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A single-cell RNA sequencing
atlas of circulating leukocytes
from healthy and osteosarcoma
affected dogs

Dylan T. Ammons1*, R. Adam Harris1, Leone S. Hopkins2,
Jade Kurihara2, Kristen Weishaar2 and Steven Dow1,2*

1Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins,
CO, United States, 2Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State
University, Fort Collins, CO, United States
Translationally relevant animal models are essential for the successful translation

of basic science findings into clinical medicine. While rodent models are widely

accessible, there are numerous limitations that prevent the extrapolation of

findings to human medicine. One approach to overcome these limitations is to

use animal models that are genetically diverse and naturally develop disease. For

example, pet dogs spontaneously develop diseases that recapitulate the natural

progression seen in humans and live in similar environments alongside humans.

Thus, dogs represent a useful animal model for many areas of research. Despite

the value of the canine model, species specific reagent limitations have

hampered in depth characterization of canine immune cells, which constrains

the conclusions that can be drawn from canine immunotherapy studies. To

address this need, we used single-cell RNA sequencing to characterize the

heterogeneity of circulating leukocytes in healthy dogs (n = 7) and

osteosarcoma (OS) affected dogs (n = 10). We present a cellular atlas of

leukocytes in healthy dogs, then employ the dataset to investigate the impact

of primary OS tumors on the transcriptome of circulating leukocytes. We

identified 36 unique cell populations amongst dog circulating leukocytes, with

a remarkable amount of heterogeneity in CD4 T cell subtypes. In our comparison

of healthy dogs and dogs with OS, we identified relative increases in the

abundances of polymorphonuclear (PMN-) and monocytic (M-) myeloid-

derived suppressor cells (MDSCs), as well as aberrations in gene expression

within myeloid cells. Overall, this study provides a detailed atlas of canine

leukocytes and investigates how the presence of osteosarcoma alters the

transcriptional profiles of circulating immune cells.

KEYWORDS

single cell RNA seq, PBMC (peripheral blood mononuclear cells), canine (dog),
osteosarcoma, transcriptomics, cancer, immunology, MDSC (myeloid-derived
suppressor cell)
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Introduction

Traditional animal models, such as rodents, have been used for

decades as a steppingstone in understanding human disease.

Unfortunately, due to environmental and genetic disparities

between humans and model species, research findings frequently

fail to translate to human medicine (1). While these animal models

are valuable in preclinical research, there has been a push to

incorporate the use of more biologically relevant models (2).

Client owned dogs offer an excellent model to investigate novel

therapeutics as they are outbred, spontaneously develop disease,

and share living space with humans. Interestingly, certain cancers,

such as osteosarcoma (OS), follow similar disease progression and

occur at a rate roughly 75 times that of humans (3). Therefore,

clinical trials in dogs allow for thorough investigation of novel

therapeutics for the treatment of diseases considered to be rare and

difficult to study in humans. With the increasing use of canine

models to investigate novel therapeutics, there is a need to better

describe canine immune cell populations.

Previous characterizations of canine immune cells have relied

on antibody-based assays, such as flow cytometry, cell sorting, and

immunohistochemistry, to describe cell populations (4–6). While

these approaches have been fundamental in understanding canine

immunology, the limited availability of markers to define cell

populations has the tendency to introduce pre-selection bias. An

alternative and novel approach to describe the heterogeneity of

canine immune cells is to use single-cell RNA sequencing which

enables the unsupervised characterization of individual immune cell

transcriptomes. The flexibility of this platform allows researchers to

overcome species-specific reagent barriers that have limited

previous characterizations of canine immune cells.

Circulating immune cells play a key role in responding to

disease and have been reported to be altered in cancer patients,

with increased immune suppression being a predominate finding

(7). For example, two recently defined cell populations,

polymorphonuclear (PMN-) and monocytic (M-) myeloid-

derived suppressor cells (MDSCs), have been reported to be

expanded in individuals with cancer, and increases in circulating

MDSCs have been demonstrated to have prognostic implications

(8). These two distinct MDSC populations exhibit immature

phenotypes with potent immune suppressive activity. Recently,

canine MDSCs were characterized using flow cytometry-based

assays and were defined to be MHCII negative monocytes and

neutrophils isolated through density centrifugation (9, 10). Given

the limited antibody selection for flow cytometry-based approaches

there is a need to evaluate heterogeneity within MDSC populations,

as well as investigate how all leukocyte transcriptomes are altered in

dogs with cancer.

In the present study, we first complete single-cell transcriptomic

analysis on seven middle-aged healthy dogs of varying breeds and

genders to develop a comprehensive reference database for canine

leukocytes. Then we apply the database to investigate how leukocyte

abundances and transcriptomes are altered in ten dogs with

spontaneously arising osteosarcoma. In depth analysis revealed

key changes in immune cell abundances as well as OS induced

transcriptomic changes. The data presented here highlight the
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differences in circulating leukocytes between healthy and

osteosarcoma affected dogs, as well as provide an open-access

annotated canine leukocyte database for future investigations.
Methods

Patient selection

Clinically healthy client-owned dogs without preexisting

conditions were selected for inclusion in the healthy reference

database. All dogs were followed for at least two months to

ensure no disease was observed. Osteosarcoma patients were

selected based on the presence of a primary tumor and all dogs

were naïve to treatment. All dogs presented with radiographic

evidence of OS and underwent amputation in the weeks following

blood collection. All studies were approved by the Colorado State

University (CSU) Institutional Animal Care and Use Committee

and the CSU Clinical Review Board. All dog owners provided

informed consent prior to blood donation.
Sample preparation

Approximately 10 mL of whole blood was obtained in an EDTA

collection tube then processed within 30 minutes using Ficoll Paque

(Cytiva; Marlborough, MA) to complete density gradient

centrifugation. Whole blood was mixed with 12 mL of phosphate

buffered saline, pH = 7.40 (PBS), then layered onto 12 mL of Ficoll

Paque. To isolate leukocytes, the layered sample was then

centrifugated at room temperature for 40 minutes at 500 rcf with

acceleration at maximum and brake off. Leukocytes were isolated

through collection of the cell interface then washed one time with

PBS, resuspended in 10 mL of Ammonium-Chloride-Potassium

(ACK) lysis buffer for 3-7 minutes at room temperature, then

washed an additional time with PBS. A final wash at 100 rcf x 15

minutes was completed to remove platelets and other small

contaminates. Finally, cells were resuspended in 0.04% molecular

grade BSA (Sigma-Aldrich; St. Louis, MO) in PBS and adjusted to

obtain a cell count between 700-1200 cells/µL. Once in solution,

leukocytes were transported to a chromium instrument (10x

Genomics; Pleasanton, CA) and captured within 2 hours

of preparation.
Library preparation and sequencing

Single cells were isolated and tagged with unique cell barcodes

using a Chromium controller or Chromium iX instrument (10x

Genomics) with a target of 5,000 cells per sample. Single cells were

isolated and processed using a Chromium Next GEM Single Cell 3'

Kit v3.1 following manufacture recommended protocols. Once

cells were barcoded and unique molecular identifiers (UMIs)

added, a standard Illumina library preparation was completed

using a dual index library construction kit (10x Genomics).

