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Rationale: The etiology and pathophysiological mechanisms of moyamoya

angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive

cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic

strokes; with compensatory formation of an abnormal network of perforating

blood vessels that creates a collateral circulation; and by aberrant angiogenesis

at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms

has been proposed as a potential cause of MMA. Moyamoya vessels suggest that

aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in

the pathophysiology of MMA. Circulating endothelial progenitor cells have been

hypothesized to contribute to vascular remodeling in MMA. MMA is associated

with increased expression of angiogenic factors and proinflammatory molecules.

Systemic inflammation may be related to MMA pathogenesis.

Objective: This literature review describes the molecular mechanisms associated

with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA

and related cerebrovascular diseases along with treatment strategies and future

research perspectives.

Methods and results: References were identified through a systematic computerized

search of the medical literature from January 1, 1983, through July 29, 2022, using

the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline

databases and various combinations of the keywords “moyamoya,” “angiogenesis,”

“anastomotic network,” “molecular mechanism,” “physiology,” “pathophysiology,”

“pathogenesis,” “biomarker,” “genetics,” “signaling pathway,” “blood-brain barrier,”

“endothelial progenitor cells,” “endothelial function,” “inflammation,” “intracranial

hemorrhage,” and “stroke.” Relevant articles and supplemental basic science articles

almost exclusively published in English were included. Review of the reference lists

of relevant publications for additional sources resulted in 350 publications which met

the study inclusion criteria. Detection of growth factors, chemokines, and cytokines

in MMA patients suggests the hypothesis of aberrant angiogenesis being involved

in MMA pathogenesis. It remains to be ascertained whether these findings are

consequences of MMA or are etiological factors of MMA.

Conclusions: MMA is a heterogeneous disorder, comprising various genotypes

and phenotypes, with a complex pathophysiology. Additional research may advance

our understanding of the pathophysiology involved in aberrant angiogenesis,
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arterial stenosis, and the formation of moyamoya collaterals and anastomotic

networks. Future research will benefit from researching molecular pathophysiologic

mechanisms and the correlation of clinical and basic research results.

KEYWORDS

moyamoya angiopathy (MMA), molecular mechanism, pathophysiology, angiogenesis,

inflammation, genetics, stroke, biomarker

Introduction

Moyamoya angiopathy (MMA) is an angiopathy unique to the

cerebrovasculature that is characterized by chronically progredient

stenosis of the bilateral intracranial internal carotid artery (ICA) and

its proximal bifurcations and development of a network of aberrant

collateral arteries to compensate for the stenosed vessels. MMA

pathophysiology may include a consecutive secondary response

of compensatory collateral circulation development by means of

vasculogenesis and alteration of cerebral hemodynamics as a result of

a primary narrowing of distinct intracranial vessels (1–6) (Figures 1–

3) (see the Supplementary Table 1 for definitions of gene symbols,

proteins, and additional terminology).

Comprehension of cellular signaling cascades linked to MMA

may be essential for identifying diagnostic and therapeutic targets

(5). Distinct monogenic moyamoya syndromes show radiological

characteristics of MMA and may be related to various signaling

pathways and genes associated with MMA pathogenesis (8).

Through identification of genes involved in MMA pathogenesis and

several monogenic moyamoya syndromes (MMS), researchers have

associated various signaling pathways with MMA pathophysiology,

including molecular signaling pathways [Rat sarcoma (Ras)–rat

fibrosarcoma (Raf)–mitogen-activated protein kinase (MEK)–

extracellular signal-related kinase (ERK) signaling pathway, nitric

oxide (NO)–soluble guanylyl cyclase (sGC)–cyclic guanosine

monophosphate (cGMP) signaling pathway], signaling pathways

involved in inflammation [Phosphatidylinositol 3-kinase (PI3K)/and

Akt1 (Akt)/mammalian target of rapamycin (mTOR) signaling

pathway, hypoxia-inducible factor (HIF)-1/nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) signaling pathway,

Caveolin-1/ERK signaling pathway, the wingless and Int-1 (Wnt)/(β-

Catenin)/lymphoid enhancing factor (Lef)-1 signaling pathway,

Calcineurein/nuclear factor of activated T-cells (NFAT) signaling

pathway, mitogen-activated protein kinase (MAPK) signaling

pathway, tumor necrosis factor alpha (TNFα)/protein tyrosine

phosphatase 1B (PTP1B) and peroxisome proliferator activated

receptor gamma (PPARγ) signaling pathway, toll-like receptor

(TLR) signaling pathway], and signaling pathways involved in

genomic stability [Ring finger protein 213 (RNF213) signaling

pathway]. Genes encoding additional members of these pathways

may themselves be involved in MMA pathogenesis (3, 9–11).

Inflammatory proteins have been shown to be associated with

MMA pathophysiology. However, inflammatory proteins have

not been historically approved as causative agents of MMA

(5, 12). Research into physiologic characteristics of angiogenesis,

Abbreviations: MMA, moyamoya angiopathy.

arteriogenesis, vasculogenesis, and associated signaling pathways

may lead to a deeper understanding of moyamoya’s complex

pathophysiology (13–42).

The purpose of this review article is to describe the physiological

and pathophysiological mechanisms of signaling pathways, cells, and

genes relevant to angiogenesis and inflammation in MMA and MMS

along with future moyamoya research perspectives and treatment

strategies implemented into clinical practice (Figure 4). This article

discusses if these mechanisms may be regarded as causative of

the angiopathy or if they may be viewed as a consequence of

ischemic processes observed in MMA. We also aim to further specify

proposed therapeutic and diagnostic targets related to angiogenesis

and inflammation in MMA, that may lead to disease-modifying

treatment strategies (4, 6, 9, 43–46).

Methods

References were identified by use of a systematic, comprehensive

computerized literature search from January 1, 1983, through July 29,

2022, performed by both authors, using the PubMed, Embase, BIOSIS

Previews, CNKI, ISI Web of Science, and Medline databases and

the key words “moyamoya,” “angiogenesis,” “anastomotic network,”

“moyamoya syndrome,” “molecular mechanism,” “signaling

pathway,” “genetics,” “biomarker,” “physiology,” “pathophysiology”

“blood-brain barrier,” “endothelial function,” “endothelial progenitor

cells,” “intracranial hemorrhage,” “inflammation,” and “stroke” in

various combinations. Relevant articles on MMA and supplemental

basic science articles almost exclusively published in English

were included. References of included publications have been

searched for supplementary sources, and 350 publications have

consequently been cited in the manuscript. After being reviewed by

a member of the panel, the manuscript has been reviewed by five

expert peer reviewers. Even though several basic research results

about physiologic characteristics of angiogenesis, arteriogenesis,

vasculogenesis (13, 14), and associated signaling pathways (15–42)

as well as knowledge regarding inflammation in pediatric ischemic

stroke (47–56) have been included for the convenience of readers

who may be unfamiliar with these topics, this article emphasizes

MMA basic, laboratory and clinical research results, future research

perspectives, treatment strategies, and their implementation in

clinical practice. As several aspects of MMA have been studied

in greater detail in comparison to others, distinct topics receive

additional attention. Despite substantial progress in the MMA field

of research in recent years, the literature in great part remains

descriptive. Continued basic and clinical research is essential

to further elucidate the pathogenesis of MMA, and to obtain

significant results.
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FIGURE 1

Major structural changes in MMA. (A) Carotid fork occlusion. (B) Development of moyamoya collaterals at the base of the brain. (C, D) External carotid

artery (ECA) collaterals from the superficial temporal artery (STA), internal maxillary artery, ophthalmic artery ethmoidal artery and collaterals through

foramina and sutures in the bone at the skull base and the surface of the skull, as well as middle meningeal artery connections from the dura into the

middle cerebral artery (MCA) and anterior cerebral artery (ACA) surface branches. See Supplementary material. Used with permission from Barrow

Neurological Institute, Phoenix, Arizona.

Pathologic characteristics of
angiogenesis, inflammation,
hemodynamics, vascular wall imaging,
vascular regression, and hemorrhage in
moyamoya angiopathy

Angiogenesis, inflammation, and
hemodynamics in moyamoya angiopathy

Cerebrovascular diseases may present as a disruption and as

aberrations of the intracranial vasculature, including cerebral blood

supply (57). Initiation of the pathogenesis of various cerebrovascular

diseases has been associated with the vascular wall (57). Stenotic

changes in MMA involve the distal intracranial ICA. Disease

progression involves the proximal anterior cerebral artery (ACA)

(A1), the middle cerebral artery (MCA) (M1), and rarely the

posterior circulation (5). MMA vascular wall pathology demonstrates

fibrocellular intimal thickening with increased vascular smooth

muscle cell (SMC) proliferation, fragmentation and tortuousness

of the internal elastic lamina, media attenuation, microaneurysms,

and fibrin deposits (5, 58, 59). Thrombosis, a consequence of vessel

lumen collapse, may be demonstrated in moyamoya (5, 60). These

MMA pathogenetic changes may cause hemorrhagic and ischemic
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FIGURE 2

Three types of posterior cerebral artery (PCA)-anterior cerebral artery (ACA) collaterals. (A) Type I collaterals constitute the anastomosis between the

anterior pericallosal artery (APA) and the posterior pericallosal artery (PPA) which is indicated by blue triangles. Pio-pial connections contribute to this

anastomosis. (B) Type II collaterals between the APA and the medial posterior choroidal artery (MPChoA) are indicated by blue triangles. The MPChoA first

turns anteriorly and then backwards around the splenium of the corpus callosum toward the APA. (C) Type III collaterals are leptomeningeal or pio-pial

connections between cortical branches from the PCA, indicated by red arrows, and cortical branches from the ACA, indicated by light blue arrows.

PPA-APA connections are present (7). See Supplementary material. Source: Reprinted/adapted from Bonasia et al. (7) with permission from the AJNR,

American Journal of Neuroradiology, American Society of Neuroradiology, and American Roentgen Ray Society.

stroke (5). Masuda et al. demonstrated the infiltration of T cells

and macrophages into vascular sections without stenosis, indicating

that microthrombi may result from chronic inflammation instead

of causing this process (5, 61). Presence of microthrombi may

not be specific for MMA (5). Inflammation may cause hyperplasia

of intimal SMCs and neovascularization through endothelial cell

proliferation, leading to lumen stenosis and formation of collaterals

(9). In 2006, Takagi et al. demonstrated that apoptosis, evidenced

through activated caspase-3, may occur in the MCA media in

MMA patients. Consequently, MCA specimens from MMA patients

showed vascular wall/medial thinning compared to controls (62). In

their 2008 study in 19 adult MMA patients, Kwag et al. suggested

that linear and/or non-linear mean blood flow velocity (MBFV)

changes in the posterior and anterior cerebral circulation, related to

distinct intracranial vessels, may be helpful in both follow-up and

initial evaluation of distinct angiographic Suzuki stages of MMA,

and may provide results to further ascertain hemodynamic changes

related to the disappearance of the bilateral anterior circulation. The

research group stated that the MBFV in the ACA, terminal ICA,

and the MCA showed a non-linear increase up to Suzuki stage

III, and subsequently progressively decreased as far as Suzuki stage

VI. Moreover, the ophthalmic artery showed non-linear changes of

blood flow velocity, with an MBFV increase as far as Suzuki stage

IV, followed by an MBFV decrease as far as Suzuki stage VI. The

MBFV of the basilar artery showed a linear increase from a normal

velocity at an early MMA stage to a stenotic velocity at a late MMA

stage. No statistically significant regressionmodel for the relationship

between the angiographic Suzuki stage of MMA and the MBFV

in the PCA was evident (63). In their 2011 study in 292 MMA

or MMS patients, Lee et al. stated that, in response to superficial

temporal artery (STA)–middle cerebral artery (MCA) bypass surgery,

flow rates at the vascular anastomosis increased 5 fold to a mean

of 22.2 ± 0.8 mL/min. In comparison to adult MMA or MMS

patients (23.9 ± 1.0 mL/min; P < 0.0001), MCA flow rates were

significantly decreased in pediatric MMA or MMS patients (16.2 ±

1.3 mL/min) (64). The research group hypothesized that increased

local flow rates may be related to improvement of clinical symptoms.

Persistent post-operative complications were low (<5%) (64). Also,

the group suggested that eminently increased post-operative MCA

flow rates, in comparison to controls, may be related to transient

neurologic deficits (28.6 ± 5.6 mL/min; P = 0.047), hemorrhage

(32.1 ± 10.2 mL/min; P = 0.045), and post-operative stroke (31.2

± 6.8 mL/min; P = 0.045) (64). In their 2013 study in 13 MMA

patients and 10 healthy, age-matched controls, Chen et al. ascertained

the beginning of dynamic cerebral autoregulation impairment at an

early MMA stage (65). Every autoregulatory parameter correlated

well with the angiographic MMA stage (65). The research group

suggested that cerebral autoregulation impairmentmay progress with

MMA progression toward complete vascular occlusion (65). Due to

an increased risk of intracranial hemorrhage and ischemia, blood

pressure intervention may be warranted (65–67). In 2013, Schubert

et al. referred to a characteristic proximal pattern of collaterals

(68). In 2015, Baltsavias et al. stated that the previously imprecisely

described “moyamoya abnormal network” in pediatric MMA may

be specified as a composition of four anastomotic networks with

a readily distinguishable vascular structure (69). Accordingly, in

their 2015 retrospective study in newly diagnosed 14 pediatric

MMA and 11 pediatric MMS patients, Baltsavias et al. described

four types of anastomotic networks in pediatric MMA, two deep-

parenchymal networks and two superficial-meningeal networks (69).

As deep-parenchymal networks the research group detailed the

previously undescribed subependymal network and the inner striatal

and inner thalamic networks. The subependymal network may be

fed by the intraventricular branches of the choroidal system and

diencephalic perforators, which, at the level of the periventricular

subependymal zone, anastomose with medullary-cortical arteries

and also with striatal arteries (69). The inner striatal and thalamic

networks may be comprised of intrastriatal connections among
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FIGURE 3

Capacity to compensate the ACA territory through posterior cerebral artery (PCA)-anterior cerebral artery (ACA) anastomoses in proximal ICA stenosis

(black arrow). A four-grade classification. (A) In grade I, collaterals refill the first part of the ACA, without any cortical branches. Pio-pial connections and

the posterior pericallosal artery contribute to refilling. (B) In grade II, the retrograde flow reaches a larger part of the ACA, including a cortical branch of

the ACA. A contribution from the medial posterior choroidal artery and the pio-pial connection may be involved. (C) Grade III consists of retrograde

refilling of three or two ACA branches, which may be strengthened by e.g., a medial posterior choroidal artery–anterior pericallosal artery anastomosis.

(D) In grade IV, retrograde refilling reaches nearly the entire ACA territory. Major distinct connections may compensate the hypoperfusion of the ACA

territory (7). See Supplementary material. Source: Reprinted/adapted from Bonasia et al. (7) with permission from the AJNR, American Journal of

Neuroradiology, American Society of Neuroradiology, and American Roentgen Ray Society.

striatal arteries and intrathalamic connections among thalamic

arteries when MMA compromises the origin of one or additional

of their supply sources (69). As superficial-meningeal networks, the

research group specified the leptomeningeal and the durocortical

networks (69). Apart from the previously described leptomeningeal

network observed in the convexial watershed zones, the group

described the basal temporo-orbitofrontal leptomeningeal network.

The second superficial-meningeal network was detailed as the

durocortical network, with a calvarian or a basal location (69). In their

2015 study, Karunanithi et al., using computational fluid dynamics

(CFD), evaluated 8 adult hemorrhagic MMA patients treated with

encephaloduroarteriosynangiosis (EDAS) revascularization surgery,

through analysis of pressure reduction in the right and left ICA before

and after EDAS surgery, to ascertain how hemodynamic parameters

including pressure reduction and flow rates may be the decisive factor

for treatment outcome. The research group stated that pressure drop

indicator (PDI), defined as the difference in pressure reduction in the

ICA bilaterally, which, by use of patient-specific inflow rates, may

be calculated post-operatively and at follow-up, may assist clinicians

in reliable risk stratification of MMA patients regarding long-term

follow-up (70). Also, PDI may further elucidate the hemodynamic

mechanism associated with intracranial hemorrhage in MMA,

including recurrent hemorrhage (70). In their 2016 retrospective, 1:2

matched case-control study in 180 MMA patients with or without

Type 2 diabetes mellitus (T2DM), Ren et al. suggested that EDAS

surgery may be an effective treatment for adult MMA, stating that

T2DM patients may gain improvement of symptomatology as well

as a more favorable collateral circulation post-operatively. Whereas

T2DM was related to a favorable clinical outcome, PCA involvement

and late post-operative stroke were identified as predictors of an

unfavorable clinical outcome in both study groups (71). In 2016,

Story et al. performed a study consisting of a single-institution case

series of 204 MMA patients, with an average age at surgery of

9.5 years, who underwent pial synangiosis between 2005 and 2013.

Transdural collaterals were present in almost half of all pre-operative

arteriograms in MMA patients. These collaterals were demonstrated

to be more common in advanced MMA, are associated with stroke as

a perioperative complication, and may suggest an increased capacity

to produce surgical collaterals post-operatively. Consequently, the

research group supports the utility of pre-operative arteriography
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FIGURE 4

Potential pathophysiologic mechanisms in MMA as related to angiogenesis, inflammation, and genetics. Shades of red indicate that the mechanism

relates to angiogenesis and inflammation. Shades of blue indicate that the mechanism relates to genetics. Shades of green indicate that the mechanism

relates to both angiogenesis, inflammation, and genetics. Pointed arrows represent stimulatory regulation, double-ended arrows represent bidirectional

regulation. See Supplementary material.
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(72). In their 2016 letter to the editor, Wang et al. stated that,

based on their study results, they have established microvascular

density as a decisive factor contributing to the result of EDAS, and

as a significant predictor of a favorable surgical outcome, potentially

assisting to ascertain patients suitable for EDAS. Consequently,

in case, during surgery, the cortex appears “white,” the surgical

procedure should be direct or combined anastomosis, not EDAS.

