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Abstract

In this paper, we first give asymptotic theorems for the framework proposed by Berry,
Levinsohn, and Pakes (1995) to estimate the system of demand and supply models. We
then generalize the idea given by Petrin (2002), which extends the framework by adding new
moment conditions when demographically-categorized purchasing pattern data are available.
We also gives the asymptotic theorems to this GMM estimator and show that the use of the
additional moment conditions allows us to estimate of the demand side parameters more
precisely. Finally we run Monte Carlo experiments to evaluate these asymptotic theorems
and show that the additional summary information on the consumer’s choice contributes the
precision of the estimate.



1 Introduction

Recent studies, extending the framework proposed by Berry, Levinsohn, and Pakes (1995) (here-
after, BLP (1995)), have been trying to integrate the information on consumer demographics to
the utility functions in order to make their models more realistic and convincing. For example,
Nevo’s examination on price competition in the ready-to-eat cereal industry (Nevo 2000 and
2001) uses individual’s income, age and a dummy variable indicating the individual is a child
or not in the utility function. The background behind this is that public sources of information
such as CPS and IPUMS are widely available. Those sources can give us information on the
joint distribution of the U.S. household’s demographics such as income, age of household’s head,
and family size.

Some recent studies went further and try combining those demographics with the information
on consumer’s choice under the “extended” BLP frameworks. For instance, Petrin (2002),
referring to Imbens and Lancaster (1994), tries to link demographics of new-vehicle purchasers
to the vehicles they purchased. Specifically, given a purchasing pattern such as “buying a
minivan,” he proposes to match the model-predicted average consumer’s demographics with
the average consumer’s demographics quoted from CEX automobile supplement in the GMM
estimation. Petrin (2002)’s framework presupposes the market information on the population
average, which is readily accessible through public sources.

Berry, Levinsohn, and Pakes (2004) (hereafter, BLP (2004)), on the other hand, uses detailed
consumer-level CAMIP data provided by General Motors, which include not only individuals’
choices but also the choices they would have made had the first choice products not been avail-
able to them. In their new framework, the model-predicted covariances between the first- and
second-choice vehicle characteristics and household attributes are put close to those calculated
from CAMIP data as additional moment conditions in the GMM estimation. Although the
method proposed by BLP (2004) should improve the out-of-sample model’s prediction, it re-
quires proprietary consumer-level data, which are not readily available to researchers, as the
authors themselves admitted in the paper: the CAMIP data “are generally not available to
researchers outside of the company” (page 79, line 30).

Asymptotic Properties of the Estimator in the Previous Studies

The moment conditions used in BLP (1995) are orthogonal conditions of the unobserved product
quality &; and the unobserved cost shifter w; with the corresponding instrumental variables z;l
and z§. The moments are obtained by averaging sz? and w;z§ over products. As the number
of products J grows large, BLP (1995) claimed that the GMM estimator is consistent and
asymptotically normal (CAN).

In BLP (1995), {; are not obtained analytically, but numerically obtained as a solution of
o(X,€,04,P%) = s". The market shares o; are approximated by the simulated values with
random R draws of consumers. This generates the simulation error in the evaluation of the ¢;
and the w;. Furthermore, the sampling error produced by the use of the observed market shares
s™, which are typically calculated from random n draws of consumers and thus not equivalent
to the underlying true market shares s°, also enters the ¢; and the w;. As a result, what we
can actually evaluate for the sample moments include the three distinct randomness: stochastic
nature of the product characteristics; randomness generated in the simulation process; and
randomness generated in the sampling process.

In BLP (1995), the authors were aware that the number R of simulation draws and the size n
of consumer sample must grow at rates faster than the number J of products to establish CAN
properties of the GMM estimator. They also acknowledged that, even then, the asymptotic
variance-covariance matrix of the resulting estimator consists of three distinct components in



responses to these three randomnesses. In the paper, they reported that estimating the random
coefficient logit model for demand model would require n and R to grow on the order of .J3, and
that the precise proofs for the asymptotic theorem of the GMM estimator were still in progress.

In Petrin (2002), the additional moments are the set of functions of the expected value of
consumer’ demographics given specific product characteristics consumers chose (e.g., expected
family size of households that purchased minivans). The evaluation of these new moments are
also affected by the aforementioned simulation and sampling errors. This is because he evaluates
the conditional expectations of consumer demographics assuming that product characteristics
(X, &) are given, and the & includes the simulation and the sampling errors for the reasons
elaborated at the beginning of this section.

