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Staphylococcus aureus d-toxin
present on skin promotes the
development of food allergy
in a murine model
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Background: Patients with food allergy often suffer from atopic dermatitis, in

which Staphylococcus aureus colonization is frequently observed.

Staphylococcus aureus d-toxin activates mast cells and promotes T helper 2

type skin inflammation in the tape-stripped murine skin. However, the

physiological effects of d-toxin present on the steady-state skin remain

unknown. We aimed to investigate whether d-toxin present on the steady-

state skin impacts the development of food allergy.

Material andmethods: The non-tape-stripped skins of wild-type, KitW-sh/W-sh, or

ST2-deficient mice were treated with ovalbumin (OVA) with or without d-toxin
before intragastric administration of OVA. The frequency of diarrhea, numbers of

jejunum or skin mast cells, and serum levels of OVA-specific IgE were measured.

Conventional dendritic cell 2 (cDC2) in skin and lymph nodes (LN) were analyzed.

The cytokine levels in the skin tissues or culture supernatants of d-toxin-
stimulated murine keratinocytes were measured. Anti-IL-1a antibody-

pretreated mice were analyzed.

Results: Stimulation with d-toxin induced the release of IL-1a, but not IL-33, in
murine keratinocytes. Epicutaneous treatment with OVA and d-toxin induced the

local production of IL-1a. This treatment induced the translocation of OVA-

loaded cDC2 from skin to draining LN and OVA-specific IgE production,

independently of mast cells and ST2. This resulted in OVA-administered food

allergic responses. In these models, pretreatment with anti-IL-1a antibody

inhibited the cDC2 activation and OVA-specific IgE production, thereby

dampening food allergic responses.
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Conclusion: Even without tape stripping, d-toxin present on skin enhances

epicutaneous sensitization to food allergen in an IL-1a-dependent manner,

thereby promoting the development of food allergy.
KEYWORDS

food allergy, epicutaneous sensitization, murine model, IgE, Staphylococcus aureus d-
toxin, IL-1a
Introduction

The prevalence of food allergy is increasing, particularly in

western countries, thereby poising a critical public health problem.

Generally, the sensitization to food allergen via several routes,

accompanied by the production of food allergen-specific

immunoglobulin E (IgE) antibody (Ab), plays an important role

in the development of food allergy, which is caused by the oral

intake of the same allergen. The occurrence of food allergy is

characterized by diarrhea and anaphylaxis in severe cases. These

symptoms are caused by chemical mediators mainly released from

mast cells, which are activated by the engagement of high affinity

IgE receptor (FceRI) on their surfaces with food allergen and its

specific IgE (1–6). Recent advances highlight that epicutaneous

sensitization to food allergen is important in developing food allergy

(7–11). Food allergy is associated with atopic dermatitis, in which

skin barrier dysfunctions are critical pathogenic factors (1–3, 12,

13). Further, the skin of patients with atopic dermatitis is frequently

colonized by Staphylococcus aureus (S. aureus), which is known to

produce several exotoxins. Among them, d-toxin (also called

phenol-soluble modulin (PSM)-g), which belongs to the peptide

toxin family of PSM, directly activates mast cells and promotes T

helper 2 (Th2) type skin inflammation with increased IgE

production (12–14). The specific receptor of d-toxin and its

function in immune cells are not completely understood (12).

PSMa peptides (PSMa1-4) are highly cytotoxic to a variety of

cells, while other PSM, including d-toxin, exhibits limited cytotoxic

activity (12–14). In murine model of epicutaneous infection of S.

aureus infection, PSMa induces the release of interleukin (IL)-1a
and IL-36a that orchestrate IL-17-dependent skin inflammation

(15, 16). Furthermore, IL-36a also directly stimulates B cells to

enhance IgE production (17). In the skins of patients with atopic

dermatitis, expression of IL-1a, IL-1b, IL-18, IL-33, and IL-36a,
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which belong to IL-1 family, is known to be upregulated in

keratinocytes (18–21). However, the context-dependent functions

of these cytokines in epicutaneous sensitization is not yet clear.

Mouse models have been used to study food allergy induced by

oral challenges with ovalbumin (OVA) following intraperitoneal

sensitization with OVA plus alum adjuvant. Mice with food allergy

exhibited high serum levels of OVA-specific IgE and mast cell

protease 1 (MCPT1), which is a mucosal mast cell activation

marker, and intestinal mast cell hyperplasia. In these models,

mast cells and OVA-specific IgE are indispensable for the

induction of food allergy (4–6). Alternatively, several models of

food allergy in mice after epicutaneous sensitization have been

developed recently (8–11). Epicutaneous treatment with OVA on

the tape-stripped skins of mice induces Th2/T follicular helper

(Tfh) responses through several mechanisms. These mechanisms

involve epithelial cell-derived cytokines such as thymic stromal

lymphopoietin (TSLP) and IL-33 and skin immune cells such as

conventional dendritic cell 2 (cDC2). Among several antigen-

presenting cells, cDC2 is justified as the most prominent in

inducing Th2 responses. Under inflammatory conditions, cDC2

uptakes food allergen in the dermis and moves to the draining

lymph node (LN), where it presents the food antigens to naïve CD4+

T cells to induce Th2/Tfh responses (22–26). Recent reports have

shown that tape-stripping alone causes the release of IL-33 in skin,

which induces the expansion of intestinal mast cells via

keratinocyte-derived IL-33-intestinal type 2 innate lymphoid cell

(ILC2) axis and enhances IgE-mediated food allergic responses

(7, 8).