On the contrary, if an increased number and diameter of vessels are

observed which may lead to a “reddish” appearance of the cortex,

the patient may be considered suitable for EDAS (73). Regarding

their 2017 study results, Qiao et al. stated that blood oxygen level–

dependent functional magnetic resonance imaging (BOLD-fMRI)

may be an efficient imaging technique to evaluate hemodynamic

change in MMA patients (74). In their 2017 comparative study in

41 MMA patients, Qiao et al. suggested that, in comparison to

dynamic susceptibility contrast-magnetic resonance imaging (DSC-

MRI), multiple inversion time arterial spin labeling (mTI-ASL) may

effectively evaluate moyamoya cerebral hemodynamics and assess

cerebral ischemia before surgical revascularization and reduction

of ischemia after surgical revascularization. The research group

indicated that mTI-ASL, not requiring contrast mediums, may be

advantageous (75). In their 2018 review article, Yu et al. stated that,

in case stenosis or occlusion occurs at the top of the ICA or the

first segment of the ACA (A1), the first segment of the MCA (M1)

or distal to the anterior choroidal artery (AChA), the AChA can be

preserved. The AChAmay play a decisive role in MMA (76). In 2019,

Fan et al. suggest that their simultaneous hybrid positron emission

tomography (PET)/magnetic resonance imaging (MRI) study may

support the use of multidelay simultaneously acquired arterial spin

labeling (ASL) MRI in clinical evaluation of MMA, in settings where

nuclear medicine imaging is not available, and the application of

a normative perfusion database to identify aberrant cerebral blood

flow (CBF) in MMA patients (77). In 2019, Kronenburg et al.

showed that the severity of MMA may be related to the presence

of leptomeningeal collaterals and to cerebrovascular reactivity

(Figures 1–3) (78). In 2019, Liu et al. proposed a newMMA collateral

grading system, reflecting the intracranial collateral circulation status,

which correlated well with therapeutic prognosis, hemodynamic

status, and severity of symptomatology, which may help evaluate the

severity of ischemic and hemorrhagic MMA, ascertain the applicable

surgical indication, evaluate the surgical risk, and whichmay facilitate

risk stratification and predict prognosis in MMA (79). In their

2019 retrospective study in 68 adult MMA patients, Zhang et al.

showed that direct anastomoses of parasylvian cortical arteries with

anterograde hemodynamic sources from the MCA may pose an

increased risk of post-operative cerebral hyperperfusion in the course

of STA-MCA bypass surgery in adult MMA patients (80). In their

2020 study in 16MMA patients and 9 atherosclerotic cerebrovascular

disease (ACVD) patients, using sodium fluorescein (NaFl) to evaluate

blood-brain barrier (BBB) permeability in vivo intraoperatively, and

using intraoperative indocyanine green (ICG) videoangiography,

Lu et al. observed that BBB impairment in MMA may be of

increased significance in comparison to ACVD. Regarding their study

results, the research group stated that cortical perfusion may be

significantly decreased in the cerebral cortex with BBB dysfunction in

comparison to a cerebral cortex with an intact BBB in MMA patients.

Moreover, the research group suggested that BBB dysfunction may

lead to increased cortical perfusion after STA-MCA bypass surgery,

subsequently contributing to an increased incidence of post-operative

cerebral hyperperfusion syndrome (CHS), contributing to delayed

intracranial hemorrhage or transient neurological deterioration

in MMA patients (81). In their 2021 10-year follow-up study,

Wang et al. determined potential predictors of neoangiogenesis

and factors which may influence collateral circulation formation

following EDAS (Figure 4) (82). The results of the prospective

clinical trial between June 2017 and May 2018 in 106 MMA

patients, conducted by Wang et al., suggested that atorvastatin

administered at 20mg per day may be effective and safe for post-

operative collateral circulation formation induced by EDAS in MMA

patients (45).

Moyamoya vascular wall imaging,
moyamoya vascular regression, and
hemorrhagic moyamoya angiopathy

Established perfusion and luminal imaging methods may

not provide sufficient image resolution about progression, onset,

and differentiation of cerebrovascular diseases (57). Intracranial

High-resolution Magnetic Resonance Imaging (HRMRI) of the

vascular wall proved to be an effective imaging method regarding

evaluation and comprehension and of cerebrovascular diseases

(57). Location and pattern of contrast enhancement in intracranial

vascular wall imaging may allow novel insight into the etiology

of inflammation in cerebrovascular diseases and may have the

capability to anticipate treatment and diagnosis (57). Luminal

imaging may not be capable of reliably distinguishing between MMS

and MMA (57, 83). On vessel wall imaging, MMS, if accompanied

by a vasculopathy, e.g., atherosclerosis, may demonstrate outward

remodeling and focal eccentric lesion enhancement (57, 83). On

the contrary, MMA-infested vascular segments may infrequently

enhance without any outward remodeling (57, 83, 84). If MMA-

infested vascular segments do enhance, they may show a slightly

concentric, homogeneous pattern (57, 83, 84). In 2014, Ryoo

et al. performed an HRMRI study in 32 MMA patients and

16 patients with ICAD-related strokes. In addition to evidence

of MMA on imaging, MMA patients showed MCA shrinkage

and bilateral distal ICA concentric enhancement (85). In 2015,

Yuan et al. showed that HRMRI may detect different types of

MCA stenosis. On HRMRI, moyamoya MCA segments were

depicted through collaterals, homogeneous signal intensity,

and concentric stenosis. MCA shrinkage may be associated

with MMA progression (86). In their 2016 imaging study, Han

et al. suggested that HRMRI may help diagnose intracranial

atherosclerosis with increased precision in MMA patients with

risk factors for atherosclerosis. A distinct symptomatology

of MMA patients without an identifiable atherosclerotic

plaque and MMA patients with an identifiable atherosclerotic

plaque present may be indicative of distinct pathophysiologic

mechanisms and consequently of potentially diverging treatment

strategies (87).

In their 2016 retrospective imaging study in 148 consecutive

vessel-wall MRI cases, Mossa-Basha et al. stated that vessel-wall

MRI of the carotid artery territory may substantially improve

differentiation of moyamoya vasculopathies, including MMA,

atherosclerotic-MMS, vasculitic-MMS, and steno-occlusive
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intracranial carotid disease, if combined with traditional imaging

techniques (83). In their 2016 study in 20 consecutive MMA patients,

using gradient echo T2∗ weighted imaging (WI) involving high-field

MRI, Noshiro et al. suggested that cortical and subcortical vascular

hypointensity (CSVH) on T2∗ WI may be a useful tool for both

diagnosis and evaluation of the extent of MMA, demonstrating

that MMA revascularization surgery may decrease CSVH (88). In

2017, Qiao et al. showed that cortical thickness in MMA may be

multifactorial, including structural reorganization, cerebrovascular

accident (CVA) lesions, collateral circulation, and major artery

involvement, and may assist as a biological marker to evaluate MMA

severity (89). Anomalies of the MCA occur less frequently than

anomalies of other major intracranial arteries. MCA fenestration,

a duplicated MCA origin, a duplicated MCA, and an accessory

MCA may develop due to a fusion failure of the primitive arterial

network. Clinically, it may be challenging to differentiate an

unfused or twig-like MCA from unilateral MMA, in which stenotic

change originates at the MCA. Although MCA anomalies may be

asymptomatic, and may not require intervention, knowledge of

this configuration of an anomalous MCA may be important in

neuro-interventional and neurosurgical practice to perform safe

endovascular or surgical interventions. If the twig-like MCA may

be identically equal to the persistent fetal network of the primitive

MCA remains to be ascertained (90). Regarding their 2019 imaging

study results, using intracranial 3.0T vessel wall imaging (VWI) and

digital subtraction angiography (DSA), Cogswell et al. suggested a

decrease in supraclinoid ICA lumen and outer vessel wall diameters,

but no significant change in vessel wall thickness, between 23 North

AmericanMMA patients and 23 age-matched controls. Furthermore,

the research group showed that outer vessel wall diameters and the

ICA lumen may decrease with MMA severity (91). In their 2019

study, using quantitative three-dimensional constructive interference

in steady state (3D-CISS) imaging, including 8 hemispheres of 7

MMA patients whose Suzuki angiographic stage had progressed

spontaneously during follow-up, Yamamoto et al. demonstrated

that, in the course of spontaneous disease progression in early-stage

MMA, stages 1–3, the outer diameter of respective arteries may

serially decrease in parallel to luminal stenosis. The research group

suggested that this mechanism may be associated with MMA

pathogenesis (92). In their 2019 quantitative 3D-CISS imaging study,

Yamamoto et al. showed that involvement of the P2 segment of the

posterior cerebral artery (PCA) in MMA may demonstrate both

arterial shrinkage and luminal stenosis. MMA progression in the

PCA may additionally promote this vascular wall pathology. The

research group hypothesized that, from an embryologic perspective,

the pathophysiologic mechanism of MMA pathogenesis may be

present in both the PCA and the carotid fork (93).

In their 2014 review article, Wan and Duan stated that

hemorrhagic MMAmay occur in adult patients of Asian populations,

and many factors may contribute to the pathogenesis and the

etiology of hemorrhagic MMA. Predominant imaging features of

hemorrhagic MMA include aberrant branching and dilatation of the

posterior communicating artery (PCoA) or anterior choroidal artery

(AChA), as well as multiple microbleeds, potentially prognosticating

subsequent intracranial hemorrhage (94). In their 2015 case series of

349 hemorrhagic MMA patients, Wan et al. stated that SAH may

be a significant type of hemorrhage in MMA patients, ranking as

the fourth most common type after intracerebral hemorrhage (ICH),

intraventricular hemorrhage (IVH), and combined ICH and IVH.

The research group suggested that SAH may predominantly occur

in adult females, and rupture of the transdural anastomosis may be

the main cause of this condition (95). In their 2016 Letter to the

Editor, Duan et al. stated that revascularization surgery may not have

the potential of fully preventing recurrent intracranial hemorrhage.

Moreover, the research group stated that their research on the

arterial vascular wall, using high-resolution magnetic resonance

imaging (HRMRI), has demonstrated that ischemic MMA may

have distinct features compared to hemorrhagic MMA, and that all

episodes of intracranial hemorrhage may have appeared in MMA

patients without plaques (96). In their 2016 case-control study,

Liu et al. showed that, in comparison to cerebral hemispheres not

affected by intracranial hemorrhage, cerebral hemispheres affected

by intracranial hemorrhage may be more susceptible to recurrent

intracranial hemorrhage. The study results of the research group

demonstrated that dilation of the posterior communicating artery

(PCoA) or the anterior choroidal artery (AChA), as well as

posterior cerebral artery (PCA) involvement, may be related to

initial hemorrhage in hemorrhagic MMA, but not to recurrent

episodes of hemorrhage (97). In their 2018 retrospective study in

95 hemorrhagic MMA patients, Wang et al. showed that, through

long-term follow-up, EDAS may result in a favorable outcome in

hemorrhagic MMA patients. The research group suggested that

anterior choroidal artery (AChA)-PCoA dilation may be related

to initial intracranial hemorrhage in hemorrhagic MMA, and that

recurrent episodes of hemorrhage may be age-related (98). According

to their preliminary 2019 cohort study results, Funaki et al. indicated

that presence of choroidal collaterals, an anastomosis between

the medullary arteries and the posterior or anterior choroidal

arteries, may affect the risk of recurrent intracranial hemorrhage

in the non-hemorrhagic hemisphere of adult hemorrhagic MMA

patients, registered in the Japan Adult Moyamoya (JAM) Trial

and assigned to the non-surgical study arm (99). According to

their 2019 cohort study results, Funaki et al. hypothesized that

choroidal collaterals may be a bleeding spot with an increased risk

for recurrent intracranial hemorrhage and a marker of recurrent

hemorrhage in hemorrhagic MMA (100). In their 2019 retrospective

study, Yu et al. stated that, in comparison to patients with acute

idiopathic primary intraventricular hemorrhage (PIVH), patients

with acute MMA-associated PIVH may exhibit a lower short-term

mortality, be of a younger age, may have a more favorable renal

function, and a lower admission blood pressure (101). In their

2020 study, Zhang et al. compared the five-year prognosis in 123

adult hemorrhagic MMA patients who underwent either combined

superficial temporal artery to middle cerebral artery (STA-MCA)

bypass and EDAS, or EDAS alone. The research group stated

that both combined revascularization and EDAS alone may reduce

the risk of recurrent hemorrhage in hemorrhagic MMA patients

(102). Combined revascularization was found to be superior to

EDAS alone regarding the prevention of recurrent hemorrhage

(102). In Kaplan–Meier survival analysis, combined revascularization

was demonstrated to have a more favorable prognosis compared

to EDAS alone, and multivariate regression analysis demonstrated

that the combined revascularization procedure may be related to

a more favorable outcome (102). In 2021, Wu et al. stated that

the choroidal anastomosis may be related to hemorrhagic adult

MMA at an advanced stage, suggesting the validation of choroidal
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anastomosis as an imaging biomarker of hemorrhagicMMA.HRMRI

may provide detailed information on both aberrant collaterals and

the anatomy in MMA, facilitating risk estimates of moyamoya

hemorrhage (Figures 1–3) (103).

Pathophysiologic characteristics of
inflammation in pediatric ischemic
stroke

The significance of inflammation in pediatric stroke has become

noticeably evident (47). Ischemia may trigger various cascades of

inflammatory reactions, both alleviating and aggravating ischemia,

including inhibition and activation of inflammation through

chemokines, proteases, adhesion molecules, and cytokines (47, 48).

Furthermore, it has been demonstrated that the pathophysiology

of pediatric stroke may be associated with inflammation (47),

as evident in transient cerebral arteriopathy (47, 49) and

post-varicella angiopathy (47, 50). Consequently, in pediatric

stroke, ischemia may cause inflammation, and inflammation

may equally lead to ischemia (47). In comparison to the adult

brain, significant differences are evident in the neonatal brain

(47). In neonatal stroke, ischemia may be the predominant

pathophysiologic mechanism, with inflammation and infection

having a significant effect on the degree and course of tissue damage

(47). In childhood, ischemia may be caused by an associated

inflammatory pathophysiologic mechanism, as evident in MMA,

sickle cell anemia, dissection, transient focal arteriopathy, and,

increasingly generalized, in generalized vasculitis, meningitides, and

genetic arteriopathies such as Deficiency of Adenosine deaminase

2 (DADA2) (47). Focal inflammation is prone to be located in

the distal ICA or the proximal medial cerebral artery (MCA),

whereas generalized inflammation predominantly affects small

arteries (47).

Various genes may be associated with MMA (47, 51). Whether

these genes are dysfunctional due to ischemia or inflammation

or whether these genes are dysfunctional as such remains to be

elucidated (47, 51). The Ring finger protein 213 (RNF213) (17q25.3)

genetic variant has been demonstrated to be expressed at an

increased level in mature lymphocytes in comparison to lymphoid

progenitor cells (47, 51). In MMA, blood levels of circulating

endothelial progenitor cells (EPC) may be increased, suggesting

that the RNF213 genetic variant may alter the function of EPCs

in the spleen (47, 51). C3, IgG, and IgM have been demonstrated

in the vascular wall of MMA patients (47, 52). Fujimura et al.

(47, 104) and Young et al. (5, 47) have reviewed signaling

cascades and the histology associated with MMA, suggesting an

increase in transforming growth factor (TGF), hepatocyte growth

factor (HGF), basic fibroblast growth factor (bFGF), and vascular

endothelial growth factor (VEGF) in MMA patients (47). These

growth factors may be related to angiogenesis and inflammation

(47). Extracellular inflammatory biomarkers including matrix

metalloproteinase (MMP)-9, interleukin (IL)-8, and prostaglandin

may be increased inMMApatients (47). If disease progressionmay be

affected through stimulation or blockade of particular sequences of a

signaling cascade remains to be ascertained (47). Blockade of several

of such elements may reduce perioperative surgical risk (47, 53).

Cerebral ischemia may initiate an inflammatory signaling

cascade causing cell death, which subsequently may initiate

inflammation (47, 48). Hypoperfusion may initiate anaerobic

glycolysis which may catalyze two main metabolic pathways

causing inflammation: sodium-potassium pump failure may cause

excitotoxic glutamate release and membrane destabilization.

Activation of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

and N-methyl-D-aspartate receptors or signaling pathways may

lead to both necrosis, and, through intracellular increase of

sodium and potassium, to inflammation, oxidative stress, and

mitochondrial failure (47, 48). Through blood-brain barrier (BBB)

disturbance and membrane degradation, anaerobic glycolysis may

lead to inflammation, cyclooxygenase (COX) activation, leukocyte

infiltration, and cell adhesion molecule expression. Inflammation

may cause both necrosis and apoptosis (47, 48). Inflammation may

cause the release of various distinct proteases, chemokines, cytokines,

and adhesion molecules which may affect the inflammation process

(47, 48). Inflammation may as well be related to coagulation, leading

to a procoagulant state through its impact on fibrin formation

(47, 48). Also, endothelial inflammation may affect coagulation

and lead to blood clot formation (47, 48). The postischemic

inflammation pathway in the adult is complex, yet increasingly

ascertained (47). An extensive network of anti-inflammatory and

pro-inflammatory chemokines, proteases, adhesion molecules,

and cytokines exists (47, 48). Initial substrate release predominantly

stimulates inflammation within the initial hours andminutes (47, 48).

Subsequently, predominantly anti-inflammatory substrates, leading

to angiogenesis and recovery, are released (47, 48). Post-ischemic

necrotic neurons may release damage associated molecular patterns

(DAMPs), thus activating macrophages (47, 48). Macrophages

are associated with proinflammatory cytokine release, including

IL-1β and TNF-α, which may induce inflammation (47, 48). Also,

macrophage IL-23 release may cause T-cell recruitment which,

through IL-17 release, may induce inflammation (47, 48). Such an

inflammatory reaction may be induced within hours and minutes

after ischemia onset (47, 48). Over weeks and days after ischemia,

immune cells are associated with anti-inflammatory substance

production, such as TGF, insulin-like growth factor (IGF), and

IL-20 (47, 48). Purine release may assist in cleaning necrotic cells

of debris, and VEGF release may lead to angiogenesis (47, 48).

Secretion of anti-inflammatory and inflammatory biomarkers, such

as proteases, chemokines, and cytokines, may be ascertainable

in the cerebrospinal fluid (CSF) during acute stroke (47, 54, 55).

These biomarkers may be related to stroke severity and stroke

subtypes, and may further elucidate stroke pathogenesis (47, 54).

Various research has been designed for further ascertainment of

these distinctive signaling cascades, aiming at modifying factors

relating to the post-ischemic disease process (47). Comparison of

adult rodents to preterm and/or neonatal rodents demonstrated

that, while signaling cascades may be similar, there may be

differences between the adult system and the immature prenatal

system (47). Various experimental models for age-related ischemia

may be warranted to further ascertain these signaling cascades

in addition to encourage research into interventions to improve

patient outcome (47). The pathophysiology of pediatric stroke

may be caused through inflammation, which may exert a specific

effect on the inflammatory signaling cascade related to ischemia

(47, 56).
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Physiologic characteristics of
angiogenesis, arteriogenesis, and
vasculogenesis

Moyamoya vessels suggest that aberrant angiogenic, arteriogenic,

and vasculogenic processes may be involved in the pathophysiology

of the arteriopathy (105).