In addition, the extra market information themselves possibly contain another type of sam-
pling error. This is because the extra market information is typically estimate for the population
average demographics obtained from the sample of consumers (e.g., CEX sample) separate from
the one from which the observed market share s” is calculated. This error may also affect on the
evaluation of the new moments. In summary each of the three errors (the simulation error, the
sampling error in the observed market shares, and the sampling error in the extra information)
as well as the stochastic natures of the product characteristics and the consumer demographics
are likely to affect the new moment conditions. The estimator proposed by Petrin appears to
assume that we are able to control the impacts from these errors. Unfortunately, Petrin (2002)
did not provide any asymptotic theorems for the estimator.

Berry, Linton, and Pakes (2004) presents the asymptotic theorem for the random coefficient
logit models of demand estimated by the demand side moment conditions and showed the rates
of R and n at which they are able to establish CAN properties of the GMM estimator relative
to J. However, the asymptotic theorem for the GMM estimator with the simultaneous use of
the demand and the supply side moment conditions are yet to be known, although they claimed
that “it is straightforward to add the pricing equation to the analysis” given in what follows
(page 618, line 11).

BLP (2004) claimed that if the number of consumers sampled in the CAMIP data grow faster
enough when the number of products grows large, the estimator with their new framework is
also consistent and asymptotically normal. In the study, the authors take into account the
simulation errors and the CAMIP data’s sampling error in the calculation of the asymptotic
variance of the estimator. They justifiably neglected the sampling error in the observed market
share since the precise market share data are readily available in the U.S. automobile market.
To objectively and precisely estimate the U.S. consumers’ automobile preferences using unbiased
publicly-available data, we thought it best to use the framework considering both the demand
and supply side with additional demographics information. BLP (2004), as good as they may
be, fell short in this regard because they only consider the demand side and they use the CAMIP
data generally not available outside of the GM. We therefore choose to proceed following Petrin
(2002)’s footsteps.

In this paper, we provide general conditions under which the extension of the GMM estimator
originally proposed by Petrin (2002) has CAN properties. The assumptions we make use of for
the demand side specification and the notations of the proof generally follow the asymptotic
theorems given in Berry, Linton, and Pakes (2004), but we considerably extend their theorem
in three directions: first we clearly state that the asymptotics we set forth is not conditioned on
the product characteristics, which we will see is stochastic; Second, we incorporate the supply
side as well as the demand side; Third we include additional demographics moment conditions.

Except BLP (1995) and BLP (2004), studies in marketing and industrial organization ap-
peared to ignore the effects of the errors generated by the simulation and the sampling processes
and thus did not adjust the variance-covariance matrix of the estimator when employing BLP
framework (See in Table 1). As for the simulation process, this is probably due to a computa-



Table 1: The Consideration of Errors in the Past Studies

Demand Side Moments

Supply Side Moments

Additional Moments

Simulation Error Sampling Error Simulation Error | Sampling Error | Simulation Error Sampling Error Extra Information Error
BLP (1995) O O, but negligible O O — —
Sudhir (2000) X X X X — —
Nevo (2001) X X X X — —
Petrin (2002) X X X X X X X
BLP (2004) O O, but negligible — — O O, but negligible O

The symbol O (x) indicates the error was (not) took into account in the evaluation of the moment.

“w__»

means that the study did not use the corresponding moment conditions.




tional burden incurred to evaluate the simulation error. To numerically isolate the magnitude
of the simulation error, for instance, researchers have to repeat the estimation algorithm with
many independent sets of R simulation draws of consumers with the observed market share
fixed.

2 Background on the BLP (1995)’s Framework

2.1 Demand Side Model

The discrete choice differentiated product demand systems formulates that the utility of con-
sumer ¢ for product j is a function of parameters, 8,4, observed product characteristics, x;,
unobserved (by the econometricians) product characteristics, £;, and random consumer tastes,
vij. Given the product characteristics (xz;,¢;) for the all (J) products marketed, the consumer
either chooses to buy one of the products or not to buy any product, in which case we say the
consumer chooses the “outside” good. Each consumer makes the choice that maximizes his/her
utility. Different consumers may make different choices because of their tastes, and their tastes
follow the distribution denoted by PV.

Although the most product characteristics are not correlated with the unobserved product
characteristics £; € R, j = 1,...,.J, some of them (e.g., price) are likely to be correlated with
the ¢;.!' We denote the vector of observed product characteristics by z; = (', x5;)" where
Ty € RE1 are the ones that are not correlated with the §;j in the sense that

Ee¢|x; [fj|£131j] =0 and sup Egx, [fj2|£81]] < 00 (1)
1<5<J

with probability one. Product characteristics in the xo; € RK2 are correlated with the &j. The

set of observed product characteristics for all the products is denoted by X = (z1,...,27)".
In this framework, we assume the set of exogenous product characteristics (x1;,&;),j =
1,...,J are random sample of product characteristics of size J from the underlying population

of product characteristics. Thus, (z1;,£;) are assumed to be independent across j, while x»;
are in general not independent across j since they are endogenously determined in the market
as functions of product characteristics of the other products as well as its own product.

