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APOEε4 and risk of Alzheimer’s 
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The inheritance of Apolipoprotein E4 (APOEε4) brings the highest genetic risk of 
Alzheimer’s disease (AD), arguably the highest genetic risk in human pathology. 
Since the discovery of the association, APOE protein isoforms have been at the 
center of tens of thousands of studies and reports. While, without a doubt, our 
knowledge about the normal physiological function of APOE isoforms in the brain 
has increased tremendously, the questions of how the inheritance of the APOEε4 
allele translates into a risk of AD, and the risk is materialized, remain unanswered. 
Moreover, the knowledge about the risk associated with APOEε4 has not helped 
design a meaningful preventative or therapeutic strategy. Animal models with 
targeted replacement of Apoe have been generated and, thanks to the recent 
NIH/NIA/Alzheimer’s disease Association initiative, are now freely available to 
AD researchers. While helpful in many aspects, none of the available models 
recapitulates normal physiological transcriptional regulation of the human APOE 
gene cluster. Changes in epigenetic regulation of APOE alleles in animal models 
in response to external insults have rarely been if ever, addressed. However, these 
animal models provide a useful tool to handle questions and investigate protein–
protein interactions with proteins expressed by other recently discovered genes 
and gene variants considered genetic risk factors of AD, like Triggering Receptor 
expressed on Myeloid cells 2 (TREM2). In this review, we  discuss genetic and 
epigenetic regulatory mechanisms controlling and influencing APOE expression 
and focus on interactions of APOE and TREM2 in the context of microglia and 
astrocytes’ role in AD-like pathology in animal models.
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Introduction

Alzheimer’s Disease (AD) is the sixth leading cause of death in the United States. There are 
two forms of AD: early-onset or familial AD (EOAD), which develops before age 65, and late-
onset AD (LOAD). EOAD is caused by autosomal dominant mutations in 3 genes – Amyloid 
Precursor Protein (APP), Presenilin 1 (PS1), and Presenilin 2 (PS2). The LOAD develops later 
in life, and in some individuals above 85, with no causative gene mutations known. LOAD cases 
account for more than 95% of all AD cases. An estimated 6.5 million Americans aged 65 and 
older were living with Alzheimer’s in 2022. Seventy-three percent are age 75 or older. The cost 
of Alzheimer’s and other dementias (ADOD) to the nation in 2022 was calculated at $321 billion, 
and by 2050, these costs could reach nearly $1 trillion. More than 11 million Americans provide 
unpaid care for people with Alzheimer’s or other dementias. In 2021, these caregivers provided 
more than 16 billion hours of care valued at nearly $272 billion. The financial burden on 
American society from ADOD is enormous.
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In addition to the cognitive decline, there are two morphological 
hallmarks of AD: extracellular deposits of β-amyloid (Aβ) peptide, 
called amyloid plaques and intracellular neurofibrillary tangles of tau 
protein (Jack et al., 2018; Chen and Holtzman, 2022). While it has 
been established for more than 30 years now that the highest risk for 
LOAD is associated with a specific allele of APOE gene – APOEε4, 
other common gene variants have been added to a long and ever-
increasing list of genetic risk factors of various significance (Pimenova 
et al., 2017; Sims et al., 2017; Ando et al., 2022; Holstege et al., 2022). 
Half of those are associated with immune response (Wes et al., 2016). 
Among those, rare variants of TREM2, expressed in microglia, are 
associated with a risk close to a risk associated with the inheritance of 
a single APOEε4 allele (Wolfe et al., 2018b). Environmental exposures, 
lifestyle, diet, traumatic brain injury, and an array of comorbidities 
have been implicated in LOAD risk, early pathogenesis, and 
progression, as well (Rao et al., 2023). Unfortunately, none of the 
knowledge regarding the risk factors of LOAD has translated into 
early diagnosis of the disease or meaningful direction toward 
successful therapeutic strategies. In this review, we discuss genetic and 
epigenetic regulatory mechanisms controlling and influencing APOE 
expression and focus on interactions of APOE and TREM2 in the 
context of microglia and astrocytes’ role in AD-like pathology in 
animal models.

APOE genotype and the risk of 
Alzheimer’s disease is the strongest 
genetic association in human 
pathology

APOE an extremely important and indispensable protein 
expressed in multiple tissues and organs. It is important to underline 
that no pathological condition or disease presents with the lack of 
APOE due to genomic deletion. Functionally, at a biochemical level, 
APOE provides a scaffold for and is an integral structural part of 
lipoproteins. In brain, APOE is secreted primarily by astrocytes and, 
unlike in the periphery, is the major apolipoprotein of High Density 
Lipoprotein (HDL)-like discoidal particles. These brain HDL-like 
particles do not contain APOA-I. Thus, the transport of cholesterol 
and phospholipids in the interstitial fluid and between neural cells 
highly depends on APOE. The transport of cholesterol and 
phospholipids is the major function of APOE. Therefore, in case of 
presumptive dysfunctional APOE, it is reasonable to expect, as a 
consequence, multiple disturbed molecular and cellular processes. The 
term dysfunctional APOE is poorly defined, however (Fazio et al., 
1994). In AD nonmutated APOE, regardless of the isoform, retains its 
normal biochemical function.