Physiologic angiogenesis comprises six steps. Step one includes

vasodilation, endothelial permeability and periendothelial support.

Vasodilation involves NO. VEGF increases vascular permeability

and promotes angiogenesis. Angiopoietin (ANG)1 inhibits vascular

permeability and stabilizes preexisting vessels. ANG2 removes

vascular smooth muscle cells (SMC) and loosens the extracellular

matrix (ECM) (13, 14). Matrix metalloproteinases (MMPs) degrade

ECM molecules and activate VEGF, basic fibroblast growth factor

(bFGF) and IGF-1 (13). Step two includes endothelial cell migration

and proliferation. VEGF and VEGFR2 are involved in aberrant,

embryonic and neonatal angiogenesis. VEGFR3 is involved in

aberrant and embryonic angiogenesis (13). VEGF120 initiates

angiogenesis. VEGF-C may contribute to aberrant angiogenesis in

the adult (13). ANG1 is chemotactic for endothelial cells, potentiates

VEGF, and induces angiogenesis (13, 14). bFGF and platelet-

derived growth factor (PDGF) affect angiogenesis by attracting

inflammatory or mesenchymal cells (13). Markers involved in cell-

matrix and/or cell-cell interactions, e.g., αvβ3 integrin, may facilitate

endothelial spreading (13). EphrinB2 and platelet endothelial cell

adhesion molecule (PECAM)-1 may be associated with aberrant

angiogenesis (13). In ischemia, eNOS mediates aberrant VEGF-

initiated angiogenesis (106). Step three comprises lumen formation.

Endothelial cell thinning or intercalation and fusion of pre-existing

vessels may increase vessel diameter and length (13). VEGF121,

VEGF165 and their receptors increase lumen formation and

vessel length. VEGF189 decreases the luminal diameter, VEGF in

combination with ANG1 increases the luminal diameter (13). αvβ3

or α5 integrins influence lumen formation. Thrombospondin (TSP)-

1 inhibits lumen formation (13). Step four comprises endothelial

survival. Reduced endothelial cell survival causes vascular regression

in the embryo (13). Shear stress is essential for vascular maintenance.

Endothelial survival factors VEGF, ANG1, and αvβ3 activate p42/44

MAPK, survivin, and PI3K/Akt pathways (13). Step five comprises

endothelial differentiation. Specialized endothelial cells are partly

determined by their host tissue. Interaction between VEGF and

the ECM, causes endothelial cells to become discontinuous and

fenestrated (13). Step six comprises remodeling. Vessel replacement

by matrix causes vessel branching. A morphogenetic function of

VEGFR3, VEGF isoforms, Tie1, vascular cell adhesion molecule-

1 (VCAM-1), Jagged, α4 integrin, Gα13 GTP-binding protein,

chemokine receptor 4, and fibronectin may be suggested by gene

inactivation studies (13). Aberrant angiogenesis is often induced by

inflammation. In inflammation and wound healing, VEGF attracts

monocytes/macrophages, mast cells, platelets and other leukocytes,

which release arteriogenic as well as angiogenic factors, including

TGF-β1, bFGF, VEGF, platelet-derived growth factor (PDGF), tumor

necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (MCP-

1) and IL-8, causing recruitment of endothelial cells, SMCs, platelets,

fibroblasts or leukocytes, leading to aberrant angiogenesis (13).

Physiologic arteriogenesis comprises three steps. Regarding

step one, in SMC migration and growth, aberrant arteriogenesis

causes enlargement of preexisting collaterals after occlusion of the

supplying artery. Consequently, endothelial cells express MCP-1 as

well as intercellular adhesion molecule 1 (ICAM-1). Vascular wall

infiltration and media disruption by monocytes is associated with

TNF-α and proteases. Subsequently, endothelial cells upregulate

PDGF-BB, bFGF, and TGF-β1, thus inducing SMC growth and

vessel enlargement (13). In step two, a lack of fibrillin-1, fibrillin-2,

collagen and elastin causes vessel wall weakening and aneurysmal

dilatation. Elastin decreases SMC growth, and thereby prevents

intimal hyperplasia (13, 107). In atherosclerosis or restenosis

SMCs dedifferentiate from a contractile to an embryonic, synthetic

phenotype (13). Regarding step three, in remodeling a sustained

imbalance between NO and endothelin-1 may induce vasospasms

and progress to vascular loss (13).

Physiologic vasculogenesis refers to primitive network formation.

VEGF, VEGFR2 and bFGF influence angioblast differentiation.

VEGFR1 suppresses hemangioblasts. TGF-β1 and TGF-β receptor 2,

α5 integrin and fibronectin affect vasculogenesis (13).

HIF-1β, HIF-1α, and HIF-2α induce angiogenesis and

arteriogenesis through VEGFR2, VEGFR1, VEGF, ANG2, PDGF-BB,

TGF-β1, Tie1, NOS, IL-8, endothelin-1 and cyclooxygenase (COX)2

expression. Hypoglycemia and a low pH induce vessel growth (13).

Vasculogenesis is flow-independent, angiogenesis is flow-dependent

and hypoxia regulated (13). bFGF affects vascular tone. NO and P-

selectin influence vascular remodeling through shear-stress-induced

gene transcription (13).

Physiologic characteristics of
angiogenesis signaling pathways

Signaling pathways associated with a condition may provide

an interface of genetic and environmental interaction. Integration

and crosstalk between signaling pathways may occur at intracellular

nodes where signaling cascades intersect (15), and also at the level of

receptor activation (20).

ANG1-Tie receptor tyrosine kinases (Tie)2 binding leads to cross-

phosphorylation of cytoplasmic Tie2 tyrosine residues, which recruit

adaptor proteins that activate PI3K/Akt, MAPK, Erk, and docking

protein 2 (Dok-R) signaling pathways. These pathways are involved

in recruiting and sustaining periendothelial support cells (e.g.,

pericytes, SMCs) that relate to stabilization and maturation of newly

formed vessels (18, 19). In quiescent vessels, ANG1 recruits Tie2

to cell-cell contacts, forming complexes with Tie2 from adjoining

cells, thus activating PI3K/Akt signaling (16, 18, 19, 23). Migrating

endothelial cells cause ANG1 to recruit Tie2 into contact with the

ECM, which causes the formation of focal adhesion complexes and

activation of PTK2/FAK, MAPK-1/ERK2, and MAPK3/ERK1; this,

in turn, causes sprouting angiogenesis (16–22). Activation of Tie1-

Tie2 heterodimers depends on β1 integrin (21). In ischemia, ANG1

causes synchronous activation of Tie2 and integrin signaling, which

is related to angiogenic remodeling and tightening of endothelial

cell junctions (Figure 5) (18). Tie1 deficiency impairs ANG1-induced

Tie2 and Akt phosphorylation and FOXO1 inactivation, leading to

FOXO1 nuclear translocation (21). Inflammation causes cleavage

of the Tie1 ectodomain, which results in a switch of ANG2 from

a Tie2 agonist to a Tie2 antagonist, linked to a positive feedback

loop of FOXO1-driven ANG2 expression, causing endothelial cell

destabilization via β1 integrin, vascular remodeling, and leakage
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FIGURE 5

Model of ANG1 in neovascularization. ANG1 may activate and increase

mTOR–HIF-1α-SDF-1 signaling in the ischemic endothelium and

subsequently facilitate the incorporation of BMCPCs into the ischemic

endothelium, leading to neovascularization in ischemic tissue. Priming

of mobilized Tie2high BMCPCs with ANG1 causes activation of

Tie2/Ets-1, resulting in incorporation of BMCPCs into the endothelial

linage and the induction of integrins, which leads to increased

adhesion to endothelial cells and the extracellular matrix. See

Supplementary material. Used with permission from Barrow

Neurological Institute, Phoenix, Arizona.

(21, 24, 25). Autocrine secretion of ANG2 disrupts connections

between endothelium and perivascular cells, causing cell death and

vascular regression (16) that lead to impaired barrier properties of

brain endothelial cells and intracranial hemorrhage and ischemia

(16, 26). ANG2 and VEGF block ANG1-mediated stabilization and

maturation, resulting in endothelial cell migration and proliferation

and, then, angiogenic neovascularization (18). ANG1-Tie2 activation

stimulates recruitment of ABIN-2 that, in turn, creates suppression

of NF-κB, a pro-inflammatory transcription factor, and protection of

endothelial cells from apoptosis. Truncated ABIN-2 inhibits ANG1

from preventing endothelial cell death (27).

The erythropoietin (Epo)/Epo receptor (EpoR) signaling pathway

induces proliferation, migration, chemotaxis, and angiogenesis,

and inhibits apoptosis (28, 29). EPO signaling potentially inhibits

apoptotic pathways triggered by ischemia and may reduce hypoxic

injury by promoting or facilitating angiogenesis (28). Cytokines and

growth factors associated with hematopoiesis may also be involved

in angiogenesis (31). Endothelial cells expressing EPO-R respond to

EPO by differentiation into vascular structures, associated with JAK2

phosphorylation, cell proliferation, and MMP-2 production (30, 31).

The erythropoietin-producing human hepatocellular receptor

(Eph)/Eph receptor-interacting protein (ephrin) signaling pathway

is involved in vasculogenesis and tissue homeostasis (32, 35). Eph-

ephrin bidirectional signaling affects both receptor- and ephrin-

expressing cells and segregates Eph-expressing cells from ephrin-

expressing cells (33–35). Eph and ephrin may contribute to vascular

development by restricting arterial and venous endothelial mixing

thus stimulating the production of capillary sprouts and also by

stimulating mesenchymal differentiation into perivascular support

cells (32). EphA receptor activation may be involved in VEGF-

induced angiogenesis (32). Cooperation between ephrin-A1 and

Slit2 regulates a balance between pro- and antiangiogenic functions

of Slit2, suggesting Slit2 may differentially regulate angiogenesis

in the context of ephrin-A1 (36). The Eph family transmembrane

ligand ephrin-B2 marks arterial but not venous endothelial cells. The

ephrin-B2 receptor Eph-B4 marks veins but not arteries. Differences

between arteries and veins may be in part genetically determined,

suggesting that reciprocal signaling between arterial and venous

endothelial cells is essential for morphogenesis of the capillary beds

(37). Interaction of ephrin-B2 on arterial endothelial cells and Eph-

B3 and Eph-B4 on venous endothelial cells may define the boundary

between arterial and venous domains (37). EphB2 and ephrin-B2

expression on mesenchymal cells suggests involvement in vessel wall

development via endothelial-mesenchymal interaction (38). Absent

ephrin-B2 expression in mice disrupts embryonic development of

the vasculature due to a deficient restructuring of the primary

network (39).

The Janus kinase-signal transducer and activator of transcription

protein (JAK-STAT) signaling pathway includes cytoplasmic signal

transducer and activator of transcription (STAT)1, STAT2, STAT3,

STAT4, STAT5a, STAT5b, and STAT6. STATs are activated by tyrosine

phosphorylation in response to external stimuli, including cytokines,

growth factors, and hormones. Ischemia leads to estradiol-, IL-6-,

EPO-, and G-CSF-mediated tyrosine phosphorylation and activation

of STAT3. STAT3 dimerization and translocation to the nucleus

stimulate binding of DNA regions in STAT-inducible elements, which

leads to transcription of neuroprotective genes linked to estradiol-

mediated neuroprotection and neuronal survival. Endothelial STAT3

activation causes endothelial cell migration and proliferation, leading

to angiogenesis and ECM remodeling that are important in long-term

post-stroke recovery (40–42).

Moyamoya angiopathy related
angiogenesis and inflammation
signaling pathways

The pathogenesis of MMA and MMS may be associated with

infection and inflammation (5, 108). Imbalance of angiogenic and

vasculogenic mechanisms has been suggested to be a potential

cause of MMA (105). Aberrant expression of angiogenic factors,

adhesion molecules, and mitogens, and/or an aberration of the

cellular immune response to cytokines and growth factors may

indicate an association of hematopoietic as well as inflammatory

signaling pathways with cells of the vasculature, which has been

hypothesized to constitute an essential pathophysiologic mechanism

in MMA pathogenesis (Figure 4) (5, 109–113).

Phosphatidylinositol 3-kinase (PI3K)/protein kinase B

(Akt)/mammalian target of rapamycin (mTOR) signaling pathway

activation may occur due to Ras mutation, loss of phosphatase and

tensin homolog, or increased expression of growth factor receptors.

The PI3K signaling pathway is involved in blood vessel formation

during embryogenesis. Embryos with a kinase-dead PI3K p110α

catalytic subunit develop vascular defects. The PI3K/Akt signaling

pathway modulates expression of angiogenic factors (e.g., NO,

ANGs) (114). Activated Tie2 stimulates the PI3K signaling pathway,

which activates the protein kinase B/Akt, eNOS, MAPK, and

docking protein 2 (Dok-R)/cytoplasmic protein NCK1 (Nck)/p21-

activating kinase (Pak) signaling pathways. These pathways affect

endothelial cell survival and NO synthesis (115). VEGF stimulation
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of endothelial cells activates the PI3K pathway and leads to

cell migration. Endothelial activation of Akt1 is associated with

structurally abnormal blood vessels. PI3K/Akt/mTOR pathway

inhibition decreases VEGF and angiogenesis (114). Increases in

caveolin-1 lead to decreases in ceramide synthesis, inhibiting the Akt

signaling pathway, cell proliferation, migration, and invasion, thus

inhibiting PI3K activity (116). Hypoxia-inducible factor (HIF)-1

expression is associated with the PI3K/Akt signaling pathway in

MMA (9, 117). The PI3K/Akt signaling pathway in endothelial cells

may lead to transcriptional activation of Ring finger protein 213

(RNF213) (17q25.3). Inhibition of the PI3K/Akt signaling pathway

has been demonstrated to decrease inflammation in autoimmune

diseases (9, 118). MMA, if associated with inflammation, may

be related to the PI3K/Akt pathway (9). Molecular networks

may associate sGC with E3 ubiquitin-protein ligase RNF213

(RNF213) (119). Nuclear factor of activated T-cells 1 (NFAT1),

a RNF213 ubiquitin target downstream of the non-canonical

Wnt/Ca2+ signaling pathway, is a pivotal molecule (119, 120).

Calcineurin/NFAT signaling activation through VEGF in human

EPCs may lead to increased expression of Nitric oxide synthase,

endothelial (eNOS) and generation of NO (119, 121). NFAT may

regulate sGC expression by NFAT1 binding to the Guanylate

cyclase soluble subunit alpha-1 (GUCY1A3) consensus sequence

(119, 122). PI3K/AKT activation may cause glycogen synthase

kinase (GSK)-3β inactivation, leading to proteasomal degradation

of NFAT1 (119, 123). The impact on NFAT1 by PI3K/AKT might

be mediated through RNF213, as PI3K/AKT may be an upstream

regulator of RNF213 expression in endothelial cells (119, 124).

Moreover, Nuclear Factor Of Activated T Cells 1 (NFAT1) (18q23)

upregulation may be mediated through RNF213 S-nitrosylation

(119, 125). S-nitrosylation means posttranslational modification

through addition of a nitrosyl group to the reactive thiol group

of cysteine, forming S-nitrosothiol, which constitutes a pivotal

mechanism in NO-mediated signal transfer (119). Ubiquitin ligase

S-nitrosylation may lead to its auto-ubiquitination, thus increasing

its substrate levels. NFAT, through cGMP-dependent protein kinase

(PKG) activation, which leads to GSK-3β phosphorylation, may be

regulated through sGC (119, 126). Furthermore, caveolin may be

associated with NO signaling regulation (119).

Caveolin-1, an ∼ 21–24 kDa integral membrane protein,

is present predominantly in plasma membrane caveolae, 50–

100-nm flask-shaped invaginations, where it functions as a

scaffold to arrange a multitude of molecular complexes which

regulate diverse cellular functions. Caveolin-1 may be regulated

through the Ca2+/calcineurin/NFAT signaling cascade (119, 127).

Caveolin-1 has been stated to be related to pulmonary arterial

hypertension, coronary artery disease, and MMA (119). Caveolin-

1 functioning may be sufficiently studied in pulmonary arterial

hypertension (119, 128–130). In comparison to healthy controls or

cerebral atherosclerotic stroke patients, caveolin-1 levels have been

demonstrated to be decreased in MMA, and were shown to be

distinctly decreased in patients with the RNF213 R4810K genetic

variant (119, 131). If RNF213 bears an indirect or a direct relation to

caveolin-1, remains to be ascertained, e.g., caveolin-1 may be a target

object for ubiquitination through RNF213. eNOS release is related to

caveolin-1. eNOS release produces NO, which may be metabolized

through sGC. eNOS binding to the caveolin-1 scaffolding domain

has been associated with eNOS inactivation (119, 132). Caveolin-1

absence may lead to dysfunction of eNOS, which has been related

to cerebrovascular diseases (119). NF-κB and HIF-1 are involved in

inflammation regulation (9, 133). RNF213 genetic variants may cause

NF-κB-associated inflammation, leading to VSMC damage, which is

characteristic of MMA pathophysiology (119). RNF213 may lead to

lipotoxicity-mediated protection of cells against inflammation and

endoplasmic reticulum (ER) stress (119, 134). RNF213 depletion may

cause NF-κB pathway inhibition during exposure to palmitate, may

reestablish the cellular lipidome, and may stabilize the expression

of the ER stress gene (119, 134). Recent research has demonstrated

that RNF213 may concur with Ubc13, the E2 enzyme, leading to

K63-linked polyubiquitin chain generation (119, 135, 136). K63

linkages have been associated with protein sorting, removal of

defective mitochondria, innate immune responses, DNA repair, and

with regulation of NF-κB transcription factor activation (119, 137).

