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Abstract: A relevant problem in dynamics is to characterize how deterministic systems may exhibit
features typically associated with stochastic processes. A widely studied example is the study of
(normal or anomalous) transport properties for deterministic systems on non-compact phase space.
We consider here two examples of area-preserving maps: the Chirikov–Taylor standard map and
the Casati–Prosen triangle map, and we investigate transport properties, records statistics, and
occupation time statistics. Our results confirm and expand known results for the standard map: when
a chaotic sea is present, transport is diffusive, and records statistics and the fraction of occupation
time in the positive half-axis reproduce the laws for simple symmetric random walks. In the case of
the triangle map, we retrieve the previously observed anomalous transport, and we show that records
statistics exhibit similar anomalies. When we investigate occupation time statistics and persistence
probabilities, our numerical experiments are compatible with a generalized arcsine law and transient
behavior of the dynamics.

Keywords: area-preserving maps; record statistics; infinite ergodicity

1. Introduction

One of the most remarkable advances in modern dynamics lies in the recognition
that deterministic systems may exhibit statistical properties typical of purely stochastic
processes: for instance, such systems may display diffusion properties similar to random
walks [1–4]. Area-preserving maps (see, for instance, [1]) represent a prominent example of
Hamiltonian systems where subtle features of dynamics, such as integrability vs. chaotic
properties, may be studied. In this context, one of the most outstanding examples is
represented by the Chirikov–Taylor standard map (SM) (see [1,5] and references therein).
Even if we are only concerned with classical features, we recall that such a map played an
important role in the development of quantum chaos: in particular, early investigations
showed how quantum interference suppresses classical diffusion, a phenomenon called
quantum dynamical localization [6]. Though the SM has been extensively explored by
numerical simulations, very few rigorous results have been proven (see, for instance, the
introduction in [7]): however, it is generally believed that for large nonlinearity parameters,
this map typically exhibits good stochastic properties and sensitive dependence upon
initial conditions. Here a remark is due: such a map can be studied either on a 2-torus or
an (unbounded) cylinder: the latter representation is naturally adopted when transport
properties are concerned, and analogies with random walks are taken into account [1,3,8,9].
While particular nonlinear parameters in the standard map can be tuned to generate
strong anomalous diffusion [10] (see also [11–15]), here we will only deal with the case in
which diffusion is normal. Our findings will be compared with those obtained for another
area-preserving map, characterized by the lack of exponential instability: the so-called
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Casati–Prosen triangle map (TM) [16], introduced by considering, in an appropriate limit,
the Birkhoff dynamics of a triangular billiard: apart from its intrinsic interest, such a map is
an ideal benchmark to test whether stochasticity properties, exhibited by strongly chaotic
systems, are also showcased by systems lacking any exponential instability. It also turns
out that many features of the TM are still debated, starting from basic properties, such as
ergodicity and mixing (see, for instance, [17,18]). It is also worth mentioning that the TM
has been studied in the quantum setting to investigate which features of quantum chaos
are displayed in the absence of classical exponential instability [19,20].

In detail, we will compare different indicators for both maps on the cylinder: though,
in principle, further complications are added when one considers a non-compact phase
space [21,22], this is the appropriate scenario to discuss transport properties and record
statistics and to check whether tools from infinite ergodic theory may enrich our under-
standing of such systems.

Our main findings are that the SM, in its typical chaotic regime, displays all stochastic
properties of a purely stochastic system, while, as expected, results are far more complicated
for the TM; we believe that some new insight is provided by our analysis, in particular,
as regards persistence behavior, occupation time statistics, and the relationship between
transport properties and record statistics. When we compare the records statistics for the
SM and the TM, the latter exhibits an anomalous growth, which can be related to trans-
port properties. The difference is even more striking when we consider occupation time
statistics and survival probability: the SM again behaves like a simple random walk, while
the TM numerical experiments suggest transient behavior, coexisting with a generalized
arcsine law.