In an excellent review published 23 years ago, R. Mahley and 
S. Rall concluded that “APOE plays a part in many processes beyond 
its traditional role in cholesterol and lipoprotein metabolism” (Mahley 
and Rall, 2000). A limitation of understanding APOE as a risk of AD 
is that it is impossible to disentangle the “traditional”/biochemical role 
of APOE in cholesterol metabolism and its role in AD risk and 
pathology. Human APOE and its ε2/ε3/ε4 alleles have been associated 
with many diseases and pathological conditions, including 
nonpathological aging, and AD (Corder et al., 1993, 1994; Roses et al., 
1994; Davies et al., 2014; Table 1). This supports the statement that the 
genetic risk conferred by APOE is related to a perturbed primary 

function of APOE isoforms: cholesterol and phospholipid transport 
and metabolism. This, inevitably, includes AD. Of course, it would 
have been naïve to explain all of the above phenotypes, particularly 
AD, only by the disturbed major biological effect of APOE – 
cholesterol and phospholipid transport.

Numerous proposed hypotheses explain how APOE isoform-
specific differences might increase the risk of AD, ranging from 
neurotoxic effect based on domain interaction, binding to, deposition 
and clearance of Aβ, differential lipidation of isoforms, and 
neurotoxic and neuroprotection effects. More than 30 years since the 
association of APOEε4 and the risk of AD has been established 
(Corder et al., 1993), we still do not know how exactly the role of 
APOE coded by APOEε4 allele (APOE4) in cholesterol and 
lipoprotein metabolism – normal or disturbed, translates into an 
increased risk of AD. Nevertheless, in the last 2 years, several reviews 
and research papers have been published pointing to aspects of 
APOE biology that might be  worth considering in terms of 
deciphering the role of APOE as a risk factor of AD and even 
designing new therapeutic strategies (Parhizkar et al., 2019; Chen and 
Holtzman, 2022; Li et al., 2022; Lindner et al., 2022; Martens et al., 
2022; Raulin et al., 2022). In an in-vitro experimental system, Lindner 
et  al. (2022) explored isoform-specific lipidation and revealed 
different lipidation pathways. While ATP Binding Cassette 
transporter A1 (ABCA1)-regulated APOE lipidation is isoform 
independent and cholesterol-rich HDL-like lipid particles are 
secreted by astrocytes, in stress-associated conditions, assembling 
and secretion of triacylglycerol-rich lipoproteins is boosted by the 
APOE4 isoform. The authors showed that APOE4 was a strong 
triacylglycerol binder and thus had a reduced capacity to clear toxic 
fatty acids from the extracellular milieu. Since 2003 (Koldamova 
et al., 2003), the importance of Nuclear Receptor’s Liver X Receptors/
Retinoid X receptors/ABCA1-APOA-I/APOE (LXR/RXR-ABCA1-
APOA-I/APOE) regulatory axis for normal/physiological function of 
APOE, and its relevance to AD pathogenesis in particular, has been 
demonstrated in tens of studies [for comprehensive reviews see Fitz 
et al. (2019), Koldamova and Lefterov (2007), Pahnke et al. (2021), 
Wolfe et al. (2018a), and Kim et al. (2009)]. The regulatory axis does 
not simply imply transcriptional regulation. While ABCA1 is a 
primary LXR/RXR target gene, APOE and APOA-I are part of the 
axis because transcriptional upregulation of ABCA1 and ABCA1-
mediated lipidation of APOA-I and APOE are prerequisites for their 
stability, avoiding fast apolipoprotein degradation.

Perhaps the most comprehensive review of disturbed molecular, 
cellular, and pathophysiological processes in AD that might 
be  associated with APOE4 has been published by researchers 
previously or currently affiliated with Mayo Clinic and Washington 
University at St Louis (Martens et al., 2022). Alike to Amyloid cascade 
hypothesis proposed in the late 90s [see J. Hardy for a comprehensive 
review and critical reappraisal (Hardy, 2009)], the authors coined the 
term “APOE cascade hypothesis” in the pathogenesis of AD and 
related dementias. Besides the excellent description of disturbed 
molecular and cellular processes during AD progression, Martens 
et al. propose a targeted engagement type of therapeutic strategy based 
on APOE biology and the physical properties of multimolecular 
complexes where APOE is an integral part. To be successful, these 
strategies should nevertheless consider that APOE is not a cause of 
AD as well as the role of APOE isoforms in development and normal 
CNS physiology.
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TABLE 1 List of diseases where an association with APOE variants has been identified using different models and approaches.

Disease Model/Approach Conclusion

Carotid Atherosclerosis; progression of (Ma W. et al., 

2022)
Logistic regression analysis

ε4 allele is independent risk factor for CAS in Han 

populations; the association is partly mediated through 

blood lipids.

Cerebral microbleeds (CMB) (Romero et al., 2014) Framingham Original and Offspring cohort; MRI
Association of hypertension, CMB, low cholesterol and 

ε4

Combat-Related Posttraumatic Stress Disorder (Kim 

et al., 2013)

Clinician-Administered PTSD and Combat 

Exposure Scales with an assessment of the severity 

of alcohol use; logistic regression analysis.

APOEε2 allele operates as a susceptibility gene for 

combat-related PTSD, with the relationship between 

alcohol use and PTSD differing according to the APOEε2 

carrier status

Coronary artery disease (Ashiq and Ashiq, 2021) Meta analysis; ε2 vs. ε3 & ε4 vs. ε3.