Sample quality was analyzed using a TapeStation bioanalyzer
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and/or LabChip (Agilent Technologies; Santa Clara, CA/

PerkinElmer; Waltham, MA) then submitted for sequencing on

an Illumina NovaSeq 6000 sequencer (Novogene Corporation;

Sacramento, CA) with a target of 50,000 150 bp paired-end

reads per cell. Raw data was demultiplexed by the sequencing

core then transferred for downstream analysis.
Read mapping and quantification

A Cell Ranger analysis pipeline (version 7.0.0, 10x Genomics)

was utilized to process raw FASTQ sequencing data, align reads to

the canine genome, and generate a count matrix. First, the

CanFam3.1 ensembl annotation (gtf) file was filtered for

protein_coding, lincRNA, antisense, and immunoglobulin gene

biotypes. Then a canine reference package using the filtered gtf

file and CanFam3.1 genome (FASTA) was created using the

cellranger mkref command. The reference package and raw

FASTQ filles were then used to complete read mapping and

quantification of UMIs using the cellranger count command.

Each sample was aligned once using include-introns mode set to

true and once with include-introns mode set to false. We observed

that include-introns mode increased the sensitivity of the assay, but

also increase the abundance of low-quality cell clusters. By using

both methods we were then better able to filter out artifactual

clusters while retaining clusters with low transcript abundance. Due

to incomplete annotation of the canine genome, we also aligned the

heal thy dog samples to an al ternate canine genome

(ROS_Cfam_1.0) using Cell Ranger version 7.0.0 with include-

introns mode set to true. The output count matrices obtained

under each alignment protocol in the format of cell barcode x

feature (column x row) were then exported and used for

downstream analysis.
Data filtering and integration

For each sample, the count matrix was imported into R using

the Read10X() function then converted to a Seurat object using the

CreateSeuratObject() function (11). To estimate the number of

dead/poor quality cells, the percent mitochondrial reads per cell

was calculated using PercentageFeatureSet() to count all reads

mapped to features with the prefix “MT-”. Each object was then

filtered to only retain cells which met the following requirements:

200 < nFeature_RNA < 4500, percent.mt < 10, and 500 <

nCount_RNA < 20000. An initial low resolution unsupervised

clustering was completed to remove contaminating red blood cells

and platelets. Next, DoubletFinder was used to identify and remove

putative cell doublets (12). After filtering each sample individually,

all samples were integrated into one object using a SCTransform

workflow (13). During this step, we regressed out the percent

mitochondrial reads and percent platelet-associated reads to

minimize the impacts on clustering and used 2000 features as

integration anchors. Following data integration, ideal clustering

parameters of each subset of data were determined using the R

package clustree (14). Dimension reduction and visualization was
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then completed, and the data were projected using 2-dimensional,

non-linear uniform manifold approximation and projection

(UMAP) plots.
Cell classification

Cells were classified using the integrated dataset containing 7

healthy and 10 OS dogs. Annotations were then transferred to the

healthy only dataset to create gene lists for each cell population.

Major cell population identities were assigned using compiled data

gathered from singleR reference mapping, Seurat reference

mapping, gene set enrichment analysis, and manual annotation

based on the literature (15, 16). Further high-resolution cell

identification was completed through use of independent re-

clustering on cells within each major immune cell population.

Confirmation of T cell subsets was completed using the

AddModuleScore() function and gene lists provided in a

comprehensive human T cell dataset (17). The gene lists

presented as Supplemental Data were generated using the

FindAllMarkers() function (Wilcoxon Rank Sum test) on final

cell type classification in healthy only (Supplemental Data 1) and

combined datasets (Supplemental Data 2). The final short gene lists

were generated using a selection of the top features that define a cell

type (as defined in the healthy only dataset) with preference given to

unique features in the top 50 genes (weighted by adjusted P value)

identified to define each cell population.
Feature visualization

Feature expression was visualized using dot plots, feature plots,

and violin plots. Selected features were chosen based on prior

biological knowledge and features identified using the

FindAllMarkers() function. Y-axis scales for violin plots within a

figure are fixed, so they are all on the same scale. Feature plots show

normalized expression for each feature and are on variable scales.

Dot plots used scaled expression data which depicts deviation from

the average value for a gene across the cells being sampled.

Visualization of T Cell Receptor Delta Constant (TRDC) was

completed by transferring normalized expression counts from the

healthy samples aligned to ROS_Cfam_1.0 to the CanFam3.1

aligned healthy samples.
Cell abundance analysis

All cell abundance comparisons were made using percentage of

parent. When visualizing cellular contribution on a UMAP, all

samples were down sampled to the value equal to the sample which

contributed the fewest number of cells. By doing this, we obtained

equal number of cells from each sample and avoided visual biasing

of data presentation. To make statistical inferences on changes in

cell abundances, two-sidedWilcoxon Rank Sum tests were used and

exact P values were reported (18). P values less than 0.05 were

considered to be statistically significant.
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Pseudotime analysis

To complete pseudotime analysis and predict cell lineages, we

used Slingshot (19). Only high-quality cell clusters were used for

this analysis. A starting node was selected based on biological

knowledge, then an unsupervised approach was used to infer

branches between clusters. Following branch identification, the

Slingshot getLineages() function was used to identify predicted

cell lineage pathways. Custom functions were then used to extract

the data and plot the branch patterns/lineages.
Differential gene expression analysis

Differential gene expression analysis was completed using two

different approaches (1) Wilcoxon Rank Sum test (FindMarkers

function) and (2) pseudobulk conversion. When possible, we used

pseudobulk conversion followed by a DESeq2 pipeline to evaluate

differential gene expression (20). We required a minimum of 25

cells in a sample to be included in pseudobulk conversion and only

applied this approach to compare cells within clusters or between

groups of cells that had limited heterogeneity. Prior to running

DESeq2, low abundance features, defined as features with less than

10 raw counts across all cells sampled, were filtered out. Features

that had an adjusted P value of less than 0.01 and a log2(fold

change) greater than 0.58 were considered to be statistically

significant. For differential gene expression analysis completed

using FindMarkers(), we obtained the average normalized count

of each feature grouped by classification (Y verses X), then plotted

the values on a scatter plot. Values that fell below a line of y-

intercept = 0; slope = 1 and were determined to be higher in the X

category using the FindMarkers() function (log2(fold change) <

-0.58 and adjusted P value < 0.01), were discussed as increased in X

or decreased in Y. Alternatively, values that fell above a line of y-

intercept = 0; slope = 1 and were determined to be higher in the Y

category using the FindMarkers() function (log2(fold change) >

0.58 and adjusted P value < 0.01), were discussed as increased in Y

or decreased in X. Any subsequent pathway analysis was completed

using lists of upregulated or downregulated genes and the enricher()

function from clusterProfiler was used with the hallmarks gene sets

(21, 22).
Human-canine homology analysis

An annotated human leukocyte dataset (blish_covid.seu.rds)

consisting of 6 healthy adults was obtained from https://zenodo.org/

record/4021967/ and integrated with the 7 healthy dog samples

generated in this study (18). SCT normalization and integration of

the merged canine and human datasets was completed using 2000

variable features, while also regressing the percentage of

mitochondrial reads. Following integration, the canine and

human cell type annotations were prepended with “can_” or

“hu_” then SCT normalized data was used to complete

hierarchical clustering of the prepended cell types, an approach

adopted from Cheng et al (23). Hierarchical clustering was
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completed using the hclust() function with using complete

