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Abstract

We consider the gravity water waves system with a periodic one-dimensional in-
terface in infinite depth and give a rigorous proof of a conjecture of Dyachenko-
Zakharov concerning the approximate integrability of these equations. More
precisely, we prove a rigorous reduction of the water waves equations to its in-
tegrable Birkhoff normal form up to order 4. As a consequence, we also obtain
a long-time stability result: periodic perturbations of a flat interface that are ini-
tially of size & remain regular and small up to times of order €3, This time scale
is expected to be optimal. © 2022 The Authors. Communications on Pure and
Applied Mathematics published by Wiley Periodicals LLC.
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1 Introduction

We consider an incompressible and irrotational perfect fluid, under the action of
gravity, occupying at time ¢ a two-dimensional domain with infinite depth, periodic
in the horizontal variable, given by

(1.1) Dp:={(x.y) €T xR: —co <y <n(t,x)}. T:=R/Q2nZ),

where 7 is a regular enough function. The velocity field in the time-dependent
domain Dy, is the gradient of a harmonic function &, called the velocity potential.
The time evolution of the fluid is determined by a system of equations for the two
functions (¢, x) — n(t, x), (¢, x, y) — ®(¢. x, y). Following Zakharov [36], given
n(t, x) and the restriction ¥ (¢, x) := ®(¢, x, n(¢, x)) of the velocity potential at
the top boundary, one can recover ®(¢, x, y) as the unique solution of the elliptic
problem

(1.2) A®=0inD;, 0,®—>0asy— —oo, &=y on{y=n( x)}.

The (1, ¥) variables then satisfy the gravity water waves system

den =Gy ,
(1.3) 1 2 1 (mx¥x + G(N)Yr)
0y =—gn—= =
=—gn— Vit )
where G (1) is the Dirichlet-Neumann operator
1) GOy = 1+ 20n®)| = (@ ® = made @)t x (0. 2)).

and 7 is the outward unit normal at the free interface y = 5(z, x). Without loss of
generality, we set the gravity constant to g = 1.
It was first observed by Zakharov [36] that (T.3)) is the Hamiltonian system

(15) 3t77 = Vl/fH(nv W)a 3“# = _VnH(ﬂ» W),



BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 3

where V denotes the L2-gradient, with Hamiltonian

1 1
(1.6) HOv) = /T VG d + /T P dx

given by the sum of the kinetic and potential energy of the fluid. Note that the
mass fT ndx is a prime integral of (I.3)) and, with no loss of generality, we can fix
it to zero by shifting the y-coordinate. Moreover, (1.3)) is invariant under spatial
translations and Noether’s theorem implies that the momentum [ 77, (x)y (x)dx
is a prime integral of (I.5).

Let H*(T) := H®, s € R, be the Sobolev spaces of 2w-periodic functions
of x. It is natural to consider 7 in the subspace of zero average functions Hy (T) C
H*(T), and ¥ in the standard homogeneous Sobolev space H* (T)EI Moreover,
since the space averages 7o(f) := % Jo n(t, x)dx, Uo(t) = % Jp vt x)dx
evolve according to the decoupled equation d;7o(t) = 0, 8;% (t) = —gho(t),
we may restrict, with no loss of generality, to the invariant subspace with 7y(¢) =
Yo(r) = 0.

The main result of this paper (Theorem[I.1)) proves a conjecture of Dyachenko-
Zakharov [16]], supported by Craig-Worfolk [12] on the approximate integrability
of the water waves system (I.3). More precisely, we prove that (I.3]) can be conju-
gated, via a bounded and invertible transformation in a neighborhood of the origin,
to its Hamiltonian Birkhoff normal form, up to order 4. This latter—in the PDE
literature sometimes referred to as the “resonant system”—was formally computed
in [12[16] (see also [11]]) and, remarkably, shown to be integrable. Despite several
attempts, the formal approach in [12}/16] has never been translated into a rigorous
result. The proof we give in this paper is actually based on a completely different
approach to the Birkhoff normal form reduction, which we describe at the end of
this introduction. As a consequence of Theorem [1.1, we also obtain a long-time
stability result (Theorem|[I.2)): periodic perturbations that are initially &-close to the
flat equilibrium lead to solutions that remain regular and small for times of order
£~3. This time scale is expected to be optimal. These results have been announced
in [[8]].

While in recent years several results have been obtained for quasilinear equa-
tions with initial data that decay sufficiently fast at infinity, fewer results are avail-
able in the periodic setting. In this context, the achievement of Birkhoff normal
forms reductions is a key step to provide an accurate description of the long-term
dynamics of evolution PDEs like (1.3). We also remark that the stability result in
Theorem [I.2] is obtained by completely different mechanisms compared to most

I The spaces H5(T) and H{(T) are isometric. Thus we will conveniently identify v with a zero
average function.

2 Since the domain Dy has infinite depth, if ® solves (I.2), then @ (x,y) := P(x,y — c),
Ve € R, solves the same problem in Dy 4. assuming the Dirichlet datum ¥ at the free boundary
1 + ¢. Therefore G(n + ¢) = G() and [} V4K dx = 0 where K := %fT Y G(n)¥ dx denotes
the kinetic energy.
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recent works; see, for example, [21},(23,26,/34], which obtain a shorter g2 stability
time in the absence of cubic resonances (see (1.23)). Indeed, we deduce Theorem
[1.2]by the complete conjugation of the water waves equations (I.3) to its integrable
Birkhoff normal form.

1.1 Main results

We denote the horizontal and vertical components of the velocity field at the free
interface by

Gy + nx¥x

(A7) Vi= Vo) = ya =B, Bi= BOp) =

and the “good unknown” of Alinhac

(1.8) w =y — Op"V(B(n, ¥)n,

as introduced in [3]] (see Definition @] for the definition of the paradifferential
operator OpBW).

To state our first main result concerning the rigorous reduction to Birkhoff nor-
mal form of the system (1.3), let us assume that, for N large enough and some
T > 0, we have a classical solution

(19) (n.w) € CO=T, T, HN+5 x HV )
of the Cauchy problem for (1.3)) with the initial height satisfying

(1.10) / n(0, x)dx = 0.
T

The existence of such a solution for small enough 7" is guaranteed by the local well-
posedness theory (see, for example, Theorem [I.3)) under the regularity assumption
MY, V,B)t=0 € XN=Q/% where we denote

(1.11) XS = HSV2 x HSV2 x HS x HY.
Defining the complex scalar unknown

1 B 1
(1.12) wi= J5|D|74n + 5Dl o,

we deduce, by (I.9), that u € C °([-T.T: H N ), and u solves an equation of
the form d,u + i|D|'/?u = M=, (u,u) where M>>(u,u) is a fully nonlinear
vector field that contains up to first-order derivatives of u. Moreover, since the
zero average condition is preserved by the flow of (I.3)), it follows that

(1.13) / u(t,x)dx =0 ¥t e[-T,T].
T

This is our first main result.
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THEOREM 1.1 (Birkhoff normal form). Ler u be defined as in (1.12), with w as in

(L), for (n, ¥) solution of (1.3)) satisfying (L9)—(1.10). There exist N > K > 1
and 0 < g <K 1 such that, if

K
(1.14) s Fu)|| sy s <F
te[};ﬂkgo\\ O] g

then there exist a bounded and invertible transformation B = B(u) of HN, which
depends (nonlinearly) on u, and a constant C := C(N) > 0 such that

15 1B sz gny + 1B s vy < 1+ Cllull v
and the variable 7 := B (u)u satisfies the equation

(1.16) 0z = —i0zHzp(2.2) + XT,

where

(1) the Hamiltonian Hzp has the form

_ 1 1
(1.17) Hzp = Hgp + Hyp. Hyp(z.2):= 5/ [1D]72] dx.
T
with
_ 1
Hgll))(z,z) = Z k1 (lzel* = 212k P12k %)
keZ
1
(1.18) - Y kel (i Pl 2k Plal)
k1,k2€Z,
sign(k)=sign(k2),
|k2|<lk1l

where zj, denotes the k' Fourier coefficient of the function z.

2) X; = X;r4(u, U,z,7) is a quartic nonlinear term satisfying, for some
C :=C(N) > 0, the “energy estimate”

(1.19) Re/T |D|NXZ+4 - IDINzdx < C||z||§1-,N.

The main point of Theorem [I.T]is the construction of the bounded and invert-
ible transformation B(u) in (I.15) which recasts the water waves system (I.3))
into the equation (I.I6)—(T.19). Theorem [I.1] rigorously relates the flow of the
full water waves system (I.3)) to the flow of the system (I.16), which is made by
the explicit Hamiltonian term —idz Hzp plus remainders of higher homogeneity.
These remainders are under full control thanks to the energy estimates (I.19). The
Hamiltonian Hzp is integrable, as observed in [12,(16]], and its flow preserves all
the Sobolev norms; see Theorem[I.4] Thus, relying on Theorem|[I.1] we can prove
the following result:
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THEOREM 1.2 (Long-time existence). There exist so > 0 such that, for all s >
So, there is g9 > 0 such that, for any initial data (ng, Yo) satisfying (recall (1.11)))

(1.20) (0, Yo, Vo. Bo)llxs < e < ¢o, fqr no(x)dx = 0,

where Vy = V(no,¥o), Bo := B(ne. o) are defined by (1.7), the following
holds: there exist constants ¢ > 0 and C > 0, and a unique classical solution

(n, ¥, V. B) € CO([~T¢, Ts], X®) of the water waves system (I.3)) with initial con-
dition (n. V) ;=0 = (n0. Vo) with

(1.21) T, > ce™3,
satisfying

[ ;upT](ll(n, Wllasxas + 1V, B)|gs-1xps—1) < Ce,
(1.22) o

/ n(t, x)dx = 0.
T

Let us briefly describe some of the key points of the above results:

(1) To our knowledge, Theorem is the first normal form ¢~ existence re-
sult for dispersive PDEs with a quadratic nonlinearity in the absence of external
parameters (and excluding equations admitting conserved quantities that control
high Sobolev norms). One of the main difficulties is that (I.3)) presents a fam-
ily of nontrivial quartic resonances, the Benjamin-Feir resonances (I.27), which
are potentially a strong obstruction to controlling the dynamics for times of order
£~3. For parameter-depending PDEs with external parameters one can avoid such
nontrivial resonances by modulating the dispersion relation, cf. paragraph “Param-
eters” below Theorem [L.4

(2) The stability time ~ £~3 in Theorem is expected to be optimal in
view of the presence of quintic resonances as exhibited by Craig-Worfolk [12] and
Dyachenko-Lvov-Zakharov [15]. In other words, one cannot expect a stability time
~ &~* for all initial data.

(3) We develop a general method to justify the formal/heuristic calculations of
the Hamiltonian Birkhoff normal form of any Hamiltonian PDE. Applying several
nonlinear flow conjugation maps (generated by paradifferential or smoothing op-
erators) we transform (I.3) in Poincaré-Birkhoff normal form (see (I1.29)—(1.30)),
which is not a priori explicit. Then, a key step in the proof of Theorem [I.T]is a nor-
mal form uniqueness argument to identify the cubic Poincaré-Birkhoff resonant
system with the Hamiltonian equations associated to the Hamiltonian Hzp com-
puted by a formal expansion in [[IT}[12L[I5][16] (see (I.I7)—(I.18)). The uniqueness

3 We did not try to optimize the regularity index sg. With a more careful analysis one could likely
pick some so < 30. In any case, the Sobolev regularity is an unimportant aspect in the study of the
long-time behavior of classical solutions to quasilinear problems.
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of the normal form is based on the absence of cubic resonances. An inspiration
for this identification argument is the famous Moser’s indirect proof of the conver-
gence of the Lindsted power series to the KAM quasi-periodic solutions [30].

We also make a couple of technical comments about the rigorous conjugation of
(T.3) to its cubic Poincaré-Birkhoff normal form.

¢ Besides the resonant interactions, one also needs to pay attention to near
resonances, which can prevent the boundedness of Poincaré-Birkhoff nor-
mal form transformations. We overcome this issue by performing an iter-
ative reduction of the water waves equations (1.3) to constant integrable
coefficients, modulo smoothing remainders; see (I.28). In this process
we identify and exploit specific algebraic cancellations of (1.3) in infinite
depth.

e Since the dispersion relation \/m is sublinear, our reduction procedure
substantially differs from the recent work of Berti-Delort [6]], where the
dispersion relation ~ |k|3/2 is superlinear. Moreover, in contrast to [6] we
have to deal with nontrivial resonances (the Benjamin-Feir resonances) that
we cannot eliminate modulating the surface tension parameter as in [0],
and we do not restrict to even initial data. However, we still employ the
paradifferential framework of [6] as it readily provides us with a convenient
paralinearization of the Dirichlet-Neumann operator (I.4)).

We have chosen to formulate the long-time existence result of Therem[I.2]using
the original symplectic variables (7, ) as well as the velocity components (V, B)
in (1.7) consistently with the following local existence result.

THEOREM 1.3 (Local existence [[1]]). Let s > 3/2 and consider (ng, Vo) such that
(no. Yo, Vo, Bo) is in X*; see (I.11).

Then there exists Tioc > 0 such that the Cauchy problem for (1.3) with initial
data (9. Vo) has a unique solution (n,v) € C°([0, Tioe], H*T1/2) x Hs+(1/2))
with (V, B) € C%([0, Tioc], H® x H®). Moreover, denoting by Tx the maximal time
of existence of (n, V), if, for some Ty > 0,

(1.23) sup [[(n. ¥, V, B)(?)xs < +o0,
[0,T0]

then To < Ty and supjo 1,1 (. ¥, V, B)(@)[|xs < +o0.

Theorem @] is essentially the local existence result [[1, theorem 1.2], stated in
the case of the torus T, for a fluid in infinite depth. The result is based on en-
ergy methods for hyperbolic symmetrizable quasi-linear systems, which are the
same in T¢ and in R?. By time reversibility, the solutions of (T.3) are defined in
a symmetric interval [—7, T']. In agreement with Theorem [1.3] at any time ¢ the
solution (n, v, V, B) of Theorem belongs to the same space X* as the initial
datum (see (1.20)), but in (I.22) we control only a weaker norm of the solution.
This is a well-known phenomenon of the pure gravity water waves equations (see,
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for instance, [1,/2]]): in the variables (1, w) the Sobolev regularity of the solution
is preserved along the flow, but there is a loss of derivatives in passing to the un-
knowns (17, ¥). The weaker bound (I.22)) is still more than sufficient to apply the
continuation criterion of Theorem [L.3l

1.2 Some literature, the Dyachenko-Zakharov conjecture, and some ideas of
the proof

The local well-posedness of the water waves and free boundary Euler equations
has been addressed by many authors (see, for example, [[1}{10,[31}33]]), and it is
presently well understood; we refer to the review [27) sec. 2] for an extensive list
of references. In particular, for smooth enough initial data that are of size &, the
solutions exist and stay regular for times of order e~!. When the horizontal variable
x € R4, for sufficiently small and spatially localized initial data, it is possible to
construct global-in-time solutions exploiting the dispersive properties of the flow.
Results for have been proved in [2,22}24,[32,[34]] and in [20,35]] for the 3-D
case. We refer again to [27] and to the introduction of [14], for a more detailed
presentation of these results.

Long-time existence on tori. When the horizontal variable x € T, there are
no dispersive effects that control solutions for long times, and a tool to extend the
lifespan of solutions is normal form theory. To explain the idea, let us consider a
generic evolution equation of the form

(1.24) dru +iw(D)u = Q(u,u), u(t =0)=ug, |uollgny <se,

where w(D) is a real Fourier multiplier, and Q is a quadratic nonlinearity that
depends on (u, ) and their derivatives in a quasi-linear way. In the case of
the dispersion relation is (k) = y/[k|. An energy estimate for (T.24) of the form
%E(I) < Jlu@)|| g~ E(t), where E(t) ~ ||u(t)||%1N, allows the construction of
local solutions on time scales of O(¢1). In order to prove existence for times of
O(£72) one can try to obtain a quartic energy inequality of the form %E () <
lu(t) ”1211 ~ E (). For (I.3) inequalities of this type have been proven in [2,21,24]
34]; see also [23],26] for capillary waves, and [7] for gravity-capillary water waves
(relying on methods developed in this paper). Although some delicate analysis is
needed due to the quasilinearity of the PDE, the possibility of proving such quartic
energy estimates ultimately relies on the absence of 3-waves resonances, that is,
nonzero integers (71, 13, n3) solving, for some o; € {+, —},

(1.25)  orwny) + caw(ng) + o3w(ni) =0, oyny + oany + o3nz = 0.
The Dyachenko-Zakharov conjecture. In order to extend the lifespan of solutions

of (T.3) up to times of order £~3 one may try to obtain a quintic energy estimate
like %E(Z) < |lu(r) ||21N E(t). At a formal level, this would be possible in the
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absence of nontrivial 4-waves resonances, namely integer solutions of
o1w(ny) + o20(n2) + o3w(n3) + ogw(ng) = 0,

(1.26)
0111 + 021 + 0313 + 0ang = 0,

which do not appear in pairs with corresponding opposite signs. This property is
not satisfied by the gravity water waves system (I.3). Indeed, as shown in [16],
there are many solutions to (1.26). For example, if 61 = 03 = | = —0p = —04,
in addition to the trivial solutions (ny,n2,n3,n4) = (k,k, j, j), there is the two-
parameter family of solutions, called Benjamin-Feir resonances,

U =22 na =20+ 1>

1.27
(1.27) AeZ\{0}beN n3 = A(b* + b + 1), ng = A(b + 1)?b?}.

We then perform a diagonalization of the paralinearized system up to smooth-
ing remainders, obtaining system (3.33)); see Proposition [3.10]

Applying a purely formal reduction to Birkhoff normal form up to order 4, the
trivial resonances give rise to benign integrable monomials of the form |zx|?|z j 2,
whereas the Benjamin-Feir resonances could give nonintegrable monomials of the
form z_3p2Z; 4122202 +6+1)22Ab+1)262 T C.c. We refer to Section @ for
more details. A striking property proved in [16] (see also [11,|12]]), is that the
coefficients of the formal Birkhoff Hamiltonian that are supported on are
actually zero. In particular, one has the following:

THEOREM 1.4 (Formal integrability at order 4 [[11,[12,(15|16]]). There exists a for-
mal transformation ® such that the truncation of H o ® at order 4 of homogeneity
is given by Hzp as in (I.18). Moreover, Hzp is integrable (can be written in
action-angle variables as (6.18)) and possesses the actions |z,|%, n € 7 \ {0}, as
prime integrals. In particular, its flow preserves all Sobolev norms.

This result is a purely formal calculation, and no actual relation is established
between the flow of H (which is well-posed for short times) and that of H o
or Hzp. This is the goal of Theorem [I.1 Before describing some ideas for the
proof of Theorem[I.T|we recall some other normal form results when the dispersion
relation w(k) in (I.24)) depends on additional parameters.

Parameters. Under suitable nondegeneracy conditions one could prove that, for
most values of the parameters, there are no N-waves resonances, that is, integer
solutions of Zj-\;l ojw(n;) = 0, Zf;l ojnj = 0, except the trivial resonances.
In this direction we mention the normal form results [5},/13]] for Hamiltonian semi-
linear, resp., quasi-linear, Klein-Gordon equations. For 1-D, resp., 2-D, gravity-
capillary water waves, the first eV, resp., £73/3+ | existence result was proved
in [6]], resp., [28]], for almost all values of the surface tension. See also [[19] for fully
nonlinear 1-D Schrodinger equations with an external convolution potential used
as a parameter. We finally mention that time quasi-periodic, even in x, solutions
have been constructed in [9]], resp., [4]], for 1-D gravity-capillary, resp., gravity,
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water waves using the surface tension, resp., the depth, as a parameter. We remark
that a key point of Theorems [I.T]and[1.2]is the absence of external parameters.

1.3 Ideas of the proof of Theorem (1.1

Step 1. Diagonalization up to smoothing remainders.

We begin our analysis by paralinearizing the water waves system ((1.3)), ex-
pressed in the complex variable U := | | introduced in (L.12); see Propositions

BIlandB.3

Step 2. Reduction to constant, integrable coefficients and Poincaré-Birkhoff nor-
mal forms. In Section ] we reduce all the paradifferential operators in the diago-
nalized system (3.33) to constant-in-x coefficients, which are “integrable” in the
sense of Definition @.1] up to smoothing remainders of homogeneity 2 and 3, and
higher-order “admissible” contributions satisfying energy estimates of the form
(L.T9) (see Proposition [4.4). The most delicate reductions concern the highest-
order fully nonlinear transport term iOpBW (V£)w and the quasilinear dispersive
term i0pBV ((1 + a(O))|E|%)w in the right-hand side of (3.33).