ε4 allele appears as a significant genetic risk factor for 

coronary artery disease while the ε2 allele is beneficial to 

alleviate the CAD risk

Dementia with Lewy bodies (Bras et al., 2014) GWAS
APOE genetic locus, driven by ε4 allele, is the strongest 

genetic risk factor for DLB

Exceptional longevity (Garatachea et al., 2014)
Each genotype and allele compared with all other 

genotypes and alleles

ε4 allele decreases the likelihood of reaching EL among 

individuals of different ethnic/geographic origins. ε2 

favors EL, at least in the Italian and Japanese cohorts.

Frontotemporal lobar degeneration (Rubino et al., 2013)
Meta analysis; ε4 carriers vs. non-ε4 carriers; ε4 

carriers vs. ε3 carriers

Evidence for an association between the ε4 allele and 

frontotemporal lobar degeneration.

Glomerular filtration rate (eGFR) (Coto et al., 2013)
Modified Diet in Renal Disease formula; 

multivariate logistic regression analysis

ε4 allele is a genetic risk factor for impaired renal 

function among healthy elderly Spanish individuals

Incident dementia risk in late life and early-life 

educational attainment (Ma H. et al., 2022)
Cox proportional hazards models

Higher educational attainment in early life may attenuate 

the risk for dementia, particularly among people with 

high genetic predisposition (one or two ε4 alleles).

Incident MCI and Physical Activity (Krell-Roesch et al., 

2016)

Cox proportional hazards models; Prospective 

cohort study

Higher risk of incident MCI in ε4 carriers compared to 

ε4 non-carriers who reported physical activity

Late life depression (Yen et al., 2007)
Questionnaire; multinomial logistic regression 

analysis

ε4 allele may be correlated with severe depression in the 

elderly

Metabolic syndrome (Carty et al., 2014) Meta analysis
APOC1/APOE/TOMM40 significantly associated with 

MetS components overall

Mood disorders # Cardiometabolic disease (Amare et al., 

2017)
Meta-GWASs;

APOE4 in a group of 24 pleotropic genes participates in 

biological mechanisms of mood disorders and 

cardiometabolic diseases

Non pathological cognitive aging (Davies et al., 2014) GWAS
Both APOE (rs429358 and TOMM40 (rs11556505; as loci 

that were associated with cognitive agin)

Parkinson’s disease (Mata et al., 2014) Cognitive test; Verbal learning ε4 is a predictor of cognitive function in PD

Primary progressive aphasia and speech apraxia (Josephs 

et al., 2014)
Confirmed PPA, APOE genotyping and PiB PET

ε4 increases the risk of β-amyloid deposition in PPA and 

progressive speech apraxia but does not influence 

regional β-amyloid distribution or severity

Rheumatoid Arthritis (Chen et al., 2020) CVD risk association
Lower risk for CVD in patients with ε2ε3 genotype 

compared to ε3ε4

Schizophrenia (Allen et al., 2008) Meta analysis; ε4 vs. ε3 APOE in a group of 16 genes shows significant effect

TBI and deposition of Aβ (Nicoll et al., 1995) Histological examination, APOE genotyping

The frequency of ε4 in those individuals with Aβ 

deposition following head injury (0.52) is higher than in 

most studies of Alzheimer’s disease

Vascular dementia (Chuang et al., 2010) Cox proportional hazards models
ε4 allele is associated with an increased risk of Vascular 

Dementia in a dose dependent fashion

Vascular disease (Koopal et al., 2015) ε2 heterozygosity vs. all other Е genotypes
Distinct modifier effect of APOEε4 on the relation 

between adiposity and lipids

The statements in the third column are concise conclusions related, as much as possible, mostly to APOE, in case the association includes other genes or conditions. The Table should 
be considered incomplete since (1) it does not include studies published in 2023, and (2) numerous studies that have confirmed already established associations between APOE and CVD.
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Expression of the Apolipoprotein 
E/C-I/C-IV/C-II gene cluster is highly 
regulated and differs in humans and 
mice