Euclidean distance to complete the analysis.
Flow cytometric analysis

A subset of cells obtained from the samples used for single-cell

RNA sequencing were used for paired flow cytometric analysis of

immune cell types. Approximately 500,000 cells were plated and

used for immunolabeling. Three antibody panels were used per

sample (Supplemental Table 1). Cells were blocked with 5 uL of

normal dog serum (panel 1 & 2) or 5 uL of normal donkey serum

(panel 3) for 15 minutes on ice (Jackson Laboratory; Bar Harbor,

ME). Primary antibodies diluted in FACS buffer (5% FBS plus 0.1%

sodium azide in PBS) were added for 30 minutes (only mouse anti-

CADO48a for panel 3), then for panel 3 a donkey anti-mouse

secondary antibody (30 minutes) followed by strepdavidin-

Qdot800 (15 minutes) and directly conjugated antibodies were

added (30 minutes) on ice. Cells were washed twice with FACS

between each labeling step. After completion of immunolabeling, 5

uL of 7-aad were added to each sample then run on a Beckman

Coulter Gallios 3-laser flow cytometer. A total of 150,000 events

were targeted during data acquisition.
Results

Establishment of a healthy canine
leukocyte reference database

The first objective of this study was to establish a comprehensive

canine reference leukocyte database that can be used to further

define immune cell transcriptomes and be available for use by other

research groups. To establish the reference dataset, we obtained a

total of 32,028 cells from 3 male and 4 female middle-aged,

clinically healthy dogs (Table 1). The average number of cells

collected per dog was 4,575 and on average each cell was

sequenced to a depth of 60,686 reads per cell.

In total, 42 unique cell clusters were identified with major

immune cell populations clustering in distinct regions of the

uniform manifold approximation and projection (UMAP) plot

(Figure 1A). Cell identities were assigned based on feature plots

using stereotypic markers reported in the literature (Figures 1B, C)

(16). To further support our classifications, we used reference

mapping to human databases (Supplemental Figures 1A–E).

Unexpectedly, cell classifications based on human references were

highly variable and largely ineffective at assigning cell identities,

especially to CD8 T cell, NK cell, and myeloid cell populations. This

variability is likely the result of incomplete canine genome

annotation and distinct cellular transcriptomes between species.

Following cell classification, we evaluated the relative contribution

of each sample to every cluster (Figures 1D, E; Supplemental

Figure 2A). This analysis revealed that the dataset was well

integrated without overt batch effects, and most dogs contributed

equally to each cluster. The exceptions were within two neutrophil

clusters, Clusters 4 and 9, which were largely composed of cells from
frontiersin.org
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healthy dog 7. In mice and humans, neutrophils are reported to

have a cellular density that is too dense to be isolated in the

polymorphonuclear cell (PBMC) layer when completing density

centrifugation (24). However, consistent with previous reports, we

present evidence that a sizeable population of canine neutrophils

have a density that allows them to be collected with PBMC isolation

(25). Additionally, there is evidence of marked inter-sample

variability in the number of neutrophils isolated through density

centrifugation, which can alter overall cellular proportions in a

given sample.

Although UMAP plots do not perfectly reconstruct the relative

spatial relationship between cells, we noted that myeloid cells

largely clustered together, while T cells and B cells clustered in

different regions of the plot, indicating the data clustered in a

biologically relevant manner. Interestingly, there was one rare

myeloid cell cluster (Cluster 38) which clustered in a distant

location from the other neutrophils and lacked CD4 expression.

Additionally, one T cell population (Cluster 29) was plotted in a

distant location relative to other T cells; this population was

identified as a gd (gd) T cell population based on GATA3 and

TRDC expression (Figure 1B and Supplemental Figure 1F).

Another interesting observation was that the CD8 T cell

populations clustered in two separate regions of the UMAP, with

naïve CD8 T cells appearing to be more similar to naïve CD4 T cells

than effector CD8 T cells. This clustering of T cells is likely a result

of naïve CD8 T cells lacking cytotoxic properties that arise following

interaction with their cognate antigen.

Upon classification of all cell populations identified in the 7

healthy dogs, we generated gene lists that define each cell
Frontiers in Immunology 05
population and provide these lists in Supplemental Data 1. In

summary, we present a road map of healthy canine leukocytes

and provide transcriptomic signatures for each distinct immune cell

type that can be applied to study canine immunology as well used as

a reference for deconvolution of bulk RNA sequencing data. Next,

we applied the reference to investigate how the presence of

osteosarcoma alters leukocyte transcriptional programs.
Comparison of healthy and osteosarcoma
affected canine leukocytes

We isolated circulating leukocytes from 6 male and 4 female

middle-aged tumor bearing dogs diagnosed with osteosarcoma

(OS) (Table 1; Supplemental Table 2). The cells obtained from

the cancer burdened dogs were integrated with the 7 healthy

samples to obtain a complete dataset of 74,067 cells. Similar to

the unsupervised clustering of the healthy samples, we identified 46

unique clusters with the major immune cell types apparent

(Figure 2A). Evaluation of data integration revealed uniform

distribution of cells across all samples, except for clusters 9, 12,

and 26 (Figures 2B, C and Supplemental Figure 2B).

Clusters 9 and 12 (B cell populations) and Cluster 26 (a double

negative [CD3+/CD4-/CD8-] T cell population) were found to be

underrepresented in the OS dogs. Interestingly, there has been one

report of B cell and double negative (DN) T cell reductions in the

peripheral blood of non-small cell lung cancer patients (26). While

these findings agree with our data, other reports have documented

reductions in B cell and DN T cell abundances with age (27, 28).
TABLE 1 Dog demographics.

Group ID Sex Age Breed

Healthy H_1 FS 8.3 Mixed

H_2 MC 8.4 Australian Shepherd

H_3 FS 6.9 Standard Poodle

H_4 MC 7.4 Beagle

H_5 FS 8.8 Mixed

H_6 FS 7.7 Labrador Retriever

H_7 MC 7.7 Newfoundland

Osteosarcoma OS_1 MC 10 Labrador Retriever

OS_2 FS 9 Saint Bernard

OS_3 FS 6.8 Great Dane

OS_4 MC 11.5 Catahoula

OS_5 MC 12.1 Rottweiler

OS_6 MC 6.8 German Shepherd

OS_7 FS 7.3 Great Dane

OS_8 FS 5.7 Staffordshire Terrier mix

OS_9 MI 7.8 Bernese Mountain Dog/Great Pyrenees

OS_10 MI 10.4 Saint Bernard
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1162700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ammons et al. 10.3389/fimmu.2023.1162700
Therefore, to investigate further, we compared the relative

contribution of cell types in the middle-aged OS (aged 5-8 years

old) and old OS dogs (aged 9-12 years old). We found no difference

in B cell or DN T cell abundances between middle-aged and old OS

dogs, while comparisons between healthy and middle-aged OS dogs

also suggested no differences in abundance (Supplemental Figure 3).

Therefore, due to the limited sample size and previous reports of

age-dependent B cell and DN T cell reductions, we believe the

observed reductions in our dataset are likely in part due to age and

not a direct effect of OS.

Aside from changes in cell abundances, we also observed that

the CD4- neutrophil population identified in the healthy dataset

(Cluster 38 in Figure 1A) shifted its position on the UMAP to be
Frontiers in Immunology 06
closer to other neutrophil populations (Cluster 27 in Figure 2A).

This shift is attributed to the addition of cell numbers increasing the

sample size and enabling the UMAP dimension reduction to better

reconstruct the relative position on this cell population. While this

population visually appeared to be expanded, statistically, there was

no difference in abundance when evaluating the percentage out of

total leukocytes using the clustering results from all immune cells.