Let us briefly describe how to deal with the transport term. At the highest order,
system looks like 3;,w = —iO0pBV(VEwW + --- where V. = vq(u;x) +
V2 (u; x) and the functions vy, vy are, respectively, linear and quadratic in . In
Sections and we construct a bounded and invertible map @Y as the flow of
the paradifferential operator iOpBW (b(u; 6, x)£) where

p: 6, x)

b(u;0,x) =
(u:6,%) 1 + 6Bx(u;0,x)

and  B(u;x) = B1(u;x) + Ba(u;x)

is a real-valued function to be determined. Here B (u; x), B2(u; x) are functions

respectively linear and quadratic in u. Setting v = ®?=ly we obtain d;v =
—10pPV((V(u; x) + 8 B(u: x) + Q(V1, B1))§)v + -+ where Q(vy, B1) is areal
function, quadratic in (v, 81), and “- - - ” denote paradifferential operators of order

less than 1, or admissible terms satisfying (I.19). Then we look for § solving
V(u;x) + 0, 80; x) + Q(Vy, B1) = £(u) + O(u?) where £ (u) is constant-in-x.
However, in general, one can only obtain

I pu) + V) + Q1. 1)

> (vgl));|un|2+ > (vgl)):;nunﬂeiz”erO(ﬁ),
neZ\{0} neZ\{0}
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where (Vgl));{ n, are some coefficients depending on the function V. We then

verify the essential’|cancellation (vgl)) ,J{ —_, = 0, thus obtaining

dv = —10p®V((t(w) + O ))E)v + -+, L) = % > nlafjual*.
neZ\{0}

Note that this equation reads, in Fourier,

i
b= ——( 2 Jlill ) nom,
JE€Z\{0}
up to higher-order admissible terms, where the cubic vector field contains only
Poincaré-Birkhoff resonant cubic monomials, namely of the form (I.30), which
are integrable, i.e., of the special form ¢; ,|vj|?vy.
Similar arguments allow us to reduce to constant coefficients—and in Poincaré-
Birkhoff normal form—the modified dispersive term i(1 + a2)|€|*/? and all other
lower-order operators. We then obtain a system of the form

(1.28) 0z = —8(2)dxz —1|D|22 + r_12(z: D)[2] + R(z) + Xg

where r_ /, is a constant-coefficient integrable symbol of order —1/2, R(z) a very
regular nonlinear term, and X>4 an admissible remainder satisfying (I.19). Note
that the cubic integrable vector field —{(z)dxz+r_1/2(z: D)[z]in is already
in Poincaré-Birkhoff normal form.

Step 3. Poincaré-Birkhoff transformations and normal form identification.

In Section[5|we apply transformations to eliminate all nonresonant quadratic and
cubic nonlinear terms in R(z). Here, potential losses from small divisors created
by near-resonances (see Proposition [5.3)) are compensated by the smoothing prop-
erties of R. We then obtain a new system that is in Poincaré-Birkhoff normal form

(Proposition [5.2))
(1.29) 0;7 = —(2)0x2 — i|D|%Z +7r_1/2(z: D)[z] + R™(2) + X>y

res . § : 01,02,03 01,02 03 ,inXx 01,0203
(1.30) R™(z) := Cninans n1%n2in3€ " Cnilnans cC.

o1n1+02n2+03n3=n
orw(n1)+o2wm2)+osw®ns)=w(n)

At this stage we do not know if the equation (1.29)—(1.30) is Hamiltonian since
we have performed nonsymplectic transformations. This is why we call (1.29)-
(T.30)) the cubic Poincaré-Birkhoff normal form of (I.3]), and not its (Hamiltonian)

4 While we do verify explicitly several key cancellations, some, but not all, of them can be derived
by the following invariance properties: (i) the water waves vector field X(n, ) in the right-hand side
of (T.3) is reversible with respect to the involution

S [%))] "~ [—Z/E:;)c)}’

ie., X oS = —S o X. (ii)) X maps even functions into even functions.
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Birkhoff normal form. The coefficients ¢ 5253 are in principle computable, but

their explicit expression is definitively very involved. Then, the last main step in
Section[6.2]is an identification argument to prove that the cubic Poincaré-Birkhoff
terms in (1.29)—(1.30) are uniquely determined and coincide with the Hamiltonian
system generated by the fourth-order Birkhoff normal form Hamiltonian Hzp in

(L.18), namely
—8(2)Bxz + r_1/2(z: D)[2] + R (2) = —idz HSY,.

The uniqueness of the normal form is based on the absence of cubic resonances. A
related argument in the context of linear KAM norm form is given in [[17]].

2 Functional Setting and Paradifferential Calculus

In this section we introduce our notation and recall several results on paradif-
ferential calculus, mostly following chapter 3 of [|6]. We find convenient the use
of this setup to obtain our initial paralinearization of the water waves equations
(1.3) with multilinear expansions, as stated in Proposition 3.1} and several tools for
conjugations via paradifferential flows, which are contained in Appendix [A.2]

Given an interval / C R symmetric with respect to = 0 and s € R we define
the space

K
cK(r.ms(r.c?) = () c*(1: m7*(1:C?),
k=0
endowed with the norm

K

@D supllUG ks where U ) ks = D [0FUC)| s

tel k=0
We denote by CfR (I, H5(T, C?)) the space of functions U in CX (1, H%(T, C?))
such that U = [%]. Given r > 0 we set
(2.2) BSK(I;r) ={U € CE(, H5(T;C?) : sup ||U(. ) |ks < r}.

tel

With similar meaning we denote CX(1; H*(T;C)). We expand a 27 -periodic
function u(x), with zero average in x (which is identified with u in the homoge-
neous space), in Fourier series as

i
einx

1 .
(23) M(X) = Z ﬁ(n) , ﬁ(n) - / M(X)e_mx dx.
neZ\{o} Van V2 JT
We also use the notation u;l := u, := #i(n) and u,, := U, := i(n). Forn €

N* := N\ {0} we denote by I1, the orthogonal projector from L?(T;C) to the
subspace spanned by {e*, e™"*} je.,

inx —inx

¢ + u(—n)
V2 V2r’

(Hpu)(x) := u(n)
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and we also denote by IT, the corresponding projector in L2(T,C?). If U =
(Ui,...,Uy) is a p-tuple of functions, 77 = (n1,...,np) € (N*)?, we set

2.4) ;U == (I1,, Uy, ..., I, Up).
We deal with vector fields X that satisfy the x-translation invariance property

25) Xorg=190X VO € R where1g:u(x)r— (tgu)(x) := u(x + 6).

Faradifferential operators. We first give the definition of the classes of symbols
that we are going to use, collecting Definitions 3.1, 3.2, and 3.4 in [6]].

DEFINITION 2.1 (CLASSES OF SYMBOLS). Letm € R, p, N € N with p < N,
K'<KinN,r > 0.

(i) p-homogeneous symbols. We denote by f‘l’," the space of symmetric p-

linear maps from (H (T ; C2))? to the space of C*° functions of (x, §) €
T xR, U — (x,&) - a(ld;x,§)), satisfying the following. There is
@ > 0and, for any o, 8 € N, there is C > 0 such that

P
@6 [pefamaux o)l < Cla* € T I, U2
J=1
forany U = (Uy,...,Up) in (H®(T;C?)P, and 7i = (n1,....n,) €
(NF)P.

Moreover, we assume that, if for some (ng,...,np) € N x (N*)?,
we have I1,,a(I1,, Uy, ..., Iy, Up: -) # 0, then there exists a choice of
signs 0, ...,0p € {—1, 1} such that Zf:o ojnj = 0. This condition is
automatically satisfied by requiring the translation invariance property

2.7) a(te;x, &) =ald;x +60,5) VO eR.

For p = 0 we denote by f(’)" the space of constant coefficients symbols
& — a(§) that satisfy (2.6) with @ = 0, and the right-hand side replaced
by C(§)" P,

(i) Non-homogeneous symbols. Let p > 1. We denote by I'}F p[r] the
space of functions (U;t, x,&) — a(U;t, x, &) defined for U € leg(l; r)
for some large enough s¢, with complex values such that for any 0 < k <
K — K’ and any 0 > &9, there are C > 0, 0 < r(0) < r, and for
any U € BE(I:7(0)) N CFX'(1, HO(T;C?)) and any e, B € N, with
o <0—59

@8  |Feofawinx.e)| < CO PN ks, IV Ikt ko

(iii) Symbols. We denote by EF[”;’ K'.p [r, N the space of functions
U, t,x,8) > a(U;t,x,§)
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such that there are homogeneous symbols a, € f‘g” forg=p,...,N—1
and a nonhomogeneous symbol ay € I'g g 5[] such that

(2.9) aU:t.x.8) =Y ag(U.... . Uix.&) + ay(U:t. x, ).

We denote by X' K.K'.p [r, N] ® M3 (C) the space of 2 x 2 matrices whose entries
are symbols in ZI’K K'.p [r,N].

Remark 2.2. The property means that the dependence with respect to the vari-
able x of the symbol a(Uf; x, £) enters only through the function U (x). It implies
the more general assumption made in [6]): if 1, a(I1,, Uy, ..., I,,Up:-) # 0,
then there is a choice of signs o0y, ..., 0, € {—1, 1} such that Zf:o ojnj = 0. We
mention this condition to be consistent with the notation of [6].

Note that

aeFm beFm =>abel“;1+zm dya eI, Bgaef;,"_l;

a E F?,K/,p[r]’ K/ + 1 S K
(2.10) = 810 € UF gy plrl. 8xa € TR g olr], 8ga € TR L7):

14 4
a€Tg g Hlrl.b € TR g 'l = ab e TR L I7);

ad;-) € f‘;," = a(U,....,U;) eTg,y,lr] vr>o0.

Throughout this paper we will systematically use the following expansions, which
are a consequence of 2.7) and u € H°(T;C). If a; € T'?", then

@Iy aih == Y e,

T peZ\{0},o=+

for some (a1)9(§) € C,andif ap € f;”, then

io(ny+n2)x
22U.Uix.6) = ) (a2)gl, €y, —
n1,n2€Z\{0}
2.12) o=+
ei(nl—nz)x

Y @ Oun T ——

n1.n2€Z\(0} 2
for some (az)y; nz(é) € C with 0,0’ = =£. In the sequel for simplicity we may
also write ax(U; x, §) instead of ax (U, U; x, §).

We also define the following classes of functions in analogy with our classes of
symbols.
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DEFINITION 2.3 (Functions). Fix N € N, p € N with p < N, K, K’ € N with
K’ < K, r > 0. We denote by ]-3,, resp., Fx,k/,plr]l, ZFp[r, N], the subspace
of f‘l(,), resp., Fg [r], EFI(,) [r, N], made of those symbols that are independent of
&. We write FR, resp., .Flﬂﬁ‘,K,’p[r], E]—"} [r, N], to denote functions in fp, resp.,
Fk,k,plr], ZFp[r, N], which are real-valued.

Note that functions a1 € .7?1, ap € .7?2 expanded as in (2.11)), (2.12) are real-
valued if and only if

@213 @On =(a)y, (@2l = @inss (22 = @2y
Paradifferential quantization. Given p € N we consider smooth functions y, €
C®(R? x R;R) and y € C®(R x R;R), even with respect to each of their
arguments, satisfying, for some 0 < § < 1,
supp xp C {(§',§) € R? x R; [§'] < §(8)}, xp(£.§) = L for || < 5(£)/2,
supp x C {(§".§) € R x R [§'] < 8(€)}, x(§.8§) = L for [§'] < 5(€)/2.

For p = 0 we set yo = 1. We assume also that

0292 xp (&', 6)] < Capl6) ™l VaeN, peN,

and

9205 1 (&.6)| < Cap (€)™ Va.peN.

A function satisfying the above condition is y(&’,€) := ¥(£§’/(£)) where ¥ is a
function in C§°(IR; R) having a small enough support and equal to 1 in a neighbor-
hood of 0.

DEFINITION 2.4 (Bony-Weyl quantization). If a is a symbol in rm, resp., in
FI”(’, K'.p [r], we define its Weyl quantization as the operator acting on a 25 -periodic
function u(x) (written as in (2.3)) as

1 N Ck
(2.14) op¥ (ayu = F Z (Za(k —Js

keZ “jeZ

Ja)

2 V2
where a(k, £) is the k™-Fourier coefficient of the 277 -periodic function x > a(x, £).
We set, using notation (2.4),

ay, U x, &) = Y xpli, ©)a(TzU; x, £),
neEN?
1 “ e
ay(U;t,x, &) = —/ X(é/,é)a(U;t,E/,E)elgxdé/,
21 R
where in the last equality @ stands for the Fourier transform with respect to the
x-variable. Then we define the Bony-Weyl quantization of a as

.15 0p®™W(aWU;-) = 0p7 (ay,Us-)), Op®V(a(U;t,-)) = Op¥ (ay(U;t,")).
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If a is a symbol in ZI'¥ p[r, N1, that we decompose as in (2.9), we define its
Bony-Weyl quantization

N—-1
0PV (aU:t.)) =Y 0p®WV(ag(U.....U:)) + 0p®V(an (U:t.)).
q=p
¢ By the translation invariance property (2.7)), we have
0p®*V(ag(weU. ....19U: - §))[1eV]
= 19(0p®*V(aq(U, ..., U;- £)[V]).

e The operator Op®W (a) acts on homogeneous spaces of functions; see Proposi-
tion 2.6

e The action of Op®W(a) on homogeneous spaces only depends on the values of
the symbol a = a(U;t,x,§) (or a(ld;t, x,§)) for |§| > 1. Therefore, we may
identify two symbols a(U; ¢, x, &) and b(U;t, x, &) if they agree for |§] = 1/2.
In particular, whenever we encounter a symbol that is not smooth at £ = 0, such
as, for example, a = g(x)|§|™ for m € R \ {0}, or sign(§), we will consider its
smoothed out version y(§)a, where y € C*°(R;R) is an even and positive cutoff
function satisfying

(217) x() =0if[§| <. xE) =1if[g]>%. x>0 VEe(3.3)

e If ¢ is a homogeneous symbol, the two definitions of quantization in (2.13), differ
by a smoothing operator that we introduce in Definition 2.5 below.

(2.16)

Definition [2.4] is independent of the cutoff functions yp, x up to smoothing

operators that we define below (see definition 3.7 in [6]]). Given (n1,...,np41) €
N2+l we denote by maxa(ny,...,n p+1) the second largest among the integers
niy,...,np+1.

DEFINITION 2.5. Let K < Ke N NeN,N>1,ueR,p>0,and r > 0.

(i) p-homogeneous smoothing operators. We denote by ﬁ;p the space of
(p + 1)-linear maps R from the space (H®(T:C2))? x H®(T:C) to the
space H°°(T; C) symmetric in (Uy, ..., Up), of the form

(Ur,...,Up+1) = R(Uy, ..., Up)Upt1
that satisfy the following. There are . > 0, C > 0 such that

< oM. npe)? s
1o RO, Upsallz2 < €= 00 BT ,1:[1 ITL,, Uj 2
forany U = (Uy,...,U,) € (H®(T:C?)?, any Upy1 € H®(T;C),
any vector i = (n1,...,np) € (N*)? any ng,np+1 € N*. Moreover, if

(2.18) Mo R(Tp, Ut - .., Ty, Up) T, Upr # 0,
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then there is a choice of signs 0. ..., 0,41 € {£1} such that Zf’iol ojn; =
0. In addition, we require the translation invariance property

(2.19) R(tgl)[tgUp11] = ¢(RUIUpy1) VO € R.

(ii)) Nonhomogeneous smoothing operators. We denote by REP K'.N [r] the
space of maps (V, ¢, U) — R(V)U defined on

BE(1;r) x IxCK(1, H(T.C)) for some 59 > 0,

which are linear in the variable U and such that the following holds true.
For any s > so there exist a constant C > 0 and r(s) € ]0, r[ such that for
any V e BEK(I;r)yn CK(, H5(T,C?), any U € CK(I, H5(T',C)),

S0
any0) <k < K—K',and any ¢ € I, we have

105 ROV DU goicn
N
(2.20) = Z C(”U”k”,s”V”k/_,_K/,sO

K4k =k N1
10 ks IV IR T s IV s k7)-

(iii) Smoothing operators. We denote by ERIZ’ K, p[r, N] the space of maps
(V,t,U) — R(V,1)U that may be written as

N-1
R(V:OU = Y Ry(V.....V)U + Ry(V:n)U

q=p
for some R, in ﬁ;p, g=p,....N—1,and Ry in REPK, NIl
We denote by R ", [, N] ® M2 (C) the space of 2 x 2 matrices whose entries

K’K/7p
- —p
are in ZRK,K,’p[r,N].

o If R is in R, then (V.U) > R(V,....V)U is in Ry [r], ie., @20)
holds with N ~» p, K’ = 0.

oIf R; € ERIZ) K’ .p; [r, N],i = 1,2, then the composition operator Ry o Rj is
in SRk o 4, 1 N1

The next proposition states boundedness properties on Sobolev spaces of the
paradifferential operators (see proposition 3.8 in [6]).

PROPOSITION 2.6 (Action of paraditferential operator). Letr > 0,m € R, p € N,
K’ < K € N. Then:

(1) There is so > 0 such that for any symbol a € f’l’,", there is a constant C >
0, depending only on s and on with « = B = 0 such that for any U =
(Ur,....Up)

P
(2.21) 10P®™ (@ @: NUpi1ll grsmm < C [ 1Ui M s 1 Upt1ll s
Jj=1
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for p = 1, while for p = 0 (2.21)) holds by replacing the right-hand side with
CllUp+1ll gys-

(ii) There is so > 0 such that for any symbol a € I' }{” K, p[r] there is a constant
C > 0, depending only on s, r, and @) with 0 < o < 2, B = 0, such that, for
anyt € I,any0 <k < K — K/,

0P (Hhats )| s sy = CNON

olfa e XT¥ g, [r,N]withm < 0and p > I, then op®V(a(V;t,))U is in
SR o [ N,

Below we deal with classes of operators without keeping track of the number of
lost derivatives in a precise way (see definition 3.9 in [6]). The class /\%Zi denotes
multilinear maps that lose m derivatives and are p-homogeneous in U, while the
class M% K'.p contains nonhomogeneous maps that lose m derivatives, vanish at

degree at least p in U, and are (K — K’)-times differentiable in 7.
DEFINITION 2.7. Let p, N € N, with p < N, N > 1, K, K’ € N with K’ < K,
and m > 0.

(i) p-homogeneous maps. We denote by ./\71;’,1 the space of (p+1)-linear maps
M from the space (H(T;C2))? x H®(T;C) to the space H*®(T;C),

which are symmetric in (Uy, ..., Up), are of the form (Uy, ..., Upy1) —
MUy, ...,Up)Up11, and satisfy the following. There is a C > 0 such
that
p+1
1Ty M(TLEU) W,y Upt 2 < Clng +n1 + -+ np )™ | 1T, Ul 2
ji=1
forany Y = (Uy,...,Up) € (H®(T;C?%))?, any Upt1 € H>(T:C),
any vector 1 = (n1,...,np) € (N*)?, and any ng,np4+1 € N*. More-

over, the properties (2.18)—(2.19) hold.

(i) Nonhomogeneous maps. We denote by M% k. [r] the space of functions
(V.t.U) = M(V:0)U defined on BX(I:r) x IxCK(1, H*(T,C))
for some sop > O that are linear in the variable U and such that the fol-
lowing holds true. For any s > s¢ there exist a constant C > 0 and
r(s) € 10.7[ such that for any V € BE(1:r) n CX(1, HS(T.C?)), any
UeCKU H(T,C)),any0 <k < K —K’,and any ¢ € I, we have
135 (M(V:HU) (.- |l g7s—«—m is bounded by the right-hand side of (2.20).

(iii) Maps. We denote by EM%’ K p[r, N] the space of maps (V,t,U) —
M(V,t)U that may be written as

N—1
MV:OU =Y Mg(V.....V)U + My (ViU
a=p
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for some M, in /qgi,q = p.....N—1,and My in M% p, [r]. Finally,
we set

My = | M Mgl = M2l
m=>0 m=0
and XMk g7 plr, N] := Umzo EM’I?’K,’p[r].
We denote by SMZ% &, p[r, N] ® M2 (C) the space of 2 x 2 matrices whose

entries are maps in the class SMY% &, p[r, N]. We also set XMk g7 p[r. N] ®
M2 (C) = Uper EME g/ plr N1 ® Ma(C).

o If M isin ./\7;’,1, p>N,then(V,U) — M(V,...,V)U isin M%,O,N[r].
olfac ZFI”;’K,,p[r, N] for p > 1, then the map (V,U) — OpBV(a(V;t,))U is
in ZM%:K’,p [r, N for some m’ > m.
e Any R € ZRI_(’,’K,’ p[r, N] defines an element of EM%’ K'\p [r, N] for some
m > 0.
e If M € XMk g plr.N] and M € EMg gy alr. N — p], then the map
(V.t.U) = MV + M(V:0)V:0)[U] is in SMg g4 g, 7 N].
o If M € EME g, [r.N] and M e ZM%:K,’q[r,N], then the map M(U;t) o
M(U;1)isin EM?}”,”;’JH] [r, N].

Note that, given My € M, the property implies that

1 .
= E (n1+n2)
M{(U)YU = . (M2)30 . uG ug, o n+n2)x

ni,nn
ni,n2€Z\{0},
(2.22) 2<2)
1 .
+_ - pa—
+E Z (Mz)”unz”nlunzel(”l n2)x
n]anZEZ\{O}

for some coefficients (M»> gf’,nz € C with 0,0’ = £ and ny,n, € Z\{0}.
Composition theorems. Let ¢(Dx. Dg, Dy, Dy) := DgDy — Dy Dy where

Dy = %Bx and D¢, Dy, Dy are similarly defined.

DEFINITION 2.8. [Asymptotic expansion of composition symbol] Let K’ < K,

0,p.q bein N, m,m’ € R, r > 0. Consider a € EI‘I”(',K,’p[r,N] and b €

ZFI”;:K,,(] [r, N]. For U in Bf([; r) we define, for p < o — s¢, the symbol

(a#,b)(U;t, x,§)
0

2.23 1 (i k
223 > :F(Eg(Dx,Dg,Dy,Dn)) [a(U:t.x,8)b(U:t, y.n)]
k=0 " x=y.£=1
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modulo symbols in EF;{"}?;{) 4 N1

e By (2.10) the symbol a#,b belongs to ZFI"('}T;}+(][V, NJ.
e We have the expansion

1
a#pb:ab—l—f{a,b}—i—---,
i

up to a symbol in ZF}?}'K;&(I [r, N1, where {a, b} := 0gadxb — 0xadgb denotes
the Poisson bracket.

e Note that the terms of even (resp., odd) rank in the asymptotic expansion (2.23)
in the Weyl quantization are symmetric (resp., antisymmetric) in (a, ). Conse-
quently, the terms of even rank vanish in the symbol of the commutator [0p®W (a),

Op®V(b)].