Molecular clues to understand the regulated expression of 
Apolipoprotein E/Apolipoprotein C-I/Apolipoprotein C-IV/
Apolipoprotein C-II (E/C-I/C-IV/C-II) gene cluster came from a series 
of reports based on studies conducted in J. Taylor’s and D. Mangelsdorf ’s 
laboratories in the late 90s and the beginning of this century (Simonet 
et al., 1993; Allan et al., 1995, 1997; Shih et al., 2000; Grehan et al., 2001; 
Laffitte et al., 2001, 2003; Mak et al., 2002). The characterization of 
transgenic mice overexpressing individual genes of the cluster revealed 
diverse functions. However, the expression of all members of this 
apolipoprotein gene cluster is reported to be coordinately regulated by 
distal enhancer regions (Simonet et al., 1993; Allan et al., 1995). It was 
demonstrated that the regulatory sequences in the MultiEnhancers 
ME1 and ME2 downstream from the Apolipoprotein C-I (APOC-I) 
gene are transcription factors Liver X Receptor/Retinoid X receptor 
(LXR/RXR) Nuclear Receptor dimers canonical response elements 
(Mak et al., 2002; Figure 1). The regulatory sequences in the promoter 
regions of the human APOE gene cluster represent binding sites/
response elements of additional transcription factors – APP-2, SP1, 
Estrogen Receptor, as well as transcriptional elements A, B, B1, and B2 
(Smith et  al., 1988; Jo et  al., 1995; Paik et  al., 1995; Bullido and 
Valdivieso, 2000). Furthermore, polymorphisms in the proximal 
promoter and the first intron of the APOE gene cluster (−1,019 to 
+407) affecting APOE expression were identified in the late 90s and 
early 2000s (Mui et  al., 1996; Lambert et  al., 1997, 1998a,b, 2000; 
Bullido and Valdivieso, 2000; Lumsden et al., 2020). Importantly, these 
polymorphic sites have been associated with a differential risk of AD 
(Artiga et al., 1998; Sims et al., 2017). However, the association of those 
polymorphic sites, sequence variability in the proximal promoter and 
ME1 and ME2, and the level of APOE protein in AD are not clearly 
understood. The data on the expression level of APOE RNA and the 
correlation with APOE protein level differ across the studies, and the 
question why remains unanswered. Importantly, in human postmortem 
brain, a CGI island that overlaps with exon four and downstream is 
highly methylated, and the methylation is altered in AD frontal lobe 
(Lee et  al., 2020). However, the methylation level of APOE CGI 
correlates to the expression level of four known APOE transcripts, of 
which only one is full-length. Surprisingly, circRNAs, miRNAs, and 
truncated APOE transcripts constitute a significant part of the total 
APOE mRNA with higher expression in the AD frontal lobe. While the 
precise clinical significance of these variations in the amounts of RNA 
and methylation level of CGI in the APOE 3′-exon are not fully 
understood, the results of an increasing number of studies point to the 
regulatory role of epigenomic signatures and changes in epigenome 
associated with risk or clinical presentation of a variety of neurological 
disorders (Lee et al., 2020).

The human APOE targeted 
replacement and other humanized 
mouse models

For the last 25 years or so, the availability of a mouse model with 
a targeted replacement of mouse Apoe gene (Sullivan et al., 1997) 

provided an opportunity to address a myriad of questions ranging 
from the role of APOE isoforms in AD pathogenesis to how 
successful variety of therapeutic strategies have been so far. The 
model has been used in multiple studies aiming to reveal the role of 
APOE isoforms in the response to traumatic brain injury, as well 
(Crawford et  al., 2002, 2009; Castranio et  al., 2017, 2018). 
Considering the differences between mouse and human APOE gene 
clusters, how complex the transcriptional control of human APOE 
is, the structure of the targeting construct (s), and the strategy to 
replace mouse Apoe in the TR APOE models (Sullivan et al., 1997, 
2009) become important factors. An NIH/NIA initiative recently 
established the MODEL-AD (Model Organism Development and 
Evaluation for Late-onset AD) consortium to provide the scientific 
community with AD animal models of LOAD that better mimic 
human disease (www.model-ad.org). The consortium has created 
knock-in humanized coding and non-coding LOAD risk variants 
expressed at endogenous levels, including mice expressing all APOE 
isoforms (Oblak et al., 2020; Kotredes et al., 2021; Foley et al., 2022). 
The targeting constructs used to generate APOE TR at Jax (Foley 
et  al., 2022) differ from those originally used at Duke (Sullivan 
et  al., 1997). In the Duke model the 3′ homology arm of the 
targeting construct, manipulated according to the classic genetic 
engineering technology, is upstream of the mouse Apoe exon 4 and 
3′ noncoding sequences. That means no human regulatory 
sequences downstream of the human APOE gene exist in the 
chimeric gene. The targeting construct used in the Jax APOE TR 
mouse model was generated using a technology called 
recombineering (Sharan et al., 2009), which allows engineering of 
large constructs (>100 kb) and recombination events without 
leaving any ‘footprints’ behind homologous recombination. There 
are two differences between the targeting constructs/chimeric genes 
used in the Duke and Jax models: (1) in the Duke model the distal 
part of human APOE 1st intron, followed by the entire downstream 
sequences and part of 3′ sequences downstream of exon 4, followed 
by a Neo cassette with a stop codon are inserted between Sac I 
recognition site downstream of mouse 1st exon/intron junction, and 
Pvu I recognition site within mouse Apoe exon 4 (Sullivan et al., 
1997, 2009). (2) in the Jax model, the chimeric gene retains part of 
human regulatory sequences upstream of the noncoding exon 1and 
the entire genomic sequence of APOE. There is no Neo cassette and 
downstream of human APOE 3′ noncoding sequences the chimeric 
gene retains a small part of mouse distal noncoding exon 4 (Foley 
et al., 2022; Figure 1). Neither of the chimeric genes has human 
regulatory sequences downstream of APOE. While this is hard to 
predict with certainty, most probably the expression levels and 
response to external stimuli/insults in TR mice will not differ, 
regardless of the model. The availability of Jax APOE TR mice to the 
AD research community and the opportunity to generate, examine 
and compare APOEε3/ε4 heterozygous mice to APOEε3/ε3 and 
APOEε4/ε4 mice is what makes the models hugely different. So far, 
the patent restrictions have not allowed the generation of 
heterozygous TR mice. We  can speculate, however, that the 
expression of APOE isoforms, in the brains of Jax TR mouse 
models, does not recapitulate the transcriptional control and the 
regulation of the expression of APOE isoforms in the human brain. 
While this poses some questions about how good the models are at 
studying the risk of AD, we can assume that in a mouse model 
without overexpression of human APP, different protein–protein 
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interactions, receptor-ligand interactions, and downstream 
intracellular and extracellular effects, replicate true physiological or 
pathophysiological conditions responsive to regulatory mechanisms 
at various stages of a neurodegenerative disorder, including 
AD. We believe these are the principal arguments and a justification 
to conduct in vivo experiments using animal models expressing 
different APOE isoforms where mouse Trem2, for example, is 
physiologically expressed, globally deleted by genetic engineering, 
or expressed as a mutant form shown to be  associated with 
AD. We expect that animal models allowing the analysis of APOE 
in the context of gene–gene and gene–environment interactions will 
appear soon.