The demand model determines the purchase probability of a consumer as a function of
his/her attributes and the product characteristics in the market. A distributional assumption
on the consumers’ unobservable heterogeneity is made to obtain expected purchase probabil-
ity conditional on product characteristics and consumer attributes. The conditional purchase
probability o;; of product j is a map from consumer i’s attributes v; € R”, a demand side
parameter vector 8; € O4, and the set of characteristics of all products (X, &), and is thus
denoted as 0;;(X,€,v;04). BLP (1995)’s framework generates the vector of market shares,
o(X,&,0, P), by aggregating over the individual choice probability with the distribution P of
the consumer attributes v; as

0;(X,€,04,P) = / 0i(X €, 11 04)dP(v;) 2)

where P is typically the empirical distribution of the attributes from a random sample drawn
from P°.

Note that these market shares are still random variables due to the stochastic nature of the
product characteristics X and €. If we evaluate equation (2) at (89, P°), where Y is the true

'The unobserved product characteristics £; are product characteristics difficult to measure or observe by
researchers. They typically include consumers’ perception on style, brand equity, effect of promotional activity,
and service at point-of-sale.



value of the parameters, it will give the “conditionally true” market shares s” given the product
characteristics (X, &) in the population, i.e.,

o(X,€,00,P%) =s". (3)

Equation in the form of (X, €&,04, P) = s can, in theory, be solved for ¢ as a function of
(X,804,s,P). BLP (1995) provides general conditions under which there is a unique solution
for the £(X, 04, s, P) that satisfies

S_O-(XaSaedaP):O (4)

for every (X,04,8,P) € X x ©4 x Sy x P, where X' is a space for the product characteristics
X, and P is a family of probability measures. If we solve the identity in (3) with respect to
& under the conditions that guarantee the uniqueness of the € in (4), we are able to retrieve
the original ¢; which we assume are independent across j. However, if we solve (4) at any
(84,8, P) # (68Y,5° P, the resulting &(X,804,s,P) are not equivalent to the true value of
&;. For this (X, 0y,s, P), the independence assumption is violated because the two factors
for {;—the market share s; and the endogenous product characteristics xo; for product j—are
endogenously determined through the market equilibrium (e.g., Nash in prices or quantities) as
a function of the product characteristics not only of its own but also of its competitors.

2.2 Supply Side Model

The supply side model formulates the pricing equations for the J products marketed. We assume
an oligopolistic market where a finite number of suppliers provide multiple products. Suppliers
(m =1,...,F) are modelled as maximizers of profit from the combination of products they are
producing. Specifically, supplier m maximizes the following profit function.

PRm: Z(pj_cj)MSUj(Xagaodap), m:].,...,F, (5)
JETm

where 7, denotes the set of products provided by supplier m, and p; and c¢; are respectively
price and marginal cost of product j, and Mg denotes the potential market size. By assuming
the Bertrand-Nash pricing for supplier’s strategy, the first order condition in terms of p; is given
as

0;(X,€,04,P)+ > (p— c1)001(X,€,04,P)/0pj =0 for j € T, (6)
lETm

This equation can be expressed in matrix form
O'(X,s,od,P)-i-A(p—C):O (7)

where A is the J x J non-singular gradient matrix of o (X, &, 804, P) with respect to p whose
(7, k) element is defined by

Doy (X,€,04,P)/0p;, if the products j and k are
Ay = produced by the same firm; (8)
0, otherwise.

Solving (7) with respect to ¢ gives

c:p_mg(€70d7P)7 (9)



where
my=-A"'o(X,£,0,4P) (10)

represents the vector of the profit margin for all the products on the market. We suppress X
in the expression of m, for notational simplicity.

We define the marginal cost ¢; as a function of the observed cost shifters w; and the unob-
served (by researchers) cost shifters w; as

g(cj) = w;-00+wj (11)

where ¢(-) is a monotonic function and 6. € ©, is a cost side parameter vector. While the
choice of g(-) depends on application, we assume g(+) is continuously differentiable with a finite
derivative for all realizable values of cost. Suppose that the observed cost shifters w; consist
of the exogenous ones wy; € RL1 as well as endogenous ones wo; € §RL2, and thus we write
w; = (wi;, wy;) and W = (wi,...,wy)". The exogenous cost shifters include not only the
cost variables determined outside the market under consideration (e.g. crude oil price), but
also the product design characteristics that suppliers can not immediately change in response to
consumer’s demand. The cost variables determined at the market equilibrium (e.g. production
scale) are treated as endogenous cost shifters. The unobserved cost shifters w; are assumed to
be uncorrelated with the exogenous cost shifters wy;, and then satisfy the condition that

Eujw, [wjlwi;] =0, and  sup Egjw, [wjz|w1j] < 00 (12)
1<j<J

with probability one.