PROPOSITION 2.9. [Composition of Bony-Weyl operators] Let K’ < K, p, p.q
beinN, m,m' € R,r > 0. Considera € ST ., [r,Nlandb € STg ., [r, N].
Then

R(U) = OpBw(a(U’ I x, S))O OPBW(b(Ua [, x, é))_OPBW((a#Pb)(Uv X, S))

K{)I—(F’r,nptr”ql [r. N1

PROOF. See propositions 3.12 and 3.15 in [6]. The homogeneous components
of the symbols a and b satisfy (2.7). Using (2.16) and (2.23)) one can check that
the homogeneous components of R(U) satisfy (2.19). O

is a nonhomogeneous smoothing remainder in ¥R

PROPOSITION 2.10. [Compositions] Letm,m’,m"” € R, K, K', N, p1, p2, p3,p €
Nwith K' < K, pr+p2 <N,p>0,andr > 0. Leta € ETg g p I N1

Re IR [ N1 and M € SME .,  [r,N]. Then

@) R(U:1) o OpP¥(a(U:1,x,£)), OpB¥(a(U;t,x,€)) o R(U:1) are in

—p+m
ERKaKlapl +p2 [r’ N]‘

() R(U:t) o M(U;t) is a smoothing operator in ERE‘,)I—(F’Tp/;era [r, N].

(iii) If Ra € RpY, then Ro(U, ..., U, M(U;t)U) belongs to

—,D-H’l’l”
ERK,K’,IJ2+P3 [, N1.

(iv) Letc € f’l’,”, p € N. Then the symbol
U—ceyU;t,x,8):=c,....UMU;t)U;t, x,8)
is in ST [, N1. Ifc € Fp then cpr € SFk.k/.ptpslts N1

K’K/7p+p3
Moreover ifc € T g, y[rlthency € TE ) y 17

(v)
0PN (e(U.... .U W:t.x.EDw=mwsw = Op™ B(U:1.x.8)) + R(U:1)
where b(U;t,x,&) = c(U,...., U MU;t)U;t,x,&) and R(U;t) is in
< [r, N].
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PROOF. See propositions 3.16, 3.17, and 3.18 in [6]]. The translation invariance
properties for the composed operators and symbols in items (i)—(v) follow as in the
proof of Proposition [2.9] O

Real-to-real operators. Given a linear operator R(U)[-] acting on C (it may be a

smoothing operator in ERI_(’) k71 Or amap in ¥ Mg kv 1) we associate the linear

operator defined by the relation

(2.24) R(H[V]:= R(U)[V] VV eC.

We say that a matrix of operators acting in C? is real-to-real, if it has the form
Ri(U) Rz2(U)

2.25 RU) = |+ — .

(2:23) © |:R2(U) Ri(U)

Note that
e if R(U) is a real-to-real matrix of operators, for ¥ = [3], then we have

ROHV]I=Z =|%].

Z
e If a matrix of symbols A(U: x,£), in some class XT'F ., | ® M2(C), has the

form (U;x.§) bU;x.§)
. . a ;x’ ;x’
AWU;x,§) = [b(U;x,—S) a(Us;x,—§) ]

then the matrix of operators OpBW (A(U; x, £)) is real-to-real.

Notation.

e To simplify the notation, we will often omit the dependence on the time
t from the symbols, smoothing remainders, and maps. Moreover, given a
symbol in EF?, k’,p We may omit to write its dependence on U when this
does not cause confusion.

e Since in the rest of the paper we only need to control expansions in degrees
of homogeneity of symbols, smoothing operators and maps, up to cubic
terms O(u?), we fix once and for all N = 3. We will omit the dependence
on r and N = 3 in the class of symbols, writing EF}(”’K,J), instead of
EFI”(" K p[r, 3], and similarly for smoothing operators and maps.

e A <y Bmeans A < C(s)B where C(s) > 0 is a constant depending on

s eR.
3 Paralinearization and Block Diagonalization

3.1 Complex form of the water waves equations

Following [1,[2]], we begin by writing the water waves system (I.3)) using the

good-unknown w = ¥ — Op®V(B(n,¥))n; see (I.7)—(T.8). The water waves
equations (1.3), written in the new coordinates

nl_ [nl|._ n
3. 2= )=y - o)

assume the following paralinearized form derived in [6]]:
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PROPOSITION 3.1. [Water-waves equations in (7], w) variables] Let I = [T, T]
with T > 0. Let K € N* and p > 1. There exists so > 0 such that, for any
s > 8o, forall 0 < r < ro(s) small enough, if (n, ¥) € BSK(I; r) solves (1.3), then

3m = |D]w + Op®V (—iVE — LYy + 0pBV(b_1(n; )

(3.2) )
+ Ri1(n, w)w + Ry (n. w)n

diw = —n + Op™(=iVE + 5)w — Op®™ (8B + VBx)n

+ Ry (n. w)o + Ry (n, @)1
where the functions V, B defined in (1.7) are in E]:II?,O,P the symbol b_1(n;-)
belongs to EFE}O’I, and the smoothing operators Ry, R/l, R, R’2 are in ERZ’OJ.
The vector field in the right-hand side of (3.2)-(3.3) is x-translation invariant, i.e.,

2.5) holds.

PROOF. The proof follows by the computations in [[6] in the absence of capil-
larity, specified in the case of infinite depth, in particular by propositions 7.5 and
7.6 and chapter 8.2 in [6]. The right-hand side in (3.2)) is the paralinearization of
the Dirichlet-Neumann operator in [[6]. The approach in [6] does not make use of
a variational method to study the Dirichlet-Neumann boundary value problem as
in [1L3]], but uses a paradifferential parametrix a la Boutet de Monvel, introducing
classes of para-Poisson operators whose symbols have a decomposition in multi-
linear terms. Moreover, G(tgn)[tg¥] = 19G(n)[¥], where 1y is the translation
operator in (2.5)). Hence the functions V, B satisfy the property (2.7), and the map
g in @]) satisfies G o 7yp = 14 o G. In conclusion, the whole vector field in the
r.h.s. of (3.2)—(3.3) satisfies the x-invariance property, and the smoothing remain-
ders satisfy (2.19) by difference. O

3.3)

In Section [3.1] we will provide explicit expansions for the symbols of nonnega-
tive order in (3.2)—(3.3) in linear and quadratic degrees of homogeneity.

Remark 3.2. [Expansion of the Dirichlet-Neumann operator ]
(i) Substituting (3.1) in the right-hand side of (3.2)), which is equal to G(n)V,
we have, using the remarks under Definition. [2.7]and the fact that B(n, y) €
E]:I]go | 1s linear in v, that G(n) — | D[ is a map in X M o1 and
34 Gy = |DIY + M)y + Moy + Mas (v

for some maps ]\71 € /ql, ]\72 € /\712, and 1\723 € Mko,3.
(i) The Dirichlet-Neumann operator admits a Taylor expansion (see, e.g., for-
mula (2.5) of [11]]) of the form

(3.5 Gy =Dy + Gy + G2y + G=3(y, D = —idx,
G1(n) := —0dxndx — |D|n|D|,

(3.6)
G2(n) := —1(D?*n?|D| + |D|n*D* — 2|D|y|D|n|D|),
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and where G 3 collects all the terms with homogeneity in 5 greater than 2.
The notation above |D|n|D]|, resp. |D|n|D|n|D|, means the composition
operator |D|ono|D|, resp., |D]ono|D|ono|D]|, of the Fourier multiplier
| D| and the multiplication operator for the function 7. We then see that the
quadratic and cubic components of the expansions (3.3]) and (3.4) coincide,
namely, G = ]\7[1 and G, = ]\72. It follows that G>3 is in Mk o,3.

We now write the equations (3.2)—(3.3)) in terms of the complex variable u de-

fined in (T.12).

PROPOSITION 3.3 (Water-waves equations in complex variables). Let K € N*
and p > 1. There exists s9 > 0 such that, for any s > sg, for all 0 < r < ro(s)

small enough, if (n, w) solves 3.2)-(33) and U := [%] with u defined in (1.12))
belongs to BSK (I;r), then U solves

Gy U= 0PN (ANUsE +idy (U X)[E]Z + Ao(U; x)
' _1(U;x,8))U + R(U)U

where

(3.9) A1 (U;x) = —[39]v(U:x)

(3.9 AippUsx) =[]+ [ 7 JaU:x). a:=3(3:B + VBy).
(3.10)  Ao(U;x) := =[98 ]Va(U; x),

A_1 is a matrix of symbols in EFK 11® Mo (), and R(U) is a matrix of smooth-

ing operators belonging to ZRK 1.1 ® M2(C). The vector field in the right-hand
side of (3.7) is x-invariant and it is real-to-real according to ([2.25).

PROOF. We first rewrite (3.2)—(3.3) as the system

nl_ Bw [ [—iVE-SE [El+boy n n
@.11) 9 [w] = Op ([ o —ivs+V;]) [w] + R(n,a))[w}

where R € ZRI_(’OO | ® M2(C) and the function ag := d; B + VBy isin E]-"[]? L1
We now symmetrize (3.11]) at the highest order, applying the change of variable

(3.12) [Z] — [IDl)l/4 |D|91/4][g}.

The conjugated system is, by Propositions [2.9/and [2.10]
(3.13)

Ml _ ~H BW([EY* o —iVE—Yx  |g|4+b_ €774 o n ~ |7
81[5]—0[9 (01 e ol 0y vt Tl |s|—‘/4])[5}+R(”"")[a]

for a new smoothing remainder R in ERKp 1+ | ® M2(C). Recalling 2.23) we
expand in decreasing orders the symbols in (3.13).
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DIAGONAL SYMBOLS. Up to a symbol in EFEIO , we have (using Proposition
and formula (2.23)))

614, (—iVE £ Yoyt g TV = —ive £ B,

OFF-DIAGONAL SYMBOLS. Up to a symbol in EFE?O/j we get (using Proposition

and formula Z23)) |&| =/ 4#, (€| + b—1)#,|&| 7"/ = |E|Y/? (recall that h_; is
in EFE}OJ) and, up to a symbol in EFEi/j, we have —|§|1/4#p(1 +ao)#,|§| /4 —
—(1 + ap)|€]*/2. The expansions above imply that the system (3.13)) has the form

Tl oBw(| -ve== &' 7 = =01
(314) at|:5j| - OP (|:_(1+a0)|$|1/2 —iVS-i—fo +A—l 5 +R(n,6l)) 5
where A_1 is a matrix of symbols in EFEll | ® M2(C) and R is in ERI_(lerll ®
M5 (C).

Finally, we write (3.14) in the complex variable (I.12)) (recall (3.12))), and we
deduce (3.7) with matrices as in (3.8)), (3.9), (3.10), and a new matrix of symbols
A_q in E[‘I}}M ® M5, (C) and a new smoothing operator R(U) in ERI_{f)l,l ®
M, (C), renaming p — 1 as p. Finally, since the Fourier multiplier transformation
(L.12) trivially commutes with the translation operators 7y, the water waves vector
field in (3.7) is x-invariant as the water waves vector field (3.2)—(3.3). O

In some instances we will write the water waves system (3.7) as
(3.15) 0,U = —iQU + MU)[U], Q:=|DI2[} ],

where M(U) is a real-to-real matrix of maps in E/\/l?1 | ® M3(C) for some
my > 0; see the remarks after Definition We will also write system (3.13) in
Fourier basis as

(3.16) 1ty = —iwptty + i(Fa(U) + Fo3(U))n. n € Z\{0}, w, :=+/|n|

where F»>(U) = M1(U)[U] is the quadratic component of the water waves vector
field and F>3(U) collects all the cubic terms (the second equation of (3.13) for u
is just the complex conjugated of the one for #). Using the x-invariance property,
the vector field F,(U) can be expanded as

eia(n 1+n2)x

R(U) = Z (F2 gﬁnzuglugz 2T
ni,n2€Z\{0}, 0=+
(3.17) e
+ Z (FZ)H 1npUniUng 2

n1,n2€Z\{0},

. . 7
with coefficients (£2)57 ,,,

Lemma[3.9]

in C. We provide the explicit expression of iF»(U) in
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Homogeneity expansions

By the expansion of the Dirichlet-Neumann operator in Remark [3.2] we get the
quadratic approximation of the water waves equations (1.3)),

din = |D|Y — dx(ndx¥) — | D|(| D),
3y =—n—3vi+ 3(DY)>

up to functions in .FIH§ 1.3~ In this section, using this expansion, we compute explic-
itly the quadratic vector field iF»(U) in (3.16)), and the homogeneous expansions
up to cubic terms of the functions V' and a appearing in (3.8)—(3.10). We write

(3.18)

(3.19) V=v1+Va+Vs3, V;eFr, j =12 Vs3€Fgqs

(3.20) a=ai+ax+axs a;j €F, j =12, a3 €Fg 3

In the following it is useful to note that the relation has inverse

(3.21) N = %|D|%(u+ﬁ), a)=$|D|_%(u—ﬁ).

LEMMA 3.4. [Expansion of V'] The function V defined in admits the expan-
sion

(322) V = wx + 3x(0p"™ (ID|w)n) — (| D]w)ix + V=3

where V>3 is a function in .7-"1150’3. Thus, in the complex variable u in , ,

we have

1
(3.23) vy = jaxlDr%(u—ﬁ),

iv2

1 3 1
vy = -3y (Op®V(IDI* (u —w))[ID|3 (u + 1)
(3.24) P (0r™ | )

DR @ D) (@eIDl e + D).

PROOF. By and using the expansion (3.5)), we deduce B = |D|y up to a
quadratic function in ~7:1]§,0,2~ As a consequence, by and (3.I), we have

V =y~ Bijx = (@ + Op"V (B))x — Bix
= oy + 3 (0P (I DIY)n) — (IDIY)nx

up to a function in ]-"%0,3. Since ¥ = w plus a quadratic function in .7:1]%0’2 (see
@B.1)) we get (3.22). O
LEMMA 3.5. [Expansion of 9; B] Let B be the function defined in (1.7). Then
a5 (B=-1Dhn- n|D*n + |DI(n|DIn) + | DI (—303 — 3(ID]w)?)
+ (| D]w)(|D|*w)

. Lo R
plus a cubic function in F K.1.3°
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PROOF. Recalling (1.7), and using (3.3), we have to compute the expansion of

B — (G + Nx¥x) _ GV + nxVx)2nx(Ne)x
(3.26) ! 1+ 72 (1 +12)2
= 0 (GMVY) + @rmx¥x + Nx(F:¥)x

plus a cubic function in F& , ,. For the first term in (3:26) we use the “shape
derivative” formula (see [29]])

~ .1 ~ ~ ~
(3.27) Gy = lim ~{G(1 + ey — Gy = G (BA) — 3x(V7)
where V' = ¥ — Bny is in (I.7). Then, using (3.26), (3.27), and (3.18), we obtain,

after simplification,

1 1
9B =—|D[n— EIDI((IDIW)Z) - §|D|W§ + D[ D]n)

(3.28)

+ MMxx — Yxx| DY
plus a cubic function .7-"}5‘1 5- Since dyxy = —|D|? and ¥ = o plus a quadratic
function in ]-"}5 1.» We have that (3.28) implies (3.25). O

We now expand the function a = %(BtB + VBy) that appears in (3.9).

LEMMA 3.6 (Expansion of a). We have
2a = —|D|n—n(ID*n) + |D|(|D|n) — 3|D|(@3 + (| D|w)?)
+ (ID|w)(IDPw) + 0x (x| D]w)

plus a cubic function in ]-"}%0,3.

PROOF. By (3.22) and we have that a = %(BtB + VBy) = %BtB +
%a)x (] D|¥yx) plus a cubic function in .7-"1151’3. Hence implies the lemma. [

We Fourier develop the functions aj, Vi, a2, Va, as in 2.11), (2.12).

LEMMA 3.7. [Coefficients of v and V2] The coefficients of V1 and vy in (3.23)-
(3.24) are, for any n € 7.\ {0}

(329)  (VOF = (0 = palal TV W =all ()07, = 0.

n,—n

PROOE. It follows by explicit computation using (3.23), (3.24), recalling (2.3)),
and using Definition [2.4] of the Bony-Weyl quantitation (and (2.14)). O

We now compute the coefficients of the linear and quadratic component of a in
B.9).
LEMMA 3.8. [Coefficients of a1 and aa] The coefficients of aj and az in (3.20)
satisfy
(330 F =Gy = —55% Gy = 5P Ve e Z)\ {0,
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PROOF. It follows by the explicit expression in Lemma [3.6] and passing to the

variables in (I.12). O
It turns out that (az),;", = |n]%/2, but we do not use this information in the
paper.

LEMMA 3.9 (Quadratic water waves vector field iF>(U)). The coefficients
(F2);f o defined in 3.17) of the quadratic water waves vector field iF2(U) in
(B.106) sarisfy

_ _ 1,7
(3.31) (F2)y —p = (F2) 2, = 274 n|3.

PROOF. It follows by direct computatiup to ons using equations (3.18), passing
to the variables u, u defined in (1.12)) and recalling that, by (1.7) and (3.5]), we have
the approximate identity w = ¥ — OpBW(|D|y)n. O
3.2 Block-diagonalization

The goal of this section is to transform the water waves system (3.7]) into the sys-
tem (3.33)) below, which is block-diagonal in the variables (1, %) modulo a smooth-
ing operator R(U).

PROPOSITION 3.10 (Block-diagonalization). Let p > 1 and K > K' := 2p + 2.
There exists so > O such that, for any s > sq, for all 0 < r < ro(s) small enough,
and any solution U € BSK (I;r) of (3.7, the following holds:

(1) there is a map \Pgiag(U), 0 € [0, 1], satisfying, for some C = C(s,r, K) >
0
9% W V1 g5 + 95 (Wi @)™ 1] o4
<A+ ClUlks) IV ks
forany0 <k < K—K' andany V = [2]in C*[i&_K,(I, H*(T;C?)),
6 €[0,1];
(ii) the function W := (¥ (U)U )g—, Solves the system

diag
(3.33)
_ BW ([ dWU;x.&)+r_1,2(U;x.§) 0
%W =0p ([ 0 dUsx,~§)+r—1,2(U3x,—)

where d(U; x, &) is a symbol of the form
(3.34) d(U;x.£) := —iV(U: )€ —i(1 + a0 U; x)) [/

where a® is a function that is in 2‘7:1]1?

(3.32)

])W + R(UH[W]

1.1 T=1/2U; x,§) is a symbol in

EFE}Z/; o1 and R(U) is a real-to-real matrix of smoothing operators in

ERI_(,,)zp+2,1 ® My (C). The function a©® has the expansion

(3.35) a® =a; + ag)) + a(ZO;, ago) =az— %a% e FX,

where ay and aj are defined in (3.20).
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Proposition[3.10]is proved by applying a sequence a transformations that iteratively
block-diagonalize in decreasing orders. In Section [3.2] we block-diagonalize
at the order 1/2, and in Section [3.2] we perform the block-diagonalization
until the negative order —p.

Block-Diagonalization at order 1/2

In this subsection we aim to diagonalize the matrix of symbols A1/, (U: x)|&|
in (3.7), up to a matrix of symbols of order 0. We apply a parametrix argument con-
jugating the system with a paradifferential operator whose principal matrix
symbol is

1/2

1+a+ )k+
C:=[l%] fW:ix):= ,
336 £/ VU +a+2r4)?—a?
—d
gU;x) := ,
V(U +a+21;)?2—a?
where

(3.37) Ar =2A1(U;x):= x4/ + a)? —a?

are the eigenvalues of 4;/,. We have
(3.38) det(C) = f2—g2 =1, Cc'= [_{g £,
and
-1 _ - _[-(+a®) 0
(3.39) ¢ Ayt = AJF[ Ol (1)] - [ ( Oa : 1+a(0)]’
a® =2y -1eTFg, .

LEMMA 3.11. There exists a function m—1(U; x) in £Fk,1,1 such that the flow

3wl (U) = 0p®V (M)W, (U), ¥°,(U) =14,
(3.40) 0 m 1 (Ux)
M_y = [mq(U;x) 0 ]’

has the form

W2 WDf;_, = 0p"M(CTH + RE),
RTU) € SR | ® Ma(O).

Moreover, if U solves (3.77)), then the function

3.41)

(3.42) Wo = (¥2,(U))),_, U
solves the system

d(U;x.£) 0

G43) 8w = op™ ([P sy

} n A(O))Wo + ROW)W,
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where d(U; x, §) is the symbol in (3.34) with a O (U x) defined in (3-39), a matrix
of symbols

co(U:x,§)  bo(U:x,§)
bo(U:x,—§) co(U:x,—§)
and a real-to-real matrix of smoothing operators RO (U) in ERI_([)Z | ® Ma(C).
Moreover, the function a®® has the expansion (333).

_1
(3.44) A© = ( ) o€ X5y bo € Xy,

PROOF. Formule (3.41) follow by reasoning as in proposition 3.6 and corollary
3.1 in [18]]. We conjugate (3.7) with the flow (‘IJQI(U))M:1 using formula (A.2)
in Lemma[A.T] By Proposition [2.10| we deduce that, if U solves (3.7), then

3, Wo B20 5,0pBY (1 0pBY ()W
+ 0pPV(CTY)OPPY (41 +id) 17 + Ao + A—1) OpBY (C)Wy

up to a matrix of smoothing operators in ERI_(’) 2+ 11 ® M (C) acting on Wy. More-
over, Proposition [2.9]implies that

(3.45) 9, Wp = OpBW(a,c—l#pC F+ CTY, (A1 E + 410 6 + Ao + A_1)#pC)WO

up to terms in ERI_{);; ® M>(C). By (3.36), (3:38) we have (3,C)#,C =

((3: /g — (3:8) /9 & ] because differentiating /2 — g% = 1 we get (3; /) f —
(0:2)g = 0.