The present study aimed to investigate whether d-toxin of S.

aureus is implicated in the development of food allergy following

epicutaneous sensitization of steady-state skin. To remove the

effects of tape stripping on immune responses and to clarify the

exact roles of d-toxin on skin with normal barrier function, we used

murine model of food allergy after epicutaneous treatment of the

non-tape-stripped skin.
Materials and methods

Mice

We used wild-type (WT) BALB/c mice (Japan SLC,

Hamamatsu, Japan) and KitW-sh/W-sh and ST2-deficient mice on

the BALB/c background were used (6, 27–29). All animal
frontiersin.org
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experiments were approved by the ethical committee of Juntendo

University (approval numbers 310050 and 310051).
Antibodies and other reagents

The following antibodies (Abs) were used: Fluorescein

isothiocyanate (FITC)-anti- FceRIa (MAR-1) (eBioscience), MHC

Class II (M5/114.15.2) (BioLegend), phycoerythrin (PE)-anti-CD24

(M1/69) and CD103 (2E7) (BioLegend), PE-cyanin 7 (Cy7)-anti-

CD64 (X54-5/7.1) and EpCAM (G8.8) (BioLegend), Allophycocyanin

(APC)-c-Kit (2B8) (eBioscience), APC-Cy7-CD45 (30-F11) and

Zombie (B279801) (BioLegend), Peridinin Chlorophyll Protein

Complex (PerCP)-Cy5.5-anti-CD45 (30-F11) and CD11b (M1/70)

(BioLegend), Streptavidinanti (BioLegend), Brilliant Violet (BV) 421-

anti-CD11c (N418), and CD11b (M1/70) (BioLegend), Biotin anti-

CD11c (N418), CD19 (1D3), CD3 (145-2C11), and CD11b (M1/70)

(Tonbo Biosciences), Biotin anti-F4/80 (RME-1), FceRIa (MAR-1),

CD49b (DX5), and Ly-6G/Ly-6C (Gr-1) (BioLegend). Cytokines were

purchased from R&D Systems. OVA (Grade V) was purchased from

Sigma. Alexa Fluor 647-conjugated OVA (OVA-AF647) was generated

by labeling OVA with Alexa Fluor™ 647-NHS Ester (Thermo Fisher

Scientific) following manufacturer’s instructions. The toxins d-toxin
(MAQDIISTIGDLVKWIIDTVNKFTKK) and PSMa3
(MEFVAKLFKF FKDLLGKFLG NN) were synthesized (GL Biochem,

Shanghai, China).
Cells

Axillary LNs were isolated from the mice and single-cell

suspensions of these LNs were prepared. Bone marrow-derived

mast cells (BMMCs) were generated as previously described (6, 27).

Briefly, murine BM cells were incubated in RPMI 1640 medium

including 10% FCS in the presence of 10 ng/mL IL-3. Five weeks

after incubation, more than 95% pure population of FceRI+c-kit+

mast cells (BMMCs) were generated. Alternatively, murine BM cells

were incubated in RPMI 1640 medium including 10% FCS in the

presence of 20 ng/mL GM-CSF for 10 days to generate

CD11b+CD11c+ BM-derived dendritic cells (BMDCs). Murine

keratinocytes were isolated as described previously (30, 31). To

separate the epidermis from the dermis, skins of newborn mice were

treated with 5 mg/mL DISPASE II (FUJIFILM) overnight at 4 °C.

The mechanically-separated epidermis was washed with phosphate-

buffered saline (PBS) and incubated with CnT-ACCUTASE-100

(CELLNTEC) for 20 min at room temperature to obtain the

keratinocytes. Murine keratinocytes were cultured in CnT-Prime,

Epitherial Culture Medium (CELLNTEC) using 1.2 mM CaCl2 on

collagen-coated plates to induce keratinocyte differentiation.
Mouse model of food allergy following
epicutaneous sensitization

Epicutaneous sensitization was performed as previously

described, with a few modifications (7, 10, 11, 13). Female mice
Frontiers in Immunology 03
aged 8-10 weeks were anesthetized, and depilatory cream was applied

on their abdominal skins. Thereafter, OVA (200 mg in 100 mL saline)

and d-toxin (200 mg in 100 mL saline) or 100 mL saline were applied

once a week for six weeks (on days 0, 7, 14, 21, 28, and 35) to the

abdominal skins of the mice that had not been subjected to tape

stripping. One week after the final epicutaneous treatment, the mice

were intragastrically gavagedwithOVA (50mg in 200mL saline) every
2 d for a total seven to twelve times. Diarrhea was assessed by visually

monitoring mice for up to 30 minutes after intragastric challenge of

OVA.Mice excreting loose or liquid stools were recorded asmice with

diarrhea. The frequency of diarrhea (%) means the percentage of the

mice with diarrhea among all the mice tested (6).
ELISA measurements for cytokines, MCPT-
1, IgE, and OVA-specific IgE