The paper is organized as follows. In Section 2, the Chirikov–Taylor standard map (1)
and the triangle map (3), our basic models, are presented, and we also mention the main
properties we analyze. Section 3 is dedicated to discussing transport properties, records
statistics, and occupation time statistics. We end with a discussion in Section 4.

2. The Basic Setting

We recall the definition of the SM

pn+1 = pn +
K

2π
sin(2πxn),

xn+1 = xn + pn+1 mod 1;
(1)

where x and p are canonical variables: (1) is the stroboscopic map generated by the time-
dependent Hamiltonian H(p, x, t) = p2/2 + K/(2π)2 cos(2πx)∑+∞

m=−∞ δ(t−m), describ-
ing a periodically kicked rotator, K being the nonlinear parameter: when K is sufficiently
big, no KAM invariant circles bound the motion, and one can study moments of the
diffusing variable p ∈ R:

〈|pn − p0|q〉 ∼ nqν(q). (2)

The typical behavior observed for the second moment in simulations is normal diffu-
sion ν(2) = 1/2 [23,24], while, for certain parameter values, the existence of stable running
orbits (accelerator modes) induces superdiffusion, ν(2) > 1/2) [11–15,25–27]. We point out
that a finer description of anomalous transport is obtained by considering the full spectrum
ν(q): if ν(q) = α · q, for some α 6= 1/2 one speaks about weak anomalous diffusion, whereas
the case of a nontrivial ν(q) is dubbed strong anomalous diffusion [10]. As far as the SM is
concerned, we will consider the case where transport in the stochastic sea is normal, even if
the phase space exhibits a mixture of chaotic and elliptic components (see Figure 1). We
will come back to this point in the final discussion.
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Figure 1. Phase-space portrait for the standard map (1) on the 2-torus, for K = 2.6. Here 40 uniformly
distributed initial conditions were used for x, while maintaining p0 = 0 fixed: each initial condition
is iterated 104 times.

On the other side, the TM is defined (on the cylinder) as:

pn+1 = pn + 2(xn− � xn � −µ(−1)�xn�),
xn+1 = xn − 2pn+1 mod 2,

(3)

where � · · · � denotes the nearest integer. It was introduced in [16] (see also [28]) as an
approximate Birkhoff map of irrational triangular billiards: systems lacking exponential
instability, whose ergodic properties are subtly related to irrationality properties of the
angles [29–32]: in particular, the original derivation refers to an elongated triangular billiard,
with a very small angle: x and p are Birkhoff coordinates describing successive collisions
with the small side, and the parameter µ is associated with the asymmetry between the
two non-small angles. Figure 2 shows the function δp(x) = pn+1 − pn = 2(xn− � xn �
−µ(−1)�xn�). Since the derivative of δp(x) (apart from discontinuity points, where it does
not exist) is constant δ′(x) = 2, the jacobian of the map is

J(x, p) = J =

( −3 −2
2 1

)
. (4)

The determinant is 1 (the map is area-preserving, while the trace is −2, corresponding
to double degenerate eigenvalues λ = −1. This implies that the TM lacks any form of
exponential instability.

We remark that the polygonal billiards represent both a hard mathematical chal-
lenge [33–36] and a natural benchmark when trying to assess which microscopic dynamical
features lead to macroscopic transport laws [37–39] (see also [40,41]). In this respect, it is
worth mentioning that anomalous transport has been associated with scaling exponents
of the spectral measure [42] and that generalized triangle maps have been investigated
recently, both as connected to dynamical localization [43] and with respect to slow diffu-
sion [44]. A typical phase portrait (on the torus) of the TM is shown in Figure 3.

Before mentioning the numerical experiments we performed, a crucial observation is
in order. When looking at transport properties (and records statistics), considering maps
on the cylinder is quite natural, while from the ergodic point of view, this perspective is
somehow delicate since no normalizable invariant density exists [21,22], and the appropri-
ate setting is an infinite ergodic theory (we will not employ the full machinery of infinite
ergodic theory; however, the lack of an invariant probability measure is essential when
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properties such as occupation time statistics are examined). When polygonal channels
are considered, even establishing recurrent properties of the dynamics is a demanding
task [45].