By (3.8)), using symbolic calculus and f2 — g2 = 1 (see (3.38)), we obtain the
exact expansion

C U, (A15)#,C = —VE[§ 9]+ V(frg —8x [T 6]
By (3:39) we have C_l#p(iA1/2|E|%)#pC =il + a(O))|g|%[—01 ] modulo a
1

matrix of symbols ZI’IE% | ® M2(C). Moreover, recalling (3.10), we have the
paraproduct expansion C ~1#,Ao#,C = Ag = —%[? (1)] and finally, since A_;
is in ZFE}M ® M3(C) we deduce C1#,4_1#,C € ZFE}M ® M>(C). The
discussion above imply (3:43), (3:44), with a remainder R (V) in TR, | ®
My (C), renaming p — 1 as p. Finally, by (3.39), (3.37) and (3.20) we get the
expansion (3.33). O

Block-Diagonalization at negative orders

The aim of this subsection is to block-diagonalize the system (3.43)) (which is
yet block-diagonal at the orders 1 and 1/2) into (3.33).

LEMMA 3.12. For j = 0,...,2p, there are
e paradifferential operators of the form

j d(U;x, 0 ;
(3.46) YD) = 0p"™ ([P sy ]) + 00"V (4D
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where d(U; x, £) is the symbol defined in Lemma AY) is a matrix of symbols
of the form

A(j):(Cj(U;va) bj(U;x,%‘))
bj(U;x,—=§) ¢j(U;x.—§))
12,5]'-1-2,1’

3.47)
_1
c; € ZFKZj—',—Z 1 bj e xI

e a real-to-real matrix of smoothing operators RV (U) in ERI_(?J‘ 421 ® M (C)
such that, if W, j =0,...,2p — 1, solves

(3.48) W = (VW) + RDWUNW;, W, = [;ﬂ

then

(3.49) Wisr = (W W)Wy, _,

where W8 (U) is the flow at time 6 € [0, 1] of

(3.50) 96 W) (U) = 10p"V (M;(U; x, NV (U), W)(U) =1d,
with

3.51) MU 8)i= Lm " (g,x,é)]

—2©bjUix§) -

Jj = K,j+2,1°

201+ O ) g
and y defined in (2.17) satisfies a system of the form (3.48) with j + 1 instead of j .

PROOF. The proof proceeds by induction.

Initialization. System (3.43) is (3.48) for j = 0 where the paradifferential
operator V(O (U) has the form (3.46) with the matrix of symbols A defined in
Lemma[3.111

Iteration. We now argue by induction. Suppose that W; solves system (3.48)
with operators /) (U) of the form (3.46)—([3-47) and smoothing operators RV (U)
in ERI_(':’]- 12,1 ® M2(C). Let us study the system solved by the function W; 14
defined in (3.49). Note that the symbols of the matrix M; defined in (3.51)) have
negative order for any j > 0. By formula (A.2)) the conjugated system has the
form

(3.52) 8 W1 = Op"™ (@ WU (U) + ¥ ()Y W)W U))Wj 41

up to a smoothing operator in EREP 121 ® Mo (C).
Moreover, the operator (8,3\11} U ))\Ifj_1 (U) admits the Lie expansion in (A.4)
specified for A := OpBWV(M;(U)). We recall (see (2:23)) that

Mjtod My — 3 My#oM; = {M;.0,M;} € ST T
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up to a symbol in srpUt+h-3
p y K,j+3.2

By Proposition we have that Ad;ppew(ar,)[iO pBV(9; M;)] is a paradifferen-
—(+D-1

Tkj+3n

in ERE)jH,z ® M (C). As a consequence, we deduce, for k > 2,

tial operator with symbol in X ® M>(C) plus a smoothing remainder

AdS v (g, [10PPY (8:M))] = O™V (By) + Ry
jt1
— I 1)k
By € FK,j2+3,k+1 ® Ma(C),

and Ry € Rz)j+3,k+1 ® M»(C). By taking L large enough with respect to p,

we get that (d; lll} v ))lIJj_1 (U) is a paradifferential operator with symbol in
EFK,j—i—S,l ® M2(C)

plus a smoothing operator in ERZ’ 131 @ M2(C). We now want to apply the
expansion (A3) with A := OpBV(M;(U)) and X := YU ) in order to study the

second summand in (3.52). We claim that
v U)YPW)e W)

3.53 ) ,
329 = 0p®V QYD W)) + [0p®V(iM; (U)), Y (U)]

plus a paradifferential operator with symbol in 21" I;(jj 121 )1/ 2®M2(C) and a smooth-
ing operator belonging to ERE’ 421 ® M>(C). We first give the expansion of

[0pPY (iM;(V)). Y (U)] using the expression of Y1) (U) in (3.46). We have
. d(U;x, 0
[OPBW(IMJ(U)%OPBW([ O E)m])]

o BW 0 pj(U;x,§)
(3-54) = Op ([p,-(U;x,—@ 0 D

pj = 2im; (Usx,6)(1 +a®(U:x))g]>
up to a symbol in EI‘IE(‘} _—:21)1/ 2 ® M,(C). Moreover, since AV is a matrix of
symbols of order —1/2, for j > 1, resp., 0 for j = 0 (see (3.47)), we have that
. _Jit2
[OpBW(iMj), OpBW(A(-’))] belongs to EFK,J'2+2,1 ® Mo(C) for j > 1 and to
_1
EFKE,I ® M, (C) for j = 0up to a smoothing operator in ERE?]._’_LI M, (C).
It follows that the off-diagonal symbols of order —;/2 in (3.53)) are of the form

0 q; (U;x,§) .
[qj U;x,—§) 0 ] with

355 ¢Uix.®) =2 b Uix.8) + 2im; U x, E)(1 + a D)

By the definition of y in (2.17) and the remark under Definition the operator
OpBV((1—x(&))bj (U; x,£)) isin ZRI_(?]-_HJ ® M (C) for any p > 0. Moreover,
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by the choice of m; (U x, £) in (3.51)), we have that

X(E)b; (U3 x,8) + 2im; (Us x, £)(1 + a®)e|> = 0.
This implies that [iOpBW (M;), Y () (U7)] is a paradifferential operator with symbol
41 _
in EFK,jz—i—z,l ® M5 (C) plus a remainder in ERKf)jJrz,l ® M5 (C). Now, using
Proposition we deduce, for k > 2,

. ~ ~ ~ _ Sty
A vy y VW] = Op™Y (Bi) + R Br € T 25 41y ® Ma(©),
where Ry is in RI_(p okl ® M5(C). Using formula (A.3) with L large enough

and the estimates of flow in (3.50) (see Lemma[A.2)) one obtains the claim in (3.53).
We conclude that (3.49) solves a system of the form 3.46}-(3.48) with j ~> j +
1. O

Proof of Proposition For 6 € [0, 1] we define
(3.56) Wi (U) =8, (U)o oW (U)o W (V)

where the maps \Ilfl(U) and WO(U), j =0,1,...,2p—1 are defined respectively
in (3.42), (3.49). The bound (3.32) follows by Lemma[A.2] Lemmata [3.11]
imply that if U solves (3.7) then the function W = W,, = (\Ifgiag(U YU),_,
solves the system (3.48) with j = 2p which is (3.33) with r_; 5 := 2, and

0 bop(Usx §)

RW) = 0p™ ([ o

1)+ REOW). by € STh0s 1

which is a smoothing operator in ZREP 20421 ® M>(C) by the remark below
Proposition [2.6] The expansion (3.33) is proved in Lemma[3.11] O

4 Reductions to Constant Integrable Coefficients

The aim of this section is to conjugate (3.33) to a system in which the symbols
of the paradifferential operators are constant in the spatial variable x and are “in-
tegrable" according to Definition [4.1|below, up to symbols which are “admissible”
according to Definition .2]

DEFINITION 4.1 (Integrable symbol). A homogeneous symbol f in fé" is inte-
grable if it is independent of x and it has the form

() = (0= 5 Y Ol
(4.1) neZ\{0}
fhT(§) e ConeZ)\ {0}

DEFINITION 4.2 (Admissible symbol). A nonhomogeneous symbol H>3in I’ }{ K3
is admissible if it has the form

42)  Hses(U:ix.€) :=ias3(U:0)E +iBss(U: 0)[E|% + y=3(U:x.£)
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with real-valued functions a>3(U; x), B>3(U; x) in .7-"I]1§ k3 and asymbol y>3(U; x, §)
in FIO{’ K3 A matrix of symbols H>3 in I’ Il{ K'3 ® M5 (C) is admissible if it has
the form

H>3(U;x,£) 0
4.3) H>3(U:x.§) = [ = 0 - m]

for a scalar admissible symbol H>3.
The relevance of Definition .2]is explained in the next remark.

Remark 4.3. An equation of the form d,v = OpBV(H>3(U;x,&))[v], where
H>3(U; x,§) is an admissible symbol in F}( k3> admits an energy estimate of
the form

2 3 2
al’ ”U(la .)||H5 SS ||U(lv ')“K,so ”U(la ')” TS
for s > 59 > 1; see Lemma[6.4] For this reason vector fields of this form are
“admissible” to prove existence of solutions up to times O(s~3).

The main result of this section is the following.

PROPOSITION 4.4 (Integrability of water waves at cubic degree up to smoothing
remainders). Fix p > 0 arbitrary and K > K' := 2p + 2. There exists so > 0
such that, for any s > sq, for all 0 < r < ro(s) small enough, and any solution
U e BX(1:r) of BT, there is a family of nonlinear maps ¥ (U), 6 € [0, 1], such
that the function Z := F'(U) solves the system

(4.4) 3:Z = —iQZ + Op®V(—ip(U; §) + E>3)Z + R(U)[Z]
where Q is defined in (3.13) and
o The symbol D(U ; §) has the form

v . [E@E+D-12(UsH) o
D(U;§) = [ - é(U)S_D_m(U;_S)],
4.5) 1
(U= — ) nlnlunl?,
nezZ\{0}

~l
with an integrable symbol D_y /5(U:§) € ', * (see Definition .
o The matrix of symbols H>3 € I’ }( k3 ® M2a(C) is admissible (see Defini-

tion[4.2).
o R(U) is a real-to-real matrix of smoothing operators in EREP ;,4111 ®
M (C) for some m > 0.

o The family of transformations has the form
(4.6) F(U) =3 O[]

with 39 (U) real-to-real, bounded, and invertible, and there is a constant
C =C(s,r,K) such that, V0 < k < K — K’, for any

Ve s a (e,
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one has

|53 ) VT| gor + |G ON TV gos
< IVllks( + ClUlx.50)-

uniformly in 8 € [0, 1].

4.7)

The proof of Proposition #.4]above is divided into several steps in Sections 4.1}
[.3|below. We combine these steps in Section 4.4]

4.1 Integrability at order 1

By Proposition [3.10] we have obtained, writing only the first line of the system
(3.33)-(.39),
dew = Op™ (VU 0§ —i(1 +a QW x)[EY2 + oy p2)w

@9 - RO

where R(U) is a 1 x 2 matrix of smoothing operators in ER}" K1 With K/ =
2p +2and W = [j3]. The second component of system (3.33) is the complex
conjugated of the first one. Expanding in degrees of homogeneity the symbol

~—1 ~—1 _1
F_1/2 =11+ r2+r>3, rleFlz,rzer ’rZ?’EFK,ZK’,?,’

recalling (3.19) and item (ii) in Proposition [3.10, we rewrite (4.8)) as
o,w = OpBW(—i(V1 + Vz)é —i(l +a; + ago))|$|1/2 +ri+rm+ HZ3)w

4.9
@2 + R(U)W]

where H 3 is an admissible symbol according to Definition .2}

Elimination of the linear symbol of the transport
The goal of this subsection is to eliminate the transport operator OpBW (—iv;£)
in (4.9). With this aim we conjugate the equation (4.9)) under the flow

9p0% (U) = i10p®V (b(U: 6, x)§) 2% (U),

(4.10) U;
YU)=1d, bU:0.x):= %»

where B(U; x) is a real-valued function in ]’-:]1R of the same form as v (U x), i.e.,

1 . _
(4.11) BU:x)=—= D Blune™ + B ruze "~
V2T ooy

The function B(U’; x) is real if a condition like (2.13)) holds, i.e.,

(4.12) B = 8.
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The flow of the transport equation (.10) is well-posed by Lemma[A.2] We intro-
duce the new variable

@13) V= B_j = (@Y @)w),,_, = (@{Wlw]. e W)i@) _ .

where the operator CD? (U)[] is defined as in (2.24).
LEMMA 4.5. Define f € FR in @IT) with coefficients

W _in g m Vi), _ _ in

on i T en g
and (B)] =0, 0 = £. Then, if w solves @.9), the function vy defined in {@.13)
solves

4.14) BF:=

n # 0,

don = OpPY (ivig —i(1 + a8 gl + =V + 8 + Y )m

4.15)
+ RY )]

where
° Vgl) € ]?2R and its coefficients (according to the expansion (2.12)) satisfy

(4.16) YV~ =2, (W)IT =o;

n.n n,—n

° agl) c ]'-:g{ and its coefficients satisfy

(4.17) (") = o;

n,n

(ORI B (VR T C | , o
er; el %,y €l,", Hi5 € FK K3 s an admissible symbol, and
1 —p
RWU) € TR e ;.
Note that the procedure that eliminates the linear term of the transport in (4.13),
that is, the contribution with degree of homogeneity 1 to the coefficient of &, au-

tomatically also eliminates the contribution with degree of homogeneity 1 to the
coefficient of the symbol of order 1/2.

PROOF OF LEMMA /.3l Conjugation under the flow in (4.10). We use Lem-
mata[A.4and[A.5]

Step 1. We apply Lemma with § in F ]IR C .7-"}5 0.1 Dy the fourth remark in
(2.10). Then

8, L) (®LW)) ™ = 0PV ((B: — BxB1)E + Hs3) + R(U)

where H>3 := ig>3& is an admissible symbol in F}( 1.3 and R(U) belongs to
SR |-
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Step 2. We apply Lemma with ¢ = —iV&. Thus by (AT4)-(AT17) we
deduce

o} (U)OpBY (—ivE) (@ (U) !
= Op"™(—i(v1 + V2)§ +i(V1fx — (VD)xB)E + Hz3)+R(U)

where H>3 € F11< k3 1s an admissible symbol and R(U) belongs to ¥R Kp ;,1 .
Step 3. Using Lemmal[A.4](see (A.I6), (A.17)) we have the expansion
—@} ) OpPV(i(1 + ay + a3”)[E]V/2) (@} (U) !

= 0pP (i1 a1 = B o e - S + 3826112

+r+ Hz3) + R(U)

[

_ 1
where r € EI‘K’ZK,’I, Hs3 € FI%,K’,3 is an admissible symbol, and R(U) is in
—ot+1d
IRk k1
Step 4. By Lemmal[A.4]the conjugated operator
OHU)OpPV (x1 + 2 + Hz3)(@] (V)™
= 0p"V (= + = 4 HL3) + R(U)
1

1 1
where rgl) el ?, rg) € I', ?, a new admissible symbol H’23 € F}( k3> and a

smoothing remainder R(U) in ¥R K'O ;,1 .

Step 5. Since also the conjugated operator ¢11 (U)R(U)((,bl1 (U))~Lof R(U) is
a smoothing remainder, in conclusion, we get that if w solves (@.9)), then v defined

in (4.13)) satisfies
drv1 = i0p®V((=v1 + 8¢ B)E + (V2 + (ViBx — (V)xB) — BxBe)E)ur

#1092 (et = (- B )
~ (= + @ — 3 + 3821 o

+ 0PV (£ 4+ +P)oy + 0pPY (Hez)vr + ROW)I]

(4.18)

where rg ) IS F ~1/2 rgl) IS f‘z_l/z, Hs3 € F}( K3 is admissible according to

Deﬁmtlon and R(l)(U ) is a 1 x 2 matrix of smoothing operators in Z"R[_(pK, 1
(renaming p).
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Choice of B. Recall that the coefficients 8 defined in (#.14) satisfy @.12) and
the function S(U; x) is real. Using (3.16) we get
3 BU; x)

B ¢— 3" (—ion) By e iy + iwn By ¢ ¥l + b + hxs

n€Z\{0}

(4.19)

where hy, h>3 are defined as

420)  hpi= J_ D BrilF,(U)]ne™ — BrilFp(U)]ne ™,

neZ\{0}
with p = 2 or p > 3. By (4.19) and (4.14)) we deduce that
4.21) — V1 4+ 9:8 = hp + h>3.

By (4.12)) the functions h» and h>3 are real. Moreover hy € ]‘-:2]R and h>3 € ]:115 1.3
by item (iv) of Proposition [2.10]and the fact that F>(U) + Fx>3(U) = M(U)[U]
for some M in ¥ Mg 1 1, see (3.13).

The new equation. From (.21)) and the first line of (4.18) we deduce that V(l)
in (4.13)) is given by
(4.22) — v i=hy — vz — (V1)
having used (Vi — 3;8)Bx € ]-"115 1.3+ By the second line of (4.18) we deduce that
ag) in @.13)) is given by
(4.23) all = 2 4+ (a1)B — LBrar + 282 € FR

having noted that the function a; — — = 0 by (3.30) and (4.14).
Let us prove (4.16). By (4.22) we have
((Vz)(l))jl_l_,nz - _(hZ)nl iy T (Vz)l—:ljnz
+ (V) Bt — (V) By n2).
associated to hy defined in (¢.20) are

4.24)

The coefficients (h2)n1 2

(h2)7—1i_1_,n2 = i'BIj_l —n2 (Fz)jl_ljnz o iﬂ:(nl—nz)(Fz)’Tz_y”l
with (Fz)nl n, defined by (3.16)—(3.17). We claim that

(4.25) (h2)yyn =0, (h2); 2, =0.

The first identity in (4.25) is trivial since the coefficients 87 in (4.14) are zero for
n = 0. To prove the second identity in (.25) we compute by (4.20) and (3.31))
(h2) =, = i(F)2,(B5, — BZ,,) = O in view of ([ﬂ 14). By @24), @25),

(Dy+ M+
([@T4), and (329) we get (v, )i, = 2n|n| and (v, )n =
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To conclude we prove (@.17). From (#.23)) we calculate

Dy+— oN+— | . - . _
(a$ >)n’n = (a$ >)n’n +in(a))} B, —in(ar), B
= 3in(By (a1)y — By @) + B4 Bun®

where B are defined in (4.14).

By (3.33) we have (a(o))n1 T, = (a2),f7,, — (@1);f, (a1);,, so that, using (3:30),
we calculate (a(O) +_ =3 |n|5/ 2. Furthermore, one can check directly using the

formulas (3.30) and @.14] - that (agl))"‘_ = 0. O

Reduction of the quadratic symbol of the transport

The aim of this section is to reduce the transport operator —i O pBW (Vgl) (U:x)§)
in (@.13) into the “integrable” one —iOpBWV (¢ (U)&) where ¢(U) is the function,
constant in x, defined in (@.3). To do this we conjugate the equation (#.15]) under
the flow of the transport equation

(4.26) 9@ (U) = iOpBWaaz(U- 0. )E)4(U).  YU) =

where b, is deﬁned as in ( in terms of a real-valued function B> (U; x) € F, FR.

The flow in is well- posed by Lemmal[A.2] We then define the new Varlable
0 7 n—nNT

@ V= [vz] @LM),_ = (@)1l W)

where CDg(U) is defined as in (2.24).