As in the formulation of (x1;,¢;),j = 1,...,.J, on the demand side, we assume the set of
exogenous cost shifters (wy;,w;),j =1,...,J are random sample of cost shifters of size J from
the underlying population of cost shifters. Thus (w1;,w;) are assumed to be independent across
J, while wy; are in general not independent with respect to j as they are determined in the
market as functions of cost shifters of other products.

Substituting (9) for (11) and evaluating &; at £;(X,84,s,P),7 =1,...,J, gives the reduced
form of the unobserved cost shifters w;.

wj(easap) = g(p] - mgj(S(XaodasaP)’odap)) - W;oc (13)

where the parameter vector @ contains both the demand and supply side parameters, i.e., @ =
(0),,0.). Since the profit margin mg;(€, 04, P) for product j is determined not only by its
unobserved product characteristics £;, but by those of the other products on the market, these
w; are in general dependent across j when (0,s,P) # (6°, 5%, P%). However, when (13) is

evaluated at (6, s, P) = (0°,s°, P%), we are able to recover the original wj,j = 1,...,J, which
are independent across j. Define g(x) = (g(z1),...,9(xs)) and rewrite (13) in vector form
w(0, SaP) = g(p - mg(E(Xa eda SaP)’ eda P)) - Woc (14)

2.3 GMM Estimation

Zero moment restrictions between unobserved characteristics (¢, w;) and exogenous instrumen-
tal variables (z;-l,zj) will be imposed to estimate @ by the generalized method of moments

(henceforth, GMM).
Let us define the .J x M7 demand side instrument matrix Z,; = (zf, . ,z%)’ whose compo-
nents z? can be written as z?(wu, o, x1y) € RM1 where z?(-) RS s /M for =1, .

It should be noted that the demand side instruments z? for product j are assumed to be a func-
tion of the exogenous characteristics not only of its own, but of the other products (z11,...,x1y)



in the market. This is because the instruments, by definition, must correlate with the product
characteristics xy;, and this endogenous variables xy; (e.g. price) are determined by both its
own and its competitors’ product characteristics as we mentioned above.

Similar to the demand side, we define the J x Ms supply side instrumental variables Z,. =
(2§,...,25) as a function of the exogenous cost shifters (wii,...,wis) of all the products.
Here, z§(w11,...,w1y) € RM2 and z5() : RS s RM2 for j=1,...,J.

Considering the stochastic nature of product characteristics X1 as well as of &, we set forth

the demand side restriction as
Ex, ¢ |2]6(8a,5°, P°)] = 0 (15)

at @ = 0° where the expectation is taken with respect not only to &, but also to X 1. Supply
side restriction we use is

By |25 (6,5, P")] =0 (16)

at @ = 0°. Hereafter, we suppress the dependence on X and W in the expression of (04,8, P)
and w;(0, s, P) respectively for notational simplicity. We suppose that the number of restrictions
(M; + My) is equal to or greater than the number K of parameters in 6.

Now let us form the average of z;lfj(Od, s%, PY%) and z5w; (0, s%, P%) as

J
G%(Oda SO’PO) = J_l Zzsigj(oda 807P0)7 (17)
j=1
J
G5(0,5°,P°) = J ") z5w;(6,s°, PY). (18)
7j=1

The GMM estimator for #° minimizes the sum of norms of G%(84,s°, P°) and G4(0, s°, P°),
that is, it minimizes the norm of

(19)

d 0 0
G](O,SO,PO) — ( GJ(edaS aP ) )

G5(0,s°, P)

To derive the asymptotic properties of this estimator, we have to make assumption for how
G ;(0,5° P%) behaves as the number of products .J tends to infinity.

We know that the (£;(64,5°% P°),w;(8,s° P%)) are dependent across j at 6 # 0°. More-
over, since z;l and 27 are respectively functions of the exogenous characteristics X; and the
exogenous cost shifters W of all the products, they are also dependent across j. This implies
that the uniform convergence of the objective function ||G (8, s, P%)|| to || E[G(8,s°, PY)]||
over all possible @ € © is not guaranteed.? As a result, the standard consistency proofs of the
GMM estimator that assume uniform convergence of the objective function are not applicable.
Instead, we set the condition which bounds ||G ;(8, s°, P?)|| away from zero for all  outside of
a neighborhood of 8° as Berry, Linton and Pakes (2004) did. This condition enables us to use
Theorem 3.1 in Pakes and Pollard (1989) to derive the consistency.