−5.0

5.0

0.0 2.0

δp

x

Figure 2. δp = pn+1 − pn as a function of x for the triangle map (3), for µ = 1+
√

5
2 (golden mean).

Figure 3. Phase-space dynamics for the triangle map (3), for µ = 1+
√

5
2 (golden mean). Here

100 randomly distributed initial conditions were used for x and p: each initial condition is iterated
5× 104 times. Notice the typical filament structure in the phase space [30,31].

The first set of properties we investigated is more conventional, and a few results,
as we will mention in the next section, have already been considered, especially as far as
the SM is concerned. We will look at transport properties, in particular through the first
and the second moment of the diffusing variable. We will also study records statistics,
which recently have become very popular (see [46,47] and references therein). Then we will
scrutinize statistical properties, such as persistence probability and (generalized) arcsine
law [48,49]. While motion in the stochastic sea for the SM will exhibit typical properties of
a simple stochastic process like a random walk, our findings for the TM suggest both the
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existence of transient dynamics and anomalous scaling exponents for records statistics and
generalized arcsine law.

3. Results

We start by considering properties associated with the spreading of trajectories over
the phase space; then we will consider occupation time statistics.

3.1. Diffusion

This is a warm-up exercise since transport properties have been studied both for the
SM [1,23,24] and for the TM [32]. We observe normal transport for the case of the SM (see
panels (a) and (b) in Figure 4, where 〈(pn− p0)〉 ∼ n1/2 and 〈(pn− p0)

2〉 ∼ n, respectively),
while the TM results indicate a superdiffusion (see panels (a) and (b) in Figure 5), with

〈(pn − p0)
2〉 ∼ n1.86, (5)

in agreement with [32]. We remark that by looking at the power-law exponents of the
first two moments, we find that anomalous diffusion is possibly weak [10], namely if we
consider the full spectrum of moments’ asymptotics:

〈|pn − p0|q〉 ∼ nφ(q), (6)

we have a single scaling, in the sense that

φ(q) = α · q; (7)

where normal diffusion is recovered when α = 1/2. This is reasonable since weak anoma-
lous diffusion has been observed in polygonal billiards [50].
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Figure 4. (a) Average number of records, (b) variance, (c) first, and (b) second moments of variable
p for K = 2.6 in the standard map (1), as a function of time. These quantities were computed
for 106 initial conditions for x0, arbitrarily chosen in the chaotic sea along the line p0 = 0. Black-
continuous lines correspond to power-law asymptotics fit F(n) = anγ: the fitting parameters are, for
(a) a = 0.77(7), γ = 0.50(1), for (b) a = 0.02(1), γ = 0.99(1), for (c) a = 0.86(0), γ = 0.50(9), and for
(d) a = 0.50(7), γ = 1.00(3).
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Figure 5. (a) Average number of records, (b) variance, (c) first, and (b) second moments of variable p
for the golden mean µ = 1+

√
5

2 in the triangular map (3) as a function of time. These quantities were
computed for 106 initial conditions for x0, arbitrarily chosen in phase space along the line p0 = 0.
Black-continuous lines correspond to power-law asymptotics F(n) = anγ: the fitting parameters are,
for (a) a = 0.65(4), γ = 0.92(4), for (b) a = 0.67(6), γ = 1.86(0), for (c) a = 0.13(9), γ = 0.92(4), and
for (d) a = 0.04(0), γ = 1.84(9).

3.2. Average Number of Records

The statistics of records are very popular in the analysis of correlated and uncorrelated
stochastic time sequences [46,47]. Since this subject has not been explored thoroughly in
the deterministic setting (with the remarkable exception of [51,52]), we briefly review the
basic concepts.