ELISA kits for IL-4, IL-13, IL-33, IL-1a, IL-1b, IL-25, and TSLP
(R&D Systems), mast cell protease-1 (MCPT-1) (eBioscience), and

high mobility group box 1 (HMGB1) (Promega) were used to

measure their concentrations in serum, culture supernatants, and

skin tissue homogenates. ATP levels in culture supernatants and

skin tissue homogenates were measured using the CellTiter-Glo

Assay (Promega) About 10 mg skin samples were minced using

scissors and placed in 200 mL of PBS that contains protease

inhibitor cocktail (FUJIFILM) at 4°C for 30 min. Thereafter, it

was centrifuged at 12000 g at 4°C for 30 min, and the supernatants

were used for cytokine detection. The concentrations of OVA-

specific IgE and IgG1 were determined with luminescence ELISA by

using OVA, anti-IgE Ab (R35-118) (BD Pharmingen), anti-IgG1

Ab (1070–08) (Southern Biotech), streptavidin-horseradish

peroxidase (HRP), and TMB substrate solution (BD Biosciences),

as previously described (6, 29).
Histology

Sectionsofmice jejunumwereobtainedapproximately10cmfrom

the pyloric sphincter and fixed in 10% formalin and embedded in

paraffin. These paraffin-embedded sections of the jejunum and skin

were stained with chloroacetate esterase for the quantification of mast

cells, as previously described (6, 27, 29). Alternatively, paraffin sections

of the skin were stained with Hematoxylin and Eosin (27).
Ex vivo Th2 responses

Single-cell suspensions of axillary LN cells (2 × 106) were cultured

in the presence of 25 mg/mL OVA for 4 d to measure cytokines (IL-4

and IL-13) in the supernatants of the cultures suspensions (6, 29).
Real-time PCR

RNA extraction, cDNA synthesis, and real-time PCR were

performed as previously described (27). The jejunum tissues were
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homogenized using the tissueLyser (Qiagen), and total RNA was

extracted using RNeasy Lipid Tissue Mini Kit (Qiagen) according to

the manufacturer’s instructions. cDNA was synthesized from total

RNA using the ReverTra Ace qPCR RT kit (Toyobo). Real-time

PCR was performed with the Step One Plus Real-Time PCR System

(Thermo Fisher Scientific) using the SYBR Green PCR Master Mix

(Applied Biosystems, Life technologies). The primers used were

shown (Supplementary Table 1). The mRNA expression levels were

quantified with the comparative method using StepOne Software.

The housekeeping gene 18S rRNA was used for normalization.
Flow cytometry

Flow cytometric analysis was performed with FACSVerse (BD

Biosciences), as previously described (6, 27–29), and the obtained

data were analyzed using FlowJo software (Tree Star). cDC2 were

identified as CD45+CD11c+ MHC class II+ CD11b+CD103-

EpCAM-, as suggested by some recent studies (22, 32–36).
Measurements of the percentage of OVA-
AF647-positive cells among cDC2 in the
skin or axillary LN or among MHC Class
IIhigh BMDCs

To measure the percentages of OVA-AF647-positive cells in

vivo, depilatory cream was applied on the abdominal skins of the

mice. Thereafter, OVA-AF647 (200 mg in 100 mL saline) and d-
toxin (200 mg in 100 mL saline) or 100 mL saline were applied on

days 0 and 7 to the abdominal skins of the mice that had not been

subjected to tape stripping. Twenty-four hours after the last

epicutaneous treatment, the percentage of OVA-AF647 among

skin cDC2 or axillary LN cDC2 obtained from the mice were

measured using flow cytometry, as previously described (32).

BMDCs were cultured in the presence of 0 or 10 ng/mL IL-1a for

12 h, and then were incubated with 0, 100, or 300 ng/mL OVA-

AF647 for 1 h to measure the percentages of OVA-AF647 among

CD11b+CD11c+MHC Class IIhigh BMDCs using flow cytometry.
Evaluation of cytotoxicity

The number of the non-viable cells were estimated by CytoTox-

ONE™ Homogeneous Membrane Integrity Assay (Promega,

Madison, WI), which is a lactate dehydrogenase (LDH) release-

based assay that uses culture supernatants.
Statistical analyses

Results are expressed as means ± standard deviation (SD).

Ordinary one-way analysis of variance (ANOVA) with Tukey’s

multiple comparisons was used in Figures 1–5, and Supplementary

Figure 1. Welch’s t-test was used in Figures 6, 7; Supplementary
Frontiers in Immunology 04
Figures 2-4. Differences were compared between groups, and *p <

0.05 or **p < 0.01 was considered statistically significant.
Results

d-toxin present on the non-tape-stripped
skin strongly induced food allergic
responses following epicutaneous
sensitization to food allergens in
a murine model

To investigate whether an epicutaneous treatment with S.

aureus d-toxin on steady-state skin contributes to the

development of food allergy, we used a murine model of OVA-

induced food allergy. We avoided any impact of tape stripping on

the immune cells of skin and small intestine. For this, Balb/c mice

that had not been subjected to tape stripping were selected, and

OVA was applied to their abdominal skin either with or without d-
toxin once a week for six weeks. Between days 42 and 55, these mice

were intragastrically administered OVA every 2 days for a total of

seven times (Figure 1A). We found that the epicutaneous treatment

with OVA in the presence of d-toxin induced more frequent

diarrhea after OVA administration than that with OVA alone did

(Figure 1B). In contrast, OVA administration without prior

epicutaneous treatment did not induce diarrhea at all (Figure 1B).