Deletion of Lys-63-specific deubiquitinase BRCC36 (BRCC3), an E3

ligase cleaving K63-linked polyubiquitin chains specifically, has been

related to X-linked MMS (119, 138). BRCC3 may be associated with

DNA damage response, and may regulate an abundance of such

polyubiquitin chains in chromatin (119). The majority of genetic

changes in the RNF213RING finger domain proven inMMApatients

may diminish E3 ligase activity, and various of these genetic changes

may induce NF-κB activation (119, 136). Such genetic changes,

which may lead to NF-κB activation, may include both Caucasian

cysteine/histidine mutations and proline mutations, such as P4033L

in a Caucasian patient as well as p.P4007R in a Chinese patient

(119). In association with NF-κB, these genetic changes may lead to

apoptosis (119). The p.D4013N genetic variant may neither affect

NF-κB activation nor E3 ligase activity (119). Point mutations in

both the Walker B and A motif of the AAA domains, may fully

eliminate NF-κB activation through genetic changes in the RNF213

RING finger domain (119). Consequently, NF-κB signaling pathway-

mediated inflammation may be suppressed in absence of RNF213,

while inflammation may be augmented through RNF213 genetic

variants in MMA patients (119). With respect to NF-κB activation,

RNF213 genetic variants may be associated with gain of function

(119). RNF213 may as well regulate immune cell maturation and

differentiation, the cell cycle, and mitochondrial function. These

characteristics may be associated with MMA pathogenesis (119).

Caveolin-1 is related to inflammation, and may be associated with

MMA (9, 139, 140). Caveolin-1 serum levels were shown to be

decreased in MMA, and demonstrated to be significantly decreased

in MMA patients with the RNF213 genetic variant (9, 131). Caveolin-

1 has been associated with angiogenesis (9, 141, 142), along with

a bidirectional interaction between the Caveolin-1/ERK and the

Wnt/β-catenin pathway (9, 143).

In 2000, Galbiati et al. hypothesized that caveolin-1 expression

may control Wnt/β-catenin/Lef-1 signaling through modulating

the intracellular β-catenin localization (144). The Wnt signaling

pathway may be related to angiogenesis (9). In 2016, Scholz et al.

demonstrated that the endothelial RSPO3-driven non-canonical

Wnt/Ca2+/NFAT signaling pathway may be associated with vascular

stability maintenance, providing insight into vascular remodeling

mechanisms (120). Furthermore, the research group stated that

RNF213 in vascular endothelial cells may be associated with the

Wnt signaling pathway and angiogenesis regulation (9, 120). Under

physiologic conditions, stimulation of endothelial cells through

shear stress or growth factors may induce the Ca2+-calmodulin
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signaling cascade (119). Calmodulin may accelerate dissociation of

eNOS from caveolin-1 and may enhance eNOS generation through

Calcineurin/NFAT1 (119) RNF213, which may degrade NFAT1 by

means of the ubiquitin proteasome system, may not be activated in

absence of a pathological stimulus (119). From L-Arginine, eNOS

subsequently generates NO, which may diffuse into vascular smooth

muscle cells (VSMCs) (119). In VSMCs, NO may induce sGC

to generate cGMP. cGMP may subsequently activate the cGMP-

dependent protein kinase (PKG), leading to VSMC relaxation (119).

Under pathological conditions, in which a viral infection may lead

to destruction of mitochondria, RNF213 may be up-regulated and

may inhibit the generation of eNOS through NFAT1 degradation

(119). RNF213 genetic variants in MMA patients may sustain

an inflammation even after remission of the causative infection,

which may lead to sustained impairment of the cGMP signaling

pathway (119). GUCY1A3 genetic variants may cause an identical

environment (119). cGMP signaling pathway impairment may lead

to endothelial dysfunction, fibrosis, impaired vasodilation, and

proliferation of VSMCs (119). Such processes may lead to intimal

hyperplasia with fibrous thickening, which has been associated

with MMA pathogenesis (119). As cGMP signaling pathway

impairment may lead to endothelial-to-mesenchymal transition and

dedifferentiation of VSMCs, those cells may cause fibrosis (119).

Lessened protection against stroke may constitute a pathophysiologic

mechanism of MMA arterial stenosis (119). RNF213 may possess

antibacterial and antiviral properties and may regulate lipotoxicity,

whereas sGC may provide protection against homocysteine (119).

Bacterial and viral infection may cause mitochondrial dysfunction

and interferon (IFN) I generation, which may lead to increased

RNF213 expression (119). In case genetic variants in MMA

patients cause a dysfunction of sGC or RNF213, vascular damage

related to infection, dyslipidemia, and homocysteine may lead to

chronic inflammation (119). Moreover, RNF213 genetic variants may

cause inflammation through NF-κB, leading to VSMC damage, a

characteristic of MMA pathogenesis (119). In their 2016 study in 15

adult MMA patients, Gao et al. stated that expression patterns of long

non-coding ribonucleic acids (lncRNAs) may differ between MMA

patients and healthy controls (10). Various signaling pathways related

to smooth muscle contraction, vasculogenesis, and immune response

may be associated with the regulatory mechanism of lncRNAs

(10). Mitogen-activated protein kinase (MAPK) signaling pathway

was found to have a central function in this regulatory network

of signaling pathways (10). In 2021, Sarkar and Thirumurugan

demonstrated the regulation of RNF213 through the TNFα/PTP1B

signaling pathway and PPARγ, suggesting that RNF213, similar to

TNFα, may constitute an additional connection between MMA,

inflammation, insulin resistance, and obesity (11). Toll-like receptors

(TLR) have been ascertained to be essential in activating the innate

immunity through recognition of distinct patterns of microbial

constituents. Toll-interleukin-1 receptor (TIR) homology domain-

containing adapter protein Myeloid differentiation primary response

88 (MYD88) may be indispensable for the induction of pro-

inflammatory cytokines induced by all TLRs (145). In 2020, Key et al.

stated that in MMA, the low penetrance of RNF213 mutations may

be modified through dysfunctions in the TLR3 signaling pathway or

the mitochondria (Figure 4) (146).

Due to infections or autoimmune diseases and induced by

inflammatory cytokines, every signal transduction pathway involved

in MMAmay be reciprocally activated by RNF213 (9).

Moyamoya angiopathy cell-based
biomarkers

Derived from the bone marrow, circulating endothelial

progenitor cells (EPC) are involved in postnatal physiological and

pathological neovascularization (9, 147, 148). Circulating EPCs have

become objects of moyamoya research, referring to the hypothesis

that MMA is associated with constant vascular remodeling, involving

both the subsequent angiogenesis from collateral development as

well as the primary arteriopathy. SMC proliferation in the vascular

wall of affected arteries has frequently been demonstrated in MMA

(2, 61). Analysis of smooth muscle progenitor cells (SPCs) isolated

from the blood of MMA patients demonstrated a differential

expression exceeding 200 genes, including a decreased CD31

expression, and irregular tube formation in assays in comparison

to matched controls (2, 149). Studies have indicated the migration

of endothelial cells into the ICA intima in stenotic sections in

moyamoya, hypothesizing that these cells might be involved in

both distal collateral development and proximal arterial narrowing

(2, 150). CD34+ cells, a subpopulation of endothelial progenitor

cells, have been reported to be increased in the blood of MMA

patients compared to healthy controls and also when compared to

patients with non-MMA intracranial arterial stenosis (2, 151, 152).

Inconsistent results have been obtained from research into CD34+

cells in pediatric MMA. Kim et al. performed a study in 28

pediatric MMA patients, demonstrating decreased levels as well

as a defective function of CD34+ cells compared to 12 healthy

volunteers (2, 9, 153). Rafat et al. performed a study in 20 adult

MMA patients, demonstrating an enhancement of circulating EPCs.

The research group suggested an involvement of circulating EPCs

in angiogenesis and arteriogenesis in MMA (9, 154). A decrease in

EPCs following revascularization surgery in MMA has also been

reported (9, 155). EPCs secrete angiogenetic factors including ANG1,

hepatocyte growth factor (HGF), VEGF, stromal-derived factor-1a

(SDF-1a), bFGF, PDGF, and IGF-1 (9, 152, 154, 156–158). Tinelli

et al. morphologically, phenotypically, and functionally characterized

circulating EPCs from the peripheral blood of a homogeneous

group of adult Caucasian, non-operated MMA patients and healthy

controls, suggesting that a significantly reduced circulating EPC

level may be a potential marker of MMA (105). Analyzing the

function of circulating EPCs in vitro, as measured by assays of

colony formation and tube formation, may indicate a significantly

decreased function of these cells in MMA (2, 9, 159). Choi et al.

suggested an impaired functional recovery of EPCs in vivo in

moyamoya patients in comparison to controls (9, 160). In 2008, Jung

et al. stated that distinct characteristics of circulating EPCs (CFU

numbers and tube formation were found to be lower in advanced

MMA cases than in those with early stage disease, and outgrowth

cells were more frequently detected in those with early MMA and

moyamoya vessels than in those with advanced MMA) may reflect

mixed conditions of aberrant vasculogenesis and vasculars occlusion

in MMA pathogenesis (159). Regarding their 2008 study results,

Yoshihara et al. suggested that an increased level of CD34+ cells,

related to ischemia, may be correlated with neovascularization of

the human arterial cerebral circulation at sites of ischemic brain

injury (151). In their 2010 study, Kim et al. demonstrated that

pediatric MMA may be related to reduced expression of circulating

EPCs, to proneness to senescence, defective tube formation, and
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impaired differentiation. Such a limited capacity of EPCs may lead

to insufficient cerebrovascular repair or aberrant vessel formation

(153). In their 2011 study, Ni et al. suggested that binding of CXCR4

on CD34+ cells to mediate CD34+ cell migration may lead to an

increased level of SDF-1α, hypothesizing that increased levels of

circulating SDF-1α and CD34+ CXCR4+ cells in MMA patients

may be associated with moyamoya vasculogenesis (152). In their

2011 study, using supraclinoid ICA specimens from two adult MMA

patients, Sugiyama et al. stated that VEGFR2- and CD34-positive

cells were abundantly demonstrated in the thickened intima of

occlusive arterial lesions, clustered especially in the superficial layer

of the thickened intima. Also, the research group demonstrated that

CD34-positive cells expressed von Willebrand factor on the surface

of the thickened intima and were positive for α-smooth muscle

actin in the deeper layer, suggesting that circulating EPCs may be

associated with occlusive arterial lesion development in MMA (150).

In their 2018 study, Bao et al. researched circulating endothelial

cells (CECs) in the plasma of 66 MMA patients compared to 81

healthy controls, showing that the amount of CECs was negatively

correlated with concomitant disorders including coronary heart

disease, diabetes mellitus, and hypertension in MMA patients (161).

In their 2021 study, Matsuo et al. demonstrated that vulnerability

to shear stress, caused through an aberrant peri-endothelial matrix,

may be a predominant characteristic of MMA (162). The research

group stated that the peri-endothelial extracellular matrix may

be important regarding endothelial protection, cell adhesion and

migration, and that an altered peri-endothelial matrix in MMA may

contribute to endothelial vulnerability to vascular wall shear stress.

Invading EPCs, which repair endothelial damage, may produce

excessive hyaluronan and chondroitin sulfate in the intima, and

may lead to vascular stenosis (162). In 2021, Wang et al. stated

that collateral vessel formation in encephaloduroarteriosynangiosis

(EDAS) surgery, a common method for indirect revascularization,

may be associated with angiogenesis, and that the EPC count may

be essential for facilitating collateral circulation formation. The

research group hypothesized that EDAS may prove particularly

advantageous for severe ischemic or younger MMA patients (163).

In their 2021 study, Wang et al. performed comprehensive profiling

of the protein profiles expressed in serum-derived exosomes (SDEs)

of MMA patients performing Tandem Mass Tag-labeled quantitative

proteomics, demonstrating disturbed actin dynamics in MMA

patients, with actin-related protein 2/3 (ACTR2/3) and Cofilin-1

(CFL1) downregulation in SDEs. Distinct expression of immune-

related proteins was shown in exosomes, suggesting an alteration of

immune responses in hemorrhagic MMA patients. Also, the research

group stated that exosomes in hemorrhagic MMA may lead to

vascular endothelial cell (EC) proliferation, potentially by induction

of mitochondrial dysfunction by means of oxidative phosphorylation

and an aberrant electron transport chain (164).

In their 2022 review article, Xue et al. reviewed recent progress

and pitfalls in MMA induced pluripotent stem cell (iPSC) research,

providing a perspective of iPSC molecular mechanisms and novel

MMA treatment strategies (165). In their 2016 study, Hamauchi

et al. demonstrated that downregulation of ECM receptor-related

genes may be related to impaired angiogenesis in iPSC-derived ECs

of MMA patients. The research group stated that upregulation of

splicing regulation-related proteins may imply varieties of splicing

patterns between ECs of MMA patients and controls (166). In 2016,

Cardano et al. described the establishment of an induced pluripotent

stem cell (iPSC) line from an 8-year-old female patient with ischemic

MMA (167). In 2016, Cardano et al. described the establishment

of an induced pluripotent stem cell (iPSC) line from a 55-year-old

male patient with hemorrhagic MMA (168). In 2020, Tokairin

et al. performed a study in 3 MMA patients and 3 independent

healthy controls, which determined vascular smooth muscle cells

(VSMCs) from neural crest stem cells using patient-derived induced

pluripotent stem cell (iPSC) lines to detail the transcriptome profile

and the biological function of MMA VSMCs, suggesting that MMA

pathology may be influenced by naive endothelial cells (EC), whereas

MMA VSMCs may require specific environmental factors, thereby

further elucidating MMA pathophysiology. The research group

stated that, in addition to the existing iPSC derived EC model,

their iPSC-derived VSMC model may further ascertain therapeutic

and diagnostic objectives in MMA (169). In their 2021 study,

Mao et al. demonstrated the generation of an induced pluripotent

stem cell (iPSC) line HUSTTJi001-A from an MMA patient with a

RNF213 genetic variant. The research group stated that this iPSC

line may show pluripotent biomarkers, may have the potential for

in vitro differentiation into three germ layers, may be suitable for

ascertainment of MMA cellular mechanisms, for the selection of

therapeutic targets, and for drug development (170).

In 1993, Masuda et al. performed an autopsy study in 6

MMA patients, using immunohistochemical staining by cell-type-

specific monoclonal antibodies, stating that SMCs in MMA may

be proliferating in occlusive lesions of intracranial major arteries.

Furthermore, the research group stated that colocalization of

proliferating cell nuclear antigen (PCNA)-positive and inflammatory

cells, including T cells and macrophages, may suggest that

inflammation could induce proliferation of SMCs and thus

contribute to formation of intracranial occlusive lesions in MMA

(61). In their 1993 case report, Panegyres et al. suggested that

the pathogenesis of unilateral MMA, associated with stroke and

terminal ICA occlusion, subsequent to proliferation of subendothelial

fibrous tissue and infiltration of mononuclear cells, T cells, into

the carotid vascular wall, may be related to a T-cell-mediated

response to a vascular antigen (171). Also, the research group stated

that animal experiments on dogs may maintain this hypothesis

(171, 172). In their 2014 study in 25 MMA patients and 22

healthy controls, Kang et al. showed that, through a suitable

cell culture condition, circulating smooth-muscle progenitor cells

(SPCs) may be established from the peripheral blood of MMA

patients. In comparison to controls, SPCs obtained from MMA

patients may demonstrate characteristic differentially expressed

genes (DEGs) associated with vascular development, immune

response, cell migration, and cell adhesion (149). The 2019 in

vivo study results obtained by Choi et al. demonstrated impaired

functional recovery of MMA endothelial colony-forming cells

(ECFCs) in a chronic cerebral hypoperfusion rat model, in

comparison to normal control ECFCs, which showed decreased

apoptosis as well as increased neurogenesis and vasculogenesis,

suggesting an involvement of ECFCs in MMA pathogenesis (160).

In 2021, Ma et al. suggested a positive correlation between

neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte

ratio (PLR) biomarkers in MMA patients, which may further

elucidate the pathology of inflammation in MMA pathogenesis

(Figure 4) (173).
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Moyamoya angiopathy molecular
biomarkers

Treatment of an underlying inflammatory disease may lead

to remission of MMA symptomatology (9). An immune response

related to angiogenesis may be facilitated through M2 macrophages

which may be induced through anti-inflammatory cytokines such as

TGF-β, interferon (IFN)-α, IL-13, IL-10, and IL-4. Fujimura et al.

demonstrated that CXCL5 and CD163 serum levels of MMA patients

were significantly increased compared to controls, hypothesizing that

MMA pathophysiology may be related to M2 macrophages (9, 174).

Anti-inflammatory cytokines may induce angiogenetic markers.

TGF-β of Treg/Th17 cells with distinct CD4+ T-helper cell subsets

has been demonstrated to be associated with aberrant angiogenesis

in MMA by means of VEGF signaling regulation (9, 175). Increase

in angiogenetic markers including VEGF, HGF, PDGF, bFGF, cellular

retinoic acid-binding protein-1 (CRABP-1), HIF-1 and MMPs may

be associated with MMA (Figure 4) (9, 109, 154, 176–185). These

markers have been hypothesized to be associated with proliferation

of the intima as well as angiogenesis through their influence on

endothelial cells, and with progression or initiation of MMA (9).