First of all, let us recall the (straightforward) definition of a record: given a sequence
of real data x0, x1, . . . , xk, . . . the element xm is a record if

xm > xj j = 0, 1, . . . m− 1, (8)

(we consider x0 to be the first record). To the sequence of data points we associate the
binary string σ0, σ1, . . . , σk, . . . , where

σl =

{
1 if xl is a record
0 otherwise

(9)

The number of records up to time N is then

MN =
N

∑
j=0

σj. (10)

The properties of the average number of records, 〈MN〉, and the corresponding vari-
ance

Var(MN) = 〈M2
N〉 − 〈MN〉2 (11)
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are important tools to access the nature of the data sequence: as a matter of fact, if the
different xj are independent identically distributed random variables, then, for large N, we
have [53,54]:

〈MN〉 = ln N + γE +O(N−1), (12)

where γE = 0.5772 . . . is the Euler–Mascheroni constant, and

Var(MN) = σ2(N) = ln N + γE −
π2

6
+O(N−1). (13)

We remark that both quantities are independent of the common distribution of the
random variables: this universality is an important feature of record statistics in differ-
ent contexts.

The results are quite different for a correlated sequence, as when xj denotes the position
of a random walker at time j:

xj+1 = xj + ξ j+1, (14)

where the jumps are taken from a common distribution ℘(ξ). In this case, the behavior
is [46,47]:

〈MN〉 ≈
2√
π

√
N, (15)

and

Var(MN) ≈ 2
(

1− 2
π

)
N, (16)

so that the standard deviation is of the same order of magnitude as the average. Again
this is a universal result, independent of the particular jump distribution ℘(ξ), as long as
the distribution is continuous and symmetric. The crucial ingredient of the proof is that
the process renews as soon as a new record is achieved and the appearance of the new
record is related to the survival probability for the process, which is universal in view of
the Sparre–Andersen theorem [49,55,56] (see also [57]).

Numerical results on records statistics are reported in Figure 4 (for the SM) and
Figure 5 (for the TM), panels (c) and (d) for the average number of records 〈M(n)〉 and
variance σ2(n), respectively. For the SM, our results plotted in Figure 4 are consistent with
early investigations [51,52] and with the asymptotic behavior of a random walk: our fits are
in excellent agreement with 〈M(n)〉 ∼ n1/2 and σ2(n) ∼ n, respectively. For the TM, we
observe anomalous scaling with regard to (15) and (16), as plotted in Figure 5: the behavior
is related to the transport properties in the sense that data are consistent with the growths.

〈MN〉 ∼ Nφ(1), Var(MN) ∼ Nφ(2). (17)

Similar behavior was observed in [51,52] for the SM in the presence of accelerator
modes. We remark that, though in the following we will fix our attention to a particular
parameter value for the TM, we checked that reported experiments do not depend on the
particular parameter choice, as exemplified in Figure 6, where the growth of the averaged
number of records is reported for three different parameters of the TM: µ =

√
7,
√

2/2, and
µ = (

√
5 + e)/12 plotted with dashed-dotted (green), dashed-dotted-dotted (magenta),

and dashed (red) lines. While the actual choice of µ parameter values is somehow arbitrary,
the only provision is to choose irrational values. Otherwise, the TM becomes pseudointe-
grable [32–34]. Figure 6 shows that the asymptotic power-law fitting parameters are almost
the same (a ∼ 0.15 and γ ∼ 0.9) for different irrational values of µ.

We also remark that the number of initial conditions and iteration time plays a role
as regards the simulations we will present later on: while our choices are gauged by the
stability of the plots upon variations in this parameter, survival probability simulations
require extremely large iteration times, as remarked in the caption of Figure 7.
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Figure 6. Average number of records for three additional parameters µ in the TM. These quantities
were computed for 5× 105 initial conditions for x0, arbitrarily chosen in phase space along the line
p0 = 0. Black-continuous lines correspond to the power-law asymptotic fitting function F(n) =

anγ, with (a, γ) = [0.20(1), 0.91(8)] (magenta), (a, γ) = [0.16(2), 0.91(7)] (green), and (a, γ) =

[0.11(5), 0.92(4)] (red).
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Figure 7. Cumulative distribution function for the survival times obtained for variable p for (a) the
standard map (1) and (b) the triangle map (3) on a logarithmic scale. Data are obtained by simu-
lating 106 and 105 initial conditions, respectively. Continuous black lines correspond to power-law
asymptotic functions F(n) = a + bn−α: the fitting parameters are a = 0, b = 2.80(0), and α = 0.51(5)
in (a) and a = 0.021(0), b = 1.62(6), and α = 0.42(0) in (b). Notice that to observe the asymptotic
plateau for the TM, we have to go to very large iteration times.