Finally, we evaluated differentially expressed genes in all cells

and each of the major immune cell populations (Figure 2D). This

analysis indicated that several features were overrepresented in dogs

with OS, with the most prominent differences arising from changes

to myeloid cell gene expression. In particular, we observed IL1B and

LTF upregulation in dogs with OS and a slight reduction of CD4
D

E

A

B

C

FIGURE 1

Unsupervised clustering reveals 42 unique cell populations in healthy dog leukocytes. (A) UMAP representation depicting the unsupervised clustering
results of 32,028 leukocytes from 7 healthy dogs. Major immune cell populations are labeled on the plot (CD34+ unk = CD34+ unclassified; gd = gd)
and each number corresponds to a unique cluster, with numbers increasing as cluster size becomes smaller. (B) Feature plots depicting expression
of stereotypic genes used to define cell populations. (C) Dot plots illustrating scaled gene expression grouped by major immune cell populations.
(D) UMAP representation of healthy canine leukocytes down sampled to obtain equal sampling of each dog and colorized by biological replicate
(n = 7 dogs). (E) Stacked bar graph depicting contribution of each sample to every cell type.
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expression in dogs with OS. To further evaluate transcriptional

differences in health and diseased states, we subset the database on

each major cell population and completed independent

unsupervised clustering to obtain greater resolution.
CD8 T cells, double negative T cells, and
NK cells

In depth analysis of CD8 T cell, double negative T cell, and NK

cell populations consisted of 15,846 cells with unsupervised clustering

revealing 12 distinct clusters. Within this major immune cell

population, we identified DN T cells, naïve CD8 T cells, effector

CD8 T cells, memory CD8 T cells, NK cells, and NK T cells

(Figures 3A, B and Supplemental Figures 4A–C). Unexpectedly, we

also identified a population of CD8+ gd T cells (Cluster 11) based on

TRDC expression (Supplemental Figure 4D). Of note, we found

TRDC expression to extend outside of the CD8+ gd T cell cluster,

with intermittent gene expression in effector and naïve CD8 T cells

as well as uniform expression in NK cells. In addition to manual

and algorithmic classification methods, we completed differential
Frontiers in Immunology 07
gene expression analysis to determine which features define

key populations.

The results of differential gene expression using pseudobulk

analysis from comparing one cluster to all other cells allowed for a

complete description of the features that define each cell type. We

found that the DN T cell cluster had reduced expression of

cytotoxic genes (GZMB, NCR3, and KLRK1) and increased

CTLA4 expression relative to all other cytotoxic cells (Figure 3C

and Supplemental Data 3). These gene patterns suggest the

population may have reduced cytotoxic potential and may exhibit

immune suppressive properties. When completing the same

analysis on the NK cell population we found a reduction in T

cell markers (CD3E, CD3G, CD8A) with an increase in certain

cytotoxic features (GZMA, CD96 and KLRF1) relative to other cells

(Figure 3D and Supplemental Data 3). Finally, we applied this

approach to further investigate Cluster 11, a CD8+ gd T cell

population (Figure 3E and Supplemental Data 3). This analysis

revealed that several cytotoxic features were downregulated

(GZMA, GZMB, GZMK, KLRK1, and NCR3) while also

indicating IKZF2, SOX5, and ELOVL5 were upregulated relative

to other cytotoxic cells.
D

A B

C

FIGURE 2

Canine osteosarcoma contributes to reductions in the relative abundances of double negative T cells and B cells, while myeloid cells contribute to
most transcriptomic aberrations. (A) UMAP representation depicting the unsupervised clustering results of 74,067 leukocytes from 7 healthy and 10
osteosarcoma dogs (CD34+ unk = CD34+ unclassified). (B) UMAP representation of healthy (n = 7) and osteosarcoma (n = 10) canine leukocytes
down sampled to obtain equal sampling of each dog and colorized by biological replicate. Legend is shared with (C). (C) Box plots quantifying
changes in cell abundances between healthy and cancer dogs (Granulocyte = Eosinophil and Basophil clusters; DN T cell = Cluster 26 of CD8/NK T
cell group). P values were obtained using a two-sided Wilcoxon Rank Sum test. (D) Scatter plots comparing average feature expression in
osteosarcoma (y-axis) verses healthy cells (x-axis) with all (74,067) cells and 4 of the major immune cell populations, with labeled features
significantly altered, as determined using a Wilcoxon Rank Sum test.
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With cell classifications established, we next investigated the

earlier observation that DN T cells were reduced in dogs with OS.

To complete this analysis, we evaluated the cellular abundances as a

percentage of the total cells (15,846 cells) in this immune cell subset

and the results were consistent with the earlier approach (Figure 3F).

Despite the marked reduction in DNT cells, we believe the decrease is

in part due to age and should be interpreted cautiously. Unexpectedly,

there were minimal transcriptomic differences when comparing

healthy and OS CD8 T cell populations, but we consistently

observed an increase in CCL5 expression on effector CD8 T cells in

OS dogs (Figure 3G). Although less pronounced, we also identified

decreases in FCER1G and IL2RB on effector CD8 T cell populations

in dogs with OS. Together, these transcriptomic changes suggest there
Frontiers in Immunology 08
may be altered T cell recruitment signals in effector CD8 T cells of

dogs with OS.
CD4 T cells

To continue a deeper investigation of major immune cell

populations, we next focused our analysis on the most heterogenous

group of cells: the CD4 T cells. Following independent re-clustering,

an additional 3 clusters were revealed which together indicated the

presence of 15 transcriptionally unique CD4 T cell populations

(Figure 4A and Supplemental Figure 5A). One additional cluster

was determined to be of poor quality and is depicted (grey) but was
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FIGURE 3

Double negative T cell abundances are reduced in dogs with cancer, while CCL5 expression is increased in effector CD8 T cell clusters. (A) UMAP
representation depicting the unsupervised clustering results of 15,846 leukocytes (n = 7 healthy and 10 osteosarcoma dogs). (B) Violin plots
depicting key feature expression for each cytotoxic cell cluster. Axis scales are fixed across all features. (C-E) Volcano plots depicting differential
gene expression when comparing DN T cell, NK cell, and CD8+ gd T cell populations to all reaming cell clusters. (F) Box plots quantifying changes in
cell cluster abundances (percentage of total cells, n = 15,846) between healthy and cancer dogs. P values were obtained using a two-sided
Wilcoxon Rank Sum test. (G) Violin plots of three features (CCL5, FCER1G aka Fc Epsilon Receptor Ig, and IL2RB aka CD122) identified as increased
(CCL5, FCER1G) or decreased (IL2RB) in at least one cell cluster.
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excluded from downstream analysis. Comparisons between healthy

and OS CD4 T cells revealed no apparent aberrations in cell

abundances or transcriptomes (Supplementary Figure 5B).

Therefore, our analysis of CD4 T cells focused on describing the

transcriptomic signature of each unique CD4 T cell population.

We used stereotypic markers and reference mapping to assign cell

identities (29, 30). This enabled the identification of naïve, central

memory (TCM), effector memory (TEM), T regulatory (Tregs), and

interferon (IFN) signature CD4 T cell populations (Figures 4B, C).

The IFN signature cell type (Cluster 14) was defined by high

expression of features associated with IFN response pathways when

completing gene set enrichment analysis (Supplemental Figure 5C)

(31). The heterogeneity within the TEM clusters was further

investigated and revealed the presence of Th1-like, Th2-like, and

Th17-like clusters (Supplemental Figure 5D) (17). Next, we used

pseudotime trajectory analysis to investigate how the CD4 T cell

populations were related. To complete this analysis, we established

the naïve CD4 T cell Cluster 0 as the root node, then used Slingshot to
Frontiers in Immunology 09
infer how cell transcriptomes progressed (19). The analysis indicated

several branchpoints, with 4 major lineages identified (Supplemental

Figures 5E, F). All lineages began at the assigned naïve CD4 T cell

cluster (Cluster 0), progressed through a TCM cluster (Cluster 5),

then through a TEM, and finally diverged toward an endpoint.