LEMMA 4.6. Define B> € f]2R with coefficients for ny,n, € 7.\ {0},

( (1) oo

niy,n2
=" o=z
(Bl n1,n2 io(wp, +wn2)’ ,

viDy+
_( )nl N (%)

i(a)nl Cl)nz)

(4.28)

(ﬂz)nl,nz = nl # :l:n2,

and (B2)g% =0, (ﬂz)n on .= 0,0 = £, where V( ) is the real-valued function
defined in Lemma[&3) If vy solves @13), then the function vy in solves
gy 2= 0PI+ E + D+ D+ )0

+ RO W)V2]

where
e l(U)e .fZR is the integrable function defined in (@.3);
° agz) € j-:g{ satisfies

(4.30) al? = all - (ﬂz)x, @ =0
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~_1
. r?’ e [', 2 is the same symbol in (@13), and rgz) P
° Hgs) € Fll( k' 3 I8 admissible, and R(z)(U) is a 1 X 2 matrix of smoothing
operators in EREPK/ 1-

PROOF. The function B, is real-valued since the coefficients (V2)n1 n, Of the
real function v( ) n (@.22) satisfy (2.13). In order to conjugate (4.15)) under the
map CI>9 in @]) we apply Lemmata@ and By (A.17) and (A.20), and since

B is quadratic in u, the only quadratic contributions are OpBW ({B2&, —i|£| 2 Do+
i0OpBWY (9, B2£)v,, implying

d,vy = OpBW('( Vi 4 8,B2)E + L(Ba)xlEl2 —i(1+ o) g2
“’ + 30 + HY)vs + R[]

(4.31)

~(1) .

where T, is a symbol in F ~3 , H (1) el 11( K3 is a new admissible symbol, and

R(U) is a1 x 2 matrix of smoothlng operators in EREP %1 (by renaming p). By
the choice of B> in (#.28)), using (3.16)), reasoning as in the proof of Lemma
and using (@.16) we have

(432) 8 + B2 = —C(U) + fos
with £(U) defined in (.5) and where f>3 is in ]:115133_ System @.31) and (4.32)

imply @.29) where a(z) is the function defined in (4.30). Recalling we
deduce that (a(z))+_ =0. O

4.2 Integrability at order 1/2 and 0

The first aim of this section is to reduce the operator —i0pBW (agz) (U; x)|E|1/?)
in (4.29) to an integrable one. It actually turns out that, thanks to (4.30), we reduce
it to the Fourier multiplier —i| D| 1/2: gee (4.45)). This is done in two steps. In4.2{we
apply a transformation that is a paradifferential “semi-Fourier integral operator,”
generated as the flow of (#.33)). Then, in Section 4.2] we apply the paradifferential
version of a torus diffeomorphism that is “almost” time independent; see (4.41])—
(#.42). Eventually we deal with the operators of order 0 in Section

Elimination of the time dependence at order 1/2 up to O(u?)
We conjugate (4.29)) under the flow

(4.33) 0p@Y(U) = i0pPV (B3(U: x)[€2) @4 (U),  DY(U) =

where B3(U; x) € ]?]2R is a real-valued function. We set

— (@) vl SLU) )

=1

434) V3= [zi] (@(W)[al),

where ®§(U) is defined as in (Z:24).
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LEMMA 4.7. Define B3 € ]‘-:]2R with coefficients

( oo

(B3)5°,., = % dmma
i i0(wn, + on,)
2+
( )nlanZ
i(wn, — wny)’

and (B3)5% = 0, (,83),‘1';,1 =0, 0 = =+, where agz) is defined in @.30). If va
solves ([4.29), then

0,3 = OpBW(—iaU)s —i(1+ aM) g7 + P sign()

(4.35)

(/33);11 M ni 75 +ns,

(4.36)
A+ 8+ HE)vs + ROW)
where
1 - . 1
43w i= o Y (@) e, ) = (o).

i neZ\{0}

1 1

(1) e T', 2 is the same symbol in ( r§3) el,? H(3) € FII( Kk'.3 1 admissi-
ble, and R(3)(U) is a 1 X2 matrix ofsmoothmg operators in ERK k.1 Moreover,
J’__
(4.38) (057),00 = (057),_, = 0.

n,—n

PROOF. By (4.33) and (2.13)) we deduce that S5 is a real function. To conjugate
system (@.29) we apply Lemmata [A.6|and [A.7| with m ~> 1/2 and m’ ~> 1. The
only new contributions at quadratic degree of homogeneity and positive order are

OpBY ({31812, —i|€|2}) and iOpB¥ (3, B3|£|1/?). Then we have

div3 = OpPV (=g (U)E — i1 + 2 — 8, B3)|E|2
+i83sign(@) + =1 + 57 + Has)us + RW)[VA]

where r( ) e F 172 , the symbol H>3 € F}( k3 18 admissible and R(U) isa 1 x2

matrix of smoothing operators in R, ;. By @33) and (3:16) we have

439 —ias Bz =—i Y (a5)), lunl + (a57), uniime®"
neZ\{0}

up to a function f>3 in ]-"}%1 5. The conjugation of the remainder RA(U) in
(.29) is another smoothing operator. In conclusion, (4.39) and the vanishing of the
coefficients @30) imply @36)~@37). Finally, @38) follows from (05);~,, =

3B, (iny —in). O
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Elimination of the x-dependence at order 1/2 up to O(u3)
The aim of this section is to cancel out the operator

1 _ .
(4.40) —i0pBY (Z > (ag));_nunmelm)
nez

arising by the nonintegrable part of the function a; )(U X) in . Note that the
symbol in (@.40) is a prime integral up to cubic terms O(u3). We conjugate (4.36)
under the flow

(4.41) B9 D4(U) = 10p™Y (ba(U:6.1)E)4(U).  BYV) =
where b4 is defined as in (4.10) in terms of a real-valued function B4(U; x) € .7?2R
of the same form of the symbol in (4.40), i.e.,

1 L
(4.42) BaUix) = — 3 (Ba)y Zpttnllne®™.
neZ\{0}

The flow in (.41) is well-posed by Lemmal[A.2] We set

@y Ve | = @), = @) oo,

|9:1 =1

where ®§(U) is defined as in (2.24).

LEMMA 4.8. Define the function B4 € j-:R as in @.42) with coefficients

(a5t
(4.44) (BayiZn = — 5= n#0, (Ba)gy :=0.
If v3 solves ([4.36)), then
(4.45)

diva = Op™N(—iL(U)E —ilE|> +ibY)sign(®) + (" + xS + HY)v,
+ RO

where the symbols b(3), 51)’ rg3) are the same as in equation [A.36), the sym-

bol H£43) € FII(,K’,3 is admissible, and R®(U) is a 1 x 2 matrix of smoothing
operators in ER}? K1

PROOF. In order to conjugate (4.36) we apply Lemmata[A.4|and[A.5] The con-
tribution coming from the conjugation of 3, is i0p®Y ((3;84)§)v4 plus a para-
differential operator with symbol i(—(B4)x(Ba): + g>3)¢ (see (A.20)), which
is admissible, and a smoothing remainder in ER}’:’ 11 One has —iw,upi—, +
Upiw_,u—,. Hence, recalling (3.16), we have

d O —
(4.46) T D (Ba)yZpunie® = hzs
neZ\{0}
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because w—_, = w, and where, arguing as in the proof of Lemma 4.5} E h>3is a
function in FR K13 This implies that the function 9, B4 is in F& k.1,3 and therefore
i(d;B4)& is an admissible symbol.

Lemma [A.4] implies that the conjugation of the spatial operator in (4.36) is a
paradifferential operator with symbol

4.47) —iL(U)E —i(1+a$)) ]2 + {Bak. —il]2} + b sign(®) + rV 4 P

plus a symbol in XTI, I/{’ 1> an admissible symbol and a smoothing operator in the
class ERKlerll Note that {B4&, —i|§|1/2} = ;(,84)x|"§|1/2 and that this equals

a$¥il€[1/2 in view of the definitions of B4 in @A) and @EA4), and of a> i
#@.37). 1t follows that the symbol in ( reduces to

. . 3 1 3
—iU)E —ile]? + P sign(e) + (Y + £
We have therefore obtained (4.43)) (after slightly redefining p) as desired. O

Integrability at order 0
Our aim here is to eliminate in (.45)) the zeroth-order paradifferential operator
opBV (ibg)sign(é )) We conjugate (4.45) with the flow

@48)  3p@(U) = Op®V(iBs(U; x) sign(e)@L(U), YU) =

where B5(U; x) € .7?]2R is a real-valued function. We introduce the variable

— (@LW)[val. G2 )

=1

(4.49) Vs := [zz] (@¢W)val),,

where CIDQ(U) is defined as in (2.24).

LEMMA 4.9. Define 35 € .7:2 (of the form [2.12) with
(b(3) oo

ni,n2

= =072 5=
(Bsn n1 2 0 (wny + wn,)

b (3))"1’112

i(wn, — a)nz)

and (B5)3% =0, (135);;;” :=0, 0 = *. If vg solves [@.43), then

divs = OpPV (—ic(U)E —ilEl* + ) + +& 4+ HE))s
+ ROW)[Vs5]

(4.50)

(Bs)fny = ny # +ny,

4.51)

where rgs) € fl_l/z, rgs) € f:2—1/2’ the symbol H(s) € F}< K3 is admissible, and

RO (U) is a 1 x 2 matrix of smoothing operators in ERK X1
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PROOF. To conjugate (.45) we apply Lemmata[A.6and[A.7] By (@.50) we get

3
0p™(i(05” + 8:Bs)sign(©)) = 10p"Y (o7 sign()).
up to symbols with degree of homogeneity greater than 3, and where

1 _ .
5 3 3N+ —
b (U x) = 7 Z (bg )) Tunl? + (o g))n’_nunu_ne‘mx 2L
neZ\{0}
The lemma is proved. U
In the following subsection we will be dealing with negative order operators,

and will not need additional algebraic information about the coefficients and their
vanishing.
4.3 Integrability at negative orders

In this section we algonthmlcally reduce the linear and quadratic symbols r(s)

( ) of order —1/2 in ( into an integrable 1, plus an admissible symbol.
PROPOSITION 4.10. Forany j = 0,...,2p — 1, there exist

: ~_1 .
e integrable symbols pg" ) e T » > (Definition D symbols ¢V (U: x,€) €
EFET’IZ{j,’l with m; = j%l, admissible. symbols H(J) in F}{ K3 and a
1 x 2 matrix of smoothing operators RY)(U) in SRLP XK1

e bounded maps TJ.G_H(U), 0 € [0, 1], defined as the compositions of three
flows generated by paradifferential operators with symbols of order < 0

(see {.68) and @.55), (.59) and ({@.63))

such that: if 7 solves

diz; = Op™ (—ic(U)E —ilg|> +pY (U 6) + oV W:x.6) + HYE)z,
+ RO W)[Z;],

then the first component Z; 11 of the vector defined by

_|%i+1| . (~0
(4.53) Zjy1 = |:Zj'+1j| = (Tj+1(U))9=12

solves an equation of the form (&.52)) with j + 1 instead of .

(4.52)

The proof proceeds by induction.

Initialization. Note that equation (@ .57) has the form (@.52) with j = 0, denot-
in ) ._ g 0. (5) (%) 1/2 : 0)

g20:=Vs5,py , g’ +ry € EFK K1 and renaming H23 the
admissible symbol H 3 (5) in @]) and RO (U) the smoothing operator R (U).

We remark that the mtegrable corrections p(j ) in (4.52)) (initially p( ) = = () are
generated by the reductions on quadratic symbols made in Lemma-below.

Iteration. The aim of the iterative procedure is to cancel out the symbol q) up
to a symbol of order —m; — 1/2. This is done in two steps.
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Step 1. Elimination of the linear symbols of negative order. We expand the
symbol q(’) = q(]) + q(]) -+ with q}j) € Fl_mj, { = 1, 2. In order to eliminate
the operator O pBW(qY ) (U; x,£)) in (4.52) we conjugate it by the flow

j+1

454 9907, (U) = o™ (y V(U x, £)d% ) (U), ) (U) =
Yi+1 Yi+1 Yi+1

where )/ (U x; €) is a symbol in F . The flow is well-posed because

ey

the order of Vi 1 1s negative. We introduce the new variable

Zjy = [?H} = (A§)+1,1(U)[Zj])|e=1

(4.55) J+1
— (PP .
= (0%, Ol 97, W],
where the map ®° S (U) is defined as in (2.24).
Yit+1
LEMMA 4.11. Define )/( ) e f_mj with coefficients
UM+ (-
W+ . ey Gy
(1)t _ i) = 0,
(4.56) (0 iwn @i Dn i, 7

(’J/(l) ) =0, 0 ==.
If zj solves [.52), then
8:Zj11 = 0"V (—it(U)E —il§12 + (U §) + 3 (U: x. )
(4.57) + k(j)(U x,£) + k(])(UQX, E)Zj+1+ OpBW(H(]))ZJ-I-l
+ ROW)[Zj41]

O
where p(’)(U S) e[, V2 is the same of ¢32), a ~(’) ", kg") el e
~gj) € F —mj =3 H(]) € F}( K’+1 5 IS admissible and R(f)(U) is a 1 X 2 matrix

of smoothing operators in ERK K1

PROOF. In order to conjugate (4.52)) we apply Lemmata[A.6/and[A.7] The only
contributions at homogeneity degree 1 and order —m; are given by

OpBW( @) +81V1(21)

up to smoothing remainders. From the time contribution, a symbol that has homo-
geneity 2 and order less than or equal to —m; — 1/2 appears (see the term 7y in

(A.26) of Lemma[A.7). By (4.56) and (3.16) we have that

40 ~—m; —m,
+ atV]+1 R, ta=3. @, €l ax3 €l s
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=() . _ qg/)—i—qz j»and absorb g>3 in the admISSIble symbol H(J) The

and we set g
contributions in at order less than or equal to —m; — 3, and homogeneity < 2
come from the conjugation of —i|€|1/2. In particular, by formula (A.24), we can set
T{gj) = — 2(y](21)x|§|_%sign($) and get with some EgJ) in [‘z_mj_l/z. O

Step 2. Reduction of the quadratic symbols of negative order. We now cancel

out the symbol q(’ )i (@.57), up to an integrable one and a lower-order symbol.
We use two different transformations.

ELIMINATION OF THE TIME DEPENDENCE UP TO O(u>). We consider the flow
generated by

(458)  392% (U) = O™ (3, (Uix.§)%) (U). @) (U) =1,

Yi+1 J+1 Yi+1

where )/ (U x; &) is a symbol in F ™/ . We introduce the new variable

s [Ee] g0 5
AT = iz,

= (cbi(l) (U)[Zj],m[zj])

o g lo=1

where the map @7 ,) (U) is defined as in (2:24).
Vi+1

LEMMA 4.12. Let y(z) (U;x:€) be a symbol in f‘z_mj of the form (2.12)) with
coefficients

@ (~(1) oo
(v; = 2 Jmma , o=,
(4.60) i i0/(wn, + @ny)
(~(]))

2 ni,n2
=", n +n,.
()/ )nl,nz l(a)nl a)nz) 1 # 2
IfZj solves [.57), then

0:%j 41 = OpBV(—ilE]2 —it(U)E + 5 (U3 £))% 11

(4.61) PV @ ©lual + G Ountie )z

neZ\{0}
+ OpPV (R (Uix,§) + kP Ux.6) + HYE)Z 11 + RO U)[Z) 41]

m;—1/2 ~(j) —m;—1/2
J , k2] c F2 mj—

where }vcgj) € Fl_ , the symbol H(’) € F}( K3 is admis-

sible, and R(j)(U) is a 1 x 2 matrix of smoothing operators in ERK K1

PROOF. In order to conjugate we apply Lemmata [A.6] and [A.7] The

contributions at order —m; and degree 2 are given by Op®V (g3 3+ Btyj(i)l)
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All the other contributions have homogeneity greater than or equal to 3 and are

admissible. By the choice of )/( _'_) 1 in (4.60) we have

1
(I) + atyl(i—)l — g Z (q(l))nn(s)|un| ( (1)) _n(s)unu n€12nx
neZ\{0}

up to a symbol in I’ I;n& O

ELIMINATION OF THE X-DEPENDENCE UP TO O(u?). In order to eliminate the
nonintegrable symbol

1 ~()y+— 0
(4.62) o 2 @ Euiige™

neZ\{0}

in (4.61) we follow the same strategy used in Section #.2] We conjugate (4.61) by
the flow

4.63) 3p®’ v (U) = i0p™Y (y3 (U x.£)) @ v (U). @0(21(U)

where y (U x,§) is a symbol in F ™ T2 of the same form #@.62), i.

1 - L
@69 U= Y 00RO uaime.
neZ\{0}

‘We introduce the new variable

Zjsr = [E{H} = (A%, SO Z1))

Zj+1 lo=1

(4.65) r

lo=1

= (©%) (U)[Zj41], @) (U)[E 1))
Yi+1 Yit1

where the map CI>9(3) (U) is defined as in ([2.24).
i+

——mtl
LEMMA 4.13. Define )/( ) in r, "I s in #.64) with coefficients

466) (1) a(®) = [elZsign(d) LEY @, n o
If Zj solves [4.61), then

3;2j41 = OpBV (=it (U)E —il§]> + oY TV )
4.67) +q(]+1)(U x, €) +H(J+1))ZJ+1
+ RUTDW)[Z11]
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where p(J+1)(U &) is an integrable symbol in F 1/2 qUEDWU; x, &) is in
(J+ )

EFKn;é,"'ll, the symbol H>3 F}{ K’ 5 is admissible, and R(j"'l)(U) isalx?2

matrix of smoothing operators in ¥R ° KK 1

PROOF. Reasoning as in (4.46)), we have <4 70 Vj+1(U x,&) = 0 up to a cubic

symbol in T’ m’ 12 1n order to conjugate ( we apply Lemmata

The contrlbutlons with homogeneity 2 and order —m; are

Z CUANTRED

+ ZL Z ( )n n(é)|un|2 (~(])) (S)u M_n612nx)

T ez N0}

Then, by the choice of y L in (A.64), (4.66), we have that (#.67) follows with the

new integrable symbol p(J+1)(U £) = p(J)(U; &)+ ZnEZ\{O}(qZ )n,n (&) |un|?

and a symbol Ut (U x, §) in EFKn;é,+ll where mj 1 =mj; + 1/2. O

Lemmata .11 {.12] 4.13]imply Proposition {.10|by deﬁning the map
(4.68) ]-‘rl(U) = +13(U)° ]+12(U)O ]+1 1(U)
where .A.?H,k(U), for k = 1,2, 3, are defined, resp., in (4.53)), (¢.59), and (.65).

4.4 Proof of Proposition[4.4]
We set

(4.69) FU) =1L, (U) 0 DLW 0+ ] (U) 0 W, (U)

and FO(U) := §%(U)[U] as in @6), where \l'glag

3.10, the maps CTDQ(U) j = 1,...,5, are given, resp., in .13), (4.27), (.34),
@43), @49), and T]?m(U) = T9 (U)o -0 Y] (U) where YV, | (U), j =
0,...,2p—1, are defined in (4.68). Then by the construction in Sectlons [ﬂ}—@],
we have that Z := (F?(U))g—, solves the system @#.52) with j = 2p — 1, which

has the form @4) with D_;,(U;§) » p2? V(U:§), Hsy v HE™ ", and
R(U) » R@P=D(U). The bounds [@.7) follow since F?(U) is the composition of
maps constructed using Lemma@] (see bounds (A.10)).

(U) is defined in Proposition

5 Poincaré-Birkhoff Normal Forms

The aim of this section is to eliminate all the terms of the system (.4) up to
cubic degree of homogeneity that are not yet in Poincaré-Birkhoff normal form.
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Such terms appear only in the smoothing remainder R(U)[Z] that we write as

(5.1) RU) =Ri1(U) +Ra(U) + R>3(U), R=3(U) € R’ 3 ® Ma(C),

+ _
R (U = | OT @5 |
(5.2) () [wa»t 7 (U))=

®R(UNT € R, ", R(UNS = R (U)=Y

for 0,0’ = £ and i = 1,2. The third identity in (5.2) means that the matrix of
operators R(U) is real-to-real (see (2.23)). For any 0,0’ = + we expand

53) ®RUNT =Y RS, RUNT = RoceUNI + (Ror~(U)T .
e==+ e==+

where (R (U))? € 751_”, (Rae.er(U)) € ﬁ;p with €, ¢’ = =+, are the homo-
geneous smoothing operators

o o 1 o' k_o'\ iojx
(5.4) (R1.e(U)Z z = > ( > (Rl,e(U))g,jkzk )e /

JEZ\{0}  keZ\{0}

with entries

’ 1 ’ .
(5.5 RiU)TF = N > (c1,) Uns  J.k € Z\ {0},

en+o’k=0j,neZ\{0}
for suitable scalar coefficients (rl,e):’Z, € C, and
o 1 ’ N
GO (oW == 3 (X EaeeW)yfef )
V2 .

JEZN\{0} keZ\{0}

with entries

,,k
(RZ,E,E’(U))g,j
1 ’ ’ .
(5.7 = > (22,68 kUi Unys  Jok € L\{0},
n1,n2€Z\{0}
eny1+e'nry+o’k=oj

7
and suitable scalar coefficients (rz,e,ef)Z’IUnz « €C.

DEFINITION 5.1 (Poincaré-Birkhoff Resonant smoothing operator). Let R(U) be
a real-to-real smoothing operator in R;p ® M, (C) with p > 0 and scalar coeffi-

cients (re’s,):’l", € C defined as in (5.7). We denote by R™(U) the real-to-real

n2.k
smoothing operator in R, ” ® M»(C) with coefficients
(REL (UG

€,€’

(58) = > (e g el Uiy oK € Z\ {0},
ni,n2€Z\{0}, en1+e'ny+o’k—oj=0
eony)+ewmr)+o’ wk)—ow(j)=0
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where we recall that w(j) = | j|/2.

In Sections5.2|and[5.2]we will reduce the remainder R(U) in (5.1)) to its Poincaré-
Birkhoff resonant component. The key result of this section is the following.

PROPOSITION 5.2 (Poincaré-Birkhotff normal form of the water waves at cubic
degree). There exists pg > 0 such that, for all p > po, K > K' = 2p + 2, there
exists so > 0 such that, for any s > sg, for all 0 < r < ro(s) small enough, and
any solution U € BSK (I;r) of the water waves system (3.7), there is a nonlinear
map F%(U), 0 € [0, 1], of the form

(5.9) F5(U) = ¢?(U)[U]

where €9 (U) is a real-to-real, bounded, and invertible operator such that Y :=
[;] = F;(U) solves

(5.10) 3, Y = —iQY —i0p®V (Y &)[Y] + RS(Y)[Y] + Asa(U.Y)

where:

o Q is the diagonal matrix of Fourier multipliers defined in (3.15), and
D(Y; §) is the diagonal matrix of integrable symbols le ® M(C) defined
in [@.3);

e the smoothing operator R™*(Y) € ﬁ;(p P 0)®M2((C ) is Poincaré-Birkhoff
resonant (Definition[5.1));

o X>4(U,Y) has the form

(5.11) Xog(U.Y) = Op®V (923U x, ENY] + Res(U)[Y]
where H>3(U;x,§) € FII( k3 ® Ma(C) is an admissible matrix of sym-
bols (Definition and R>3(U) is a matrix of real-to-real smoothing
operators in RI_((’;(_/’;O) ® M (C).
Furthermore, the map FGT(U ) defined in (5.9) satisfies the following proper-
ties:
(1) There is a constant C depending on s, v, and K such that, for s > sy,
185 €® @)V s + 105 @ W) V1l s
< WVlk,s(A+ ClUlx.s0) + ClIV k501U x5

forany0 <k < K—K',V € C#{%—K/(I;HS(T;CZ)) and uniformly in 6 € [0, 1].