In APP transgenic mice expressing human APOE isoforms, APOE 
affects Aβ clearance and deposition in an isoform-dependent manner 
(Holtzman et al., 2000; Bales et al., 2009; Castellano et al., 2011; Kim 
et al., 2011), and APOE lipidation level is of significance (Fitz et al., 
2012; Liao et al., 2018). Data from ABCA1 deficient mice (Hirsch-
Reinshagen et  al., 2004; Wahrle et  al., 2004) and Tangier disease 

patients with non-functional ABCA1 demonstrated that in the absence 
of cholesterol efflux plasma APOA-I is virtually missing and APOE in 
plasma and brain is significantly reduced [reviewed in Oram and 
Vaughan (2000) and Koldamova et  al. (2014)]. It has been shown 
independently by three groups that in APP transgenic mice, global 
deletion of Abca1 decreases APOE lipidation and significantly increases 
amyloid deposition (Hirsch-Reinshagen et al., 2005; Koldamova et al., 
2005; Wahrle et al., 2005). Recently, Fitz et al., using preclinical AD 
mouse models, demonstrated that APOE3 lipoproteins, compared to 
APOE4, prompted faster microglial migration toward injected Aβ, 
facilitated Aβ uptake, and abrogated damaging effects of Aβ oligomers 
on cognition (Fitz et al., 2021). Applying in vivo two-photon imaging, 
they showed that the APOE3 lipoproteins caused microglia to move 
faster toward Aβ and surround it, thus decreasing the spread of Aβ 
(Fitz et al., 2021). In tau mouse models of AD, expression of APOE4 
has been shown to exacerbate tau-mediated neurodegeneration 
compared to mice with APOE3 expression, while the selective removal 
of astrocytic APOE4 is protective (Wang et al., 2021).

FIGURE 1

(A) Schematic of the human and murine APOE/C-I/C-IV/C-II gene clusters. Human cluster contains the APOC-I pseudogene. In the multienhancer 
regions downstream from human and mouse APOE/Apoe genes are located multienhancer elements ME1 in human and ME in mouse clusters. Human 
and mouse Hepatic Control Regions HCR.1 and HCR are located downstream of C-I. Human APOC-I pseudogene is indicated as C-I′; the pseudogene 
is a result of APOC-I duplication and does not exist in the mouse cluster. ME2 is a duplicated ME1 and exists only in humans. (B) The nucleotide 
sequences corresponding to putative LXR response elements with the 4-bp spacer within the human and murine MEs are shown as capital letters. The 
direct repeats are separated by 4-bp spacers. The locations of these sequences relative to the 5′  end of each ME are given. (C) A diagram of chimeric 
genes in TR APOE model mice generated at Duke (Sullivan et al., 1997) and Jax Labs (Foley et al., 2022). Detailed explanations are provided in the text.
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TREM2: expression, function, and 
effects

TREM2 – gene and protein structure

TREM2, a member of the TREM family, is a cell surface 
transmembrane receptor with an extracellular Ig-like domain, a 
cytoplasmic tail, and a transmembrane domain [reviewed in Colonna 
(2023) and Wolfe et al. (2018b)] (see Figure 2). TREM2 is expressed 
in cells of the myeloid lineage, such as microglia, osteoclasts, tissue 
macrophages, monocytes, and dendritic cells (Colonna, 2023). Most 
of the TREMs are evolutionarily conserved in mice and humans. 
Human TREM2 is located on chromosome 6p21.1 in the TREM gene 
cluster near other TREM and TREM-like (TREML) genes: TREML1, 
TREM2, TREML2, TREML3, TREML4, and TREM1 (Klesney-Tait 
et al., 2006). Mouse Trem2 is located on mouse chromosome 17C in a 
cluster including Trem1, Treml1, Trem2, Treml2, Trem3, Trem4, 
Treml4, Trem5, Treml6 (Colonna, 2023).