If we can further assume that .J 2 [G (8,8, P°)—E[G (0, s°, P?)]] converges to Jz [G7(0°, 50, P0)—
E[G ;(6°, 5% P%)]] in probability as the stochastic 6 converges in probability to 8°, that is, the
process J%[GJ(O,SO,PO) — E[G (8, s°, PY)]] is stochastically equicontinuous at 6°, and that
J3 G;(0°, % PY) converges weakly to the normal distribution, the GMM estimator for 8° can
be shown to be asymptotically normal by Theorem 3.3 in Pakes and Pollard (1989).

>The expectation symbol E[-] here means that taking expectation over (x1;, £;, w1j, w;)-



We have two separate problems in the evaluation of ||G (8, s", P°)||. Although P is so
far assumed to be known, we typically will not be able to calculate o(X, &, 84, P°) analytically
and will have to approximate it by a simulator, say o (X, &, 84, P®), where PF is the empirical
measure of some i.i.d. sample v, ..., vx from the underlying distribution P°. Simulated market
shares are then given by

O-j(Xa‘EaadaPR)
R
= /Uz'j(X,S,Vi;ed)dPR(Vi) = %Zarj(xf,'/r;ed)- (20)

Second, we are not necessarily able to observe the true market shares s’. Instead, the vector of
observed market shares, s™, will typically be constructed from n i.i.d. draws from the population
of consumers, and hence is not equal to the population value s in general. The observed market
share of product j is

T= > (G = ), (21)

where C; denotes the choice of the randomly sampled consumer i, and the C; are assumed to
be i.i.d. across 7. The indicator variable 1(C; = j) takes one if C; = j and zero otherwise.
We substitute £€(84, s™, P®) given as a solution of s” — (X, £, 80,4, P) = 0 for (17) to obtain

Gd (edas PR ! ZZJEJ eda ) (22)

Furthermore, substituting w(@, s, P) = (w.(0, s™, P®),... w;(0,s™, P%))" obtained from eval-
uating (13) at & = £(04, 8", P%) and P = P for (18) gives

G4(0,s", Pty =g ! Zz ‘wi(0,s", PT). (23)

The actual objective function is thus ||G ;(8, s", P%)||. Consequently, our estimator of 6, say 0,
satisfies

||GJ(973n7PR)|| = éélg”G](o,Sn,PR)H (24)

In the expression of |G 7(8, s", P®)||, there exist three distinct randomness: one generated
from the draws of the product characteristics (z1;,{;, W1;,w;), one generated from the sampling
process of consumers for s”, and one generated from the empirical distribution P%. The impact
of these randomness on the estimate of @ will be decided by the relative size of the sample—/J,
n, and R. Unless n and R are much larger than .J, the impact from the sampling error and the
simulation error may not be negligible. We are going to operationalize the sampling and the
simulation errors in the following.

2.4 The sampling and simulation errors

The sampling error, €”, is defined as the difference between the observed market shares s™ and
the true market share s°. Specifically, its component ej for the product j is

1 & 1 &
n J—
Gj = EE ]_ EZ:EI{ — S;

=1

= - Z €ji (25)
=1

<o
——



for j =1,...,J, where ¢;; = 1(C; = j) — sg indicate the difference of the sampled consumer’s
)

choice from the population market share (sj and are assumed to be independent across i.
Note that from (4), for any 84 € ©4, the unique solutions & for

s" —o(X,£,04,P=0 and s°-o(X,€,04,P%) =0

are written as £(8q, 8™, P®) and &(84, 5%, P°) respectively. In other words, substituting these
&s back into o(X,€,04, P?) and (X, €,8,4, P°) retrieves s™ and s° respectively. Therefore for
any 0, € 0y

s" = O-(XaS(eda SnapR)aodaPR) (26)
and
80 = U(Xaé(eda SOaPO)aodaPO)' (27)

If we evaluate (4) with the observed market share s and the underlying population P° of
consumers, the resulting £(64, s, P°) satisfies the equation

s" = O-(XaS(eda Sn’PO)’od,PO) (28)

for all @; € ©4. Furthermore, for all 8; € ©4, the £(0,4, s, P®) which is obtained by evaluating
(4) with the true market share s° and the empirical population P® of consumers satisfies

SO = U(Xa‘f(edasoapR)?adaPR)' (29)

The simulation process generates the simulation error €/(8,), which is for any 8, a differ-
ence between the simulated market shares in (20) obtained from a sample of R consumers whose
distribution follows the empirical distribution P* and those obtained from the population dis-
tribution P° of all the consumers. That is, the simulation error ef for product j with sample of
R consumers is

E;z(od) = O-j(Xag(odaSUaPO)?edaPR) - O-j(Xaﬁ(odaSOaPO)?adaPU)

for j=1,...,J. From (27), ef(@d) can be rewritten as

x|
M=

ﬁ
Il
—

EjR(od) = O-Tj(Xa‘E(odaSOaPU)?VT;od) - S?