(5.12)

(ii) The function Y = ng (U)),_, satisfies
(5.13) CHUNgs =1 llgs = CU N g

(iii)) The map F gw (U) admits an expansion as

Fo.(U) = U +6(My(U)[U1+ M @) [U]) +62MP (U) U]+ Ms3(6: U)[U],
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where M1(U) is in M ® Mo (C), the maps Mz(l)(U), M2(2)(U) are in Ma ®
Mo (C), and M=3(6;U) is in Mg k' 3 ® Ma(C) with estimates uniform in 6 €
[0, 1].

In the following subsection we provide lower bounds on the “small divisors”
that appear in the Poincaré-Birkhoff reduction procedure. Then, in Section we

prove Proposition

5.1 Cubic and quartic wave interactions
We study in this section the cubic and quartic resonances among the linear fre-
quencies w(n) = |n|%.
PROPOSITION 5.3 (Nonresonance conditions). There are constants ¢ > 0 and
Ngo > 0 such that
e (cubic resonances) for any 6,6’ = 4+ and ny,n»,ns € 7.\ {0} satisfying
ni +ons + o'nz = 0 we have
(5.14) lw(n1) + ow(ny) + o’'wnz)| > c.
e (quartic resonances) For any 0,0’,0"” = £ andny,n»,n3,n4 € 7\ {0}
such that
(5.15) ni+onz+o'n3+o"ng =0, wny)+owny)+o’'wnz)+o’wlng) # 0.
we have
(1) + ow(na) + o'wnz) + 0" w(na)l

(5.16) -
> cmax{|ny], [na|. |n3|. |ng)} N0

PROOF. We first consider the cubic and then the quartic resonances.

PROOF OF (5.14). If 0 = o’ = +, then the bound (5.14) is trivial. Assume
o0 =+ and o’ = —. By ny + npy —n3 = 0 we have that |n3] < |ny| + |nz| and
therefore

lIn1] + |na| — |n3| + 24/|n1lln2l| 2
IVInt] + VIna| — Insll = >
Vinil + nal + Vns| 242

since |n1], |n2] > 1. The bound (5.14)) in the case 0 = — and 6’ = + is the same.

PROOF OF (5.16). The case 0 = ¢’ = ¢” = + is trivial. Assume 0 = 0/ = +
and ¢” = —. We have

lw(n1) + wn2) + wnz) — wng)
_ ml A+ [n2] + |n3| — |na| + 24/ Inina| + 24/|nanz| + 2/|n1ns||
w(ny) + w(nz) + wnz) + w(ng) '

The first (momentum) condition in (5.15) implies that |n1] 4 |n2| + |n3| —|n4| > 0
and hence (5.16) follows (actually with No = 0). It remains the case that 0 =
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0" = —and 0/ = +; i.e., we have to prove that the phase
V(ny,n2,n3,nq)
G.17) _nil = In2| + [n3] — |nal + 2y/Inina| — 24/|nana

1|12 + [no[V2 + n3 |12 + |ng|1/2
satisfies (5.16). Note that the first (momentum) equality in (5.15) becomes
(5.18) ny—ny+n3—ng=0.

Let |ny| := max{|n1/|, |n2|, |n3], |n4|} and assume, without loss of generality, that
n1 > 0 and |n3| > |n4] (the phase (5.17)) is symmetric in |n2], |n4]). We consider
different cases.

Case a. Assume that ny = |n2|. Then by (5.17) we have that

¥ (n1,n2,n3,1n2)| = ||n3| — |nall/(In3]V? + [na|'/?).

Since ¥ # 0, then |n3| — |n4| is a nonzero integer and we get (5.16). Thus in the
sequel we suppose

(5.19) ny > |na| > |ngl.

Case b. Assume that |n3| > |n4|. Then by (5.17), (5.19) we get
1 1
Y (n1.n2.n3.n4) = (In1]2 + |nz|2)~",
which implies (5.16). Thus in the sequel we suppose, in addition to (5.19), that
(5.20) ny > [nal > |na| > |n3.

The case ny < 0 is not possible. Indeed, if np < 0, then (5.18) implies nq4 =
ni + |na| + n3 > ny by (5.20), which is in contradiction with n; > |n4|. Hence
from now on we assume that

(5.21) ny >ny > |n4| > |I’l3| > 0.

Case c1. Assume that all the frequencies have all the same sign, i.e., n; > np >
na > n3 > 0. In this case, by (5.17)—(5.18)), we get
|2¢I’l11’l3 — 2\/n2n4|
112 + na|V/2 + |n3] /2 + |ng|1/?
- 2 Ininz —nangl
B Z?:l |ni|1/2 Jhin3 + «/n2n4'
Since Y # 0 we have nin3 # nang, and therefore (5.16) follows.

|y (ny,np,n3, na)| =

Case c2. Assume now that two frequencies are positive and two are negative,
i.e.,ng <nz <0 <ny < ny. The momentum condition (5.18) becomes n;—ny =
—|n4| + |n3| and, since ny > ny, then |n3| > |n4| contradicting (5.21).
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Case c3. Assume that three frequencies have the same sign and one has the
opposite sign. By (5.18) and (5.21)) we then have ny > np > ng > 0 > na,
ng4 > |n3|. Hence by (5.17) we get
; ) 2 n3 + ni|n3| —nang + 2[n3|\/nq|n3|

4 — 1 .
Pk n3| + y/nilns| + /nana

If nyng < ny|nsl, then (5.22)) implies the bound (3.16)). If instead nyng > ny|ns|,
we reason as follows. Note that

B :=n3 + nilns| —nang —2|ns|y/nilns| < n3 —2[n3|y/ny|n3|
< —[n3|v/ni|ns| < -1,

in particular B # 0. Then we rationalize again (5.22)) to obtain ¥ (n1, no, n3, na) =
C-A- B! where

(5.22) Y (ni,na,ns,

A= (n% + ni|ns| —nang)? — 4nsl’ny,
c. 2 1
X V2 sl + Vsl + mana

Since ¥ # 0, then A4 is a nonzero integer and so || > C|B|~'. Moreover,
|B| < cn?, for some constant ¢ > 0, and (5.16) follows. O

5.2 Poincaré-Birkhoff reductions

The proof of Proposition [5.2]is divided into two steps: in the first (Section [5.2)
we eliminate all the quadratic terms in (4.4); in the second one (Section [5.2) we
eliminate all the nonresonant cubic terms.

Elimination of the quadratic vector field

In this section we cancel out the smoothing term Ry (U) in (5.1)) of system ({.4).
We conjugate (4.4) with the flow

(5.23) 9987 (U) = a1t (B (U), BY(U) =1d,

with 01 (U) € ﬁl_f’ ® M>(C) of the same form of Ry (U) in (3.2)—(5.5), to be

determined. We introduce the new variable Y1 := [3} | = (BY () z ])|9=1'

LEMMA 5.4 (First Poincaré-Birkhoff step). Assume that Q1 (U) € ﬁl_p ® M1 (C)
solves the homological equation

(5.24) 01(—iQU) + [01(U), -] + r1 (U) = 0.
Then
9,1 = —iQY1 + 0p"V(—iD(U:§) + H23)[Y1]

5.25
(5:25) + (R3 (U) + rE;(U)) 1]
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where Q is defined in (3.15), D(U; &) in (4.5), B>3 is an admissible symbol in
Tk k3 ® Ma(C), and R} (U) € RyP™™ @ Ma(C), RE,(U) € RE ®
Mo(C), withmy > 1 as in (3.15).

PROOF. To conjugate (#.4) we apply Lemma with 91 (U) = iA(U). By
(A.3) with L = 1 we have

—iBl(U)QBIU)™!
(5.26) = —iQ + [01(U), -]

1
+ /0 (1-0)B{(U)[1(U). [o1 (V). ~iQ]](B{ W) " db.

Using that 01 (U) belongs to ﬁl_/’ ® M>(C) and applying Proposition , and
Lemma the term in (5.26) is a smoothing operator in ERIZ’ ;,%2 & M2(C).
Similarly we obtain

(5.27) —iBLU)0pPV (U £)(BLW)) ! = —i0pPV (U §))

up to a term in ERI_(’,O;,; ® M»(C), and
BLU)(0pPY (823) + R (U) + Ra(U) + Rs3(U)) (BL(U)) ™!

(5.28)
= 0p"V(H=3) + R1(U)

up to a matrix of smoothing operators in ER}” ;,12 ® M2 (C). Next we consider
the contribution coming from the conjugation of d;. Applying formula (A.4) with
L =2, we get

BN (BLU) ™ = 001(U) + 5[0, hor (V)]
(5.29) o B
+5 [ a=0PB @) a©). [a@). )] B @) .

Recalling (3.15)) we have 3;01(U) = 01(—iQU + M(U)[U]) = 01(—iQU) up
iO

to a term in EREP ;,mzl ® M7 (C), where we used item (iii) of Proposition

By the fact that 0 (—i2U) is in 7:51_0“/2 ® M (C) we have that the second line
(5.29) belongs to ERZ;,@ ® M>(C). In conclusion, by (5.26), (5.27), (5.28),

(5.29) and the assumption that 0; solves (5.24) we deduce (5.23). O
Notation. Given p € N we denote maxa(|n1],..., [np|) and max(|ny|,....|np|),
resp., the second largest and the largest among |n1], ..., [np].

The following lemma is deduced by the definition of smoothing homogeneous
operators in Definition [2.5]
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LEMMA 5.5. An operator R1(U) of the form (5.2)-(5.5) is in ﬁl_p ® ML (C) if
and only if, for some pu > 0,

v maxa(|n|, |k[)PTH
5.30 M ’
(530)  [Grreayi ] = max(|n|, k)

An operator Ry(U) of the form G.2)~G3) as in (5.6)-(G.7) belongs to R, ®
Mo (C) if and only if, for some . > 0,

0.0’ maxz(|n1], [nal, [k[)PTH
‘(rz’f’f/)nbnzak =

Ve, 0,0/ =%, n,ke€Z\ {0}

(5.31) max(|ny|, |n2l, [k])P

Ve,e',0,6' = £, ny,na,k € Z\ {0}.
We now solve the homological equation (5.24).

LEMMA 5.6 (First homological equation). The operator Q1 of the form (5.2)—(5.5))
with coefficients

_(rl,e)z”z
i(0|j|1/2 —a’|k|1/2 _ €|n|1/2)’

witho,o',€ = £, j,n,k € Z\ {0} solves the homological equation (5.24) and 0,
isinR|” ® Ma(C).

(532) (a7 = oj —o'k —en =0,

PROOF. First note that the coefficients in (5.32) are well-defined since
oljI2 —o'[k|'/? —eln|'/ # 0

for any 0,0’,€ = £, n,k € Z \ {0}, by Proposition [5.3] Moreover, by (5.14) and
Lemma (5.5l we have

7 —
|(ar,e)y g | < maxa(nl, [k)**# max(jn], |k[)~°,

and therefore the operator Q; is in ﬁl_p ® My(C).
Next, recalling (5.2)) and (3.15)), the homological equation (5.24) amounts to the
equations, Yo,0’ = =+,

. 4 ’ . 1 . 1 ’ ’
(Q1(-iQU))g — (21 (U))g o'i|D|Z + 0i| D2 (21(U))g + (R1(U))g =0,
and expanding (01 (U ))g, as in (53.3)—(5.5) with entries
’ 1 4 .
(5.33) (01U = = > (ane )y g usy.  J.k € Z\{0},
T en+o’k=0j,neZ\{0}

to the equations, for any j, k € Z \ {0}, ¢ = %,

. / / N . 1
(01.(—QUNZE + (@1, F (0l 12 —o'ilk]|2)

(5.34) 'k
+ (R1e(U))g; = 0.
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By (5.33) and (3.15) we have
1

. 'k o0, - 1. ¢
QLe(HQUNTY = ——= Y (anayyq (ieln|2)ug.
V2T o

en+o’'k=0j
Then one checks that (5.34)) is solved by the coefficients (ql,e)Z’Z/ in(3.32). 0O

Elimination of the cubic vector field
In this section we reduce to Poincaré-Birkhoff normal form the smoothing term
R;r (U) e R;erml ® M3 (C) in (5.25). We conjugate (5.25) with the flow

(5.35) 09B3(U) = 2(U)B3(U), BI(U) =1d,

where Q,(U) is a matrix of smoothing operators in ﬁ;p tNotm1 g M3 (C) of

the same form of R;r (U) to be determined. We introduce the new variable Y, :=
Y21 _ 0

[y%] = (Bz(U)[Yl])|9=1-

Notation. Given the operator Q2 (U) in (5.35)), we denote by 0, (—iQ2U) the oper-
ator of the form (5.2), (5.3), (5.6)—(5.7) with coefficients defined as

(02,6, (—IQUNT

1 ’ . 1 . 1 ’
B30 =5 ) @)y (Heml? =i izl )ug g,

n1,n2€Z\{0}

eni+e'ny+o’'k=oj

LEMMA 5.7 (Second Poincaré-Birkhoff step). Assume that
02(U) € RyPTNOH™ @ My(C)

solves the homological equation
(5.37) 02(-iQU) + [02(U), —iQ] + R (U) = (&F)™**(V).
Then
0:Y2 = —iQYs + 0p°"V(—=iD(U: §) + H>3)[Y2]

+ (R)W) + L3 (U)) (Y2
where Q is defined in (3.15) and D(U; §) in (@.3), H>3 is an admissible symbol in
r 11(, K'3 /M, (C), (R;' ) (U) is a Poincaré-Birkhoff resonant smoothing operator

(¢f- Definition in ﬁ;pﬂnl ® M2(C), and R 5(U) is a matrix of smoothing

operators in R}p;,]\go—i_zml ® M2 (C) withmy > 1 as in (3.19).

PROOF. To conjugate system (5.23) we apply LemmalA.T|with 02 (U) = iA(U).
Applying formula (A.3) with L = 1, the fact that 0»(U) is a smoothing operator
in R," TNo+mL & M, (C), Proposition , and Lemma we have that

BYU)(—iQ)(BLU)) ™" = —iQ + [02(U), —i€Q]

(5.38)
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plus a smoothing operator in R Kp ;,NO tmtle M 2(C). Similarly, the conjugate of

opBV (—1D(U &)+ H>3) + R;r U)+ R; (U) remains the same up to a smoothing
operator in RKp;,NoerIH ® M2 (C).

Next we consider the contribution coming from the conjugation of d;. First,
note that, using equation (3.15), 3:02(U) = 02(3:U) = 02(—iQU) (defined
in (5:36)) up to a smoothing operator in Rz’ ;,]\goJrzml ® M3 (C). The operator
02 (—iQU) isin ﬁ;erNoer 1+1/2) ® M3(C). Then, applying formula (A-4) with
L =2 we have 8tB% (U)(B%(U))_1 = Q2(—iQ2U) up to a smoothing operator in

+No+2
Rixs & Ma(O).

In conclusion, Q2(—i2U) + [02(U), —iR?] +R2 (U) collects all the nomnte—
grable terms quadratic in U in the transformed system. Since Qz solves we
conclude that Y> solves (5.38). O

We now solve the homological equation (5.37)).

LEMMA 5.8 (Second homological equation). The operator Qa of the form (5.2)—

(G.3), G.6)-(.7) with coefficients
(q2,e,e’);’fn2’k =
—(r+ ,)a.cr’ )
(539) 2..e/ny.ny.k $11/2 _G/|k|1/2 —6|n1|1/2 _6/|n2|1/2 75 0.

72— k|1 72—e[n1 |\ 2—e'n2]172) oljl
0, olj |2 =o' |k|Y2 — €|y |V2 =€ |na| /2 =0,

with o,0', e, = +, ny,ny, k € Z \ {0}, satisfying 6j — o'k —enyp—€ ny =0,
solves the homological equation (5.37). We have that Q3 is in 7?,2 ptNotmi g,
M;(C).

PROOF. First note that the coefficients in (5.39) are well-defined thanks to Propo-
sition[5.3] in particular (3.16)), and satisfy, using also | j | < |k| + |n1] + |n2],

(2.e)y ] < Clege 00 I max((ny . |nal. lk)No
(5.40) maxa (|n1 |, [na|, k|)P—m—Notw’

max(|n1|, [nal, [k[)p—m1—No

with &/ = pu + Np, because (rie’e,);I an

ﬁ_erml ®M2((C) and so they satisfy the bound (5.31)) with p > p—m . The es-
timate (5.40) and Lemmalmply that 02 (U) belongs to the class R, ptmi+No o,

MQ(C).
Next, the homological equation (5.37)) amounts to, for any o,0”,€,€’ = =+,

. ’ ’ oL . 1
(02,6 (—IQUNZ T + (02.c.e/ (UG (01l |2 — o'ilk|2)
+ 'k res o’k
+ (R2,€,€/(U))g,j ((RZ L€, e’) (U))O’,J

 are the coefficients of a remainder in

(5.41)
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for any j,k € Z \ {0}. Recalling (5.36) and (5.8), the left-hand side of (5.41)) is
given by

4 . L 1 1 1 o’
(qzyf’f/)gfnzykl(aw 2 — 0/|k|2 —€ln]? - 6/|n2|2) + (IZE,E’)Z:nz,k’
for j,k,n1,npy € Z\ {0}, 0,0",¢,¢’ = £, and eny + €’ny + 0’k = oj. Thus,

’
recalling Definition , the operator Q» with coefficients (qz,f,ef)g’lgnz i defined

in (5.39) solves the homological equation (5.37). O

We can now prove the main result of this section.

PROOF OF PROPOSITION[5.2l Let Z be the function given by Proposition .4}
We define ¥ := (BY(U))g=,[Z] where B(U) := B(U) o BY(U), 6 < [0, 1],
and B? (U),i = 1,2, are the flow maps defined, resp., in (5.23), (5.35) (see also
Lemmata[5.4] and[5.7). Then Y solves (recall (5.38))

(5.42) 3,Y = —iQY + 0p®V(—id(U;§) + E>3)[Y ]+ B (U)[Y]+RL5(U)[Y]

where € and D(U; §) are defined, resp., in (3.15) and (.3)), the operator R"*(U) :=
R)U) in R;7T™ @ My(C) (being my > 1 the loss in (.13)), Hs3 €
I’Il(,K,’3 ® M>(C) is admissible, and R 5(U) is in RI_(:D;,]’\;OJFZW ® M (C) where
the constant Ny is defined by Proposition We define F‘% U) :=c?)[U] :=
BY(U) 0§ (U)[U] as in (5.9) where % (U) in @.6). By Lemmathe maps Big,

i = 1,2, satisfy the bounds (A.13), (A.IT) and recall that §%(U) satisfies @.7).
Then €% (U) satisfies (5.12) and (5.13). By Lemmata and applied, resp.,

to §%(U) and BY (U), we have that the map F% (U) admits a multilinear expansion
like (A.T2), implying item (iii) of Proposition [5.2] Moreover,

Y = (F%(U))w:l = U + M(U)[U]
where M(U) € ZMg k7,1 @ M»(C).
Then, substituting (5.43)) in (5.42)), we obtain (5.10)—(5.11)) with
(5.44)  H23(U:x.8) := —i(D(U:§) — (U + MU)[U1:§)) + B23(U: x, £),
(5.45) Rx>3(U) 1= RU) —R(U +m(U)[U]) + rL3(0).
Since the integrable symbol D(U;§) in (@.3) is homogeneous of degree 2 and
RS(U) € R;p T M5 (C), we have that the quadratic terms in the r.h.s. of

(5.44) and (5.45)) cancel out. Then, by (5.43) and items (iii) and (iv) of Proposition
2.10, we deduce that $H>3(U; x,§) € F}< &3 ® M2(C) is an admissible symbol

and R>3(U) € ERE(‘I’(_,‘;") ® M7 (C) where pg := Ng + 2m;. O

(5.43)

6 Long Time Existence

The system
(6.1) Y = —iQY —i0p®V (D(Y: £))[Y] + R*(Y)[Y].
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obtained retaining only the vector fields in (5.10) up to degree 3 of homogeneity,
is in Poincaré-Birkhoff normal form. In Section [6.2] we will actually prove that
this is uniquely determined and that (6.1)) coincides with the Hamiltonian system
generated by the fourth-order Birkhoff normal form Hamiltonian Hzp computed
by a formal expansion in [I1}[12,[I5[16]]; see Section [6.I] Such normal form is
integrable and its corresponding Hamiltonian system preserves all Sobolev norms;
see Theorem [1.4] The key new relevant information in Proposition [5.2]is that the
quartic remainder in (5.17) satisfies energy estimates (see Lemmal[6.4). This allows
us to prove in Section [6.3] energy estimates for the whole system (5.10) and thus
the long time existence result of Theorem[1.2]

6.1 The formal Birkhoff normal form
We introduce, as in formula (2.7) in [11]], the complex symplectic variable

(zg)zA(n) _ L (IpI 3 +iDl3y (n)
Z V) Va\IpIman D)y AV

:A_l(zg)zi |DI3 (w + )
@)~ S2\HID[Fw—w))

Compare this formula with (L.12)) and recall that, in view of (I.13), we may disre-
gard the zero frequency in what follows. In the new complex variables (w, w), a
vector field X (n, ¥) becomes

(6.3) XC = A*X = AXATL
The push-forward acts naturally on the commutator of nonlinear vector fields (A.32)),
namely A*[X, Y] = [A*X,A*Y] = [XC,YC].