We also measured the serum levels of OVA-specific IgE and IgG1 as

well as MCPT-1 in the mice after the final intragastric

administration of OVA. The results revealed that epicutaneous

treatment with OVA together with d-toxin significantly increased

all levels compared to those observed following treatment with

OVA alone (Figures 1C–E). Histological examination revealed that

the numbers of jejunum mast cells were higher in the mice

subjected to epicutaneous treatment with OVA and d-toxin than

in those treated with OVA alone (Figures 1F, G). In addition, real

time-PCR analysis showed that mRNA levels of the Th2 cytokine

IL-4 and MCPT-1 in mouse jejunum tissues were higher in the mice

epicutaneously treated with OVA and d-toxin (Supplementary

Figures 1A–D). Thus, d-toxin present on the skin strongly

induced food allergic responses with the Th2 skewing following

epicutaneous treatment with OVA even without the procedure of

tape stripping (12, 13).
IL-33-ST2 signaling is dispensable for
OVA-challenged food allergic responses
following epicutaneous treatment
with OVA plus d-toxin on the
non-tape-stripped skin

To test whether the OVA-challenged food allergic responses

following epicutaneous treatment with OVA plus d-toxin on the

non-tape-stripped skin depend on mast cells, we used the same

model in WT and mast cell-deficient KitW-sh/W-sh mice. The results

showed that intragastric challenges with OVA caused frequent
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diarrhea in WT mice, but not in KitW-sh/W-sh mice, which had no

detectable mast cells in the jejunum tissues (Figures 2A, C).

However, the serum levels of OVA-specific IgE after final

challenges with OVA were comparable between both mice

(Figure 2B). Hence, intestinal mast cells are indispensable for

OVA-challenged food allergic responses, but mast cells are not

necessary for OVA-specific IgE production in this model.

As IL-33 plays an important role in food allergic responses

following epicutaneous treatment with OVA on the tape-stripped

skin, we also investigated whether ST2, a receptor for IL-33, is
Frontiers in Immunology 05
involved in d-toxin-mediated food allergy in our model. We

performed the same treatment in WT and ST2-deficient mice,

and found that ST2 deficiency failed to influence the frequency of

diarrhea after OVA administration (Figure 2D). In addition, no

difference was observed in the serum levels of OVA-specific IgE

and the numbers of jejunum mast cells between WT and ST2-

deficient mice following the OVA challenges (Figures 2E, F).

Hence, IL-33/ST2 signaling is not essential for OVA-challenged

food allergic responses following epicutaneous treatment with

OVA plus d-toxin on the non-tape-stripped skin.
D

A B

E F

G

C

FIGURE 1

d-toxin present on the non-tape-stripped skin strongly induced food allergic responses following epicutaneous sensitization to food allergens in a
murine model. (A) Experimental design to investigate the occurrence of for food allergy after intragastric administration of OVA in WT mice that had
been epicutaneously treated or not with OVA ± d-toxin once a week for six weeks. Blood samples were taken, and small intestines were isolated on
day 56. (B) Frequency of diarrhea in OVA-challenged mice after epicutaneous treatment with OVA ± d-toxin on the non-tape-stripped skin or after
non-treatment. (C–E) Serum levels of (C) OVA-specific IgE, (D) OVA-specific IgG1, and (E) MCPT-1 in the mice after the final administration of OVA.
(F) The numbers of jejunum mast cells of the mice after the final administration of OVA. (G) Jejunum sections stained with chloroacetate esterase
(scale bars, 100 mm). Mast cells stain red. (B, F) Data are pooled from two independent experiments. (C–E) Data are representative of two
independent experiments. Means ± SD have been plotted. *, P < 0.05, **, P < 0.01.
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d-toxin present on the non-tape-stripped
skin enhanced epicutaneous sensitization
to food allergens in a murine model

We clarified the role of d-toxin present on the non-tape-

stripped skin by analyzing WT mice on day 41 before intragastric

administration. Notably, d-toxin remarkably increased the serum

levels of OVA-specific IgE after the last epicutaneous OVA

treatment even without tape-stripping (Figures 3A, B). We also

confirmed that mast cell deficiency did not influence d-toxin-
mediated production of OVA-specific IgE in this model
Frontiers in Immunology 06
(Supplementary Figure 2). In addition, as revealed by histological

examination, the mice treated epicutaneously with OVA and d-
toxin exhibited a slight increase in epidermal thickness and mast