I
| =
M=

ﬁ
Il
—

{Ur‘j(X,S(ed, Soa PO), Uy, ed) — 82}

6~,(X,€(0d,30,P0),0d) (30)

I
| =
M=

ﬁ
Il
—

S %

where €7,.(X,§,04) = 0,§(X,&,v;04) — 0;(X, &, 04, PY) are by definition independent across r
conditional on (X, &).
2.5 Metrics, Neighborhoods, and Notations

We will work with the product space © x §; x P. The parameter space © is a compact subset
of RX and we use the Euclidean metric on O, pp(0,0*) = ||6 — 6*||. The space for the market
share vector s is J + 1 dimensional unit simplex Sy,

Sy = {(507"'75J)I

J
0<s;j<lforj=0,...,J, and Zsjzl}.
j=0



Since the market share s; generally shrinks as the number J of the products on the market
increases, we need to make sure the speed at which the s; becoming close to the true share s?
ought to be faster than the speed at which 39- converges to zero. To ascertain this, we need to

use the metric pyo on Sy

pso(s,8%) = Jnax,

The P is the set of probability measures of consumer’s attributes. The Lo, metric pp(P, P*) =
supgeg |P(B) — P*(B)| is adopted on P, where B is the class of all Borel sets on R”, where v is
the dimension of the consumer attributes in the purchasing probability. This metric will be used
to measure the distance between the empirical distribution P® and the underlying distribution
PV of consumer’s attributes.

Since the dimension of the unobserved product characteristics € increases, element by element
convergence of € to £* does not automatically guarantee that || — £*|| = 0,(1). In the proof,
all we need is the convergence of the unobserved product characteristics & as vector to another
vector £*, not an element by element convergence. Hence we use the averaged Euclidean metric
pe(€,€6%) = T - €))7 = J7! E}']:1(fj - f;f)Q, which of course allow the possibility that a
finite number of elements in & do not converge to the corresponding elements in £*.

With these metrics, we define the § neighborhoods for 8%, P%, and s° respectively as Nyo(0) =
{0 : pp(0,0°) < 6}, Npo(0) = {P : pp(P,P") <6}, and Ny (0) = {s: ps(s,s”) < 6}. Also for
each @, the § neighborhood of &(84, s°, P°) is defined by Neo(0;6) = {€ 2 pe(€,€(04, s0, PY)) <
d}.

The notation we use for the Euclidean norm of any m x n matrix A is ||A|| = {tr(A’A)}/2.
We use the O,(-) and 0,(-) notation of Mann and Wald (1944) to denote the stochastic order of
magnitude. When applied to vectors and matrices, the symbols should be interpreted element
by element. If x is a k x 1 vector, diag[x] denotes a k x k diagonal matrix with the element of
x along its principle diagonal.

3 Asymptotic Theory for BLP (1995)

3.1 Consistency

In this section, we derive the asymptotic theorems for the BLP framework. Our proofs are
different from the one in Berry, Linton, and Pakes (2004) in two ways. First, in Berry, Linton,
and Pakes (2004), the asymptotic theorems appear to be established under the condition that
(X, &) is given while the dimension .J of the product characteristics grows infinitely. Our proofs
for the theorems do not condition on (X,€). Second, we derive the theorem not only for
the demand side model but for the system of demand and supply models. We first describe
assumptions needed to obtain the consistency of the estimator.

In Assumption Al(a), we assume that the observed market share s7 for product j is the
Bernoulli random variables averaged over the n sampled consumers (; = 1,...,n). Assump-
tion Al(b) guarantees that the simulation error €, defined in (30) relative to the number R of
the simulation draws is of the same order as the sampling error €;; relative to the number n of
the sample. These are used to control the magnitudes of the respective errors. Note that in
Al(a), s" and s” are the result of consumer behavior, and the consumers are assumed to be
able to observe the true “unobserved” product characteristics, & (02, s%, PY%). As a result, we can
condition on X and on £(8Y, s, P?), but not on a general ¢ when evaluating the moments of
the difference s” — s. On the other hand, in A1(b), o(X,&,04, P®) and o(X, &, 804, P°), both
of which are model-calculated shares, are just the device researchers use and they are not able
to observe the unobserved product characteristics, true or otherwise. As a result, we need to

10



treat & as unobserved and unknown, and we need to condition on the unobserved and unknown
¢ along with on the X.