Pro-inflammatory cytokines, including IL-6, IL-1, TNF-α, IFN-γ,

and IFN-β, which may induce the pro-inflammatory, RNF213-

dependent cytokine pathway, may have a different mechanism of

action compared to cytokines involved in anti-inflammatory cytokine

pathways (9). In 2016, Bang et al. demonstrated a correlation

between caveolin-1, RNF213, and endothelial function in MMA

(131). Also, caveolin-1 may be associated with negative arterial

remodeling in MMA (186). VEGF levels have been demonstrated to

be associated with caveolin-1 levels but not with MMA, suggesting

that a change in plasma VEGF levels may not be a primary

cause of MMA (131). In 2013, Hitomi et al. observed that iPSC-

derived vascular endothelial cells (iPSECs) from MMA patients

showed impaired angiogenic function. The RNF213 R4810K genetic

variant may become clinically manifest as aberrant angiogenesis

through downregulation of Securin expression. The resulting defects

in angiogenesis are considered MMA risk factors (187). In their

2013 high-throughput analysis of MMA autoantibodies, Sigdel

et al. ascertained 6 MMA-related autoantibodies against EDIL3,

ROR1, CTNNB1, STRA13, GPS1, and APP, providing important

insight into the immune-mediated pathogenesis of MMA, and

potentially advancing diagnostic tools for use in clinical practice

(46). Accordingly, MMA-related autoantibodies against APP may be

associated with an increased risk for hemorrhagic stroke (46, 96). In

2014, Jeon et al. demonstrated that increased CSF CRABP-I levels

may be related to bilateral adult MMA. Also, the research group

suggested that post-operative basal collateral vessel decrease could

be associated with CRABP-I expression levels (188). In 2016, Zhang

et al. demonstrated that COX-2 was up-regulated in the MMAMCA,

predominantly in hemorrhagic MMA patients, hypothesizing that

COX-2 may be associated with MMA pathogenesis, and potentially

with hemorrhagic stroke in MMA (189). Based on their 2017

study result, Phi et al. hypothesized that in MMA, defective ECFCs

may lead to aberrant recruitment of SPCs toward critical locations

in the vasculature by means of chemokine (C-C motif) ligand 5

(CCL5) (190). In their 2018 prospective study in 11 MMA patients,

Ishii et al. observed changes in biomarkers associated with tight

junctions in the blood-brain barrier (BBB). The research group

stated that their preliminary results may indicate that significant

hemodynamic change and transient neurologic symptoms (TNS) in

some patients may be related to BBB disruption after direct MMA

bypass surgery (191). In 2018, Yokoyama et al. demonstrated that

CSF proenkephalin 143–183 may be a useful diagnostic biomarker

in pediatric MMA. The effect of enkephalin peptides by means

of delta opioid receptor or opioid growth factor receptor may be

related to MMA pathophysiology, suggesting an association between

temporal changes in moyamoya collateral vessels and concentration

of proenkephalin (192). In 2020, Surmak et al. showed that a

[11C]-PiB PET signal related to intracranial inflammation in MMA

patients and a single relapsing-remitting multiple sclerosis (RRMS)

patient may be corresponding to functional cerebral imaging of

SULT1E1, suggesting that significant focal [11C]-PiB PET signals

may be received from the inflamed living human brain (193). In

2021, Han et al. suggested that elevated CSF and serum sortilin

levels may be associated with MMA onset, and, in addition to

levels of proinflammatory cytokines, may be effective markers in

clinical practice. The research group hypothesized, that sortilin

may break through a compromised blood brain barrier (BBB),

may consecutively induce inflammation, and thus induce MMA

(194). In their 2021 study, Ren et al. demonstrated that cortical

astrocytic neogenin (NEO1) deficiency may be associated with

MMA pathogenesis. NEO1, a member of deleted in colorectal cancer

(DCC) family netrin receptors, was reduced in brain specimens of

MMA patients. Astrocytic Neo1-loss resulted in an increase of small

blood vessels, selectively in the cortex. These blood vessels were

dysfunctional, with a leaky blood-brain barrier (BBB), thin arteries,

and accelerated hyperplasia in veins and capillaries, resembling

the symptomatology of a moyamoya disease-like vasculopathy.

Additionally, the research group found that both MMA patients

and Neo1 mutant mice exhibited altered gene expression in the

cerebral cortex in proteins critical for both angiogenesis [e.g., an

increase in vascular endothelial growth factor A (VEGFA)], and

axon guidance (e.g., netrin family proteins) and inflammation. In

aggregates, these results suggest a critical role of astrocytic NEO1-

loss in the development of a moyamoya disease-like vasculopathy,

providing a mouse model for investigating mechanisms of a

moyamoya disease-like vasculopathy (195). In 2021, Sesen et al.

described urinary biomarkers that may identify MMA presence to

a high degree of accuracy and sensitivity. These markers may be

detected from the CNS to the urine, and may correlate with response

to treatment, such as radiographic verification of revascularization.

Urinary MMP-2 showed an accuracy of 91.3%, a specificity of

100%, and a sensitivity of 87.5%. The research group hypothesized

that urinary proteins may constitute a new, non-invasive device

which may assist in treatment, follow-up, prognosis, and diagnosis

of MMA (196). In their 2021 study, Dei Cas et al. carried out a

complete lipidomic analysis of MMA patient plasma through mass

spectrometry and measured inflammatory and angiogenic protein

levels through enzyme-linked immunosorbent assay (ELISA). ELISA

showed an MMP-9 decrease in MMA patient plasma. Lipidomic

analysis demonstrated a cumulative depletion of lipid asset in MMA

patient plasma in comparison to healthy controls. The research group

noted a decrease in peripherally circulating membrane complex

glycosphingolipids, observed in MMA patient plasma, compared to

healthy controls, indicative of cerebral cellular recruitment. This

quantitative targeted approach showed increased free sphingoid
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bases, which may be related to aberrant angiogenesis. The results of

the group may suggest that the lipid signature/plasma lipid profile

of MMA patients may be closely associated with the condition and

that a comprehensive biomarker profile may help to further elucidate

the complexity of MMA pathogenesis (197). In their 2021 study, Lu

et al., using plasma samples from 84 MMA patients, demonstrated

that MMP-9 may serve as a biomarker for prediction of intracranial

hemorrhage in MMA. The research group showed that a serum

MMP-9 level >1,011 ng/ml may be an independent risk factor for

hemorrhagic stroke in MMA. Also, the research group demonstrated

that adult MMA patients, in comparison to pediatric MMA patients,

showed an increased blood-brain barrier (BBB) permeability and

MMP-9 serum level elevation. Furthermore, the group demonstrated

that hemorrhagic MMA patients, in comparison to ischemic MMA

patients, showed an increased BBB permeability and an elevated

MMP-9 serum level (Figure 4) (198).

Moyamoya angiopathy genetic
biomarkers and single nucleotide
polymorphisms

In 2011, Kamada et al. established the RNF213 genetic

variant, c.14576G>A (p.R4810K, rs112735431) (17q25.3), as the

first MMA susceptibility gene (9, 51, 199). MMA single-nucleotide

polymorphism (SNP) studies have predominantly focused on the

relation to atherosclerosis, the endothelium, on mechanical stress

on the vasculature, vascular repair genes, and angiogenesis (200).

In 2012, Liu et al. (201) screened for the RNF213 p.R4810K

polymorphism in the East and in Southeast Asian populations and

stated that the prevalence proportion may differ depending on

the country (9). Moreover, the research group hypothesized that

additional factors, including immune response and inflammation,

may be associated with MMA onset (9, 201). The frequency of the

p.R4810K genetic variant has been demonstrated to be significantly

increased in MMS compared to controls (9, 202, 203), suggesting

an involvement of the RNF213 p.R4810K genetic variant in MMS.

In contrast, in 2015, Miyawaki et al., based on their results from

a small sample size, stated that the RNF213 c.14576G>A genetic

variant may not be related to MMS (9, 204). Pro-inflammatory

cytokines such as IFN-γ, IFN-β, and TNF-α may synergistically

activate RNF213 transcription both in vivo and in vitro (9, 124,

205). Pro-inflammatory cytokines may decrease angiogenic activity

through RNF213 induction (Figure 4) (9).

Various linkage analyses have demonstrated the involvement

of inflammatory genes in MMA. Ikeda et al. demonstrated

associations with vascular wall homeostasis as well as with loci

17q25, 12p12, 10q23.31, 8q23, 6q25, and 3p24.2–p26 (5, 200,

206). The chromosomal site 3p may be a major gene locus of

genes associated with various signaling pathways, particularly the

Interleukin 5 Receptor Subunit Alpha (IL5RA) (3p26.2), Transforming

Growth Factor Beta Receptor 2 (TGFBR2) (3p24.1), Thyroid Hormone

Receptor Beta (THRB) (3p24.2), Retinoic Acid Receptor Beta (RARB)

(3p24.2), and Peroxisome Proliferator Activated Receptor Gamma

(PPARG) (3p25.2). These genes may be related to signaling pathways

that are associated with inflammation as well as angiogenesis (5, 9).

Changes in protein folding and gene transcription may be associated

with aberrant expression of ICAM-1, VCAM-1 and E-selectin,

induced through pro-inflammatory cytokines TNF-α and IL-1β, by

means of NF-κB activation (5, 207). A variety of genes involved in

MMAmay be associated with inflammation.Whether these genes are

causative factors of MMA or a result of MMA pathogenesis, remains

to be elucidated (4, 5, 119, 205, 208–210).

In 2009, Shimojima and Yamamoto suggested that Actin Alpha

2, Smooth Muscle (ACTA2) (10q23.31) may not be a major MMA

responsibility gene, especially in Japanese MMA patients. The

researchers stated that, with no evidence of a co-existence of MMA

and thoracic aortic aneurysms and dissections (TAAD), MMA may

be an isolated disorder (211). MMA patients typically present with

transient ischemic attacks (TIA) during the juvenile stage of MMA,

suggesting that TAAD associated with ACTA2 mutations may not

be characteristic for MMA (211). In their 2010 case-control study in

208 MMA patients and 224 healthy controls, Li et al. demonstrated

that the MMP-3 5A/6A functional polymorphism in the MMP-3

promoter may be related to both familial MMA andMMA in Chinese

Hans (212). In 2010 Roder et al. stated that their study results may

indicate potential genetic factors associated with MMA pathogenesis.

The research group indicated that Platelet Derived Growth Factor

Receptor Beta (PDGFRB) (5q32) and Transforming Growth Factor

Beta 1 (TGFB1) (19q13.2) may be related to vascular growth and

transformation mechanisms which may be associated with MMA

pathogenesis (213). In 2011, Roder et al. demonstrated a new

mutation (R179H, heterozygous) in exon 6 of ACTA2 in one central

European MMA patient. The group was neither able to detect other

previously described mutations nor did they establish any significant

ACTA2 sequence variations (214). In 2012, Liu et al. stated that no

novel genetic variants were identified in their study of the first TGFB1

(19q13.2) exon in European MMA patients. Moreover the research

group hypothesized that, due to a negative association of rs1800471

and rs1800470 in Japanese MMA patients, an association of the first

TGFB1 exon withMMA pathogenesis may be doubtful (215). In their

2013 letter to the editor, Hu et al. referred to their replication study

results in 55 Han Chinese MMA patients. The research group stated

that no ACTA2mutation was detected through genomic sequencing,

confirming thatACTA2may not have an important function inMMA

pathogenesis (216). In 2013, Wang et al. demonstrated that RNF213

rs148731719 and rs112735431 may have a significant influence on

MMA pathogenesis. In comparison to these results, the influences

of PDGFRB (5q32), MMP-3 (11q22.2), and TIMP-2 (17q25.3) on

MMA may be unremarkable in the Chinese Han population. No

significant interaction among these five polymorphisms may be

evident in MMA pathogenesis (217). In 2014, Cecci et al. confirmed

thatRNF213 alterationsmay predispose patients of various ethnicities

to MMA, and that the p.R4810K genetic variant may predispose

individuals of Asian descent in the United States to MMA (218).

In their 2014 study, Han et al. stated that familial MMA patients

may constitute an increased percentage among MMA patients than

estimated before. Despite the absence of distinct symptoms, family

members of MMA patients may also be affected by MMA (219).

Based on their 2015 study results, Kobayashi et al. hypothesized

that RNF213 R4810K carriers may have a decreased angiogenic

capacity, suggesting an increased susceptibility to cerebral hypoxia of

these carriers. The research group demonstrated that inflammation,

interferons, may function as an environmental factor. The group

also stated that decreased angiogenesis may be causally related to

the RNF213 AAA+ function (205). In their 2016 study, Kim et al.
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suggested that the c.14429G>A (p.R4810K) allele of RNF213 may

be related to Korean MMA patients. The homozygous c.14429G>A

(p.R4810K) genetic variant may be associated with early-onset MMA,

a poor prognosis, and severe symptomatology. The c.14429G>A

(p.R4810K) homozygous genetic variant may provide a biomarker

for early-onset MMA or unstable MMA with cerebral infarction in

Korean MMA patients, requiring timely diagnosis and potentially

revascularization surgery (220). In 2016, Shoemaker et al. performed

a whole exome sequencing study in 125 MMA patients and 125

matched controls, establishing a non-RNF213 founder mutation,

an Asian, and a Caucasian subpopulation. Collapsing variant

methodology ranked OBSCN (1q42.13), a gene associated with

myofibrillogenesis, as most enriched in the non-RNF213 founder

mutation and among Caucasian cases. The most enriched variant

in the non-RNF213 founder mutation and among Caucasian cases

was ZXDC (p.P562L) (3q21.3), associated with activation of MHC

Class II. These results of the research group further support the

East Asian origin of the RNF213 (p.R4810K) variant and more

exhaustively describe the genetic landscape of multiethnic MMA,

detailing new, alternative genes and candidate variants which may

be significant in MMA diagnosis, etiology, and the development of

MMA models (209). In their 2016 meta-analysis, Sun et al. stated

that RNF213 rs112735431 may be related to an increased risk of

MMA in the Japanese population, whereas combined screening

with rs112735431 and rs138130613 may advance the detection rate

for MMA in the Chinese population (221). RNF213 is the major

susceptibility gene of MMA patients in the Chinese population. The

spectrum of rare genetic variants identified in Chinese MMA patients

is diverse. Compared to MMA patients without rare RNF213 genetic

variants, p.R4810K heterozygous MMA patients were younger at

diagnosis, had more familial cases, ischemia, and posterior cerebral

artery involvement (222). In 2017, Guey et al. stated that Cbl Proto-

Oncogene (CBL) (11q23.3) screening may be advocated in early-

onset MMA, even in the absence of evident signs of a RASopathy.

Identification of a pathogenic CBL mutation may raise questions

concerning the hematological follow-up to be recommended to these

patients (223). In 2017, Jang et al. suggested that, in their study

cohort of 264 adult Korean MMA patients, RNF213 p.Arg4810Lys

may be the only genetic variant strongly related to MMA (224).

In their 2017 meta-analysis, Liao et al. described the critical roles

of RNF213 p.R4810K in MMA, especially in familial MMA and

intracranial major artery stenosis/occlusion (ICASO) in the Japanese,

Korean, and Chinese population. Except for RNF213 p.R4810K,

MMA appears to be more complex in China. In addition to a distinct

genetic background, other environmental or genetic factors may

contribute to MMA (225). In 2017, Park et al. demonstrated that

the RNF213 rs112735431 polymorphism may be related to both non-

MMA ICAD and MMA in the Korean population. Furthermore,

the group hypothesized that the RNF213 rs112735431 polymorphism

may be associated with hypertension inMMA patients (226). In 2017,

Park et al. confirmed that the RNF213 4950G>A and 4810G>A

genetic variants may be related to both hemorrhagic and ischemic

pediatric and adult MMA in the Korean population (227). In 2018,

Duan et al. performed a two-stage genome-wide association study

(GWAS) in 1,492 MMA patients and 5,084 controls, confirming

an earlier demonstrated MMA risk locus on 17q25, and identifying

10 new MMA risk loci of genome-wide significance. The RNF213

(17q25.3) rs9916351 single-nucleotide polymorphism (SNP) was

demonstrated to have a more severe genetic impact on early-onset

compared to late-onset MMA. An additional SNP related to MMA,

HDAC9 (7p21.1) rs2107595, had been associated with large vessel

disease. Two new SNPs, MTHFR (1p36.22) rs9651118 and TCN2

(22q12.2) rs117353193, were shown to be related to increased serum

homocysteine levels in MMA patients. With a false discovery rate

of <0.05, tissue enrichment analysis demonstrated genes of related

loci to be exceedingly expressed in the immune system (208). In

2019, Tashiro et al. showed that, in contrast to MMA patients,

the prevalence of the RNF213 c.14576G>A polymorphism was

significantly decreased in patients with an intracranial vertebral

artery dissection. TheRNF213 gene polymorphismmay preferentially

be associated with cerebrovascular lesions in the anterior circulation,

which originates from the primitive ICAs (228). In 2019, Peng et al.

demonstrated that dysregulated genes in the peripheral blood of

MMA patients may be associated with immune and inflammatory

responses, and with ECM organization. In comparison to other

vascular disorders, this gene dysregulation pattern may be specific

for MMA. Moreover, resting natural killer cells, naive CD4 cells,

and naive B cells were aberrantly disrupted in the peripheral blood

of MMA patients (229). In their 2019 study, Pinard et al. analyzed

exome sequencing results from 39 trios. With 12 altered genes

predisposing toMMA, the research group demonstrated four de novo

genetic variants in three genes, SET Domain Containing 5 (SETD5)

(3p25.3), CCR4-NOT Transcription Complex Subunit 3 (CNOT3)

(19q13.42), and Chromodomain Helicase DNA Binding Protein 4

(CHD4) (12p13.31), which were previously regarded as unrelated

to MMA. The aforementioned genes encode proteins involved

in chromatin remodeling, and implicate disrupted chromatin

remodeling as a molecular pathway predisposing to early-onset, large

artery occlusive cerebrovascular disease. Moreover, these results may

widen the spectrum of phenotypic pleiotropy because of alterations

of SETD5, CNOT3, and CHD4 extending beyond developmental

disorders to late-onset cerebrovascular diseases, emphasizing the

requirement to evaluate symptomatology up until adulthood for

genes related to developmental disorders (230). In 2019, Shen

et al. demonstrated two SNPs, related to CD40, to be associated

with MMA (CC rs4813003 and TT rs1535045), which had been

reported to be associated with Kawasaki disease. The research

group proposed a correlation between an autoimmune disorder and

MMA, hypothesizing that this genetic constitution may result in

vascular wall pathogenesis (231). In 2020, Jee et al. performed a

prospective computed tomography (CT) angiography study in 63

young adult MMA patients, suggesting that these patients may show

a concomitant extracranial arteriopathy in distinct sites such as

internal iliac, renal, celiac, superior mesenteric, and coronary artery

stenosis. Also, the research group stated that MMA patients with an

associated extracranial arteriopathy had an increased probability of

occurrence of PCA involvement and diabetes mellitus. Furthermore,

the group suggested that MMA patients carrying RNF213 variants,

particularly the homozygous RNF213 p.Arg4810Lys variant, may

benefit from screening for systemic arteriopathy (232). In 2020, Key

et al. demonstrated that genetic ablation of several mitochondrial

matrix factors, including the peptidase and AAA+ ATPase Lonp1,

the transcription factor Tfam, and also the peptidase ClpP, may

strongly induce RNF213 transcript expression in several organs,

along with other constituents of the innate immune system.