Lineage 1 was determined to represent the progression of Th1-like

cells, lineage 2 tracked the Th2-like progression, lineage 3 illustrated

the Th17-like progression, and lineage 4 represented the progression

of Tregs. Finally, for each of the four-lineage endpoints we completed

differential gene expression analysis to further define the cell

populations (Figure 4D and Supplemental Data 3). Each population

had upregulation of canonical features (Th1 = IL18R1/TBX21; Th2 =

GATA3; Th17 = RORA/RORC, Treg = CTLA4/FOXP3) which acted

to further validate cell classifications and provide novel markers to

distinguish each cell type (29, 32). In summary, we observed minimal

aberrations in cell abundance or transcriptomes of CD4 T cell

population in OS dogs but were able to identify 4 major lineages

which provides insight into CD4 T cell biology in dogs.
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FIGURE 4

Analysis reveals 4 major CD4 T cell subtypes that were unaltered when comparing between healthy and osteosarcoma leukocytes. (A) UMAP
representation depicting the unsupervised clustering results of 26,890 leukocytes (n = 7 healthy and 10 osteosarcoma dogs). (B) Dot plots illustrating
gene expression by major CD4 T cell classification. Cell sub-classifications were collapsed to obtained 1 cell type group. (C) Feature plots depicting
expression of stereotypic features used to define CD4 T cell populations. (D) Volcano plots depicting differentially expressed gene that were
identified when comparing TEM Th1-like, Th2-like, Th17-like, and T regulatory cell clusters to all other CD4 T cell clusters. TCM, T central memory;
TEM, T effector memory; Treg, regulatory T cell; IFN, interferon.
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Myeloid cells

The next major immune cell population we analyzed consisted

of monocytes, dendritic cells, neutrophils, basophils, and

eosinophils. Through completion of independent re-clustering, we

identified 22 high quality myeloid cell populations and 2 low quality

clusters that were excluded from downstream analysis (Figure 5A

and Supplemental Figure 6A). Monocytes were the most

heterogenous cell type with 9 unique clusters, followed by 5

dendritic cell clusters, 5 neutrophil clusters, 2 eosinophil clusters,

and 1 basophil cluster. Stereotypic features were then used to

confirm cell identities (Figure 5B) (4, 16, 33). Although CD4 is
Frontiers in Immunology 10
reported to be expressed on canine neutrophils by flow cytometry,

we identified a distinct neutrophil population that lacks CD4

expression (Cluster 12) (34). This unique neutrophil population

appeared to be immature with immune suppressive gene expression

patterns and was assigned an identity of polymorphonuclear

myeloid-derived suppressor cells (PMN-MDSCs). When

annotating the monocyte populations, we intended to define

subpopulations by CD14/CD16 expression, as used for humans

and mice. However, both CD14 and CD16 lack annotation in the

primary canine reference genome (CanFam3.1) used in this study.

As an alternative approach, we used CD64 (FCGR1A), MHCII

(DLA-DRA), and CD86 to characterize to evaluate these cell
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FIGURE 5

CD4 negative neutrophils are expanded in dogs with osteosarcoma and transcriptomically resemble polymorphonuclear myeloid-derived suppressor
cells. (A) UMAP representation depicting the unsupervised clustering results of 23,422 myeloid cells (n = 7 healthy and 10 osteosarcoma dogs).
(B) Feature plots depicting expression of key features used to define myeloid cell populations. (C) Box plots for each major myeloid cell population
quantifying changes in cell abundances between healthy and cancer dogs. P values were obtained using a two-sided Wilcoxon Rank Sum test.
(D) Volcano plots depicting differentially expressed genes identified when comparing the PMN-MDSC cluster (Cluster 12) to all other neutrophil
clusters (Clusters 1,7,9,20). (E) Scatter plot comparing average feature expression in osteosarcoma (y-axis) verses healthy (x-axis) cells within the
PMN-MDSC cluster. (F) Volcano plots highlighting differentially expressed genes identified when comparing the M-MDSC cluster (Cluster 13) to all
other monocyte clusters (Clusters 0,2,3,4,6,8,10,11). (G) Scatter plot comparing average feature expression in osteosarcoma (y-axis) verses healthy
(x-axis) cells within the M-MDSC cluster. (H) Representative flow cytometry gating strategy used to identify PMN- and M-MDSC populations.
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populations in the context of human nomenclature (Supplemental

Figure 6B) (35). We determined that CD4+ monocytes and M-

MDSCs resembled classical monocytes (CD14+/CD16-), while CD4-

monocytes resembled non-classical monocytes (CD14-/CD16+).

Despite some overlap in nomenclature, the human classifications

largely did not translate to our dataset, so we used CD4 expression

to define canine monocyte populations.

To investigate how cell abundances were altered by OS, we

compared the cellular frequencies of major myeloid cell sub-

populations (Figure 5C). Consistent with the human literature,

this analysis revealed PMN-MDSCs were expanded in dogs with

OS (36, 37). While not statistically significant as a percentage of

myeloid cells, we observed a statistically significant increase in

monocytic (M-) MDSCs (Cluster 13) when evaluating the cells as

percentage of total leukocytes (Table 2). Differential gene expression

analysis between OS and healthy dogs within monocytes exhibiting

an IFN signature (Cluster 10) revealed a reduction in IFN-related

gene expression in dogs with OS (Supplemental Figure 6C/D). This

interesting change in gene expression indicates that dogs with OS

may have a reduced IFN response potential in this subset

of monocytes.

We next evaluated differentially expressed genes to determine

the transcriptomic signatures for the suspected PMN-MDSC cluster

(Figure 5D and Supplemental Data 3). We found stereotypic PMN-

MDSC features (CD177, LTF, CAMP, MMP9, and MMP8) to be

upregulated in the PMN-MDSC cluster relative to the other

neutrophil clusters (Clusters 1, 7, 9, & 22) (38). This analysis

supported the classification of Cluster 12 as PMN-MDSCs. To

determine if there were transcriptomic differences between healthy

and OS PMN-MDSCs, we used a Wilcoxon Rank Sum test to

identify differentially expressed genes and found the expression of

CD4, ISG20, and CXCL8 to be higher in cells from healthy dogs

(Figure 5E). These findings suggest that either the healthy dog

PMN-MDSCs are distinct from the OS derived PMN-MDSCs, or

more likely, that normal neutrophils were misclassified during

unsupervised clustering. Another immune suppressive cell

population previously identified to be expanded in cancer patients

are M-MDSCs (39). We suspected that the CD4+ monocyte

population, Cluster 13, represented M-MDSCs. When evaluating

differentially expressed genes between Cluster 13 and the remaining

monocytes (Clusters 0, 2, 3, 4, 6, 10, and 11), we found down

regulation of ribosomal transcripts (RPS/RPL) and MHCII (DLA-

DRA) features and upregulation of CD4, S100A12, and IL18

(Figure 5F and Supplemental Data 3). While not definitive, this

expression profile supports the classification of Cluster 13 as M-

MDSCs, while also providing the gene signature of Cluster 13 (40,

41). Investigation of transcriptomic differences in disease revealed

subtle changes in gene expression, with higher IL1B and lower DLA-

DRA in the dogs with OS within the M-MDSC cluster (Figure 5G).