While a general, quantitative relationship (if any) between transport exponents and
statistical properties of records has not been fully developed, to the best of our knowledge,
it is possible in some cases to connect φ(1) to the expected maximum of the walk [58,59],
that, for a random walk with unit jumps, coincides with the number of records. On the
other side, we mention that non-homogeneous random walks offer examples where such a
relationship does not hold [60–64].

3.3. Occupation Time Statistics

When we consider the evolution of the cylinder, both for the SM and the TM, we are
in the presence of infinitely ergodic systems [21,22]. Since, while the Lebesgue measure
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is preserved, due to area conservation, the (constant) phase space is unbounded, so the
invariant density cannot be normalized. This has a series of remarkable consequences,
which originally have been considered in the context of stochastic processes, and then
explored in the deterministic evolution framework.

One of the most striking properties that has been investigated is the generalized
arcsine law (see [48] for the standard formulation for stochastic processes): we briefly
recall the main result that lies at the basis of our analysis, namely Lamperti’s theorem [65].
The original formulation involves discrete stochastic processes, for which the infinite set
of possible states can be separated into two sets, A and B, separated by a single site x0,
such that a transition from one set to the other can only be achieved by passing through
x0, which can be taken as the starting site, and is supposed to be recurrent (namely the
probability of returning to it is 1). For instance, we can think of a one-dimensional random
walk on an integer lattice, with x0 = 0 and A (B) consisting of strictly positive (negative)
lattice sites. We are interested in the limiting distribution of N(n)/n, the fraction of time
spent in the positive semi-axis up to time n. The theorem states that such a distribution
exists in the n→ ∞ limit, and it is characterized by two parameters α and η. η is related to
the symmetry properties of the process, being the expectation value of the fraction of time
spent in R+:

η = lim
n→∞

E
(

N(n)
n

)
: (18)

for a symmetric process η = 1/2, and from now on, we will only consider such a case.
The other parameter, α, is instead connected to the behavior of the generating function

of first return probabilities to the starting site: it can be shown [66] that it can be related to
the probability Pn of being at the starting site after n steps in the following way.

Pn ∼
H(n)
n1−α

, (19)

where H(n) is a slowly varying function, namely

lim
n→∞

H(yn)
n

= 1. (20)

Under such conditions, the density of ϕ = N(n)/n in the infinite time limit is given
by Lamperti distribution:

Gα(ϕ) =
sin(πα)

π

ϕ1−α(1− ϕ)1−α

ϕ2α + 2ϕα(1− ϕ)α cos(πα) + (1− ϕ)2α
, (21)

which reproduces the usual arcsine law

P((Nn/n) ≤ ξ) =
2
π

arcsin
(√

ξ
)

(22)

when α = 1/2, in the universality class of the Sparre–Andersen theorem. Deviations from
standard arcsine law have been reported in several cases in the framework of deterministic
dynamics [67–74], mainly in the context of intermittent maps. Numerical experiments for
the SM confirm the validity of the arcsine law, α = 1/2, see panel (a) in Figure 8. To the
best of our knowledge, this is the first time such an indicator has been considered in the
analysis of area-preserving maps.

The results, as expected, are quite different for the TM, and they suggest novel features
exhibited by this map. In particular (see panel (b) in Figure 8), numerical results are well
fitted by a Lamperti distribution (with α ≈ 0.42) and thus are different from an ordinary
random walk), except for those that present enhanced peaks. Intuitively, such an additional
contribution might be due to a fraction of orbits never returning to the origin: this would
correspond, in stochastic language, to a transient random walk (we recall that according
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to Pólya’s theorem [75] a simple symmetric random walk is recurrent (so the return to the
starting site is sure) in one and two dimensions, and transient in higher dimensions). Such
a possibility is indeed not excluded for infinite polygonal channels [45].