TREM2 signaling

As shown in Figure 2, upon ligand binding, intracellular signals 
are conveyed through DNAX-activating protein DAP12 (12 kDA 
disulphide-bonded protein homodimer containing an 
immunoreceptor tyrosine-based activation motif), also known as 
TYROBP (tyrosine kinase-binding protein). The cytosolic 
immunoreceptor tyrosine-based activation motifs (ITAMs) on DAP12 
will recruit the tyrosine protein kinase SKY, which leads to the 
activation of phosphoinositide 3-kinase (PI3K)  - AKT pathway 
(Figure 2 #1) and phosphorylation of linker for activation of T-cells 
family member 1 (LAT) and/or LAT2, which recruit other signaling 
adaptors such as phospholipase Cγ2 (PLCγ2) (Figure  2 #3), and 
guanine exchange factor proto-oncogene VAV1 [reviewed in Colonna 
(2023)]. PLCγ2 further degrades phosphatidylinositol-3,4,5-
trisphosphate (PIP3) to inositol trisphosphate (IP3) and diacylglycerol 
(DAG), thus mobilizing Ca2+. VAV1 induces actin remodeling that 
controls migration and adhesion (Figure 2 #2). All these signaling 
pathways affect the survival and proliferation of microglia (mTOR 
signaling), phagocytosis, and release of cytokines and chemokines 
(Wang et al., 2015; Wu et al., 2015; Raha et al., 2017; Ulland et al., 
2017; Zhong et al., 2017; Zheng et al., 2018). Full-length TREM2 can 
be cleaved by disintegrin and metalloproteinase domain-containing 
proteins (ADAM10 and ADAM17, see Figure  2), thus releasing 
soluble TREM2 (sTREM2) (Wunderlich et al., 2013; Thornton et al., 
2017). The exact biological and pathological role of sTREM2 is not 
clear, with some proposing it acts as a decoy receptor against TREM2 
(Zhong et al., 2017) and others suggesting that sTREM2 plays an 
important role in promoting microglia survival and regulating 
inflammatory responses (Wu et al., 2015; Zhong et al., 2017). Overall, 
TREM2 expression and TREM2-induced signaling are essential in 
regulating microglia survival and proliferation.

TREM2 ligands

The specific ligands that bind and activate TREM2 remain unclear. 
The extracellular region of TREM2 with an immunoglobulin domain 

binds many Gram-negative and Gram-positive bacteria and microbial 
products, such as LPS (Daws et  al., 2003) and lipids [reviewed in 
Colonna (2023) and Kober et  al. (2016)]. It has been shown that 
TREM2 binds phospholipids such as the phosphatidylserine on the 
surface of apoptotic cells (Poliani et  al., 2015; Wang et  al., 2015; 
Krasemann et al., 2017; Shirotani et al., 2019), lipoproteins including 
HDL and low-density lipoproteins (LDL) (Song et al., 2017). TREM2 
also binds apolipoproteins, such as APOE (Atagi et al., 2015; Bailey 
et al., 2015; Yeh et al., 2016; Jendresen et al., 2017; Kober et al., 2020). 
TREM2 binds myelin lipids and participates in debris clearance and 
remyelination (Cantoni et al., 2015; Poliani et al., 2015; Nugent et al., 
2020). It has also been reported that in vitro soluble TREM2 directly 
binds to Aβ oligomers (Lessard et al., 2018) and, at least in vitro, can 
facilitate Aβ degradation (Zhao et al., 2018).

Regulation of Trem2 expression

Expression of TREM2 is affected by inflammation; for example, 
pro-inflammatory molecules such as lipopolysaccharide (LPS) 
downregulate TREM2 expression, and in-vitro anti-inflammatory 
molecules upregulated TREM2 expression (Bhattacharjee et al., 2016; 
Liu et al., 2016; Zheng et al., 2016). TREM2 expression is increased with 
the progression of neurodegeneration in AD patients (Perez et al., 
2017) and mouse models of AD (Keren-Shaul et al., 2017; Krasemann 
et al., 2017) – traumatic brain injury (Castranio et al., 2017; Saber et al., 
2017), Amyotrophic lateral sclerosis (Jerico et al., 2023), Parkinson’s 
disease (Liu et  al., 2016), and post-stroke remodeling (Song et  al., 
2022). In terms of transcription factor regulation, a study by Daniel 
et al. (2014) demonstrated that the Retinoid X receptor (RXR) ligand 
LG268 increased RXR binding at a site upstream of the TREM2 locus, 
which regulates murine Trem2 expression [also reviewed in Jay et al. 
(2017b)]. Treatment with another RXR agonist – bexarotene, enhanced 
the expression of TREM2 mRNA in the cortex of AD mice (Lefterov 
et al., 2015). A recent study demonstrated that HX600, a synthetic 
agonist for RXR-Nuss1 heterodimers, increased TREM2 
immunoreactivity in an ischemic mouse model (Loppi et al., 2018).

TREM2, amyloid deposition, and tau

The effects of Trem2 deficiency on amyloid pathology have 
been studied in APP transgenic mice with different results based 
on the mouse model used and the stage of amyloid pathology. 
Wang et al. (Wang et al., 2015) were the first to report that Trem2 
deficiency significantly decreased the number of plaque-associated 
microglia in the 5XFAD AD mouse model, indicating that the 
proliferation of local microglia around the plaques is impaired, 
which other groups later confirmed (Yuan et al., 2016; Fitz et al., 
2020). In their study, Wang et al. reported a significant increase of 
amyloid load in the hippocampus but not in the cortex at 
8.5 months and no difference in amyloid load at an earlier age of 
5XFAD mice (Wang et al., 2016).

Similarly, in APPPS1-21 model mice, there was no change in the 
amyloid pathology in the cortex but a significant decrease in the 
hippocampus of Trem2−/− mice at 4 months (Jay et  al., 2015). 
Interestingly, using the same AD mouse model at 8 months of age, Jay 
et al. showed an increase in 6e10 staining in the cortex and no changes 
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in the hippocampus of Trem2 deficient mice when compared to 
controls (Jay et al., 2017a) and concluded that in the early stages of 
amyloid deposition (2-month cortex, 4-month hippocampus) Trem2 
deficiency reduces both plaque number and size and at later stages of 
the disease Trem2 deficiency increases plaque size and area. Using 
three different AD mouse models and employing high-resolution 
STORM imaging, Yuan et al. showed that Trem2 deficiency increased 
the diffuse amyloid plaques associated with increased neuronal 
dystrophy (Yuan et al., 2016). What looks to be an undisputed feature 
of TREM2 is its role in microglia barrier around the amyloid plaques 
and in amyloid compaction (Wang et al., 2015; Yuan et al., 2016; Fitz 
et al., 2020; Meilandt et al., 2020; Wood et al., 2022). The conclusion 
from these studies is that the lack of microglia barrier in Trem2 
deficient mice impedes amyloid from forming dense plaques, thus 
allowing the spreading of more toxic Aβ oligomers.