Based on their results, the research group hypothesizes that
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mysterin takes effect if infections or mitochondrial dysfunction

have induced RNA-dependent inflammation. Therefore, MMA

may resemble vasculopathies which comprise altered nucleotide

processing, including systemic lupus erythematosus or Aicardi-

Goutières syndrome (146). In their 2020 study in 1024 consecutive

Korean individuals without MMA, using multivariate logistic

regression analysis, Kim et al. examined associations between

posterior and anterior intracranial major artery stenosis/occlusion

(ICASO), the main cause of ischemic stroke, and RNF213 genetic

variants. The research group demonstrated that the genotype

frequency of RNF213 4863G > A may differ significantly according

to the presence of posterior ICASO. The GA genotype of RNF213

4950G > A and GA genotype of RNF213 4810G > A may be

more frequent in individuals with anterior ICASO (233). In their

2020 case-control study including 1,385 Chinese MMA patients and

2,903 healthy controls, Wang et al. stated that the RNF213 p.R4810K

genetic variant may be associated with an increased susceptibility to

MMA in the Chinese population and may be related to an increased

severity of PCA involvement and early-onset MMA (234). In their

2020 meta-analysis, Wang et al. included 4,711 MMA cases and

8,704 controls of 24 studies, evaluating seven polymorphisms in six

genes, demonstrating that RNF213 rs148731719 and rs112735431

may be positively, and thatMMP-3 rs3025058,MMP-2 rs243865, and

TIMP-2 rs8179090 may be inversely related to MMA. Furthermore,

the research group identified genetic variants involved in various

pathophysiologic mechanisms, including vascular SMC and vascular

endothelial dynamics (235). In 2021, Mineharu and Miyamoto

stated that RNF213 may occupy a decisive role in inflammation,

cell cycle control, oxygen consumption, and lipid metabolism, and

may contribute to vascular cell maintenance. GUCY1A3 may be a

regulator of VSMC contraction and platelet function through the

NO-sGC-cGMP signaling pathway. Mutations in Guanylate Cyclase

1 Soluble Subunit Alpha 1 (GUCY1A1, GUCY1A3) (4q32.1) and

RNF213 may cause both MMA, and non-moyamoya intracranial

arterial disease, pulmonary arterial hypertension, and coronary artery

disease. They have significant interaction with CAV1 and NFAT1,

both of which may have diverse molecular functions involving cell

cycle control and immune regulation (119). In their 2021 genetic

association study in 24 non-East Asian sporadic MMA patients, 2

singletons and 22 trios, constituting the discovery cohort, and 84

probands, 55 singletons and 29 trios, constituting the validation

cohort, Kundishora et al. stated that their results may provide

the largest data gathering in non-East Asians with sporadic MMA

harboring pathogenic variants in the identical gene until now,

suggesting that Diaphanous Related Formin 1 (DIAPH1) (5q31.3)

may be a MMA candidate gene, which may impair vascular cell actin

remodeling, and which may influence future treatment strategies

and clinical diagnostics (236). In their 2021 study, Sarkar and

Thirumurugan demonstrated RNF213 dynamicity and a potential

mechanism causing MMA. The research group hypothesized that

mutant RNF213 may lead to insulin resistance independent of TNFα

(237). Also, the research group stated that insulin resistance may lead

to pericyte death and that its absence may cause microaneurysms, an

established MMA disease phenotype (237, 238). RNF213 located in

the nuclear region may be associated with immune response, obesity,

defense response, stress response, DNA repair, cancer, and ubiquitin-

binding (237). In 2021, Wan et al. carried out an association analysis

of the major histocompatibility complex region in 755 MMA patients

and 2,031 controls by means of an HLA imputation method, stating

that the genetic polymorphism of HLA-B and HLA-DQA2 may

be a genetically predisposing factor for MMA in the Chinese Han

population, providing potential evidence for additional HLA-related

studies of MMA patients in Chinese Hans, and suggesting that

MMA may be an immune-mediated disorder (Figure 4) (239). In

their 2021 study, Zhao et al. demonstrated that in MMA patients,

genes associated with vascular remodeling, such as Wnt Family

Member 5A (WNT5A) (3p14.3) and its associated regulators, may

be disrupted and aberrant. The research group indicated that their

results may assist in the development of potential future therapeutic

targets which may promote MMA angiogenesis (240). According

to their 2022 study results, Jin and Duan, using bioinformatics

analysis, demonstrated that aberrant expression of hub genes and the

characteristics of immune cell infiltration into the cerebrovascular

tissue of MMA patients may provide a novel insight into MMA

progression. Jin and Duan established nine hub genes associated

with neutrophil regulation, of which Unc-13 Homolog D (UNC13D)

(17q25.3 or 17q25.1) may be a promising MMA biomarker candidate

to ascertain the characteristics of neutrophil infiltration in MMA

(241). Referring to their 2022 in vitro study, using the CRISPR-

Cas9 genome editing technology, Roy et al. indicated that RNF213

may be associated with the regulation of cerebral endothelium

integrity, whose disruption may be a pathophysiological mechanism

associated with MMA. Also, this study of the research group may

emphasize the significance of BBB integrity in MMA pathogenesis

and additional RNF213-related diseases (242). Regarding their 2022

transcriptomic study results, Xu et al. highlighted that mitochondrial

function and extracellular matrix (ECM) organization may be

central molecular mechanisms associated with MMA, and have

ascertained a sex difference in gene expression in intracranial

arteries. The research group indicated that sex-specific DEGs,

including Nuclear Receptor Subfamily 4 Group A Member 1 (NR4A1)

(12q13.13), Superoxide dismutase 3 (SOD3) (4p15.2), and Aquaporin-

4 (AQP4) (18q11.2), may contribute to the sex difference in MMA

(243). In their 2022 study, Zhang et al. suggested that RNF213

loss of function may reorganize the vascular transcriptome and

spliceosome, which may lead to disrupted angiogenesis and an

aggravated vascular inflammatory response (244). The research group

indicated that RNF213 gene knockdown may sensitize endothelial

cells to inflammation, leading to aberrant angiogenesis (244).

The group ascertained significant associations between RNF213

genetic variants and immune and inflammatory MMA inducers,

as well as regarding the mechanism of action of the MMA

epitranscriptome (244).

Moyamoya angiopathy non-coding
ribonucleic acids

High-throughput sequencing has established a large quantity of

distinct ribonucleic acids (RNAs) created from non-coding DNA

(245, 246). Similar to protein-coding RNAs, non-coding RNAs

appear to be linear molecules with 3
′

and 5
′

termini, which constitute

defined end and start points of the RNA polymerase on the DNA

template (245). Non-coding RNAs vary in length (245).

Long non-coding RNAs (lncRNAs) exceed 200 nucleotides, lack

protein-coding capacity, and are associated with post-transcriptional
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processing, transcriptional control, and chromatin remodeling

(9, 247, 248). Regulation of lncRNAs may be associated with

inflammation (9, 249, 250). Moreover, lncRNAs may be related

to MMA pathophysiology by means of an inflammatory signaling

cascade comprising the MAPK signaling pathway (9, 10, 251). In

their 2017 study, Wang et al. demonstrated that an integrated

analysis of lncRNA-mRNA coexpression networks may be associated

with the MAPK signaling pathway, the Toll-like receptor signaling

pathway, cytokine-cytokine receptor interaction, and inflammation.

The research group indicated that differentially expressed genes

may help to ascertain crucial components in MMA pathophysiology

(251). In their 2020 study, Gu et al. carried out a bioinformatics

analysis of candidate RNAs to identify a series of aberrant 2294

mRNAs, 3649 lncRNAs, and 94 miRNAs, differentially expressed

between samples of MMA patients and controls. The research

group established a synergistic ceRNA lncRNA-miRNA-mRNA

regulatory network. Key mRNAs (CXCL16, CEBPB, FOSL2, and

STAT5B) and essential regulatory miRNAs (miR-423-5p and miR-

107) related to the ceRNA network were identified. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes pathway

(KEGG) enrichment analyses employed with the DAVID database

indicated that differentially expressed mRNAs (DEmRNAs) related

to the ceRNA network may be associated with inflammation

and immune system regulation in MMA. These research results

may further elucidate the molecular MMA pathogenesis, and may

contribute to constitute future treatment strategies (252). In 2020,

Han et al. showed that metabolic adjustments by dysregulated

lncRNAs in peripheral neutrophils may in part account for complete

compensation of asymptomatic MMA patients (Figure 4) (253).

In their 2021 study, Zhao et al. using KEGG and GO analysis,

showed that lncRNAs and mRNAs may be differently expressed

in the superficial temporal artery (STA) vascular wall in MMA

patients. The research group proposed a list of altered lncRNAs and

mRNAs associated with vascular remodeling, which may be possible

targets of future exploration of MMA medication (240). In their

2022 study in 21 MMA patients and 11 controls, Mamiya et al.

demonstrated that the lncRNA expression profile in MMA MCA

microsamples differed from controls. The research group ascertained

308 differentially expressed lncRNAs (fold change > 2, q < 0.05),

including 2 downregulated and 306 upregulated lncRNAs in theMCA

of MMA patients. Gene Ontology (GO) analyses of potential protein-

coding genes, the transcription of which may be regulated in cis

through ascertained differentially expressed lncRNAs, indicated an

association with branching related to blood vessel morphogenesis,

positive regulation of cytokine production, the T-cell receptor

signaling pathway, and antibacterial humoral response (254).

MicroRNAs (miRNAs) are endogenous, short non-coding ∼23

nucleotide RNAs, which may regulate gene expression through

pairing to the mRNAs of protein-coding genes to control their

posttranscriptional repression or cleavage (9, 245, 255, 256).

miRNAs may be of vital significance regarding the control of

cell aging, differentiation, survival, and proliferation (9, 255).

Additionally, miRNAs may be related to angiogenesis, neurogenesis,

and inflammation (9, 257). miRNAs may regulate TLR signaling

through reduction of inflammation, enhanced tissue repair, and

regaining of homeostasis following tissue injury and infection

(9, 258). MiR-126, miR-155, and miR-21 may be associated with

inflammation and vascular disorders. To do research into the

network involving miRNAs and their targets leading to a coordinated

gene expression pattern may lead to results which may help

establish new treatment strategies to approach both aberrant vascular

remodeling and to induce neovascularization after ischemia (259).

Increased expression of miRNA Let-7c and miRNA-196a2 may

be used as MMA biomarkers (9, 260, 261). In their 2019 study,

Lee et al. analyzed the impact of RNF213 mutations and MMA

on the profiles of cell-free miRNA and protein in patient plasma

samples. Levels of selected MMA-affected miRNAs in EV-depleted

plasma, extracellular vesicles (EVs), and whole plasma have been

confirmed through real-time quantitative polymerase chain reaction

(qPCR). The research group showed that EV-encapsulated miRNA

may be utilized as non-invasive biomarkers to evaluate MMA

progression (262). The changes of proteins and miRNAs ascertained

may be related to signaling processes such as immune activation

and angiogenesis which may further elucidate MMA pathogenesis

(262). Ischemic conditioning may be used to decrease the stroke

risk in asymptomatic intracranial atherosclerotic arterial stenosis

(263, 264). Ischemic preconditioning involves inducing moderate

ischemia to exert protective functions against following severe

ischemic events. Epigenetics may be associated with the outcome

and the pathophysiology of stroke. Recent research has demonstrated

miRNA expression following ischemic preconditioning; miRNA

profiling 3 h following ischemic preconditioning demonstrated

upregulation of miRNA families miR-182 and miR-200 that have

been associated with neuroprotective effects of the HIF-1 and prolyl

hydroxylase 2 signaling pathways (264–266). Furthermore, ischemic

preconditioning has been shown to promote anti-inflammatory

mechanisms by modifying the expression of cytokines during

ischemic insults, suggesting a critical role of the vasculature

and endothelial cells during ischemic conditioning stimuli (264,

267). Also, ischemic post-conditioning may represent a promising

neuroprotective strategy in ischemic insults by means of anti-

inflammatory, anti-apoptotic, and CBF-based mechanisms (264,

268, 269). In 2014, Dai et al. using real-time PCR, identified a

serum miRNA signature in MMA. The research group demonstrated

in an independent MMA cohort that serum miR-125a-3p was

significantly decreased, whereas serummiR-126, miR-130a, and miR-

106b were significantly increased. Gene Ontology (GO) analysis

demonstrated that differentially expressed serum miRNAs may

be enriched in signal transduction, transcription, and metabolic

processes. Pathway analysis demonstrated that the most enriched

pathway may be the mTOR signaling pathway. Also, the research

group demonstrated that 13 and 16 aberrant serum miRNAs

coordinately inhibited BRCC3 and RNF213 protein expression at

the posttranscriptional level, associated with MMA pathogenesis

and aberrant angiogenesis (270). In 2015, Zhao et al. showed that

increased serum miRNA let-7c expression in MMA patients may

be associated with MMA pathogenesis through its influence on

RNF213, suggesting that let-7c may be a potential biomarker of

MMA (Figure 4) (260). In their 2018 MMA discordant monozygotic

twin-based study, Uchino et al. confirmed a new circulating

microRNA signature in MMA as a feasible diagnostic marker,

which may be marginally confounded through genetic heterogeneity

(271). The research group stated that this novel circulating

microRNA signature may contribute to future functional microRNA

analyses to ascertain novel therapeutic and diagnostic MMA

targets (271).
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In 2017, Zhao et al. demonstrated that various circRNAs may

be involved in MMA pathogenesis, and may be associated with

modulation of the MAPK signaling pathway. Besides providing

a set of potential diagnostic biomarkers for MMA, the results of

the research group suggest that therapeutic strategies targeting the

MAPK signaling pathway or these circRNAs may be effective MMA

treatment strategies (272). Recent research may provide evidence

that regulatory RNAs including miRNAs or lncRNAs may be

associated with MMA pathogenesis. In comparison with other kinds

of miRNA sponges, circRNAs have higher expression levels and an

increased amount of binding sites and, compared to linear RNAs, are

viewed as more efficient regarding gene expression regulation and

sequestering miRNAs (245, 273). CircRNAs have been associated

with various disorders that involve various neurological disease, and

are correlated with miRNA expression (273, 274). In 2017, Zhao et al.

demonstrated that 146 circRNAs may be expressed in MMA patients,

and these circRNAsmay contribute toMMA pathogenesis (272, 273).

Of these 146 circRNAs, 29 circRNAs were upregulated, and 117

circRNAs were downregulated (272, 273). Hsa_circRNA_067130,

hsa_circRNA_067209, and hsa_circRNA_062557 were upregulated,

while hsa_circRNA_089763, hsa_circRNA_089761, and

hsa_circRNA_100914 were downregulated with highest fold

variations, providing sufficient evidence to state that these circRNAs

may be potential MMA biomarkers (272, 273). In their 2019

pilot study of neutrophil samples from asymptomatic MMA

patients and an aberrant circRNA profile obtained through high-

throughput microarray analysis, Ma et al. demonstrated a critical

function of circRNAs and neutrophils in the differentiation of

asymptomatic MMA patients compared to healthy controls,

suggesting a relation of angiogenic and anti-inflammatory markers

to asymptomatic MMA (264, 275). The research group carried

out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes pathway enrichment (KEGG) analyses to both predict

functioning and for the annotation of differentially expressed

circRNAs, stating that differentially expressed circRNAs may be

associated with metabolism, angiogenesis and immune response

in asymptomatic MMA. Also, the research group suggested an

association of the HIF-1α signaling pathway with increased VEGF

and angiogenesis in MMA pathogenesis (264, 275). Moreover, Ma

et al. suggested that anti-inflammatory mechanisms and neutrophils

may be associated with MMA progression (264, 275). Research

results may indicate a HIF-1/VEGF mechanism associated with

angiogenesis (264, 267). In their 2021 study, Li et al. conducted

neutrophilic tsRNA profiling in asymptomatic MMA patients and

healthy controls (276). Pathophysiological mechanisms, including

immune response, angiogenesis, axon guidance, and metabolism

adjustment, were highlighted through differentially expressed

(DE)-tsRNAs and DE-mRNA in asymptomatic MMA patients,

which may support the potential receptivity of asymptomatic

MMA to medical therapeutics, such as immune-modifying

drugs (Figure 4) (276).

Pediatric and adult moyamoya
angiopathy

The distinct pathophysiology of pediatric MMA compared to

adult MMA is evident both in angiographic findings and based on the

symptomatology (Figure 5). In 2009, Czabanka et al. demonstrated

that surgical revascularization by encephalomyosynangiosis (EMS)

combined with extracranial-intracranial bypass (STA-MCA bypass)

may lead to favorable clinical and angiographic results in both

pediatric and adult MMA patients. Especially in pediatric MMA

patients, EMS may constitute an appropriate alternative to STA-

MCA bypass surgery in the European population (277). In their

2012 study, Bao et al. stated that the symptomatology of adult MMA

patients in the Chinese population may be different from those in

other Asian countries. EDAS surgery in adult MMA patients may

carry a low risk, is effective at preventing future ischemic events,

and improves the quality of life. The research group indicated that,

despite the lack of prospective randomized trials to determine the

efficacy of bypass surgery in MMA patients, the available data may

support surgical treatment (278). In 2012, Kim et al. demonstrated

that adult MMA is not a syndrome, rather a readily distinguishable

disease entity including significant progression of unilateral MMA

to bilateral MMA, stating that treatment strategies and diagnostics

in adult MMA should be different from those in pediatric MMA

(279). In 2013, Hishikawa et al. assessed the angiographic correlation

between the posterior circulation and the anterior circulation in

adult MMA patients and pediatric MMA patients, and evaluated the

presence of steno-occlusive PCA lesions and the extent of steno-

occlusive ICA lesions on angiography. The research group stated

that less advanced ICA lesions may significantly complicate posterior

circulation involvement in pediatric MMA patients (280). In 2014,

Lee et al. stated that during follow-up of pediatric MMA patients,

clinicians should be aware of potentially delayed PCA involvement

and progressive PCA stenosis, if these patients report transient

visual symptoms or headache, stating that indirect revascularization

surgery may be effective in these patients (281). In their 2015

study, Acker at al. demonstrated that the percentage of hemorrhagic

MMA in pediatric patients was slightly increased. In comparison

to adult MMA patients, angiographic analysis showed that stenosis

and/or occlusion within the posterior circulation may be increased

in pediatric MMA patients (282). In their 2015 long-term survey,

Bao et al. showed that the majority of surgically treated pediatric

MMA patients maintained a favorable outcome. The research group

suggested that both timely diagnosis and active intervention prior to

establishment of irreversible hemodynamic change may be essential

to obtain a favorable clinical outcome (283). In their 2015 article,

Piao et al. state that, in comparison to adult MMA, prognosis and

treatment of pediatric MMA may be of considerably larger clinical

significance (284). Also, the group argued that, through adequate

treatment, favorable results may be obtained, referring to the fact

that a standard treatment plan for pediatric MMA is currently not

implemented in clinical practice (4, 284). In their 2016 study, Liu

et al. stated that EDAS surgery may effectively increase cerebral

blood flow and establish a favorable outcome in pediatric MMA

patients, which may lead to a decreased incidence of recurrent

hemorrhage and to disappearance of intracranial aneurysms (285).