Assumption A2 is regularity condition for the share function. In A2(a), we first assume that
the model-calculated market share 0;(X, €&, 84, P) for product j will not abruptly change as the
unobserved product quality & for product k& changes. Moreover the H in (36) being invertible
means one can quantify the change in unobserved product quality 9¢; for product j(j =1,...,J)
associated with the change in the model-calculated market share doy, for product k(k = 1,...,J).
Assumption A2(b) stipulates how the model-calculated market share 0;(X, &, 84, P) for product
j is affected by the changes in unobserved product quality for product k. It is positively affected
by the improvement of its own unobserved quality, but adversely influenced by those of the other
products. The set of assumptions A2(a) and (b) is a sufficient condition for the existence of a
unique solution & to (4) for every (64, s, P) (See appendix in Berry (1994) for detail).

It looks as if we need a similar setup for the supply side unobserved cost shifter w; relative to
the model-calculated market share 0. This is not so, however, because as clearly seen in (13),
the w;(0, s, P) can be obtained as a function of £(84, s, P) aside from the observed (pj, w;)
and the parameters (64,6.) once we decide to choose which (s, P) to evaluate, enabling the
characteristics of £(64, s, P) to transmit to w;(@, s, P). Therefore what we need is the fact that
there exists a profit margin my,(£(04, s, P), 84, P) in (10) that is at least locally smooth with
respect to £(0y, s, P) along with smoothness in g(-). Assumption A2(c) guarantees the existence
of A7, which in turn guarantees the existence of mg;(£(04, s, P), 04, P) in (10). We replace
local smoothness of my; (&(04, 8, P),0,, P) relative to £(04, s, P) with the assumption A7. We
will come back to this when explaining A7. As for smoothness of g(-), we reiterate that the
single argument function g(-) is monotonic and continuously differentiable with finite derivative
for all realizable values of cost. We choose not to include this in the assumptions simply because
this does not rise to the same level as the other assumptions are.

In the situation we are considering here, the number J of the products in the market increases.
This means that the “conditionally” true market shares s” and also the theoretical market shares
o(X,€,04, P°) generally approach to zero as J grows large. Assumptions A3(a),(b) guarantee
that s™ and o(X,&, 804, P®) converge to s and o(X,€&,80,, P°) faster respectively than the
speed at which s° and o(X, €,8,4, P°) converge to zero.

Assumption A4 is on instrumental variables. Throughout the paper, we treat the product

characteristics x1; as exogenous and so are the demand side instruments z%. We impose in

J
A4(a) a stochastic boundedness and an uniformly integrability on z?. In assumption A4(b), the
same restrictions are imposed on the supply side instruments z7.

Assumption A5 is a condition that bounds ||G(8, s°, P?)|| away from ||G/(8°, s°, P?)|| (which
converges to zero in probability) over @ outside of a neighborhood of °. This condition corre-
sponds to condition (iii) in Theorem 3.1 of Pakes and Pollard (1989).

For all 8,4, the value of & = £(04, s°, P?) that satisfies the equation o (X, &, 04, P°) = s is
assumed unique. Since the sum of the market shares including that of the outside good—sJ-is
fixed to be one, this £(84, s°, P?) also satisfies

o(X,€,04,P°)/00(X,€,04,P% = s"/sq.

Define a function 7(-) : R — R’ such that 7;(s) = (log(si/s0),--.,log(s5/s0)). Then, from
(27), the relation is equivalent to saying that

TJ(U(Xvsaoda-PO)) = T](SO) = T](U(X7€(0d7Soapo)vedapo))

at € = £(04, s°, P) for all 8;. Assumption A6 guarantees that any £ outside the § neighborhood
of the £(84,s°, P°) cannot make T;(o(X,&, 84, P°)) close to 7;(s°) within the range of C(J)
in terms of the averaged Euclidean distance with probability tending to one. The choice of this
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metric is necessary because we allow for the fact that the dimension of the model-calculated
market share o increases. The functional treatment 7 is due to making this assumption easier
to verify for logit-like demand models. :

In assumption A7, we assume the profit margins J 2my(§(0q, s, P), 04, P) have stochasti-
cally equicontinuity-like characteristics in (&, P) at (&£(04,s°, P°), P%) for any 8; € ©4. As we
see in the proof, we show that Pr[€(04,s", P®) & N¢o(64,6)] — 0 and Pr[P® & Npo(6)] — 0
for § > 0 as J grows large. With these convergence in probability results along with assump-
tion A7, we are able to show the averaged Euclidean distance between my(£(04, s°, P), 84, P°)
and my(€(04, s, PR), 04, P®) is close uniformly in 8; € ©4. We should note that assumption A7
is not stochastic equicontinuity as defined because the dimension of &(84, s°, P?) grows large,
though £€(84, 5™, P®) converges to &(84, 5%, P°) in probability in averaged Euclidean metric.

One more comment on the behavior of the dimension increasing &(04,s°, P?). It should
be noted that when evaluated at the true parameter value 03 as J increases, say, from 100 to
500, the first 100 elements of 5(03, s%, P% at J = 500 must be equal to the all 100 elements of
£(09% s P%) at J = 100. This fact does not hold in general when evaluated at 8, # 9. For
instance there is no guarantee that the first 100 elements of £€(84, s", P°) at .J = 500 are equal
to £(04,s°, P%) at J = 100.

