytokines CXCL9 and

CXCL10 are negatively regulated by epigenetic silencing by EZH2/

DNMT1 in ovarian cancer and antagonized by ARID1A (153, 154),

but activated by mTORC1/MNK/eIF4E (32). Inability to upregulate

MHC I expression has been the earliest reported sign to IFN resistance

reported in 33% melanoma cell lines and 24% lung adenocarcinoma

cell lines (155). MHC-II is suppressed by c-myc activity (156), miR-

212-3p through inhibition of RFXAP (157) and DNMT1/3B mediated

DNAmethylation that epigenetically inactivates CIITA (158–160), as a

crucial limiting factor to tumor antigenicity (161). UBR5 promotes

IFN-g and STAT1 dependent PDL1 expression (162, 163), leading to

combination of IFN-g and nivolumab achieved the best response (164).

KLF7/DLG3 maintains Golgi integrity and expression of pro-tumor

ISGs (165). U-STAT1 expression without Y701 phosphorylation

induce MUC4 expression in PDAC cells and exerts pro-EMT

functions (166). ATR mediated nucleotide metabolism help maintain

survival despite IFN stimulation (167). The dsRNA-activated kinase

PKR confers lethality by IFN stimulation, a process antagonized by the

dsRNA editing enzyme ADAR, which maintains survival despite the

expression of death-inducing ISGs (168). IFN-g activates the

RhoGDI2/Rac1/NF-kB pathway in tumor cells to reduce the

production of the pro-tumor cytokine CXCL8, promoting tumor

apoptosis (169) and reducing CXCR2+ M2 macrophages (170).
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Targeting of tumor cell–intrinsic resistance mechanisms to T cell-

mediated cytotoxicity is important and complementary to

checkpoint inhibitors.
Therapeutics

Prognostic

IFN-g activity is necessary and prognostic in immunotherapy of

multiple cancer types (171). At the genomic level, mutation of key

molecules along the IFN-g signaling pathway are common in ICB

refractory patients with melanoma (65), lung cancer (172) and gastric

cancer (173). At the transcriptomic level, high expression of IFN-g itself
and IFN-g responsive genes, reflective of a T cell-inflamed

microenvironment, correspond to better survival and ICB response

across different cancer types (174), especially lung cancer (175) and

melanoma (176, 177). Aberrant attenuation of the IFN-g pathway

confers ICB resistance through several mechanisms, including both

primary resistance by suppression of PDL1 expression (79) and

acquired resistance by MHC-I downregulation (78).
Cellular therapy

IFN-g is especially important in cellular immunity and adoptive

cell transfer. Patients with pancreatic cancer have decreased plasma

IFN-g compared to normal people (averaged 16.4 fg/L versus 27.4 fg/

L), potentially leading to low CD4:CD8 ratio and systemic

immunosuppression (178). Higher plasma IFN-g after TILs

administration is associated with prolonged T cell persistence and

better survival (179). The cytotoxicity of T and NK cells heavily

depends on IFN-g secretion (180–182). In the context of CAR-T

cells, IFN-g secretion upon activation (183) not only exerts self-

sustaining effects but also establishes cytokine crosstalk with

endogenous T and NK cells (26, 184). Interestingly, tumor response

to IFN-g, such as APLNR interaction with JAK1 in melanoma cells

(81), is crucial for CAR-T cytotoxicity only in solid tumors but not

hematological tumors (185). IFN-g abrogation offers protection against

CRS (186) without impairing the therapeutic efficacy of anti-CD19

CAR-T in leukemias or lymphomas (187). CAR-T with an excessively

high IFN-g expression has been reported to upregulate PD-L1

expression in cancer cells, leading to their own dysfunction (188).
As therapeutic agent

The clinical application of IFN-g covered a wide variety of

diseases such as cancer, infectious diseases, and autoimmune

disorders (189). The antitumor efficacy of direct IFN-g
administration has long been debated. Initial attempts in renal

cell carcinoma was disappointing (190), but later studies in prostate

cancer (191) and bladder cancer had promising results (73.4%

versus 57.2% with no recurrence during follow-up) (192). IFN-g
in ovarian cancer had controversial results: 2/6 patients experienced
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a 90% reduction in tumor cells in ascites (193), but limited

responses have also been reported (194, 195).

The short half-life and cost of protein production led to much

effort into the optimization of IFN-g products, aiming to minimize

adverse effect, amplify antitumor activity, and optimize cost and

convenience of delivery. Apart from clinically available forms

including the recombinant protein (IFN-g1b, Actimmune),

adenovirus vectors that express IFN-g cDNA (TG-1041, TG-1042),

and neutralizing antibodies against IFN-g (HuZaf and AMG811),

researchers have also reported: 1) engineered chimeric proteins such

as chTNT3/muIFN-y (196), PLGF2/IFN-a (197), PDGFbR/IFN-g
(198) aiming to achieve specific and targeted delivery; 2) liposome-

and nonmaterial-aided delivery (199) to reduce DNA damage and

oxidative stress in lymphocytes; 3) as adjuvant treatment in

conjugation with oncolytic viruses (200) and adoptive cell therapy; 4)

loaded into cellular therapy, such as IFN-g-secreting stromal cells with

TME-homing capacities (201), and fourth generation CAR-T cells

(TRUNKS) engineered to secrete IFN-g constitutively or

upon activation.
Perspectives

IFN-g is the central cytokine in anti-tumor immunity, not only

indispensable for its supportive role in immune cell maturation and

activation, but more importantly as an effector function. Increased

antigenicity and apoptosis due to IFN-g stimulation are the

foundation of T cell cytotoxicity. However, tumor cells can take

advantage the extensive regulatory mechanisms along the IFN-g
signaling pathway and the diversity of ISGs, favoring the

expression of pro-tumor ISGs over others. Elucidating the

mechanisms by which tumor cells hijack the IFN-g pathway to

suppress antitumor response including MHC-I and CXCL9/10/

11expression, while preferentially enhancing the expression of

immunosuppressive molecules such as PD-L1 and IDO1, would

shed light on the conflicting identify of IFN-g in tumor

progression, along with providing therapeutic targets to improve

current immunotherapies. In summary, tumor cells can mount IFN-g
resistance at two stages: disruption of the main signal transduction

pathway responsible for all downstream effects of IFN-g stimulation,

and the alternative expression/suppression of specific key ISG or a

group of ISGs with synergistic functions. Tumors cells can abrogate

the IFNGR/JAK/STAT pathway through the following mechanisms:
Frontiers in Immunology 07
1) loss of function mutation of key genes, most commonly IFNGR1/

IFNGR2/JAK1/JAK2; 2) suppressed mRNA transcription of IFNG,

IFNGR, and STAT1 leading to lower expression; 3) loss of crucial

protein cooperators such as ALPNR/JAK1, PTPN2/STAT1; 3)

aberrant hyperactivity of protein inhibitors such as SOCS, PIAS,

and PRMT1; 4) post-translational modification, especially

ubiquitination, subjecting the protein to degradation by the

proteasome or lysosome. Further downstream, tumor cells can

preferentially express some ISGs over others through 1) global

chromatin remodeling and 2) specific modulations of key ISGs.

IFN-g based therapies face several challenges that limit

effectiveness: the development of resistance by tumor cells, and

general adverse effects due to non-specific, systemic delivery. These

mechanisms of IFN-g resistance described above offer promising

therapeutic targets to fine-tune IFN-g response and improve

immunotherapy. However, as these results were mostly based on

experimental models, further confirmation and validations in real-

world clinical data would provide valuable insights on the

prevalence and significance of these potential targets.
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