cell numbers in the skin compared to those that were treated with

OVA alone (Figures 3C–E). In contrast, d-toxin present on the non-

tape-stripped skin did not significantly increase jejunum mast cell

numbers (Figure 3F). Hence, S. aureus d-toxin present on the non-

tape-stripped skin strongly induced epicutaneous sensitization to

food allergens independently of mast cells, thereby resulting in the

food allergic responses after intragastric challenges with the same

allergen in this model.
D

A B

E F

C

FIGURE 2

IL-33-ST2 signaling is dispensable for OVA-challenged food allergic responses after epicutaneous treatment with OVA and d-toxin on the non-tape-stripped
skin. (A, D) Frequency of diarrhea in OVA-administered mice after epicutaneous treatment with OVA ± d-toxin on the non-tape-stripped skin of (A) WT and
KitW-sh/W-sh mice and (D) WT and ST2 knockout (KO) mice. (B, E) Serum levels of OVA-specific IgE in (B) WT and KitW-sh/W-sh mice and (E) WT and ST2 KO
mice after the final administration of OVA. (C, F) The numbers of jejunum mast cells in (C) WT and KitW-sh/W-sh mice and (F) WT and ST2 KO mice after the
final administration of OVA. (A–F) Data are representative of two independent experiments. (B, C, E, F) Means ± SD have been plotted. **, P < 0.01.
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d-toxin present on the non-tape-stripped
skin strongly induced the translocation of
OVA-loaded cDC2 from skin to the
draining LN in a murine model

We assessed whether d-toxin influences the uptake of OVA by

skin cDC2 and/or the translocation of OVA-loaded cDC2 to the

draining LN. We applied OVA-AF647 with or without d-toxin on

the non-tape-stripped skin on days 0 and 7. About 24 h after the

final epicutaneous treatment, we measured the percentages of

AF647-positive cells among skin cDC2 and AF647-positive cDC2

numbers in axillary LN (Figure 4A). The percentages of AF647-
Frontiers in Immunology 07
positive cells among skin cDC2 were higher in those mice that were

epicutaneusly treated with AF647-OVA and d-toxin than in those

treated with AF647-OVA alone, although the percentages of skin

cDC2 among total skin cells were lower in the former mice than in

the latter mice (Figure 4B; Supplementary Figure 3A). In addition,

we found a significant increase in cDC2 numbers and AF647-

positive cDC2 numbers as well as total cell numbers in axillary LN

(Figures 4C, D; Supplementary Figure 3B). It should be noted that

the deficiency of mast cells or ST2 did not influence d-toxin-
mediated increase of AF647-positive cDC2 numbers in axillary

LN in the same model (Supplementary Figures 3C–E). Moreover,

the concentrations of IL-4 and IL-13 were higher in the
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FIGURE 3

d-toxin present on the non-tape-stripped skin enhanced epicutaneous sensitization to food allergen in a murine model. (A) Experimental design for
epicutaneous sensitization. WT mice were epicutaneously treated or not with OVA ± d-toxin once a week for six weeks on the non-tape-stripped
abdominal skin. On day 42, blood samples were obtained, and skins and small intestines were isolated. (B) Serum levels of OVA-specific IgE. (C) The
thickness of epidermis. (D) Skin sections stained with hematoxylin and eosin (scale bars, 100 mm). (E, F) The numbers of mast cells in the (E) skin and
(F) jejunum. (B, F) Data are pooled from two independent experiments. (C, E) Data are representative of two independent experiments. Means ± SD
have been plotted. *, P < 0.05, **, P < 0.01. ns, not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1173069
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yamada et al. 10.3389/fimmu.2023.1173069
supernatants of OVA-restimulated axillary LN cells from the mice

that were epicutaneously treated with OVA and d-toxin compared

to those in mice treated with OVA alone (Figures 4E, F). These

results indicated that even without tape-stripping, epicutaneously

treated d-toxin enhanced the uptake of OVA from cDC2 in the skin,

and enhanced the translocation of OVA-loaded cDC2 from skin to

the draining LN, which resulted in enhanced sensitization to OVA.

To examine whether d-toxin on skin plays a prominent role in

the development of food allergy among the peptide toxin family of

PSM, we compared the difference in the effects of PSMa3, which is a
highly cytotoxic peptide, and d-toxin in the same model. Analysis of

OVA-loaded cDC2 in axillary LN showed that AF647-positive

cDC2 numbers were significantly lower in PSMa3-treated mice
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than in d-toxin-treated mice (Supplementary Figures 4A, B).

Moreover, the serum levels of OVA-specific IgE were also

significantly lower in PSMa3-treated mice on day 41 before OVA

challenges (Supplementary Figures 4C, D). Consistently, PSMa3-
treated mice exhibited less frequent diarrhea as compared with d-
toxin-treated mice (Supplementary Figure 4E). The number of

jejunum mast cells after the last OVA administration tended to

be lower in PSMa3-treated mice compared to that in d-toxin-
treated mice (Supplementary Figure 4F). Thus, d-toxin present on

the non-tape-stripped skin induced OVA-specific IgE production

more strongly than PSMa3. This can likely be due to the enhanced

translocation of OVA-loaded cDC2 from skin to the draining LN in

this model.
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FIGURE 4

d-toxin present on the non-tape-stripped skin strongly induced the translocation of OVA-loaded cDC2 from skin to draining LN in murine model.
(A) Experimental design for analyzing dendritic cells in skin and axillary LNs. WT mice were epicutaneously treated or not with OVA-AF647 ± d-toxin
on the non-tape-stripped abdominal skin on days 0 and 7. Samples of skin were isolated on Day 8 and axillary LNs were isolated on Day 8 or 11. (B)
The percentage of OVA-AF647-positive cells among skin cDC2 from the mice 24 h after the final treatment. (C, D), (C) Total cells and (D) AF-647-
positive cDC2 in axillary LN of mice 24 h after the final treatment. (E, F) Axillary LN cells purified from the mice 96 h after the final treatment were
re-stimulated with 25 mg/mL OVA for 4 days. Concentrations of (E) IL-4 and (F) IL-13 in the culture supernatants of axillary LN cells. (B–F) Data are
representative of two independent experiments. Means ± SD have been plotted. **P < 0.01.
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Murine keratinocytes released IL-1a in
response to stimulation with d-toxin