In their 2016 histopathological study of the distal MCA in pediatric

MMA and adult MMA, Takagi et al. demonstrated that MCA medial

thinning occurred in both pediatric and adult MMA patients. Yet,

MCA intimal thickening was demonstrated to be more prominent

in adult MMA patients. Additional study of MMA MCA specimens

may be warranted to further clarify MMA pathophysiology (286).

In 2017, Mejia-Munne et al. stated that juvenile-onset autoimmune
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disease and atherosclerosis were found to be associated with both

adult and pediatric MMA. Adult-onset autoimmune disease was

associated with pediatric MMA but not with adult MMA. The

research group suggested that both adult and pediatric MMA may

be associated with inflammation, hypothesizing that inflammation

may be associated with MMA pathogenesis (287). In 2017, Uchino

et al. stated that failure to notice non-focal physical symptoms,

suggestive of orthostatic intolerance, including headache, motion

sickness, difficulty getting out of bed, fatigue, and vertigo/dizziness,

may significantly impair the quality of life in pediatric MMA patients

up to 5 years after revascularization surgery, resulting in 57% of

patients being unable to attend school. These symptoms, inversely

associated with the number of years after surgery, may serve as

independent clinical markers to monitor disease outcome (288). In

their 2018 retrospective follow-up study, Bao et al. stated that EDAS

surgery may be effective in a Chinese cohort of adult MMA patients.

EDAS resulted in prevention of recurrent stroke and adequate

long-term improvement of symptomatology. Hypertension may be

a risk factor for ischemic stroke during follow-up (289). In their

2018 study, Elbers et al. suggested that lenticulostriate collaterals in

children with unilateral intracranial arteriopathy may be a useful

neuroimaging biomarker that may help stratify patients with distinct

clinical features and patterns of vascular evolution (290). In their

2018 long-term follow-up study, Zhang et al. stated that EDAS

surgery in pediatric MMA patients may be effective and safe, may

improve the quality of life, and may diminish the risk of subsequent

neurological events. The risk of ischemia-related complications was

increased in younger patients, and older children showed more

favorable outcomes. Compensation was greater withmore prominent

cerebral ischemia. The long-term clinical outcome largely depended

on presence and extent of pre-operative stroke (291). In 2019, Lu

et al. showed that the incidence of transient neurological events

(TNE) was significantly increased in adult MMA patients compared

to pediatric MMA patients (292). In their 2020 retrospective study

in 131 adult MMA patients and 83 pediatric MMA patients,

Liu et al. stated that pediatric MMA patients may show greater

patency and an increased capability to establish a favorable

leptomeningeal collateral status in comparison to adult MMA

patients. The research group indicated that a poor leptomeningeal

collateral status may correlate with an unfavorable post-operative

outcome and severe symptomatology. The leptomeningeal collateral

status may be associated with differences in prognosis and

symptomatology between adult MMA patients and pediatric MMA

patients (Figures 1–3) (293). In their 2020 letter to the editor, Yu

et al. stated that the PCA-ACA/MCA anastomosis may increase

the hemodynamic burden of the posterior circulation, increasing

the risk of intracerebral hemorrhage (Figures 2, 3) (7, 294), which

should be considered during the clinical management of pediatric

MMA patients (294). Additional compensatory collaterals, including

extracranial arterial collateral circulation anastomoses from the

middle meningeal, maxillary and facial arteries to the ophthalmic

artery, and dural arteriolar anastomoses from the occipital artery and

middle meningeal artery through the parietal foramen and mastoid

foramen, may as well correlate with the clinical outcome post-

operatively (Figure 1) (294, 295). Most recently, the research group

observed different hemodynamic sources of the recipient parasylvian

continental arteries (PSCAs) among the parietal, temporal, and

frontal PSCAs in MMA hemispheres (80, 294), suggesting that the

recipient vessel in STA-MCA bypass surgery may not necessarily

originate from the MCA (294). Consequently, neurosurgeons may

be advised to rely predominantly on digital subtraction angiography

(DSA) to ascertain the hemodynamic source of recipient vessels

(294). In their 2021 retrospective validation and extension study

on the function of the RNF213 p.R4810K genetic variant in 2,877

Chinese MMA patients, Wang et al. stated that carrying rates and

incidence of RNF213 p.R4810K in various regions for Chinese

MMA patients were obviously different. RNF213 p.R4810K may have

various predictive effects on the phenotypes of adult MMA patients

and pediatric MMA patients (296). In their 2022 study in 15 pediatric

MMA patients, Wang et al. stated that EDAS surgery may prevent

ischemia/ischemic stroke, and may reduce aberrant collaterals and

dilation of the anterior choroidal artery, potentially reducing the

incidence of recurrent intracerebral hemorrhage of the posterior

communicating artery or anterior choroidal artery during adulthood

of these patients (297).

Moyamoya angiopathy, moyamoya
syndrome, and inflammation

Two predominant pathways have been suggested to be associated

with inflammation and initiation or progression of MMA. A pro-

inflammatory cytokine pathway, leading to RNF213 activation,

as well as an anti-inflammatory cytokine pathway. The pro-

inflammatory pathway is associated with increased inflammatory

cytokines in inflammatory diseases which affect RNF213, leading to

MMS onset. This hypothesis may be supported by the evidence of

an increased frequency of the RNF213 p.R4810K variant in MMS.

Late-onset MMA may be associated with this variant (9, 298–301).

Pro-inflammatory cytokines may be involved in fulminant MMA

progression (9, 302). This particularly applies toMMS associated with

hyperthyroidism (9, 303–306). The pro-inflammatory pathway may

function as an initiator of MMA (9). The anti-inflammatory cytokine

pathway involves anti-inflammatory mediators in the CSF or the

blood that may affect acceleration or acute aggravation ofMMS. Anti-

inflammatory cytokines may be involved in autoregulation as well as

vascular reactivity, leading to MMA progression (Figure 4) (9).

In their 2002 study, Soriano et al. using dual-antibody enzyme-

linked immunoassays, demonstrated increased CSF levels of soluble

endothelial adhesion molecules, vascular cell adhesion molecule

Type 1 (VCAM-1), intercellular adhesion molecule Type 1 (ICAM-

1), and E-selectin, suggesting that pediatric MMS patients may

have persistent central nervous system inflammation, with marginal

blood-brain barrier (BBB) impairment. The research group suggested

that these soluble adhesion molecules may be of use in clinical

practice as markers of this central nervous system inflammation

process. Moreover, the research group stated that their results

may not completely ascertain an association of these adhesion

molecules with vascular pathological processes related to MMS,

since cerebral ischemia as well may lead to expression of these

adhesion molecules (110). In their 2011 case-control study in 114

pediatric MMA patients and 114 healthy controls, Li et al. stated

that increased thyroid autoantibodies and elevated thyroid function

may be related to MMA (307). In their 2013 retrospective study, Li

et al. stated that MMA associated with Graves’ disease may mainly

be observed in adult female patients. Associated clinical symptoms

may include ischemia and may be related to hyperthyroidism.

MMA pathogenesis associated with Graves’ disease may be
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related to various immunologic and genetic influencing factors.

Encephaloduroarteriosynangiosis (EDAS) surgery may diminish the

likelihood of stroke recurrence and may lead to an effective collateral

circulation (308). In their 2015 retrospective study, Han et al. stated

that the radiographic and clinical characteristics of neurofibromatosis

type I (NF-1) in MMS may be similar to MMA (309). In their

2015 case report, Hyakuna et al. described a rare case of Cbl Proto-

Oncogene (CBL) (11q23.3) mutation related to MMA, hypothesizing

that MMA could be induced through congenital dysregulation

of cerebral angiogenesis associated with a RAS/MAPK pathway

germline mutation. Furthermore, the research group hypothesized

that prolonged RAS pathway signaling may lead to cerebrovascular

development disruption (310). In their 2016 retrospective study,

Acker et al. stated that their European Caucasian MMS cohort may

show various disparities in comparison to a European Caucasian

MMA cohort as well as to Asian MMS cohorts, hypothesizing

that MMS may represent an independent disorder with a distinct

ethnic symptomatology. Moreover, the research group stated that it

may be important to standardize inclusion criteria and definition

of MMS regarding associated disorders to optimally compare

MMS results (311). In her 2016 case report about an 8-year-

old female patient with a Dedicator Of Cytokinesis 8 (DOCK8)

(9p24.3) deletion, AlKhater stated that her patient was diagnosed

withMMA (3, 312). DOCK8 deficiency may be associated withMMA

(312, 313), potentially due to ischemia (312). Recent reports have

described an underlying autoimmune disease mechanism related

to T cell dysregulation in these patients, particularly in unilateral

MMA, as evident in her patient (312, 314). Knowledge of therapy

management and revascularization procedures for patients like

the one described in this report remain to be ascertained (312).

Prescribing antiplatelet drugs to patients affected with DOCK8

deficiency should be done with caution, due to hemorrhage being an

ascertained symptomatology of MMA, particularly of hemorrhagic

MMA (312, 315). In 2015, Chen et al. performed a retrospective

study in 68 unilateral MMA patients and 316 bilateral MMA

patients, suggesting a higher overall autoimmune disease prevalence

in unilateral MMA compared to bilateral MMA. The research

group hypothesized that, compared to bilateral MMA, unilateral

MMA may be related to autoimmune disease to a greater extent.

Moyamoya vessel formation in bilateral MMA and unilateral MMA

may be associated with distinct pathogenetic mechanisms (314).

Regarding their 2016 imaging study in 21 angiographically proven

MMA patients, 14 MMS and 7 MMA patients, Yu et al. stated

that differentiating MMS from MMA may be challenging, and high-

resolution magnetic resonance imaging (HR-MRI) may help provide

a more detailed comprehension of MMS and MMA, which may

lead to a more precise diagnosis of increased reliability (316). In

2017, Zhang et al. showed that, in comparison to other MMA

patients, the RNF213 p.R4810K genetic variant may be related to

autoimmune and atherosclerotic MMS in the Chinese population at

a lower prevalence (202). In 2018, Yamanaka et al. hypothesized that

HIV-associated vasculopathy, a cerebrovascular disease associated

with HIV-1, caused through endothelial dysfunction, due to cytokine

imbalances and inflammation related to HIV-1, may contribute to

intracerebral hemorrhage and collateral vessel impairment, although

the pathophysiologic mechanism of vascular damage in HIV-1

remains to be fully ascertained. Thus, adequate management of

HIV-1 may be essential in MMS (317). In their 2019 moyamoya

multicenter study, Bonasia et al. ascertained three types of

anastomoses between the anterior and posterior cerebral circulation,

consisting of collaterals from the posterior choroidal arteries (20%),

the posterior callosal artery (20%), in addition to a potential

pio-pial anastomosis between cortical collaterals of the posterior

cerebral artery (PCA) and the anterior cerebral artery (ACA)

(15%), with a distinct capacity for retrograde compensation of the

anterior circulation. In advanced Suzuki stages from IV to VI in

particular, collaterals are frequently observed in MMA. Collaterals

may develop due to their ability to compensate the leptomeningeal

anastomosis, duro-pial anastomosis, and the ophthalmic-ACA

anastomosis collateral systems and due to a diminished blood supply

to the ACA territory. The research group suggested a 4-grade

classification based on the capability of the three types of PCA-

ACA anastomoses to provide retrograde supply to the ACA territory

(Figures 2, 3) (7). Based on their 2019 study in 48 MMS patients

and 137 MMA patients, Feghali et al. stated that MMS patients and

MMA patients may present with similar angiographic phenotypes

and similar symptomatology, and may have an equally favorable

outcome of surgical revascularization (318). Differentiation of MMS

from MMA is important. Whereas the causes of MMS may be

reversed by medication, MMAmay require surgical revascularization

(57). In 2020, Aloui et al. performed a rare de novo candidate

copy number variant (CNV) screening in 13 MMA trios by use of

whole genome high density single-nucleotide polymorphism (SNP)

array data and whole exome sequencing (WES) reads depth data.

WES and SNP array data of 115 unrelated MMA patients were

used to detect recurrence of rare de novo CNVs, suggesting that

recurrence of the Xq28 candidate CNV, its familial segregation in

two additional families, and its de novo occurrence in one MMA

patient may indicate pathogenicity. Relation of the Xq28 CNV to

pulmonary hypertension and use of genetic counseling may be of

relevance in clinical practice. The research group has demonstrated

a new Xq28 CNV gain in both MMA and a novel MMS related

to pulmonary vein stenosis, pulmonary hypertension, and other

distinct systemic venous anomalies. These data may be relevant

for clinical care and genetic counseling (319). MMA patients may

present with a significantly increased rate of persistent carotid-

vertebrobasilar anastomoses compared to controls (320), and may

be 26 times more likely to suffer from Down’s syndrome (321, 322).

Accordingly, compared to controls, Down’s syndrome patients may

present with significantly increased stages of MMA, and may be

more than 10 times as likely to show aberrations of the Circle

of Willis (323), and vertebral arteries (322, 324). Several genes on

chromosome 21 may be associated with angiogenesis, including

Down Syndrome Critical Region 10 (DSCR10) (21q22.13), Dual

Specificity Tyrosine Phosphorylation Regulated Kinase 1A (DYRK1A)

(21q22.13), and Collagen Type XVIII Alpha 1 Chain (COL18A1)

(21q22.3), possibly by VEGF inhibition (322, 325, 326). In 2021,

Kim et al. described a Korean female pediatric patient with CHOPS

syndrome accompanied by systemic vasculopathy. The patient had

been diagnosed with MMA at 6 years of age and had undergone

three synangiosis surgeries. The infrarenal aorta and the renal arteries

were diffusely narrowed. A new AFF4 c.758C > T (p.Pro253Leu)

missense variant was ascertained through whole exome sequencing.

Except for the RNF213 c.14429G>A (p.Arg4810Lys) genetic variant,

inherited from an asymptomatic mother, no additional candidate

variants associated with the vascular manifestation of this patient
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were identified (327). In 2021, Pinard et al. suggested a new syndrome

related to RNF213 rare variants characterized by de novo mutations

disrupting highly conserved amino acids in the RING domain as well

as a discrete region distal to the RING domain delimited by amino

acids 4,114–4,120, causing early-onset, severe MMA before 3 years of

age and occlusion of additional arteries, e.g., the femoral artery, iliac

artery, renal artery, and the abdominal aorta (328). In 2021, Sharina

et al. demonstrated that decreased cGMP-forming activity of the rare

GUCY1A3 α1C517Yβ1 sGC genetic variant may be aggravated due

to reduced protein stability and increased susceptibility to oxidative

stress. Combination of these deficiencies may contribute to the

severity of symptoms of achalasia and MMA evident in human

carriers of the α1C517Yβ1 sGC variant (Figure 4) (329).

Conclusion, treatment strategies, and
future research perspectives in
moyamoya angiopathy

We have reviewed the physiological and pathophysiological

mechanisms of signaling pathways, cells, and genes involved inMMA

and MMS and their association with aberrant angiogenesis and

inflammation (Figure 4). If mediators involved in these mechanisms

are associated with signaling pathway activation or if they constitute

downstream mediators remains to be elucidated (5). To do research

into the effects of signaling molecules involved in MMA and

the part of a signaling pathway they act, may be advocated (5).

Moyamoya collateral vessel formation seems to be subsequent

to ICA stenosis (5). Thus, prevention of the above-mentioned

stenotic process may help avoid the subsequent formation of

fragile moyamoya collaterals (5). Angiogenesis in MMA may be

either decreased or facilitated (9). Research results indicate that

aberrant angiogenesis, decreased or facilitated, may be associated

with MMA pathogenesis. These findings seem to be validated by

revascularization surgery for MMA, by which increased angiogenesis

and an improved formation of a collateral circulation is achieved by

restoration of blood flow to the brain (9). Despite a limitation of the

number of cases involved, consensual evidence of inflammation in

MMA appears to be present (5). Inflammation in pediatric stroke

is critically important, both due to the inflammatory signaling

cascades activated through ischemia and because of inflammatory

baseline pathologies causing stroke (47). Reciprocal action of such

fundamental pathophysiologic mechanisms may be of substantial

importance, warranting further research (47). Focal pathophysiology

may be associated with proximal vessels, such as the circulus

arteriosus cerebri, the MCA (M1), ACA (A1), and the distal

ICA, whereas generalized pathologies may affect small arteries or

peripheral vessels (47, 330). Considerable differences in inflammatory

signaling cascades in the neonatal and the adult brain are evident

(47). Developmental trajectories of inflammatory signaling cascades

from the neonate to the adult remain to be ascertained. Therapeutic

interference with such an inflammatory pathology might be feasible

by means of additional studies (47). Animal models are warranted

to ascertain if these findings may be involved in MMA pathogenesis

(5). Regardless whether these processes may induce MMA or result

from the arteriopathy, there is growing evidence of a reversible

inflammatory process being present in the vascular wall which may

contribute to lumen stenosis (5). Inflammation, although not a direct

cause of MMA and MMS, may influence RNF213, and thus result in

aberrant angiogenesis (9).

Moyamoya angiopathy treatment strategies

Enhanced interaction between neurons and cells of the

vasculature, increased angiogenic activity, induced curative

angiogenesis, and increased formation of a collateral circulation may

be Research Topics fundamental to establishing future treatment

strategies (9).

In 2011, Li et al. suggested that monitoring of thyroid

autoantibodies and thyroid function in MMA patients may be

advocated to assist in continuing medical treatment (307). In their

2013 study of a BALB/Cmale mouse model of ischemic stroke, Rosell

et al. researched if treatment with EPCs or their secreted factors may

intensify neurogenesis and angiogenesis after persistent focal cerebral

ischemia. The research group demonstrated that applying EPC-

secreted factors may be an effective and safe cell-free potential future

treatment strategy for stroke (158). In 2014, Han et al. suggested

that routine screening may be warranted for all family members of

familial MMA patients to increase the detection rate for this patient

group. In MMA diagnostics, transcranial Doppler sonography may

correlate well with magnetic resonance angiography (MRA). Being

safe and cost-effective, transcranial Doppler sonography may be

the favored screening modality (219). In their 2014 article, Wan

and Duan suggested that in hemorrhagic MMA patients, quality of

life and cognitive function should be assessed and integrated into

evaluations of treatment strategy effectiveness. Also, the researchers

indicated that revascularization surgery may be more favorable for

hemorrhagic MMA patients, and that combined bypass may lead

to a more favorable revascularization and AChA-PCoA extension

improvement (94). In 2015, Han et al. suggested that routine

vascular screening for NF-1 MMS patients may be advocated

regarding early detection of MMS as well as of other cerebral

arteriopathies. The research group stated that revascularization

surgery may prevent progression of clinical symptoms and diminish

the likelihood of subsequent stroke in NF-1 MMS patients (309).