The Poisson bracket assumes the form

1
{(F.HY =~ Y (du Hdgy F — 0y How, F).

keZ\{0}

6.2)

Given a Hamiltonian F (1, ¥) we denote by F¢ := F o A™! the same Hamiltonian
expressed in terms of the complex variables (w, w). The associated Hamiltonian
vector field X . is

1 —i0g Fe ek
(6.4) Xp. = — ( Wk =% )
© Vo keZ\{0} i0uy Fe e

which we also identify, using the standard vector field notation, with
(6.5) Xre = ), —iody o Fc dyg.
keZ\{0},0=+%

Note that, if Xz is the Hamiltonian vector field of F in the real variables, then,
using (6.3), we have
(6.6) XS = A*Xp =Xp., Fg:=FoA™l,
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and
6.7) [X5. Xg] = Xy k3 = X(He ko)

We now describe the formal Birkhoff normal form procedure performed in [11}
12,[15,[16]. One first expands the water waves Hamiltonian (I.6]), written in the
complex variables (w, w), in degrees of homogeneity

(6.8) He:=HoA'=H® + Y + Y + u&,
where
(6.9) H(z) Z wWiW;, W)= \/m
JE€Z\{0}
©i0 P = Y e

01j1+t02j2+063j3=0

“ _ Z 01,02,03,04
(6.11) HC - Hll,Jz,B Ja le sz sz wJ4

01J1+02j2+03j3+04j4=0

can be explicitly computed, and H ézs) collects all the monomials of homogeneity
greater or equal 5.

Step 1. ELIMINATION OF THE CUBIC HAMILTONIAN. One looks for a sym-
plectic transformation @3 as the (formal) time 1 flow generated by a cubic real

Hamiltonian F((:Z’) of the form (6.10). A Lie expansion gives
He o d® = H(2) {F(3),H(2)} + H(3)

(6.12)

+H(4) 2{F(3) {F(3),H(2)}}+{F(3),H(3)} 4.

up to terms of quintic degree. The cohomological equation

6.13) HS +{(F@. HP) =0
has a unique solution since
wilwZw?s, HP) = i(010(j1) + 020(j2) + oso(j3))wi wiw??,

and the system
6.14)  o1j1 +02j2+03j3 =0, o10(j1)+ oaw(j2)+ o3w(jz) =0,

has no integer solutions; see Proposition Hence, defining Fg) as the solution
of (6.13), the Hamiltonian in (6.12)) reduces to

He o ®® = Hg) H(4) 2{F(3) Hg’)} + quintic terms.
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Step 2. NORMALIZATION OF THE QUARTIC HAMILTONIAN. Similarly, one
can find a symplectic transformation ®¥ | defined as the (formal) time 1 flow

generated by a real quartic Hamiltonian Fg) of the form (6.11])) such that

1
(6.15) Heo®®od® = Hé2)+ﬂker(H<(c4)+§{Fé3), H(é3)})+quintic terms,

where, given a quartic monomial w?' w??w?> wZ“ satisfying o1 j1 +02j2+ 033+

) J1 72 Vs
04j4 = 0, we define

01 02 .03 . .04
err<wjl Wy, Wiz Wy, )

(6.16) _JwiwZwPwitif ojw(j1) + 020(j2) + 030(j3) + 040(ja) = 0

0 otherwise.
The fourth-order formal Birkhoff normal form Hamiltonian in (6.13)), that is,

o = G+ 1S, HE = HE,
(6.17) 1
Hg% = err(H((:4) + E{F(g,)’ H(((j3)})’

has been computed explicitly in [[11,]12,|15,|16]], and it is completely integrable.
In [[12] this is expressed as

k3
Hzp = Y (20010~ (1200 = 31360
(6.18) 0
x 2
+— > KLk L)
0<k<l

with actions
W Wk + W_pW_g

2 )
where wy, denote the Fourier coefficients of w defined in (6.2). The Hamiltonian

Hzp is given by ([.T7)-(1.18) with wy replaced by z;. Note in particular that
|z»|? are prime integrals, as stated in Theorem

(6.19) Lk) :=

Remark 6.1 (Comparison with (6.1)). By a direct calculation, the Hamiltonian
equations associated to {zp(z,Z) can be written in the form

(6.20) 2w = —ionzn——( D Jlillz)nza + RG]

l7]<eln]

where 0 < € < 1 and 9i(z) is a smoothing vector field satisfying ||R(z)[|s+p <
C(s)||z||2, for any 0 < p < 25 — 3. For a sequence a = {aj}jez we denoted
||a||§ = Zjez(j)zﬂaj |2. Note that the second term in the right-hand side in

(6.20) exactly correspondence to the paradifferential transport in (5.10) and (&.3).
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Moreover, (6.20) does not contain paradifferential operators at nonnegative orders,
in agreement with the cubic Poincaré-Birkhoff normal form (6.1

6.2 Normal form identification

In Sections we have transformed the water waves system into (5.10),
whose cubic component is in Poincaré-Birkhoff normal form. All the conju-
gation maps that we have used have an expansion in homogeneous components up
to degree 4. In this section we identify the cubic monomials left in the Poincaré-
Birkhoff normal form (6.1). The main result is the following.

PROPOSITION 6.2 (Identification of normal forms). The cubic vector field compo-

nent in (5.10), i.e.,

(6.21) Ares(Y) := —10p"¥ (D(Y;: ©))[Y] + R (V)[Y],
coincides with the Hamiltonian vector field X @

ZD
(6.22) AXRes = Xchr(Hg)-l-%{Fg),Hg)}) = oY,

where the Hamiltonians H(g) , 1 = 3,4, are defined in (6.10) and (6.11)), F(((;3) is
the unique solution of (6.13)), and Tl is defined in (6.16).

The rest of the section is devoted to the proof of Proposition[6.2] which is based
on a uniqueness argument for the Poincaré-Birkhoff normal form up to quartic re-
mainders. The idea is the following. We first expand the water waves Hamiltonian
vector field in (1.3), (I.5)) in degrees of homogeneity

Xg=X1+ X2+ X3+ X4

6.23
( ) where Xl = XH(z), X2 = XH(3), X3 = XH(4),

and X4 collects the higher-order terms and H () .= Hép ) o A, p = 2,34,
see (6.8). Then, we express the transformed system (5.10), obtained conjugating
(T33) via the good-unknown transformation G in (3-I) and F1. in Proposition
by a Lie commutator expansion up to terms of homogeneity at least 4. See Lemma
[A.10] Then, after some algebraic manipulation, we obtain (6.33)). Since the adjoint
operator |-, Xg(z)] is injective and surjective, we then obtain the identity (6.35)),
and can eventually deduce (6.22)).

Notation. We use the Lie expansion (A.33) induced by a time-dependent vector
field S, which contains quadratic and cubic terms. Given a homogeneous vector
field X, we denote by @ X the induced (formal) push-forward

1 1

where [-, -] is the nonlinear commutator defined in (A.32).
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Step 1. THE GOOD UNKNOWN CHANGE OF VARIABLE G IN (B.I)] We first
provide the Lie expansion up to degree 4 of the vector field in (3.2)—(3.3), which
is obtained by transforming the water waves vector field X1 + X2 + X3 in (6.23)
under the nonlinear map G in (3.1).

We first note that G(7, ) = (D% (1, ¥))g—, where

(. ) = (0.9 — 00p"V (B(1.y))n). 6 €[0.1].
Since B(n, ¥) is a function in E]-"Iﬂﬁ‘ 0.1 We have, using the remarks under Defini-

tion that the map <I>9(n, ) has the form in which U denotes the real
variables (7, ), plus a map in Mg .3 ® M>(C). By Lemma[A.9 we regard the
inverse of the map G<3, obtained approximating G up to quartic remainders as the
(formal) time one flow of a nonautonomous vector field of the form

(6.25) S(6):= s, +60s3 where Sz := S1(n, V) [KZ]’ S3 1= S2(n, ) [‘Z:|’

where S1(n, V) € M ® Mo(C) and S2(n, ¥) € Ms ® Mz (C). By (6.23)-
(6:25), we get

(6.26) CDE(Xl+X2+X3)=X1+X2’1+X3,1+"'

(6.27) X2,1 = Xz + [[Sz,Xl]],

(6.28) X3,1 1= X3+ [S2. Xo] + 5[s2. [52. X1]] + 5[s3. X1].

COMPLEX COORDINATES A IN (6.2)). In the complex coordinates (6.2)), the vector
field (6.26) reads, recalling the notation (6.3)),

A PG(X1+ Xo+ X3) = A" X1 + A" Xo 1 + A X3 + -+

(6.29)
:XF+X§1+X§S1+...

where X iC is the linear Hamiltonian vector field

c _yC _ . ,
X1 =Xg0 ——120a)]u;’8u;r.

o
Step 2. THE TRANSFORMATION FIT IN PROPOSITION . We consider the
nonlinear map (F})53 which retains only the terms of the map F}. := (Fgw)| .
up to quartic remainders. The approximate inverse of the map (FIT)S 3 provided by
Lemma[A.8] can be regarded, by Lemma[A.9] as the (formal) approximate time-
one flow of a nonautonomous vector field 7(6) := T» 4+ 0T3 where To(U) =
Y:L(U)[U], T3(U) := To(U)[U], for some T1(U) in My ® M»(C) and T>(U) €

My @ M5 (C). We transform the system obtained retaining only the components
X+ Xéc’l + Xé(fl in (6.29). By (6.24) we get

630)  ORA*OH(X) + Xo+ X3) = XT + XE, + X5, + -+
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C ._ yC C
X2’2 .— X2’1 + [[T2,X1 ]],
C ._ yC C 1 C 1 C
Xap o= X5y + [12. X3, ] + 3[72. [r2. X7 ][ + 3 [73. X7°]

and, recalling the expressions of X5 1, X3 1 in (6.27), the quadratic and the cubic
components of the vector field (6.30) are given by

(6.31) X5, = X5 + [s§ + 12. X[ ]

X:(gz:XéC"i‘ [[Sg—i-Tz,Xéc]] +%[[S§+T2, [[S«Z:—FTQ,XF]H]

(6.32)
+3[[s7 + 72,55 ] +55 + 13, XT].

where, to obtain the (6.32)), we also used the Jacobi identity.

Step 3. IDENTIFICATION OF QUADRATIC AND CUBIC VECTOR FIELDS. The
vector field @A PT (X1 + X2 + X3) in (6.30) is the vector field in the right-
hand side of (6.1)), up to quartic remainders. Thus, recalling the expression of the

quadratic, resp. cubic, vector field in (6.31)), resp. (6.32), the expansion (6.23),
formula (6.6)), and the definition of AR in (6.21)), we have the identification order
by order:

(6.33) XF(Y)=—iQY, X+ [s5 +T2.X50] =0, X5, = Ages.

UADRATIC VECTOR FIELDS. Since F(3) solves (6.13)), by (6.7)), we have
C y

6.34 x< X, X,0] =0.
(6.34) ao X Xgol
Subtracting the second identity in (6.33)) and (6.34)), and since X o = X}CI(Z), we
deduce
[sS + 12— Xpo. XSo] =o0.
Since the adjoint operator Ach(z) = [ Xg(z)] acting on quadratic monomial
H

vector fields u;.’ll ufzz Bu;r satisfying the momentum conservation property oj =

01 j1+02j2 is injective and surjective (indeed we have that [[“711 u;’; au;;, X;CI (2)]] =
. . . . o [og 1
—i(ow(] )—ola)(jl)—aza)(]z))ujl‘ ujzz Bu;,r and the system (6.14)) has no solutions),

we obtain
(6.35) sS+1, =X

CUBIC VECTOR FIELDS. The vector field Aresr defined in (6.21) is in Poincaré-
Birkhoff normal form, since the symbol D(Y ; §) is integrable (Definition and
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R'S(U) is Birkhoff resonant (Definition E Therefore defining the linear opera-

(o) (o)
tor [Ty acting on a cubic monomial vector field u 122 U ]: au as

02,03 —
err(“]l Ui, U Ay ) -

©:36) AuT1uPuT9,0  if —ow(j) + o10(j1) + 020(j2) + 030(j3) = 0,
0 otherwise,

we have
(6.37) Mker(ARes) = ARes-
From the expression for [ufll u;’zu"*a o, H(2>]] we deduce that, for any cubic
vector field Gs,
(6.38) Mier [G3, X 0] = 0.
We can then calculate
ARes Mker(XRes)

EDEDED 1, (x5 + [5§ + 72 XF] + 3 [5§ + 72, [55 + 2. XF]]

1
€33.673 Mer (X§(4) + [[XF(((:3), Xg(3)ﬂ + 3 [[XF(((:‘”’ [XFé3)’ XH(((:Z)M)

EBEDED 7y 6361

B+ LD HEY) MBS+ LFD HE Y

which is (6.22)); the second identity follows by the definition of H D in (6.17).

6.3 Energy estimate and proof of Theorem [L.1]
We first prove the following lemma.

LEMMA 6.3. Let K € N*. There is so > 0 such that, for any s > sq, for all
0 < r < ro(s) small enough, if U belongs to BSK (I;r) and solves (3.7), then there
is a constant Cs g > 0 such that

(6.39) |00 )] gox < Cox UG gs VO<k<K.

In particular, we deduce that the norm ||U(t, )| ks defined in (2.1)) is equivalent to
the norm ||U(¢,-)|| g7 for U(t, -) a solution of (3.7).

PROOF. For k = 0 the estimate is trivial. We are going to estimate
8kU by (3.7). Since the matrix of symbols i4;(U;x)€E + iAl/z(U;x)|§|1/2 +
Ao(U:x,§) + A_1/2(U:x,§) in (3.7) belongs to EFKlO ® M5 (C) and the
smoothing operator R(U) is in ERK’:’H ® M (C), applying Proposition ii)
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(with K’ = 1, k = 0), the estimate (2.20) for R(U) (with K’ = 1,k =0, N = 1),

and recalling (2.1]), we deduce, for s > s¢ large enough,

18U, g1 Ss 1O gs (1 N1UE D gso + 19:UE ) gso-1)
+ 10: U@ N gs—1 10 grso -

Evaluating (6.40) at s = s¢ and since |U(Z,)|| s, is small, we get

10: U, ) gso—1 Ss 1UE ) grso-

This and (6.40) imply (6.39) for k = 1, for any s > s¢ . Differentiating in ¢ the
system (3.7) and arguing by induction on k, one can similarly obtain (6.39) for any
k> 2. O

(6.40)

We now prove the following energy estimate.

LEMMA 6.4 (Energy estimate). Under the same assumptions as Proposition [5.2]

the vector field X>4(U,Y) = [2\.’:'4(U, Y), X:;(U, Y)] in (5.11)) satisfies, for any
t € I, the energy estimate B B

6.41) Re / IDPXU.Y)-TDFy dx s Iy15..
RLls

PROOF. By (5.T1) and (@.3), we have that
AU, Y) = Op™ (Hz3) ] + R (U)[Y],
where Hx3 is an admissible symbol as in (4.2)) that we write
Hzz = hi,(U:ix.§) 4 y=3(U:x.§).
hE3(Uix.§) = ios3(Us 0§ + B2 (Ui 0)fE]2,

and D‘i; (U) denotes the first row of 9i>3. Then the left-hand side of (6.41) is
equal to

(6.42)

1
(6.43) 5 DIy, IDIFOp"Y (hL3)1¥]) 2

1
+ E(IDISOPBW(h;)[y], IDI*y) >

(6.44) +Re / DI 0P (y23) ] - TDFY dx
T

—i—Re/ DRI, (U)[Y]- D[Sy dx.
T >

Since Y>3 € FIO{ k'3 and 9%;3(U ) is a 1 x 2 matrix of smoothing operators in
R?(, k.3 the Cauchy-Schwarz inequality, Proposition and (2.20) imply that

(6.45) BF8)| <5 N1y ()% NUE s
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Since the symbol A, has positive order we write the quantity in (6.43) as

2Dy DI (Hzs +HL3)y) o + 2(IDFy. [HL5.1DI1y)

(6.46)
+ 31D M3y, IDIY) 2,

where H>3 := OpBV(hI (U:x,§)) and HE; = OpBV(hI;(U:x.§)) is its ad-
joint with respect to the L2-scalar product. Recalling (6.42) and that the functions
a>3(U; x), B>3(U; x) are real, we have

(6.47) Hes +Hiy = Op™Y(ht, +hE) =o.

Furthermore, by Proposition [2.9)and the remark after the proof of proposition 3.12

in [6], the commutators [HZ ., |D|*], [|D|*, H>3] are paradifferential operators

with symbol in I'} £, 5, up to a bounded operator in L(H*, H®) with operator
norm bounded by ||U ||§{ so° Then, applying Propositionwe get

(DY [H2s. IDE]) | + [([IPF Hzs ]y PP Y) 2]
Ss Iy @ )3 U@k -
In conclusion, by (6.45)—(6.48)), and using Lemma|6.3] and by (5.13), we deduce
Re [ IDFXZU.Y) - TDFY dx %0 Iyt IUC I, S0 1@l
T >

proving the estimate (6.41). O

(6.48)

We can now prove Theorem (1.1

PROOF OF THEOREM L1l By (1.14), the function U = [%], where u is the
variable defined in (TI2) and  in (T:8), belongs to the ball BX (1:r) (recall
2.2)) withr = € < land I = [-T,T]. By Proposition the function U
solves system (3.7). Then we apply the Poincaré-Birkhoff proposition [5.2] with
s N> K >2p+2 > 2py+ 2. The map FL.(U) = ¢(U)[U] in (59)
transforms the water waves system into (5.10)), which, thanks to Proposition
[6.2] is expressed in terms of the Dyachenko-Zakharov Hamiltonian Hzp in (I.17),
as 0;Y = Xg,,(Y) + X>4(U,Y). Renaming y ~> z and recalling (6.4), the first
component of the above system is the equation (I.16), denoting B (u)u the first
component of €!1(U)[U]. The bound (T.13) follows by (5.12) with s ~> N and
k = 0, and Lemma[6.3] The energy estimate (I.19) is proved in Lemma[6.4, O

6.4 Proof of Theorem [1.2]
The next bootstrap Proposition [6.5]is the main ingredient for the proof of the
long time existence Theorem Proposition [6.5] is a consequence of Theorem

and the integrability of the fourth-order Hamiltonian H % in (I.18). By time
reversibility we may, without loss of generality, look only at positive times # > 0.
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PROPOSITION 6.5 (Main bootstrap). Fix the constants €, K, N as in Theorem|[1.]]
and let the function u € C°([0, T]; HN) be defined as in (T.12), with w in (T.8)

and (n, V) the solution of (1.3) satisfying (1.9), (I.I0). The function u satisfies
(L.13). Then there exists co > O such that, for any 0 < &1 <, if

K
(6.49)  [[u(©)| g~y <coer,  sup Z Ha]fu(l)HHka <er, T <coep,
IG[O,T] k=0

then we have the improved bound

K €

1
(6.50) sup > [0k u)| yvs = =
tE[O,T] k=0

PROOF. In view of (6.49) the smallness condition (I.14) holds and we can apply
Theorem|[I.T|obtaining the new variable z = B (u)u satisfying the equation (T.16)—

(L.19). The integrability of H g% in Theorem gives
Re/ |D|N(iazH§%) -|D|Nzdx = 0.
T
From this, (I.16), and (L.I9) we obtain the energy estimate

d
(6.51) ROy SN 120155

Using (I.15)) and (6.49) we deduce that, forall0 <7 < T,
t
le@N3n SN 12018 SN 120)13 8 + /0 lz(@) 3 n dT

t
< CO Iy +C [ @), dr

for some C = C(N) > 0. Then, by the a priori assumption (6.49) we get, for all
0<t=<T <coey?,

(6.52) lu ()% < Ccger + CTe] < e3(Ccg + Ceo).

The desired conclusion on the norms C¥ HN=* follows by Lemma
(6-52)), and recalling that [ u (¢, x)dx = 0, choosing ¢ small enough depending
on N. g

We now prove the long time existence Theorem|[I.2] by Theorem|[I.T]and Propo-
sition

Step 1. LOCAL EXISTENCE AND PRELIMINARY ESTIMATES. Let s > 3/2. By
the assumption (I.20), Theorem|I.3|guarantees the existence of a time 7j,c > 0 and
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a unique classical solution (1, ¥) € C°([0, Tioe]; HST1/2) x Hs+1/2)) of (L.3),
with initial data as in (I.20) such that

(6.53) sup 09 V. BYO by = o [ niexdx =0,
t€[0,Tioc] T

We now show that for any K > 0, if s > K + o9 for some oy large enough, and
& is small enough, then the time derivatives (8t n, ok T¥), k =0,..., K, satisfy, for

all 7 € [0, Tiocl,
659 1060l ey o+ 10V ey o S nley + uwnHﬁl <o

One argues by induction on k. For k = 0 the second estimate in is (6.33).
Assume that holds forany 0 < j <k—1 < K—1,k > 1. By differentiating
in ¢ the water waves system (1.3) we get, forany k = 1,..., K,

(6.55) Fn=d"HGmy), vy =N Fm. ne. ¥x. GDY)),

where F is an analytic function vanishing at the origin. Then, using that G(n)y is
expressed from the side of (3.2)), Proposition[2.6] (2.20), and the inductive hypoth-
esis, we get

[5G s S5 D0 1V e + [9F
k'<k—1
Ss Il

FstE—k+1

e A

This implies, in view of the first equation in (6.53), that 3 is bounded as in (6.54).
To estimate Bk Y we use the second equation in (6.53)), the inductive estimates for
(BJn d74),0 < j <k — 1, and the previous bound on ||8k LG gs+1/2«.