Our last set of simulations concerns the survival probability [68]:

Pcum(n) = prob(pn ≥ 0 . . . p1 ≥ 0|p0 = 0). (23)

When considering recurrent random walks, the asymptotic behavior of the survival
probability is again ruled by the Lamperti exponent [65,66] (see also [76]):

Pcum(n) ∼ n−α. (24)

Once again, SM simulations (see panel (a) in Figure 7) agree with the expected behavior
for simple random walks (α = 1/2), while the situation is completely different for the TM,
where the survival probability seems to tend to a finite limit for large n, see panel (b) in
Figure 7. This is consistent with the transient nature of the TM, which we conjectured in
the analysis of generalized arcsine law.
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arccos(2(N(n)/n)−1)

Figure 8. Distribution of the fraction of time spent in the positive axis for the momentum p in the
standard (1) (a) and triangle (3) (b) maps on a semi-logarithmic scale. To enhance the readability
of the border values, the transformation x → arccos(2x− 1) on the horizontal axis. The (light blue)
points represent the simulation results, and the (red) line is the Lamperti distribution (21). Data are
obtained by computing 106 initial conditions iterated 106 times for the standard map and 106 initial
conditions iterated 108 times for the triangle map. The fitting parameters are α = 0.49(9) for (a) and
α = 0.42(0) for (b). In the case of the TM, data suggest a superposition of a (rescaled) Lamperti
distribution and two Dirac’s δ centered on x = 0 and x = 1 (see text).

4. Discussion

We have performed a set of extensive numerical experiments on two paradigmatic area-
preserving maps, the SM and the TM, focusing on the case where such maps are considered
on a cylinder, namely a non-compact phase space. First, we reproduced known results
about normal diffusion for typical (chaotic) parameters of the SM and superdiffusion for
the TM. In particular, for the TM, we recover the anomalous spreading exponent reported
in [32]. Then we explored records statistics: numerical simulations again confirm that the
SM behaves like a simple random walk in accordance with simulations in [51,52], while
anomalous growth is exhibited by the TM. We remark that, in both cases, the exponent that
accounts for the growth of the number of records is quite close to the one that determines
the asymptotic behavior of the first moment of the transporting variable, see (17). This is
also consistent with the results reported in [51,52] for the SM in the presence of accelerator
modes. While we only considered the case for which the SM displays normal diffusion
(up to the time scale we were able to investigate), it might be possible that accelerator
modes (of the possibly very high period) appear for almost every nonlinear parameter
K (see the discussion in [12]). This is an issue of conceptual relevance since accelerator
modes might eventually determine the true asymptotic behavior, but, on the other side, the
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time scale on which such behavior is exhibited might be beyond any possible numerical
simulation. The most interesting results arise in the analysis of occupation times, such
as generalized arcsine law and survival probability: to the best of our knowledge, such
properties are investigated here for the first time in the context of area-preserving maps. For
the SM, we recover the usual arcsine law and a survival probability in the Sparre–Andersen
universality class, while the TM displays different behaviors. In particular, the distribution
of occupation times in the positive half-axis (for the transporting variable) is well-fitted
by a superposition of a generalized Lamperti distribution (with a different exponent with
regard to the SM) and a sum of two δ peaks at the extreme values, which we ascribe
to transient orbits. We stress that the analysis of survival probabilities supports such a
conjecture since they seem to attain a non-zero limit for very long times. The development
of further tools to sustain such a picture is a line of research that we hope will be pursued
in further studies, which might also lead to new stochastic modeling of the TM [44]. From
a different perspective, it would also be important to consider classes of area-preserving
maps for which an analytic approach is feasible. A remarkable example in this respect is
provided by the Cerbelli–Giona map [77,78], where jumps in momentum are given by a tent
map. Such a map probes the effect of singularities (that are also present in the TM, though
without any exponential instability). In particular, in [78], an exact computation of the
diffusion coefficient is presented, which bears some similarities to analogous computations
for one-dimensional maps [79,80].
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