The effect of Trem2 deficiency on tau pathology using tau mouse 
models is less clear and more complex. In P301S tau mice expressing 
mouse Apoe the loss of Trem2 (Sayed et al., 2018; Leyns et al., 2019) or 
the expression of loss-of-function R47H variant (Gratuze et al., 2020) 
decreased brain atrophy and neurodegeneration as well as microgliosis 
compared to control mice expressing wild type Trem2. Surprisingly, 
the deletion of Trem2 in the same P301S-tau model expressing human 
APOE4 isoform exacerbated tau-mediated brain atrophy (Gratuze 
et  al., 2023). The most probable explanation for the observed 
discrepancies is that the mutated tau interacts differentially with 
human and mouse APOE. It is difficult to say the reason for these 

discrepancies without more experiments, including the expression of 
APOE2 and E3 isoforms and comparing their effect on tau pathology.

In 2017 using different models of neurodegeneration, several groups 
have identified and characterized the phenotype and transcriptomics of 
novel microglia type associated with neurodegenerative diseases called 
either Disease Associate microglia (DAM) (Keren-Shaul et al., 2017) or 
microglial neurodegenerative phenotype (MGnD) (Krasemann et al., 
2017). DAM signature represents a unique set of genes that overlapped 
in different studies and includes the upregulation of genes such as Apoe, 
Trem2, Clec7a, Axl, Lpl, Spp1, and Mpeg1 and downregulation of another 
set of genes termed “homeostatic” microglia (for example Tmem119, 
P2ry12) (Keren-Shaul et al., 2017; Krasemann et al., 2017; Sala Frigerio 
et al., 2019; Fitz et al., 2020). Keren-Shaul et al. determined that Trem2 is 
required for the transition from one disease state to another, but the shift 
from homeostatic to DAM is Trem2 independent (Keren-Shaul et al., 
2017). The finding that Trem2 deficiency suppresses the DAM program, 
including the expression of Apoe, was confirmed by other studies 
(Krasemann et al., 2017; Sala Frigerio et al., 2019; Fitz et al., 2020, 2021).

APOE, TREM2, and AD

APOE and TREM2 are part of a large group of GWAS-identified 
genes associated with AD risk with glial-specific expression 
(microglia and astrocytes) and are related to immune response 
(Villegas-Llerena et  al., 2016). As noted above, at least in vitro 

FIGURE 2

Schematic representation of the signaling pathways activated by the transmembrane receptor TREM2. The extracellular region of TREM2 is suggested 
to recognize and bind lipids, Aβ, lipoproteins, apolipoproteins, and cellular debris. Upon ligand binding, the cytoplasmic immunoreceptor tyrosine-
based activation motifs (ITAMs) on DNAX-activating protein of 12 kDa (DAP12) recruit tyrosine protein kinase SKY, leading to activation of the 
phosphoinositide 3-kinase (PI3K) - AKT pathway and subsequent phosphorylation of linker for activation of T-cells family member 1 (LAT) and/or LAT2. 
Specifically, (1) The activation of PI3K leads to the activation of AKT, which in turn leads to the activation of mechanistic target of rapamycin (mTOR) 
signaling and the phosphorylation of glycogen synthase kinase 3β (GSK3β), resulting in GSK3β inactivation, stabilization of β-catenin, and cell cycling. 
(2) Upon phosphorylation of LAT/LAT2, adaptor molecules GRB2 and SLP76 are recruited, thereby activating the mitogen-activated protein kinase 
(MAPK) pathway and facilitating the recruitment of guanine exchange factors of the VAV family. This leads to the promotion of actin cytoskeleton 
rearrangement. (3) LAT/LAT2 also activates phospholipase Cγ2 (PLCγ2), which degrades phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 
1,4,5-triphosphate (IP3) and diacylglycerol (DAG). This results in Ca2+ mobilization and NF-κB activation, respectively. These pathways have been found 
to affect microglia survival and functions, including phagocytosis, chemotaxis, cytokine release, and energy metabolism. Full-length TREM2 can 
be cleaved by a disintegrin and metalloproteinase domain-containing protein (ADAM10 and ADAM17), releasing soluble TREM2 (sTREM2).
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TREM2 binds to APOE (Atagi et al., 2015; Bailey et al., 2015; Yeh 
et al., 2016; Lessard et al., 2018; Kober et al., 2020). In some studies, 
the R47H variant of TREM2 has markedly reduced binding between 
APOE and TREM2 (Atagi et al., 2015; Bailey et al., 2015; Yeh et al., 
2016) and in others with no effect on their interaction (Lessard et al., 
2018). In terms of the affinity of TREM2 to bind different APOE 
isoforms, two studies showed that APOE4 demonstrates a slightly 
higher affinity to bind TREM2 than the other two isoforms 
(Jendresen et al., 2017; Kober et al., 2020) but other – no significant 
difference between the isoforms (Atagi et al., 2015; Bailey et al., 2015; 
Yeh et al., 2017; Lessard et al., 2018). Regarding APOE lipidation, 
TREM2 was shown to bind lipidated and non-lipidated 
APOE. However, it is an open question if APOE lipidation affects 
TREM2 binding. Some studies found that their interaction is 
enhanced by lipidation (Yeh et al., 2016) and others to be slightly 
decreased by it (Kober et al., 2020). As noted above, bearing in mind 
the data from Tangier patients and Abca1 knockout mice, it is 
possible that in vivo APOE does not exist in lipid-free form 
[reviewed in Oram and Vaughan (2000) and Koldamova et  al. 
(2014)]. Thus, whether APOE lipidation has a role in TREM2 
binding is more of a theoretical than practical significance.