Step 2. A PRIORI ESTIMATE FOR THE BASIC DIAGONAL COMPLEX VARI-
ABLE. We now look at the complex variable u defined in and (1.8). Since
the function B is in Z]:II;R’O,I (Proposition , we deduce, applying Proposi-
tion for s > s¢ large enough, that @ € CO([O, Tioc; HSH/Z), and so u €
CO([0, Tioe]; HY) with N = s + 1/4. Moreover, using (T.20), (6.53)—(6.54), we
estimate, fork =0,..., K, N >> K,

@)@ @D
P T VPR 7 [

Hs+2 Hs+% .

for any ¢ € [0, Tioc]. In conclusion, there is C; = C{(N) > 0 such that
(6.56)

lu(O)|| g~ <2, sup Z ||3ku(t)||HN x < Cre, / u(t,x)dx = 0.
IE[O Tlu(.]k 0 T

Step 3. BOOTSTRAP ARGUMENT AND CONTINUATION CRITERION. With g,
K, N given by Theorem [[.1] and co by Proposition [6.5] we choose g¢ in (I.20)
small enough so that, for 0 < & < gg, we have 2¢ < cgg, C1& < & where C is the
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constant in (6.56). Moreover, we take s > s large enough in such a way that (6.56))
hold with N given by Theorem|[I.1] Hence the first two assumptions in (6.49) hold
with 1 = emax{2¢y 1 C1} on the time interval [0, Tioc]. Then Proposition [6.5|and
a standard bootstrap argument guarantees that u(¢) can be extended up to a time
T := 0081_3, consistently with (1.21)), and that

(6.57) sup |[u()|lgv < e1, / u(t,x)dx = 0.
T

OJTE

Finally, we prove that the solution of (I.3)) satisfies (1.22) and that (1, ¥, V, B)(¢)
takes values in X* forall # € [0, T;]. Expressing (1, ) in terms of u, i as in (3.21),
we deduce by (6.57) that

(6.58) [sup] (Il gs + @) | gs+172) Ss &
0,7,

Then, by (T:8), (6:38)), and Proposition[2.6] using (3.2)) for G(n)y, we estimate

sup [|¥(D)llgs + sup (V. BY(O) |l gs-1xps—1 Ss &
[05T6] [OvTé‘]

The estimates above imply (I.22)) and, in particular, that

sup [|(n. . V. B)(®) | xs—1 <s &,
[0,T¢]

thus guaranteeing (1.23), for s — 1 > 5, on the time interval [0, T¢]. The continua-
tion criterion in Theoremimplies that the solution (1, v, V, B) is in C°([0, T,
XS forT = T,.

Appendix: Flows and Conjugations
In this appendix we study the conjugation rules of a vector field under flow

maps.

A.1 Conjugation rules
We first give this simple lemma that we use in sections[3.2] and 3]

LEMMA A.l. For U = [}] consider a system 3,U = X(U)U with X(U) in
EMg k7,0 ® Ma(C) and let ® (U) be the flow of

(A.1) 3g®%(U) =iA(U)D%(U), @°(U) = 1d,

where A = A(U) is in ER?( k1 ® M2(C). Under the change of variable
V := (®Y(U))g=1U, the new system becomes

(A2) 3,V =XTU)V, XTU):= 0,2 U)) (' (U))  + oL () XWU) (@ (U))™ L.
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The operator Xt (U) is in SMg gr+10 ® M2(C) and, setting Adia[X] :=
[iA, X, it admits the Lie expansion

L
A3 S OXWE@ WY =X+ %Adi[X]
=1 1"

" % /01“ — ) F Y (U)AdTT X1 (U)) ™" df.

(A4) @' (U)(@' V) = Z A [10/A]

1
+ L / (1 — o)L of (U)AdL i3, A1(@% (U)) 7! db.
L' J,

PROOF. The expression (A.2)) follows by an explicit computation. In order to
prove (A.3) note that the vector field P(6) := O (U)X (U) (@ (U))™! satisfies
the Heisenberg equation dg P(6) = [iA, P(6)] with P(0) = X(U). We also have
dg P(0) = ®9 (U)Adia[X]®P(U)~!. Then (A3) follows by a Taylor expansion.
To prove (A.4) we reason as follows. We have that

dH (U)o dr 0 (@MU =8, + @1 (U)[3 (@ (U) !
=9 — (3, 2" (U))(@' WU

Using the expansion with X ~ 9, and we get (A4). By Taylor-
expanding ®!(U) using (A1), we derive that ®1(U) — Id is in SMg g1 ®
M>(C). The translation invariance property of the homogeneous compo-
nents of ®!(U) follows since the generator A(U) satisfies (2.19). Then, the oper-
ator X T (U) in belongs to XMk k/+1,0 ® M2(C) by Proposition and
the remarks after Definition [2.7] Let us justify the translation invariance property
of the homogeneous components of X (U). Denoting by &1 <2(U) the sum of its
homogeneous components of degree less than or equal to 2 we get for any ¥ € R,
oL, (U) = <2(T19U)f19’ and so Tzst@<2(U)[ | = dy®L,(rgU)[rp Hlry.
Then we deduce 7y (0; D 2(U)) = (9, ! <2(7pU)) 7y using the translation invari-
ance of X(U)U. By composition we deduce that the homogeneous components of

XT(U) in (A2) satisfy (2Z.19). O

In the next subsection we analyze how paradifferential operators change under
the flow maps generated by paradifferential operators.

(A.S)

A.2 Conjugation of paradifferential operators via flows

We consider the flow equation

(A.6) 3@ =10p®V(f(6.U;x,£)@?, @° =14,
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where f is a symbol assuming one of the following forms:

BU; x)
1+ 6B,(U:;x)

(AB) f(0.U:x.6) = f(Uix.§) = U N)E12, B(U:x) e SFR K1

(Ag) f(Q,U,X,E) = f(U’xsé) € EF[’?,K/,]’ m EO
Note that (A.6) with f as in (A.7) is a paradifferential transport equation. This is
used in Section [4.1] and Section Flows with f as in (A:8) are used in Section
[4.2]and with f as in (A29) in Section[4.2]and Section [4.3]
LEMMA A.2 (Linear flows generated by a paradifferential operator). Assume that
f has the form (A7) or (A.8) or (A.9). Then, there is so > 0 and r > 0 such that,
forany U € CﬂfR(I; H%) N leg(l;r), for any s > 0, the equation (A.6) has a
unique solution ®%(U) satisfying the following:

(1) the linear map CDG(U ) is invertible and, for some Cy > 0, VO < k <
K-K,

(A7) fO,U;x,§):=b(0,U;x)¢ := &, BWU:x)e E]—"IH(Q,K,’I,

195 D8 ()]l s + 1850 N 0] s s

(A.10)
= ”v”k,s(l + Cs”U”K,so),

(A.11) C vl s < 19° W] e < Colloll e
forany v € C*K_K/(I; H?) and uniformly in 8 € [0, 1].
(ii) The map ®° (U) admits an expansion in multilinear maps as ol (U)—Id e

XMk k1, 0 € [0,1]. More precisely, there are M1 (U) in My and Mz(l)(U) and
Mz(z)(U ) in M> (independent of ) such that

o (U)[U] = U + 6(M(U)[U] + MDW)H[U]) + 6> MP (U)[U]

(A.12)
+ M>3(0, U)[U]

where M>3(0:U) is in M ., 5 with estimates uniform in 6 € [0, 1].

The same result holds for a matrix-valued system 99®°(U) = B(U)®P(U),
®O(U) = Id, where B(U) = Op®Y(B(U;x.£)) and B(U; x,£) is a matrix of
symbols in EI‘IO( k1 @ M2(C).

PROOF. See lemma 3.22 in [6]). The property (2.19) of the flow map ®?(U) de-
fined by (A.6) follows by the fact that the homogeneous components of the symbol

f(6,U; x,§) satisfy (2.7). O
The proof of the next lemma follows by standard theory of Banach space ODE:s.

LEMMA A.3 (Linear flows generated by a smoothing operator). Assume that A(U)
in (A1) is a smoothing operator in EREPO | ® M2(C) for some p > 0. Then,
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there is 59 > 0, r > 0 such that, for any U € BSK(I;r), for any s > sg, the
equation (A1) has a unique solution ®° (U) satisfying, for some Cs > 0,
k(a0 +1
197 (@7 (U N[l gys+o-x
< Iolls(1 + CsllUl k,50) + Cslvllx,s1U 1.5

for any v € C*K_K/(I;I-'IS), 0 < k < K — K', and uniformly in 8 € [0, 1].
Moreover, ®°(U) satisfies a bound like (A11) and (ii) of Lemma

(A.13)

We now provide the conjugation rules of a paradifferential operator under the
flow ®%(U) in (A.6). We first give the result in the case when f has the form

(A7); i.e., (A.6) is a transport equation.

LEMMA A.4 (Conjugation of a paradifferential operator under transport flow). Let
®Y(U) be the flow of (A.6) given by Lemma with f(0,U;x,§) as in (A7)
and U € C>§R (I: H) N BSIS (I;r). Consider the diffeomorphism of T given by
Yy x> x+ BWU;x). Let a(U; x, §) be a symbol in EFI”(”K,,qforsome g €N,
g <2 K' <K, r>0,andm € R. Ifsg is large enough and r small enough, then
there is a symbol ap(U; x, &) in EF}{”,K,,q such that

A14) ' W)0p™Y(aU:x. )@ U) ™" = 0p™(ae(U:x.§) + R(U)
where R(U) is a smoothing remainder in EREP ;,"; +1- Moreover, ag admits an

expansion as

(A.15) ao(U:x.6) = ag (Ui x.§) + af) (U:x.6)

where

(A16) aQ(U:ix.§) = a(U:yu(t. %), €0y (Ug" (1)), _ypy i) € ETR kg
andag)(U;x, &) is a symbol in EI‘I”(',_KZ,’qH. In addition, ifa(U; x, &) = g(U; x)§,
then ag) =0.

Furthermore, the symbol ag)) in (A.16) admits an expansion in degrees of ho-
mogeneity as

AIT) o =at(BE.a} + S(1BE (BE a3} + {-Bik.a)

up to a symbol in I'¢ ., 5 which is real-valued as ag)) ifa(U; x,§) is real-valued.

PROOF. Formulas (A.14)—(A.16) are proved in [6, theorem 3.27] (with homo-
geneity degree N = 3), and it is shown that the symbol

aQU:x.6) = ap(6. U x,£)19=1

and a¢(0) solves the transport equation

d
(A.18) @00(9) ={b(0.U:x)§.ao(0)}. ao(0) =a.
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The claim that, if a(U; x, &) = g(U; x)§&, then ag) = 0 follows because in for-
mula (3.5.37) of [6]], the symbol r_, 3 = 0. Finally, we deduce by a Taylor
expansion in 6 using (A.I8) (note that » and B have degree of homogeneity 1
in #). Since the homogeneous components of B(U; x) satisfy the invariance con-
dition (2.7), the flow ®!(U) satisfies (Z.19), and so the left-hand side in (A.14).
The proof shows that the symbol a¢ in (A.13)) satisfies (2.7), and therefore the
remainder R(U) in (A.T4) satisfies (2.19) by difference. O

LEMMA A.5 (Conjugation of 3; under transport flow). Let ®°(U) be the flow of
(A%6) given by Lemma[A.2\with f(0,U;x,§) as in (A7]). Then

A19) (@' W) (@' W) =i0p"M(g(Usx)§) + RW)

where g(U; x) is a function in E]:I]Ig k'+1.1 and R(U) is a smoothing operator in

ERE’ K'+11° In addition, the function g(U; x) admits the expansion in degrees of
homogeneity

(A20)  g(U:x) =B —BxBi + 823(U:x). g23(Uix) € FR gry1 5

PROOF. By the proof of proposition 3.28 of [6] (see formula (A.3) and (3.5.55)
in [6]) the operator P(8) := (3, 9% (U))(®?(U))~! solves

(A.21) j—ep(e) = [i0p®V (b(0,U; x)€), P(0)] +i0p®¥ (3,b(6. U; x)§), P(0) = 0.

We claim that the solution of (A.21)) is, up to smoothing remainders, P(6) =
OpBV(po (8, x, £)), where the symbol po(8, x, §) solves the forced transport equa-
tion

A 0(8.x.8) = (b(6. U )E. po(B.x. )} + 10:6(8. U: ).

(A.22) do
po(0) =0,
Indeed, the solution of (A.22)) is
0
(A23) pol6.x.6) =i [0 f(5. U™ (. 6)ds
0

where f(s,U; x,§) := b(s, U; x)€ and ¢ (x, ) is the solution of the character-
istic Hamiltonian system

4x(s) = —b(s.x(s)).
4 (5) = ba(s. X(5)E(s).
with initial condition ¢?¢ = Id. Note that ¢? (x, ) = ¢°¢?° where

¢P0(x.6) = (x + 0B(U:x). E(1 + 0y y(U: 6. ¥) jy=x+6pUx))
where y + y(U; 0, y) is the inverse diffeomorphism of x + 68(U; x) (see lemma
3.21in [6]). Then ¢ (x, £) is linear in &; hence also po (6, x, £) in (A.23) is linear
in £. Since both »(8,U; x)& and py(0, x, £) are linear in £ we deduce that the
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commutator [iOpBw(b (0, U;x)E), OpBWV(po(8, x. S))] is given, up to smoothing
operators, by OpBY({b(8, U: x)&, po(0, x, £)}). Moreover, by lemma 3.23 in [6],
F(s,U: %5 (x,8)) is in ZF}( k1 With estimates uniform in [0, [s| < 1. Then

(A.19) follows by setting ig(U; x)& := po(1, x, §). Finally, we deduce (A.20) by
a Taylor expansion in 6 of the symbol po(6), using (A.22). The function ; —
BxPB: satisfies the translation invariance property as B. As in Lemma [A.1]
the operator (3,®*(U))(®'(U))™! in (A19) is translation invariant, and R(U)
satisfies the property (2.19) by difference. O

We now provide the conjugation of a paradifferential operator under the flow
®%(U) in (AG) if f has the form (A8) or (A.9).
LEMMA A.6 (Conjugation of a paradifferential operator). Let ®°(U) be the flow of
(A.6) given by Lemmawith symbol f(U;x,§)in XT¢ x| withm < 1/2, of
the form (A.8) or (A.9). Let a(U: x, §) be a symbol in ZFI’?,,K',q for some g € N,
qg<2 K <K, r>0,andm’ € R. Then

' (U)0p™Y(a(U; x, 6)) (@' (U) ™!

A24
(29 :OpBW(a—i-{f,a}—i-%{f,{f,a}}—i—rl—i-rz—i-m)+R(U)

m+m’—3 2m+m’'—4 3m+m’'—3
where 11 € EI’K’K,’qH, rp € EFK,K’,quz’ r3 € I‘K,K,,3 , and R(U) €
—p
ERK,K/

g+1- In addition, if a(U:x, &) is real, then also the symbols ri, i =
1,2, 3, are real-valued as well.
PROOF. The result follows by a Lie expansion. Using (A.3) we have, for L > 3,

LU 0pP (@) (@' (U))!
= 0p" (@) + [0P™ (1), 0p™ (@)] + ;A w1y 107" (@)

L
(A.25) 1
+ Z Al AdkOpBW(if)[OpBw(a)]
k=3

1
+ % /0 (1 =0 0% (U)(AdGE v 1 [0PPY @) (@% (U)) " db.

By Propositions replacing the smoothing index p by some p chosen below
large enough, we get
Adopmv (i) [0p"V (@)] = [0p"V(i.f). Op™(a)]
= 0p®V({fia}+ 1), r € EF?}T;EP

_7 4
up to a smoothing operator in XR Kp ;,";i"f . Moreover,

AdG v 1y 0P @] = Op" (£ {f.a}} + ). ra € SR,
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—~ 4 . .
up to a smoothing operator in xR Kf) ;,2’:]":2’" . By induction, for k > 3 we have

k(m— ’
AdkOPBW(if \[0pPY(@)] = OpPY(by), by € EFK%/,;)J:?cm :

. . p+m’ +km
up to a smoothing operator in R/ K'.g+k

(L+1)(1—=m)—m’ > pand L +1 > 3 so that the operator Op®W (b; 1 1) belongs
to RI_(’D K3 The integral Taylor remainder in (A.25)) belongs to REP K3 a8 well;
see lemma 5.6 in [6]. Then we choose p large enough so that p—m’—(L+1)m > p
and the remainders are p-smoothing. By the third remark under Definition 2.8 we
deduce thatif a(U: x, £) is real, then the symbol of [ Op®¥ (i /), Op®W(a)] is real,
and so ry, 1o, r3 are real-valued as well. O

We choose L in such a way that

LEMMA A.7 (Conjugation of 3;). Let ®°(U) be the flow of with symbol
fU:x,§) in EUY g, | withm < 1/2, of the form (A.8) or (A.9). Then

(3,0 (U)) (e (U)) !

(A.206) . Bw 1 BW
=10y (80f + 31A8011) + 09 1 + 1) + RO)

where r1 € EI‘Z K’+1 2 72 € F K’+1 sand R(U) € ERE’K,

+1,2°

PROOF. The result follows by using the Lie expansion (A.4) and arguing as in
LemmalA.6 O

A.3 Lie expansions of vector fields up to quartic degree

In this subsection the variable U may denote both the couple of complex vari-
ables (u, u) or the real variables (n, V).

LEMMA A.8 (Inverse of F? 23(U) up to Ou*)). Consider a map 6 > F? =3(U),
6 € [0, 1], of the form

(A27)  FLU) = U + 6(Mi(U)[U] + M W)H[UY) + 02MP (U)H[U]

where M1(U) is in M ® M3 (C) and the maps M(l)(U) M(z)(U) are in Ma ®
Mo (C). Then there is a family of maps G? 23(V) of the form
(A28)  GL (V) =V oMV + MO W)V + 2mP (V)[V]
where A;Iz(z)(l/) isin My ® Mo (C) such that

Gl oF (U U + M-3(6; U)[U],
(A29) 9<3 W) = >3(0: U)[U]
FZ, o G? 3(V) =V + M>3(0; U)[U],

where M>3(0;U) is a polynomial in 6 and finitely many monomials M,(U)[U]
for maps Mp(U) € M, @ M»(C), p > 3.
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PROOF. SetV =F 23(U ) and substitute iteratively twice the expansion
to express U as a function of V, up to terms of higher homogeneity (using the last
two remarks under Definition [2.7). O

We regard the map 6 > G;(V) in (A.28) as the formal flow of a non-
autonomous vector field S(6; U) up a remainder of degree of homogeneity 4; see

(A.30).

LEMMA A.9. Consider a map FZ3(U) asin and let GZ3(V) be its approx-
imate inverse as in (A28)) up to quartic remainders. Then

(A30)  8GLy(V) = SB:GL3(V) + Mx3(8: U)[U). GLy(V) = V.
where S(6;U) is a vector field of the form

(A31) S(0:U) = Si(U)[U] + 652(U)[U]

where S{(U) is a map in My ® Mx(C) and S»(U) in My ® M»(C), and
M=3(0;U) is a polynomial in 6 and finitely many monomials M, (U)[U] for maps
My(U) € Mp @ M2(C), p = 3.

PROOF. It follows by explicit computation differentiating (A.28)]), using the ex-
pansions (A.27), (A.28), and the last two remarks under Definition O

Given polynomials vector fields X(U) and Y (U) we define the nonlinear com-
mutator

(A32) [X.Y](U) := duY(U)[X(U)] — dy X(U)[Y (U)].
Under the same notation of Lemmata[A.8] [A.9] we have the following result.

LEMMA A.10 (Lie expansion). Consider a vector field X of the form X(U) =
MU)U for some map M(U) = My + M1 (U) + My(U) where My is in Mo ®
Ma(C), M(U) is in My ® M»x(C), and Ma(U) in M ® Mx(C). Consider a
transformation F Z3(U ) as in and let S(0; U) be the vector field of the form
such that holds true. Then, if U solves 0,U = X(U), the function
V.= F1<3(U) solves

(A.33)

1 1
0:V = X(V)+[S. X]]|9=0(V)+§[[S, [S. X]]]]|9=0(V)+§[395|9=Oa X](V)+---
up to terms of degree of homogeneity greater than or equal to 4.

PROOF. In order to find the quadratic and cubic components of the transformed
system, it is sufficient to write V' := F;(U ), 6 € [0, 1], and the first identity in
(A29) as U = G;(V) + M>3(6; U)[U]. Then, differentiating with 9, the first
identity in (A.29) we obtain, up to a quartic term,

(A.34) X(GL(v)) = dGLy(M[Vi] = (1d — M(8; V) [ V]
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where M(6: V) = 0(My (V) + MV (V) +62M,(V) for suitable maps M, (V) in
M1 ® M»(C) and M»(V), Mz(l)(V) in My ® M5 (C); recall (A.28). Applying
in (A.34)) the “pseudo-inverse"
(dGL,()) ™ = 1d+ M@ V) + M2(6; V),
and since we have d;V = 09U plus a quadratic term in U, we deduce that, up to a
quartic term,
-1
(@GL(V)) " X(@GL(v)) = Vi.

The left-hand side of this formula can be expanded in Taylor at & = 0 up to degree
2, obtaining, using (A.30), the usual Lie formula

02
(A35) X(V)+ 0[S, X]jo=o(V) + = (LS. [S. X]jo=0 (V) + [0S (6))6=0. X1(V))
up to terms of degree 4. Evaluating (A.35) at 6 = 1 we get (A.33). O
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