As the major target cells of d-toxin on the non-tape-stripped

skin were likely keratinocytes in the epidermis, we stimulated the

murine primary keratinocytes with different concentrations of d-
toxin for 2 h or 24 h. Notably, the concentrations of IL-1a in the

culture supernatants increased with an increase in incubation time

and d-toxin concentration (Figure 5A). We found that keratinocytes

constitutively released TSLP, whose concentrations did not increase

after d-toxin stimulation (Figure 5B). We could not detect the
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protein levels of IL-1b, IL-18, IL-25, or IL-33 in the culture

supernatants of d-toxin-stimulated keratinocytes. Real time PCR

analysis showed that stimulation with d-toxin slightly increased the

mRNA levels of IL-1a, but it did not of alter those of IL-36a in

murine keratinocytes (Figure 5C). However, mRNA levels of

putative receptors for d-toxin, including several formyl peptide

receptors, were low in keratinocytes (Supplementary Figure 5A).

Instead, stimulation with d-toxin induced cell death of keratinocytes
in a time- and concentration-dependent manner. However, PSMa3
showed higher cytotoxic effect on keratinocytes than d-toxin
(Figure 5D). In accordance with this, stimulation with PSMa3
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FIGURE 5

Murine keratinocytes released IL-1a in response to stimulation with d-toxin. Murine keratinocytes were stimulated with different concentrations of d-
toxin for 2 or 24 h, as indicated. (A, B) Concentrations of (A) IL-1a and (B) TSLP in the culture supernatants. (C) Relative expression levels of mRNA of
IL-1a and IL-36a in the d-toxin-stimulated keratinocytes. (D) The percentage of dead cells. (A–D) Data are representative of three independent
experiments. Means ± SD have been plotted. *P < 0.05 or **P < 0.01.
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more strongly induced the release of damage-associated molecular

patterns (DAMPs) such as IL-1a, ATP, and HMGB1 than that with

d-toxin (Supplementary Figures 5B–D). In addition, stimulation

with IL-1a increased the mRNA levels of IL-1a in murine

keratinocytes (Supplementary Figure 5E). Accordingly, it is

possible to speculate that d-toxin induced the release of IL-1a
from keratinocytes through passive cell death, which in turn

transcriptionally upregulated IL-1a in an autocrine manner.
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Pretreatment with anti-IL-1a Ab decreased
the d-toxin-mediated translocation of
OVA-loaded cDC2 from skin to the
draining LN in a murine model

Wemeasured the protein levels of IL-1a in skin tissues from the

mice epicutaneously treated with OVA ± d-toxin for the indicated

periods (Figure 6A). The results showed that IL-1a levels in skin
D
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FIGURE 6

Pretreatment with anti-IL-1a Ab decreased the d-toxin-mediated translocation of OVA-loaded cDC2 from skin to draining LN in murine model.
(A) Experimental design for analyzing the cytokine levels in skin tissues. (B, C) Protein levels of IL-1a in skin tissue homogenates (B) and mRNA levels
of IL-36a in skin tissues (C) obtained from the mice 6 h after the first or second epicutaneous treatment with OVA ± d-toxin on the non-tape-
stripped abdominal skin. (D) Experimental design for analyzing dendritic cells in skin and axillary LN. Non-tape-stripped abdominal skin of WT mice
were epicutaneously treated with OVA-AF647 ± d-toxin on days 0 and 7. The effects of intraperitoneal administration of anti-IL-1a Ab or control Ab
were examined. Skins and axillary LNs were isolated on day 8. (E) The percentage of OVA-AF647-positive cells among skin cDC2 from the mice 24 h
after the last treatment. (F) AF-647-positive cDC2 in axillary LN from the mice 24 h after the last treatment. (B, C, E, F) Data are representative of
two independent experiments. Means ± SD have been plotted. *, P < 0.05, **, P < 0.01.
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tissues were higher in the mice treated with OVA plus d-toxin than

those in mice treated with OVA alone, six hours after the second

epicutaneous treatment. This suggests that the presence of d-toxin
caused IL-1a production in the local skin even when the skin was

not stripped using tape (Figure 6B). However, real time PCR

analysis showed that mRNA levels of IL-36a were not up-

regulated in d-toxin-treated skin in the same model (Figure 6C).