Following the identification of M-MDSC and PMN-MDSC

populations, we developed a clinically accessible flow cytometry-

based assay to monitor MDSC populations in dogs with cancer

(Figure 5H, Supplemental Figure 6E and Supplemental Table 1).

The assay builds upon previously proposed canine MDSC

immunolabeling protocols, but includes an anti-CD4 antibody to
Frontiers in Immunology 11
further distinguish MDSCs from their normal counterparts (9, 42,

43). This assay is intended to be employed in the investigation of

prognostic correlates and further study of canine MDSC biology.
B cells and miscellaneous cell types

The final immune cell population analyzed was B cells. We were

able to identify immature, naïve, activated and class-switched B cells

as well as a cluster of plasma cells (Supplemental Figures 7A–C). We

found minimal differences within B cells when comparing between

the cell abundances and transcriptomes of OS verses healthy dogs

(Supplemental Figure 7D). Despite the lack of differences between

healthy and diseased states, the data presented here provide

transcriptomic signatures for B cell subtypes not previously

resolved using traditional characterization methods in dogs.

In addition to the immune cell populations discussed above, we

reported the presence of gd T cells, cycling T cells and a CD34+

unclassified population. Initially, we believed the CD34+

unclassified cluster to be common myeloid progenitors. Upon

closer examination, we noted the population expressed endothelial

cell markers (CD109) (44). Therefore, we state their CD34

positivity, but refrain from assigning a further identity due to the

small representation of the cluster and conflicting gene signatures.

Ultimately, investigation into each miscellaneous population did not

reveal the presence of OS mediated changes, so we solely present

their transcriptomic signatures as a resource for future researchers.
Summary of the high-resolution canine
leukocyte landscape

Lastly, the cell classifications determined through analysis of

individual immune cell populations were compiled to present

relative abundances of total circulating leukocytes. We identified

36 unique cell populations believed to each represent a biologically

relevant subset of canine immune cells (Table 2 and Supplemental

Figure 8A/B). Furthermore, we provide the complete transcriptomic

signatures for each cell type and present a summary table with short

gene lists for each population (Supplemental Data 1, 2, 4, Table 3).

Comparisons between healthy and OS dogs revealed both PMN-

MDSCs and M-MDSCs were expanded in dogs with OS when

evaluated as a percentage out of all leukocytes. Additionally, DN T

cells, naïve B cells, class-switched B cells, and activated B cells were

found to be reduced in dogs with OS, but we were unable to

determine if this is a result of age or cancer.

Overall, the breakdown of leukocytes was found to be consistent

with previously reported values determined using flow cytometry

(45). We used paired flow cytometry data to confirm the relative

distribution of major immune cell types. The comparison of cellular

percentages between single-cell RNA sequencing and flow

cytometry revealed a positive correlation indicating consistent

identification of immune cells independent of approach (R2 =

0.635; Supplemental Figure 8C). Therefore, the data presented
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TABLE 2 Canine leukocyte high-resolution cellular composition.

All Healthy Osteosarcoma P value*

CD8 T cell 19.9 ± 7.6 18.4 ± 7.2 21 ± 8 0.601

CD8+ Naive 6.1 ± 2.5 5.9 ± 2.8 6.2 ± 2.4 0.536

CD8+ Effector 10.2 ± 5.6 8.7 ± 3.9 11.3 ± 6.5 0.669

CD8+ Memory 3.4 ± 1.3 3.6 ± 1.3 3.2 ± 1.4 0.813

CD8+ gd T cell 0.2 ± 0.2 0.2 ± 0.1 0.3 ± 0.3 0.962

CD4 T cell 36.2 ± 7.6 35 ± 7.5 37 ± 7.9 1

CD4+ Naive 10.3 ± 3.4 10.4 ± 3.1 10.2 ± 3.8 0.962

CD4+ TCM 5.3 ± 1.6 5 ± 1.3 5.4 ± 1.9 1.000

CD4+ TEM 7.4 ± 2.1 7.5 ± 2.2 7.3 ± 2 0.813

CD4+ TEM, Th1-like 3.8 ± 1.8 3.4 ± 1.9 4 ± 1.7 0.475

CD4+ TEM, Th2-like 4 ± 1.6 3.7 ± 1.4 4.3 ± 1.7 0.740

CD4+ TEM, Th17-like 2.1 ± 0.7 1.8 ± 0.4 2.3 ± 0.8 0.161

CD4+ T reg 3 ± 0.7 2.9 ± 0.5 3 ± 0.9 1.000

CD4+, IFN signature 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.813

Monocyte 18.5 ± 8.5 15.1 ± 4.1 20.8 ± 10.1 0.088

Monocyte, CD4- 12.2 ± 5.8 10.2 ± 3.2 13.6 ± 7 0.230

Monocyte, CD4+ 4 ± 2.2 3.1 ± 1.1 4.7 ± 2.6 0.230

M-MDSC 1 ± 0.4 0.8 ± 0.2 1.2 ± 0.4 0.019

Monocyte, IFN signature 1.3 ± 0.6 1.1 ± 0.8 1.4 ± 0.5 0.193

Dendritic cell 1.8 ± 1 2 ± 1.3 1.6 ± 0.8 0.813

Pre-DC 0.3 ± 0.2 0.3 ± 0.3 0.2 ± 0.2 0.536

Myeloid cDC1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.669

Myeloid cDC2 0.9 ± 0.5 0.9 ± 0.5 0.9 ± 0.5 1.000

Plasmacytoid DC 0.3 ± 0.3 0.4 ± 0.4 0.3 ± 0.2 0.601

Unclassified DC 0.1 ± 0.1 0.2 ± 0.2 0.1 ± 0.1 0.962

Granulocyte 11.1 ± 8.1 13.1 ± 12.2 9.8 ± 3.4 1

Neutrophil 6.9 ± 7.6 9.2 ± 11.5 5.4 ± 2.9 0.6691

PMN-MDSC 1 ± 1.2 0.5 ± 0.8 1.4 ± 1.4 0.0431

Eosinophil 2.8 ± 3 3 ± 3.5 2.6 ± 2.7 0.8125

Basophil 0.4 ± 0.3 0.4 ± 0.2 0.4 ± 0.3 0.7396

B cell 9.5 ± 4.5 12.6 ± 4.4 7.4 ± 3.3 0.07

Immature B cell 0.8 ± 0.5 1.1 ± 0.5 0.6 ± 0.4 0.088

Naive B cell 5.4 ± 2.6 7 ± 2.5 4.3 ± 2.1 0.043

Class switched B cell 1.7 ± 0.8 2.4 ± 0.7 1.2 ± 0.5 0.005

Activated B cell 0.7 ± 0.9 1.2 ± 1.2 0.4 ± 0.3 0.014

Plasma cell 0.9 ± 0.6 1 ± 0.7 0.8 ± 0.6 0.887

Miscellaneous 3 ± 1.2 3.7 ± 1.4 2.4 ± 0.7 0.025

DN T cell 1.1 ± 0.5 1.4 ± 0.4 0.8 ± 0.3 0.005

gd T cell 0.7 ± 0.5 0.9 ± 0.7 0.5 ± 0.2 0.740

(Continued)
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TABLE 2 Continued

All Healthy Osteosarcoma P value*

NK cell 0.5 ± 0.4 0.6 ± 0.6 0.4 ± 0.3 0.364

Cycling T cell 0.3 ± 0.1 0.3 ± 0.2 0.3 ± 0.1 0.887

NK T cell 0.3 ± 0.2 0.3 ± 0.1 0.4 ± 0.2 1.000

CD34+ unclassified 0.1 ± 0.1 0.2 ± 0.2 0.1 ± 0.1 0.261
F
rontiers in Immunology
 13
 fro
*P value is the exact two-sided P value obtained by a Wilcoxon Rank Sum test comparing Osteosarcoma column to Healthy.
TABLE 3 Transcriptional signatures of canine leukocytes.