Only a few reports examine the interaction between TREM2 
deficiency and APOE isoforms in vivo either in APP transgenic models 
(Fitz et al., 2020) or in AD patients (Nguyen et al., 2020). Fitz et al. 
demonstrated that in APP mice expressing human APOE3 or APOE4 
(APP/E3 and APP/E4), the lack of Trem2 impaired microglia barrier 
in both isoforms but did not change steady-state plaque load (Fitz et al., 
2020). However, APOE mRNA expression measured in plaque-
associated microglia was significantly reduced by Trem2 deficiency 
only in APP/E4 and not in APP/E3 mice, suggesting that APOE4 
microglia respond differently to the absence of Trem2 (Fitz et al., 2020). 
Since another DAM gene – Clec7a, was also significantly decreased in 
plaque microenvironment only in APP/E4 without Trem2, this might 
imply that DAM response to a challenge (in this case, amyloid 
deposition and Trem2 absence) is less effective on an APOE4 
background, thus preventing microglia around plaques to form a 
complete barrier (Fitz et al., 2020, 2021). A recent study by Nguyen 
et al. used single-nucleus RNA sequencing of postmortem human 
brain expressing APOE and TREM2 variants and identified four 
distinct microglia clusters. One was the homeostatic microglia; the rest 
were “active” clusters designated based on different pathology and 
differentially expressed genes. Nguyen et al. established that one of the 
active clusters includes a subpopulation of CD163-positive microglia, 
which they named “amyloid-responsive microglia.” They determined 
that this cluster is enriched in APOE3/3 AD patients and is relatively 
depleted in cases with APOE4 carriers and TREM2 risk variants. 
Nguyen et al. proposed an amyloid-responsive microglia subpopulation 
primed to elicit an activated immune response and note the reduced 
response in APOE4 carriers. In a recent study, Fitz et al. showed that in 
mice injected with Aβ plus native APOE lipoproteins, there was a 
higher number of differentially expressed genes between WT vs. 
Trem2ko if the mice were injected with APOE4 compared to APOE3, 
particularly genes associated with interferon signaling (Ifit2, Ifi27l2a, 
Ifi207, and Axl) and endocytosis (Cd14, Cxcl16, Fth1, and Ifitm3) (Fitz 
et al., 2021). Additionally, the lack of TREM2 decreases Aβ phagocytosis 
only by APOE4-treated microglia, thus suggesting that APOE4 
lipoproteins compared to APOE3 are insufficient to resist TREM2 
deficiency, particularly in the presence of Aβ (Fitz et al., 2021).

Concluding remarks

It is hard to admit that 30 years after the discovery of APOEε4 as 
the highest genetic risk of AD, the nature and the molecular and 
cellular mechanisms that materialize the risk are still poorly 
understood. Multiple and well-supported hypotheses have been 
proposed, pointing to various mechanisms explaining the risk 
conferred by APOE4. Most importantly, however, loss of function – 
decreased level of APOE4 and fast degradation of poorly lipidated 
Apolipoprotein E4, as well as gain of function – generation of 
neurotoxic fragments due to domain interaction and reduced stability 
of APOE4, seem to work in concert and gradually lead to dysbalanced 
Aβ clearance, facilitated tau fibrillation and higher order behavioral 
disturbances. It is possible that these two pathogenic pathways work 
in concert and should be addressed together. A better understanding 
of those seemingly distant pathways and the interaction of APOE4 
with other signaling and regulatory molecules – ABCA1 and TREM2, 
for example, conferring an increased risk themselves, are very 
important and hopefully will point to reasonable and probably 
successful therapeutic strategies based on APOEε4. Until then, the 
ideas of replacing/eliminating APOE4, inhibiting its interactions at 
an ill-defined age, or ignoring the intervention time seem poorly 
substantiated. In this review, we  cautiously, although briefly, 
emphasized the complexity of transcriptional regulation of the E/C-I/
C-IV/C-II gene cluster and differences in regulatory, including 
epigenetic, mechanisms in humans and mice. These differences 
become even more important in APOE TR mice. An attempt to 
formulate a strong hypothesis on how the risk conferred by the 
inheritance of the APOEε4 allele is materialized, based on the studies 
that use more or less complex or extremely complex animal models, 
is doomed to failure. The overwhelming controversies and 
inconsistencies in conclusions from otherwise perfectly conducted 
studies indicate the lack of the appropriate mouse model. Perhaps a 
model that includes APOE/CI part of APOE cluster with critical 
regulatory sequences is one promising option. The scientific 
community needs such a model/models to move further from square 
one – the inheritance of the APOEε4 allele is the highest genetic 
risk of AD.
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