Notably, IL-1a levels in skin tissues were higher in the mice

epicutaneously treated with OVA plus d-toxin than in those with

OVA plus PSMa3, while there was no significant difference in levels

of ATP and HMGB1 between the two groups in the same model

(Supplementary Figure 6). We found that pretreatment with a

blocking Ab against IL-1a, but not with a control Ab,

substantially reduced the percentages of AF647-positive cells

among skin cDC2 and AF647-positive cDC2 numbers in axillary

LN in the mice epicutaneously treated with OVA-AF647 plus d-
toxin (Figures 6D–F). In addition, stimulation with IL-1a increased

the uptake of OVA-AF647 in MHC Class IIhigh BMDCs

(Supplementary Figure 7). Overall, these results suggested that the

d-toxin-mediated release of IL-1a contributes to the uptake of OVA

from skin cDC2 and the translocation of OVA-loaded cDC2 from

skin to the draining LN, leading to an efficient sensitization to OVA

in this model.
Pretreatment with anti-IL-1a Ab dampened
d-toxin-mediated, OVA-induced food
allergic responses in a murine model

To investigate the role of IL-1a in food allergies mediated by d-
toxin present on the steady-state skin, we pretreated the mice with

anti-IL-1a Ab or control Ab (Figure 7A). Notably, pretreatment

with anti-IL-1a Ab, but not with control Ab, suppressed d-toxin-
mediated, OVA administration-induced diarrhea in our model

(Figure 7B). Consistently, pretreatment with anti-IL-1a Ab

strongly reduced the serum levels of OVA-specific IgE and

MCPT-1 and the numbers of jejunum mast cells (Figures 7C–F)

as well as the epidermal thickness (Supplementary Figure 8) in the

OVA-administered mice following epicutaneous treatment with

OVA plus d-toxin. Thus, pretreatment with anti-IL-1a Ab

suppressed the skin inflammation, the sensitization to food

allergen, and subsequent food allergic responses in this model.

We concluded that the presence of d-toxin on the non-tape-

stripped skin induced the release of IL-1a from keratinocytes,

which promoted the uptake of food allergens by cDC2 in the skin

and the subsequent migration of OVA-loaded cDC2 to the draining

LN. This, in turn, leads to the efficient sensitization to food allergens

in the development of food allergy.
Discussion

To elucidate the mechanisms underlying food allergy following

epicutaneous sensitization, tape stripping prior to epicutaneous

treatment with food allergen has been widely used in murine

models (8–11). Tape stripping mimics mechanical skin injury
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caused by scratching in patients with atopic dermatitis. However,

recent studies have demonstrated that tape stripping alone causes

skin epithelial damage, resulting in the local release of IL-33, which

stimulates intestinal mast cell hyperplasia via intestinal ILC2 (7).

Moreover, tape stripping-derived IL-33 also enhances IgE-

dependent food allergic responses via mast cells (8). In addition,

when tape-stripped skins of mice were treated with d-toxin or

exposed to d-toxin-producing S. aureus, d-toxin induced mast cell-

dependent Th2 skin inflammation with increased IgE production

(12, 13). In models using tape stripping, d-toxin may directly

stimulate the degranulation of mast cells in the dermis. However,

the presence of d-toxin-producing S. aureus in humans does not

always translate into atopic dermatitis with skin barrier disruption.

In most cases, d-toxin may be present on the normal skin with

intact barrier function. In the present study, we aimed to investigate

whether d-toxin present on the steady-state skin contributes to the

development of food allergy following epicutaneous sensitization.

We used a murine model in which skin without tape stripping was

treated with OVA in the presence or absence of d-toxin prior to

intragastrical administration of OVA. It seems therefore that this

model is not always a representative of food allergy in patients with

atopic dermatitis, but recapitulates food allergy in d-toxin-
producing S. aureus-colonized individuals who have suffered from

mild atopic dermatitis or have not yet developed atopic dermatitis.

Notably, repeated epicutaneous treatment with OVA and d-toxin
on the non-tape-stripped skin induced a mild epidermal thickness

and OVA-specific IgE production, leading to the increase in the

frequency of diarrhea and number of jejunum mast cells after

intragastric OVA challenges. This was not observed in treatments

with OVA alone. In addition, analysis of mast cell- and ST2-deficient

mice revealed that both mast cells and ST2 are dispensable for OVA-

specific IgE production inmice; however, intestinal mast cells, but not

ST2, are indispensable for food allergic responses induced after OVA

administration. These results indicated that d-toxin present on the

steady-state skinplays a critical role in the epicutaneous sensitization to

food allergen, independently of both mast cells and IL-33-ST2

signaling. However, it is unclear how much of d-toxin present on

skin is enough to induce epidermal sensitization. To solve this

question, it will be necessary to quantify d-toxin in the skin of

patients with atopic dermatitis or normal controls that are colonized

by S. aureus in further experiments.

We speculate that epicutaneously treated d-toxin present on the

non-tape-stripped skin stimulates keratinocytes, the most abundant

cell type in the epidermis, to release IL-1a. This local release of IL-
1a directly or indirectly stimulates the activation of skin cDC2,

which is characterized by the uptake of food allergen by cDC2 in the

skin and the translocation of cDC2 from the skin to draining LNs.