Cell Type Marker

CD8 T cell

CD8+ Naive ITGA1, LEF1, PTGDR, IL2RB, ADGRG1, NBEA

CD8+ Effector CCL5, TRPM3, IL12RB2, GZMB, KLRB1, GZMA, NCR3, IL2RB, KLRD1, CD96

CD8+ Memory GZMK, GZMB, PI3, BTBD11, CTSW, CCR5, CCL4, KLRG1, FASLG

CD8+ gd T cell PTHLH, IGF2BP2, ABTB2, AKAP12, SOX4, CTSW, SLC16A10, PXT1, ZNRF3, SULT2B1

CD4 T cell

CD4+ Naive LEF1, CSTA, RGS10, ZNF536, CCR7, COL6A5, LTB, TNFSF8

CD4+ TCM LEF1, TSHZ2, CD52, CCR7, IL7R, CTPS1, EFHC2, CARMIL1

CD4+ TEM IL7R, SLC9A9, ICOS, MAF, CD28, SKAP1, CD40LG

CD4+ TEM, Th1-like IL7R, PTPN13, IL18R1, CD28, RCAN2, CCR9, CCR5, IL12RB2, CD52, PRUNE2

CD4+ TEM, Th2-like RNF220, ITGA2, GATA3, CCDC3, LGALS3, PTPN13, S100A2, PPEF1, CMA1

CD4+ TEM, Th17-like NTRK2, PTPN13, ADAM12, NRG2, RGS17, DNAH8, CCR6, NPAS2, RORA, LTBP1

CD4+ T reg IKZF2, CTLA4, RGS1, ICOS, IL2RA, CD28, ZNF831

CD4+, IFN signature CXCL10, IFI44, OAS1, ISG15, IFI44L, IFGGB2, CTLA4, STAT1, DDX58, XAF1

Monocyte

Monocyte, CD4- LYZ, BPI, LRMDA, MT2A, F13A1, FN1, NRG1, CCDC88A, CD83, RETN

Monocyte, CD4+ IL1B, MAFB, NFKBIA, CXCL8, FN1, BLOC1S6, CD83, S100P, BPI, NRG1

M-MDSC IL18, IL1B, LTF, MEFV, KCNJ2, CPXM2, S100A12, STEAP4, CSF3R, IL31RA

Monocyte, IFN signature RSAD2, OAS1, OAS2, DDX58, HERC6, OAS3, RTP4, EIF2AK2, IFIT2

Dendritic cell

Pre-DC FGF12, GPHA2, MTUS2, FCER1A, PLCE1, PTPRS, IGF1, NECTIN1, IL3RA, AK8

Myeloid cDC1 ZNF366, SDC2, DISC1, ECRG4, TMEM163, RIMS2, KIT, OTOF, RTKN2, RAB7B

Myeloid cDC2 PKIB, CD300H, SDC2, CD1C, NCAM2, CD86, BATF3, ZNF366, PID1, ECM1

Plasmacytoid DC COBLL1, RAB3C, IGF1, FCER1A, RYR1, PRKG1, CCND1, STYXL2, ANK1, OCIAD2

Unclassified DC PLCB4, ZNF366, KCNK13, STRIP2, SDC2, OTOF, HACD1, C5, SLC8A1, CNTLN

Granulocyte

Neutrophil S100A12, CD4, SERPINA1, SGK1, S100A8, ALDH1A2, FNDC3B, GGH, SRGN, IL1R2

PMN-MDSC CAMP, PGLYRP1, CRISP2, MMP9, MMP8, TCN1, CD177, LTF, FADS1, S100A12

Eosinophil C30H15orf48, TGM2, DACH1, PADI3, SMPD1, CA8, IL5RA

Basophil DACH1, CA8, IL5RA, DAPK2, TGFA, ANKRD33B, HK2, PRR5L

(Continued)
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here are largely consistent with traditional classification methods,

and act to provide novel insights into the heterogeneity and

transcriptomic signatures of canine cell types.

Finally, we integrated our dataset of 7 healthy canine leukocytes

with a previously published human reference consisting of 6 healthy

adults (18). Cell type homologies between species were then

evaluated using hierarchical clustering of SCT normalized data,

which evaluated the top 2000 variable features with gene

homologies between species. Although the analysis was impacted

by differences in the level of cell type annotations between the two

studies, the results suggested more similarities than dissimilarities

between the species (Supplemental Figure 9). For instance, human

and canine naïve CD4 T cells, neutrophils, and plasmacytoid DCs

paired off 1:1 in terminal clades, suggesting a high degree of

similarity. Additionally, human DCs clustered on the same clade

as all canine DC subtypes; this was also observed in the case of B

cells. Interestingly, we identified subtle differences between species,

which included human NK cells clustering with canine CD8 effector

T cells and gd T cells from each species clustering into separate

clades. Overall, the cross-species analysis emphasizes the

similarities in circulating immune cell transcriptional profiles,

while also highlighting potential differences between the

two species.
Discussion

In the present study we generated a reference single-cell RNA

sequencing dataset using 7 healthy dogs, then applied the database to

investigate how osteosarcoma alters immune cell transcriptomes and

abundances. Our analysis revealed the heterogenous canine immune

landscape and allowed us to define the transcriptomes of distinct

immune cell populations. When comparing healthy dogs and dogs
Frontiers in Immunology 14
with osteosarcoma (OS), we found that a cancer burden contributes

to relative increases in the abundances of polymorphonuclear

(PMN-) and monocytic (M-) myeloid-derived suppressor cells

(MDSCs). Furthermore, we identified that most transcriptomic

changes between healthy and OS dogs resulted from changes to

myeloid cell populations. In particular, we noted increases in LTF,

CAMP, and S100A12 expression which appear to arise from an

expansion of MDSCs. Ultimately, the data presented here sheds light

on the diversity of canine immune cells and highlights key changes

between healthy dogs and dogs with osteosarcoma.

Overall, there were relatively few aberrations in leukocyte

populations isolated from dogs with osteosarcoma. Despite this,

the observed differences may represent biologically significant

changes in dogs with cancer. For instance, MDSCs have been

identified as key immune suppressive populations that dampen

antitumor immunity and the relative abundances of these cells have

been determined to have prognostic correlates (8). Both monocytic

and polymorphonuclear MDSCs have been reported in dogs and

were identified using flow-cytometric based approaches (9). Our

findings support the classifications schemes used, but further

suggest that CD4 expression should be considered when

evaluating MDSC burden. We report that M-MDSCs exhibit a

phenotype of CD5-/CD21-/CD11b+/CD14+/CADO48a-/MHCII-/

CD4+ and that PMN-MDSCs can be defined as CD5-/CD21-/

CD11b+/CD14int/CADO48a+/MHCII-/CD4-. Because both

MDSCs were determined to express LTF, CAMP, and S100A12 it

is possible that the use of bulk RNA sequencing or targeted

sequencing approaches may be able to provide indirect

assessments of MDSC burdens. Ultimately, further investigation

of these cell populations is warranted to determine the clinical

relevance of MDSCs in dogs with cancer and other diseases.