In 2015, Hyakuna et al. hypothesized that allogeneic hematopoietic

stem cell transplantation may remedy MMA pathophysiology.

Niemeyer et al. (331) established a relation between vasculitis

and CBL germline mutation (310). Although the function of

mutated CBL in MMA and vasculitis remains to be elucidated,

hematopoietic stem cell transplantation may reduce the likelihood

of vasculitis (310). In 2018, Duan et al. demonstrated various

new MMA susceptibility genes to be associated with homocysteine

metabolism. Furthermore, due to enrichment of the expression

of these susceptibility genes in the immune system, the research

group suggested that therapeutic interventions directed at those

pathways could be efficient MMA treatment approaches (208). In

2018, Ishii et al. stated that, in case the post-operative serum level

of matrix metalloproteinase (MMP)-9 and Occludin (OCLN) may be

significantly elevated, systolic blood pressure should be continuously

controlled to avoid post-operative intracranial hemorrhage and/or

epilepsy. Particularly regarding MMP-9, the administration of

minocycline may be considered (191, 332). In 2018, Wang et al.

suggested that hemorrhagic MMA patients should undergo lifelong

follow-up, even if their neurological status is excellent (98). In
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2019, Nishihiro et al. demonstrated that High-mobility group box-

1 (HMGB1) with encephalo-myo-synangiosis (EMS) in a chronic

hypoperfusion model promoted cerebral angiogenesis in a VEGF-

dependent manner, resulting in improvement of cerebral blood flow.

This treatment may be an effective therapy for MMA patients (333).

In 2020, Zhao et al. demonstrated that autogenous bonemarrow stem

cell mobilization combined with dexamethasone antiinflammation

and anti-infection treatment after revascularization in MMA patients

may accelerate recovery of nervous function and promote blood

vessel formation. At the same time, this treatment approach may

reduce inflammation and improve the quality of life of MMA

patients (334). In 2020, Gu et al. stated that two potential small

molecule drugs, indirubin and CAY-10415, were recognized as MMA

candidate drugs through Connectivity Map (CMap) (252). In 2021,

Mineharu and Miyamoto suggested various treatment strategies

including pharmacological eNOS-sGC-cGMP pathway stimulation,

inflammation control, avoidance of hypoxia, homocysteine control,

and blood lipid control. Pharmacological treatment candidates of

MMA may be homocysteine lowering drugs, such as vitamin B12

or folate, lipid lowering drugs, such as Proprotein convertase

subtilisin/kexin type 9 (PCSK9) inhibitors and statins, and anti-

inflammatory drugs, such as anti-IL-6 antibodies or COX-2

inhibitors. Soluble guanylate cyclase stimulator Riociguat, used for

pulmonary arterial hypertension treatment, could be an alternative

(119, 335). Yet, there is insufficient proof of both interaction and

functionality of these candidate markers, which may be associated

with MMA. Identification of detailed molecular networks may

acquire novel therapeutic strategies (5, 119). In their 2022 review

article, Zhang et al. stated that, in addition to various pre-existing

MMA staging systems, which are based on medical imaging and

symptomatology, a suitable MMA grading system, capable of

ascertaining MMA disease progression, may be warranted (336).

Referring to their 2022 study results, Wang et al. indicated that

timely indirect surgery may be warranted in pediatric MMA patients.

Even though the results of the research group did not directly

prove efficacy in preventing recurrent intracerebral hemorrhage, the

group stated that aberrant collaterals of the posterior choroidal artery

had decreased post-operatively. All subjects had a favorable clinical

outcome (297).

Moyamoya angiopathy future research
perspectives

Recent MMA research may concentrate on the three main

sectors therapy, prognosis, and diagnosis (6, 337). MMA

therapeutic innovation research has remained behind the significant

achievements in the diagnostic and prognostic area of MMA research

(6, 337). Prognosis of MMA has been advanced through non-invasive

biomarkers and new imaging methodologies (2, 6, 64, 196, 290, 338).

MMA diagnosis has profited greatly from the latest advancements

in molecular genetics, with significant progress in the identification

of specific genetic variants related to clinical phenotypes and

radiographic presentations (6, 51, 230, 236, 339).

Genetic analysis of familial MMA may help to ascertain the

pathogenesis of MMA (4). In case of identification of relevant

genes, development of novel gene therapies and prevention

of MMA occurrence in genetically susceptible individuals

may be possible (4). Also, the Japan Adult Moyamoya Trial

(4, 99, 340–345) may contribute to ascertain the advantages

of combined or direct bypass surgery for the prevention of

recurrent hemorrhage in MMA (4). Additional follow-up

and epidemiological studies are warranted to ascertain the

pathogenesis of asymptomatic MMA (4). These results will be

important to refine the guidelines for surgical and medical MMA

treatment, in particular for asymptomatic or hemorrhagic MMA

patients (4).

In 2002, Soriano et al. suggested that additional research may be

warranted to ascertain if soluble endothelial adhesion molecules may

be potential therapeutic or diagnostic markers for MMS therapeutic

management (110). In 2008, Jung et al. suggested that further

prospective studies may be warranted to ascertain if alterations in

functioning and number of circulating EPCs may serve as prognostic

or diagnostic biomarkers in MMA (159). In 2009, Shimojima et al.

stated that further studies are required to identify a major disease-

causing gene for MMA (211). In 2010, Kim et al. suggested that

additional research may be warranted to ascertain the distinct

functioning of EPCs in MMA pathogenesis (153). In 2011, Ni et al.

indicated that further research may be warranted to ascertain the

correlation between SDF-1α and CD34+ CXCR4+ cells in MMA

(152). In 2012, Bao et al. stated that randomized clinical trials may

be warranted to study the efficacy of revascularization procedures

(278). In 2013, Chen et al. suggested that transfer function analysis

derived phase shift and rate of recovery (RoRc) may be advantageous

in clinical studies researching into hemodynamic compromise, as

these may provide a both non-pharmacologic and non-invasive

method with reliable sensitivity in correlation with angiography (65).

In 2013, Hitomi et al. demonstrated that iPSECs may serve as an

in vitro MMA model, expressing a useful benchmark phenotype

for high throughput screening, which may be applied to drug

development and used to ascertain MMA causative factors (187). In

2013, Hu et al. suggested that larger studies may be warranted to

ascertain the potential association of Actin Alpha 2, Smooth Muscle

(ACTA2) (10q23.31) and/or additional genes and MMA in different

populations (216). In 2014, Dai et al. suggested that research into

established angiogenesis-related genes may be a path to ascertain

potentially unknown angiogenesis-associated miRNAs. Furthermore,

adjustment of the pathophysiologic mechanism associated with

the functioning of serum miRNAs in MMA may be a possible

therapeutic strategy which may warrant additional research (270).

In 2014, Kang et al. stated that their research into SPCs from the

peripheral blood of MMA patients may supply a new experimental

cell model for future MMA research (149). In 2014, Ryoo et al.

suggested that distinct radiological findings may further elucidate

MMA pathogenesis and distinguish ICAD from MMA (85). In 2014,

Wan and Duan stated, that hemorrhagic MMA treatment strategies

may not be standardized, and that randomized, prospective, large

sample clinical trials may assist to ascertain the most favorable

treatment approach (94). In 2015, Baltsavias et al. suggested that a

more thorough understanding of themoyamoya collateral circulation

and anastomotic networks may assist in the definition of a novel

MMA staging system which may impact clinical practice (69).

In 2015, Ganesan et al. suggested that addressing three distinct

research areas may assist in further elucidating MMA pathogenesis

(337). First, precise clinical and radiological phenotyping of distinct
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MMA populations to encourage research into genetic and biological

mechanisms (337). Second, development of new, standardized

prognostic methods to instruct therapeutic decision making and

stratify the risk of disease (337). Third, prospective analysis of the

efficacy of MMA surgical revascularization, to contrast the risks of

distinct treatment strategies, through application of standardized

radiographic, neurocognitive, and clinical assessments, in order to

unbiasedly assess the efficacy of various treatment strategies (337).

In 2015, Karunanithi et al. suggested that their study results may

warrant further research into pressure drop indicator (PDI) as

a causal factor regarding post-operative complications in MMA

patients (70). In 2015, Kobayashi et al. suggested that the pathology

related to aberrant SMC proliferation and decreased angiogenesis,

such as arterial stenosis in the Willis’ circle or moyamoya vessel

formation should be addressed in future studies. Furthermore, this

group hypothesized, that research into the function of RNF213

in maintenance and remodeling of the vascular system may help

elucidate mechanisms of both cerebral artery stenosis in general

and in MMA (205, 346). An ATP binding inhibitor specific to the

Walker A motif in the first AAA+ may be an auspicious therapeutic

candidate, potentially increasing CNS hypoxic tolerance in RNF213

R4810K carriers (205). In 2016, Duan et al. stated that the specific

function of the posterior communicating artery, anterior choroidal

artery, and moyamoya collaterals need to be further investigated.

Also, the research group suggested that additional research on

cerebral microbleeds may be warranted to further elucidate the

pathogenesis of pediatric hemorrhagic MMA. Furthermore, the

group indicated that comprehensive, large-sample studies may be

warranted to further ascertain pediatric hemorrhagic MMA (96).

In 2016, Gao et al. suggested that doing research into the MAPK

signaling pathway and lncRNAs, and their potential function as

therapeutic targets, may be warranted (10). In 2016, Hamauchi

et al. stated that additional research may be advocated to further

elucidate the pathology of differentially expressed ECM receptor-

related genes and splicing regulating proteins in MMA pathogenesis

(166). In 2016, Liu et al. suggested that more detailed and longer

angiographic and clinical follow-up study may be warranted to

ascertain the pathophysiologic mechanism underlying recurrent

intracranial hemorrhage in hemorrhagic MMA (97). In 2016, Mossa-

Basha et al. suggested that, in case of confirmation in larger studies,

the criteria for MMA and the moyamoya diagnostic algorithm may

be revised according to improved diagnostic accuracy in addition to

a potential limitation of invasive diagnostics (83). In 2016, Scholz

et al. stated that the identification of an association between RNF213

and NFAT1 may be another method for further research into the

molecular pathogenesis of MMA (120). In 2017, Liao et al. suggest

that studies identifying the ethnicity-specific factors and pathological

role of RNF213 genetic variants in MMA and intracranial major

artery stenosis/occlusion (ICASO) may be warranted (225). In

2017, Mejia-Munne et al. suggested, that additional research may

be warranted to ascertain the pathophysiology of MMA and

inflammation (287). In 2017, Park et al. suggested that additional

studies may be warranted to ascertain if the RNF213 rs112735431

polymorphism may be related to hypertension in MMA patients

and healthy controls in the Korean population. Definition of the

relationship between the RNF213 rs112735431 polymorphism and

hypertension inMMApatients as well as determination of the specific

biochemical function of RNF213, which may be involved in the

pathogenesis of hypertension, may be advocated (226). In 2017, Qiao

et al. suggested that studies to ascertain methods to evaluate the

moyamoya collateral circulation by use of combined multimodality

imaging techniques, such as perfusion imaging, structural MRA

imaging and functional brain imaging, to assess cortical structural

change as a consequence of revascularization surgery, may provide

results whichmay assist in clinical decisionmaking, including patient

selection strategies for operative management of MMA patients (89).

In 2017, Uchiyama stated that study of the RNF213 genetic variant in

twig-like MCA patients may clarify the twig-like MCA pathogenesis,

enabling to establish a differential diagnosis of MMA (90). In 2017,

Wang et al. suggested that future research may concentrate on the

MAPK signaling pathway and on inflammation in MMA (251).

In 2018, Ishii et al. suggested that histopathologic examination

of the blood-brain barrier (BBB) and quantitative assessment of

cerebral blood flow and cerebral blood volume may be warranted

for validation of their hypothesis (191). In 2019, Liu et al. stated

that longer follow-up studies and larger patient samples may be

warranted to substantiate the value of their proposed new MMA

collateral grading system (79). In 2019, Tashiro et al. suggested

that the genetic background underlying intracranial vertebral artery

dissection should be elucidated in future studies (228). In 2019,

Corey and Luo suggested that research into the involvement of

neutrophils in moyamoya progression could be an additional path

for future research (264). According to their preliminary 2019

cohort study results, Funaki et al. suggested that verification of

their present results in larger studies and additional research on the

effect of choroidal collaterals on recurrent intracranial hemorrhage

in hemorrhagic MMA may be warranted to ascertain the best

possible treatment strategy for asymptomatic MMA patients and

for non-hemorrhagic cerebral hemispheres in adult hemorrhagic

MMA patients in the Japan Adult Moyamoya (JAM) Trial (99). In

2019, Shen et al. suggested continued future research to investigate

if CD40 may function as a personalized MMA marker (231). In

their 2019 article, Young et al. stated that further prospective studies

may be warranted to evaluate the clinical utility of intracranial

vessel wall imaging in differentiating MMS from MMA, and to

predict hemorrhage and ischemia, which may help identify high-

risk and low-risk patients and direct clinical management (57). In

2019, Bonasia et al. suggested that both an analysis of the three

types of anastomoses between the anterior and posterior cerebral

circulation by selective contrast injection into the PCA and an

analysis of the ophthalmic-ACA anastomosis, the leptomeningeal

anastomosis, and the duro-pial anastomosis collateral systems may

be warranted to further elucidate MMA pathogenesis and to better

identify patients who may benefit from bypass surgery (7). In 2020,

Aloui et al. suggested that additional research may be warranted to

further elucidate the mechanism associated with the Xq28 candidate

copy number variant and the pathogenesis of vascular disease in

patients affected with MMA and a novel MMS (319). In 2020,

Han et al. suggested that platelet activation and renin secretion

may help guide clinical management and may further elucidate

the pathogenesis of asymptomatic MMA (253). In 2020, Kim

et al. suggested that additional study of the molecular biology and

functioning of RNF213 may further ascertain the pathophysiology

of cerebrovascular disease and ICASO (233). In 2020, Wang et al.
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stated that larger cohorts, including different ethnicities, may be

warranted to further clarify associations between TGFB1 SNPs and

MMA (235). Also, with both genetic and environmental factors being

associated with MMA pathogenesis (347), multivariate analysis to

adjust confounders, including biochemical, clinical, and behavioral

factors, should be incorporated in future studies (235). In 2021,

Byworth et al. suggested that further research may be warranted

to ascertain whether additional copies of the Down Syndrome

Critical Region 10 (DSCR10) (21q22.13), Dual Specificity Tyrosine

Phosphorylation Regulated Kinase 1A (DYRK1A) (21q22.13), and

Collagen Type XVIII Alpha 1 Chain (COL18A1) (21q22.3) genes

may be associated with aberrant vascular development in Down’s

syndrome, which may predispose to MMA (322). In 2021, Han et al.

suggested that methods to alleviate inflammation and to restore

the BBB may be efficient MMA treatment strategies (194). In 2021,

Li et al. stated that additional studies may be warranted to help

clarify the pathophysiologic mechanism associated with neutrophilic

tsRNAs and their associated signaling pathways in asymptomatic

MMA patients, to further elucidate MMA pathogenesis (276). In

2021, Lu et al. suggested that the serum levels of BBB-related

proteins andMMP-9, in addition to their comparison betweenMMA

subgroups, should be compared to healthy controls (198). Also,

the research group indicated that the pharmaceutical significance

of a strengthened impact of MMP-9 on surgery and the predictive

value of intracranial hemorrhage prediction should be subject to

validation in future research (198). Moreover, the group stated

that additional research may be warranted to further ascertain the

function of MMP-9 and BBB impairment in MMA pathophysiology

(198). In 2021, Mineharu et al. stated that the functions of GUCY1A3

and RNF213 have been intensively studied in VSMCs and vascular

ECs. However, with the distinct mechanism of fibrosis and intimal

thickening in MMA remaining to be elucidated, research into the

function of GUCY1A3 and RNF213 in immune cells, especially in

dendritic cells, neutrophils, B cells, and T cells may be warranted.

Additional vascular components, including the extracellular matrix

(ECM), platelets, and inflammatory cells, should be subject of future

research (119). In 2021, Sarkar et al. stated that further RNF213

knockdown studies may be warranted to confirm both the function

of RNF213 in TNFα/PTP1B mediated obesity and insulin resistance

and detailed pathophysiologic mechanisms related to this signaling

pathway (11). In 2021, Sarkar et al. suggested that doing research

on the effect of iron-binding in MMA and on the pathophysiologic

mechanism of RNF213 in cancer and obesity may be warranted (237).

In 2021, Wu et al. stated that additional prospective studies may

be warranted to further ascertain the association between bleeding

spots and aberrant MMA collaterals (103). Relating to their 2022

study results, Jin and Duan stated that, due to the complex functions

and molecular genetic mechanisms, their bioinformatics results

may warrant verification experiments. Jin and Duan hypothesized

that the slow progression of MMA may be associated with a

distinct gene expression at each MMA stage, that the genetics

of adult MMA and pediatric MMA may be different, warranting

additional clarification of such potential variations (241). Referring

to the results of their 2022 transcriptome-wide analysis, Xu et al.

suggested that the sex difference should be considered in futureMMA

research (243).

Continued research into MMA pathophysiology and associated

signaling pathwaysmay identify new treatment strategies, therapeutic

applications, and mechanism-tailored interventions that may halt

MMA progression. Research into EPCs, endothelial cells, and

pericytes may further elucidate the function of vasculogenic,

angiogenic, and anti-angiogenic markers and associated signaling

pathways (3, 348). Reduction of interlaboratory variations and

methodological differences may facilitate cooperation between

laboratories (3, 348, 349). Constant evaluation of novel prognostic

and diagnostic resources obtained through research may help

to effectively and safely transfer research results into practice

(2). Ongoing collaborative, prospective basic laboratory, and

large-scale, large cohort clinical research on pathophysiologic

mechanisms, a multi-professional, multi-center, international

collaboration between vascular and stroke physicians, and

clinician-scientists pursuing translational research are essential

to establish large biorepository, imaging, and clinical data sets,

which may be required if we are to better understand the

complex etiology of MMA, potentially leading to increasingly

differentiated diagnoses and disease-modifying treatment strategies

(2, 6, 44, 92, 337, 350).
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