This, in turn, likely results in skewing of Th2/Tfh with food

allergen-specific IgE production. Consequently, intragastric OVA

administration in d-toxin-treated mice can result in food allergic

responses that are IgE- and mast cell-dependent. These

assumptions are potentiated by several findings. In vitro

stimulation of murine keratinocytes with d-toxin induced the

release of detectable levels of IL-1a, but not of IL-1b, IL-18, IL-
33, or IL-25, although these cell types constitutively released TSLP

irrespective of d-toxin stimulation. Furthermore, d-toxin increased
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protein levels of IL-1a in the epicutaneously treated skin in this

model. It should be noted that in this model, d-toxin decreased the

percentages of skin cDC2 among total skin cells but increased the

percentage of OVA-AF647-engulfed cDC2 among skin cDC2, while

d-toxin increased the numbers of both total cDC2 and OVA-

AF647-engulfed cDC2 in axillary LN. In addition, in vitro

stimulation with IL-1a increased the uptake of OVA-AF647 in

MHC Class IIhigh BMDCs. Most importantly, pretreatment with IL-

1a Ab abrogated the activation of skin cDC2, OVA-specific IgE

production, and OVA-induced food allergic responses in our

model. Nonetheless, taking into consideration the important role
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of TSLP in epicutaneous sensitization (11, 26, 37, 38), it seemed

reasonable that IL-1a cooperates with TSLP in the d-toxin-
mediated epicutaneous sensitization to food allergen. However,

further examination will be required to completely understand

the mechanisms by which locally released IL-1a causes

epicutaneous sensitization via cDC2 in this model.

Althoughd-toxin is speculated todirectly stimulate several types of

immune cells through putative d-toxin receptors, the expression levels
of these receptors are extremely low in murine keratinocytes (12, 39).

However, d-toxin exhibited in vitro cytotoxicity on murine

keratinocytes. Further, stimulation with IL-1a up-regulated mRNA
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FIGURE 7

Pretreatment with anti-IL-1a Ab dampened d-toxin-mediated, OVA-induced food allergic responses in murine model. (A) Experimental design for
food allergy of intragastrically OVA-administered WT mice that had been epicutaneously treated with OVA + d-toxin once a week for six weeks on
the non-tape-stripped abdominal skin. The effects of intraperitoneal administration of anti-IL-1a Ab or control Ab were examined. Blood samples
were taken, and small intestines were isolated on day 57 (B) Frequency of diarrhea in OVA-administered mice. (C–E) The serum levels of (C) OVA-
specific IgE and (D) MCPT-1 in the mice after the last challenge with OVA. (E) The numbers of jejunum mast cells of the mice after the last challenge
with OVA. (F) Jejunum sections stained with chloroacetate esterase (scale bars, 100 mm). Mast cells stain red. (B-F) Data are representative of two
independent experiments. Means ± SD have been plotted. *P < 0.05 or **P < 0.01.
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levels of IL-1a in murine keratinocytes. Hence, d-toxin-induced cell

death of keratinocytes likelyplays aprimary role in the releaseof IL-1a,
which transcriptionally up-regulates IL-1a levels in an

autocrine manner.

Recent studies using murine models have reported that in

epicutaneous infection of S. aureus, PSMa induces the release of IL-

1a and IL-36a from keratinocytes, leading to IL-17-dependent skin

inflammation (15, 16). Furthermore, IL-36a enhances IgE production

bydirectly acting onB cells (17). Although IL-36a expression in skin is

strongly up-regulated in previous studies (15, 17),we didnot observe it

in d-toxin-treated skin in our model. It should be noted that we were

not able to measure protein levels of IL-36a as specific Ab against IL-

36a was commercially unavailable. Given that keratinocytes release

protein levels of IL-36a in response to the culture supernatants of S.

aureus (15), PSMa together with other S. aureus-derived factors may

increase expression levels of IL-36a. Hence, similar mechanisms may

be at play to upregulate IL-36a expression in S. aureus-colonized skin

of patients with atopic dermatitis.

Interestingly, PSMa3-treated mice exhibited weaker food

allergic responses with less frequent diarrhea than d-toxin-treated
mice in our model. In accordance with this, the PSMa3-treated
mice exhibited weaker activation of skin cDC2 and lower levels of

OVA-specific IgE production than d-toxin-treated mice before

OVA administration. Consistent with the finding that PSMa3
exerts stronger cytotoxicity on murine keratinocytes than d-toxin,
stimulation with PSMa3 more strongly induced the release of

DAMPs, including IL-1a, ATP, and HMGB1 than that with d-
toxin. However, d-toxin more strongly increased the levels of IL-1a,
but not of ATP and HMGB1, in skin tissues than PSMa3 in murine

model. This may partly explain the different responses between the

treatments with PSMa3 and d-toxin in our study. It is also possible

to speculate that PSMa on the non-tape-stripped skin cooperates

with specific DAMPs locally released to induce inflammation in a

different way from d-toxin. Accordingly, it seems that d-toxin
present on steady-state skin is prone to skew toward Th2/Tfh

with antigen-specific IgE production via keratinocyte-derived IL-

1a, although PSMa skews toward Th17 in murine model of

epicutaneous S. aureus infection (15, 16, 40, 41). In any case, we

need to further investigate the mechanisms underlying the different

effects of d-toxin and PSMa on epicutaneous sensitization.

In conclusion, epicutaneous treatment of d-toxin on non-tape-

stripped skin strongly promotes epicutaneous sensitization to food

allergens, resulting in food allergy after the uptake of the same

allergen. This model may recapitulate epicutaneous sensitization in

normal skin colonized by d-toxin-producing S. aureus. Hence,

keratinocyte-derived IL-1a plays a critical role in the development

of food allergy. Therefore, targeting IL-1a may be an appropriate

strategy to prevent the development of food allergy in individuals

whose skins are colonized by d-toxin-producing S. aureus.
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