Although reductions in B cells and DN T cells were noted, we

presented further data to suggest age, in addition to cancer, may be

driving this change. Due to this potential confounder and minimal
TABLE 3 Continued

Cell Type Marker

B cell

Immature B cell SYT1, PAX5, VPREB3, ERC2, TMTC2, KLHL14, F8, TEX9, TDRP, ADGRF1

Naive B cell TNFRSF13C, BANK1, HTR1F, PAX5, EBF1, BTLA, NRIP1, ADAM9

Class switched B cell TNFRSF13C, GOLM1, BANK1, BTLA, EBF1, DYNC1I1, MTMR2, PAX5

Activated B cell IGKC, CACNB2, PAX5, TNFRSF13C, IGHM, RASGRF2, AOX2, BCAR3, ADAM32

Plasma cell JCHAIN, MZB1, TXNDC5, LMAN1, FKBP11, LAP3, DERL3, CCR10, MKI67, TNFRSF13B

Miscellaneous

DN T cell KIAA0825, TMEM132D, KANK1, NMB, CTLA4, SYNJ2, BICDL1, SLF1, ID3, KIAA1549

gd T cell PARD3B, RHEX, IL17RB, CDH4, GATA3, FAT1, TOX2, ADARB1, ZNF683, TGFBR3

NK cell KLRF1, STMN2, PAX4, NCR3, F2RL3, CD96, IL2RB, IGSF3, FREM1, FASLG

Cycling T cell TOP2A, MKI67, RRM2, H1-5, DIAPH3, TK1, KIF11, TPX2, ASPM

NK T cell GPA33, TGFBR3, KLRK1, CD96, SYTL2, MOV10L1, SLA2, DSTN, RARRES1

CD34+ unclassified TFPI, ZNF521, CD34, NDST3, GUCY1A1, HPGD, CLEC3B, KIT, CD109, DNTT
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transcriptomic differences between healthy and OS dogs within

these cell types, our analysis was limited to characterization of each

subtype. Our B cell subtype analysis provides refined B cell

classifications in dogs and offers transcriptomic profiles of

each population.

Unexpectedly, we did not identify overt OS mediated changes

to circulating CD4 T cells. Prior research suggests that regulatory

T cells tend to be expanded in tumor bearing humans, mice, and

dogs (46, 47). The inability to detect an expansion of Tregs is

likely a result of our small sample size and lack of power to detect

changes in subtly altered cell abundances. As such, our analysis

focused on describing the heterogeneity within CD4 T cell

subpopulations to provide a comprehensive description of CD4

T cell subtypes. Key contributions include the identification of

four distinct CD4 T cell lineages (Th1-like, Th2-like, Th17-like,

and Tregs) and the generation of cell type transcriptomic

signatures. Our analysis of CD8 T cells and NK cells revealed

that, relative to humans, canine CD8 T cells exhibit gene

expression patterns that more closely resemble human NK cells

than CD8 T cells. This observation was made early on in analysis

when using human classifiers to assign cell identities, and again

when we completed a direct comparison to a dataset of healthy

adult leukocytes. Thus, our findings suggest canine CD8 T cells

exhibit a more innate-like transcriptomic signature relative to

their human counterparts. A similar conclusion was recently

reported in canine single-cell RNA sequencing of ab T cells

(48), providing further evidence of potential differences between

CD8 T cells in dogs and humans.

Outside of the major immune cell populations, we identified a

few distinct cell subpopulations, including gd T cells, cycling T cells,

and CD34+ unclassified cells. These cell types were considered to be

distinct from the major immune cell populations and were left out

of independent re-clustering analysis, but their importance should

not be discounted given their documented roles in numerous

diseases (49). Thus, their characterization may represent a useful

reference for future studies.

The cellular annotations proposed in our analysis represent

plausible cellular identities that we determined through use of

manual and algorithmic based classification methods. We

recognize that unsupervised clustering identifies transcriptionally

unique populations, but the boundaries set by clustering do not

always correspond with biologically relevant distinctions. As such,

in our final annotations presented in Table 2, we collapsed some of

the clusters into one cell category that we believed to be more

biologically relevant. For example, five CD4- monocyte populations

were identified in our myeloid cell analysis, but we could not assign

further identities to them, and in turn, annotated them all as one

group of CD4- monocytes. Furthermore, cell identification solely

based on conical cell type markers (i.e., FOXP3 for Tregs and IFNG/

TBX21 for Th1-like), proved ineffective in many instances. This is

in part due to the low transcript abundance of transcription factors,

cytokines, and chemokines in our dataset. Thus, many traditional

gene markers for these cell types were not considered upregulated

and were largely excluded from gene lists that define each cell

population (as defined in Table 3 and Supplemental Data 1/2).

However, when subsetting and using pseudobulk approaches, we
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were able to better detect defining features, such as FOXP3 in

regulatory T cells. This highlights the importance of using

independent re-clustering on major cell populations and allowed

us to provide detailed gene signatures for rare cell populations

(available in Supplemental Data 3).

Despite our contributions, this study is not without

limitations. For instance, granulocytes have been reported to be

difficult to study using single-cell transcriptomics due to small

transcriptomes, high RNase content, and sensitivity to sample

processing (50). As a result, many research groups chose to filter

out granulocyte populations. Despite this, we used single-cell RNA

sequencing to characterize granulocyte populations and were able

to identify distinct cell populations and report differentially

expressed genes between healthy and OS dogs. While our data

suggests there are biologically relevant differences between

granulocyte populations in healthy and OS dogs, it is important

to validate the findings reported here using molecular and

functional assays. An additional limitation is the relatively low

number of biological replicates and incomplete breed

representation used to investigate disease induced changes in

cell abundances. Future studies using alternative experimental

approaches, such as flow cytometry, should be completed to

validate conclusions presented here. Lastly, although we

attempted to control for age between the healthy and OS dogs,

we observed reductions in B cells and DN T cells which suggests

the age difference between groups may have confounded our

investigation of cancer associated changes.

We noted that our cell classifications are in discordance with

those previously published for canine PBMCs (51). The only

consistently annotated cell populations are B cells and platelets,

while the remaining classifications differ between studies. For

instance, the cluster classified as “monocytes” by Li et al. has high

expression of CD3E which suggests a classification of T cells is more

appropriate. Furthermore, the “T cell” cluster identified by Li et al.

lacks CD3E expression, but has high S100A12/CD4 expression

which likely corresponds to a neutrophil cluster (expression levels

were determined using the web browser released by Li et al; http://

120.79.46.200:81/Pandora/PBMC.html). The discrepancies between

studies likely arose due to classification methods not taking into

consideration the well-established phenomenon that, in dogs,

neutrophils have high CD4 expression (34). Ultimately, cell

classification should be completed using multiple approaches

and biological insight when working with non-traditional

animal models.

In summary, the data presented here serve two purposes. Firstly,

the leukocyte subclassifications can act as a valuable resource for the

scientific community to use in future research. For example, the

proposed classifications provide detailed phenotypes of canine

immune cells that can be used to inform the design of flow

cytometry assays, bulk RNA sequencing deconvolution algorithms,

and more (see Data and software availability section for details on use

applications). Secondly, this study identified important differences in

leukocyte abundances and transcriptomes in dogs with OS. Ultimately,

our goal is that the database provided here will be used by researchers

as a reference dataset as well as shed light on how cancer impacts

circulating leukocytes.
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this article is available at (https://github.com/dyammons/Canine_
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