Assumption A1 (a) Given the set of product characteristics (X, €(8Y, s°, P)), the difference
s" — 80 between the observed market share s™ and the “conditionally” true market share s° have
conditional mean

EE‘X,f[€n|X7 E(ega 307 PO)]
= Ee|x,§[sn - 80|Xa€(033 SO,PO)] =0 (31)

with the conditional variance-covariance matrix

V2 = EE‘X,g[(Sn — SO)(Sn — SO)I|X,€(03, SO,PO)]

= ! (diag[so] — 3080') . (32)

n
(b) For each 84, given the set of product characteristics (X, €), the difference o(X, &, 04, P®) —
o(X,¢,04,P°) have conditional mean
Eerxe[@(X, €04, P") = 0(X, £,04, P")| X €] = 0 (33)
with the conditional variance-covariance matrix
Vi = Bepe| {7(X600,P") ~ 0(X.660,P)
x{o(X,£,004.P") — 0(X,£,64,P")} ‘X,g} (34)
whose order of magnitude relative to R is the same as that of Vo relative to n or,
R-O(V3)=n-0(Vy). (35)

Assumption A2 (a) For every finite J, for all 85 € ©4, and for all P in a neighborhood of
P 90;(X,€&,04,P))0& exists, and is continuously differentiable both in & and 84. The matriz

H(‘andap) = aU(Xvsaeda‘P)/a‘E, (36)

is invertible for all J.

(b) For every (X,€,604,P), 00;(X,€,04,P)/0; >0 forj=1,...,J,
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and 00j(X,§,04,P)/0¢&, <0 fork,j=1,...,Jk#3j.

(c) For every finite J, for all @4 € O4, and for all P in a neighborhood of P°, 90 j(X ,&,64, P)/0py,
exists for j,k = 1,...,J, and the matriz A whose (j,k) element is defined in (8) is invertible
for all J and continuously differentiable both in € and 6.

Assumption A3 The observed market shares s™ are consistent with respect to s°, i.e., for any
0 >0,

n_ 40
S5 75
0

8§

(a) peo(s™,s%) = max = o0p(1). (37)

0<j<J

Similarly, the simulated market shares o (X, €, 804, PT) are consistent with respect to o(X, €, 84, P°)
uniformly over € and 84 € Oy, i.e.,

() Po(x.e,0.,P0)(0(X, & 04, PF),0(X, £ 04, P)

0i(X,€,04,P?) —0;(X,€,0,4 P°
J(X. ¢, ;;(X,)wda,(P 0;& L)) _ o). (38)

= max
0<j<J

for any & and 6, € O,

Assumption A4 (a) The demand side instrumental variables are such that the matriz Z),Z 4/ J
is stochastically bounded, i.e., for all € > 0 there exists an M, such that Pr[||Z,Z 4/ T|| > M| < e.
Moreover, we suppose ||Z4Z 4/ J|| is uniformly integrable in J, i.e.,

Jim sup [11Z3Z4/ TI{I1Z3Zaf 7)) > a}dPy, (X1) = 0

where Py, (+) is the joint distribution of X .

(b) The supply side instrumental variables are such that the matrix Z’.Z./J is stochastically
bounded and uniformly integrable in .J.

Assumption A5 For all § > 0, there exists C(0) such that

: : 0 poOy _ 0 0 POy > —1
JILI{.IOPII [0€££(6)||GJ(038 , P ) GJ(O 8, P )|| = 0(6)] 1 (39)

Assumption A6 For all 6 > 0, there exists C(0) such that

1
lim Pr| inf inf J 2 X,¢,0,4 P°
e rhi%ﬁeﬁﬁ%m irste(X,4,04 F7)

_TJ(O-(XaE(odaSOaPO)?edaPO))H > 0(6)] =1 (40)
Assumption A7 For oll 6 > 0 and for any 0, € Oy,

lim Pr [ sup J_%ng(f,ed,P)
T=00 | (6,P)EN,0 (04:6) < Npo (6)

_mg(€(0d7807P0)70d7P0)|| > 46| =0. (41)

Theorem 1 (Consistency of 8) Suppose that A1-A7 hold for some n(J), R(J) = oo. Then,
056"

13



3.2 Asymptotic Normality

We next establish the asymptotic normality of 6. Throughout we assume that 6 is consistent
with respect to 8°, or assumptions A1-A7 to hold. To derive the asymptotic distribution, we first
decompose the unobserved quality £(84, s”, P) into three random terms—the unobserved qual-
ity £(84,5°, P°), the term generated from the sampling error €”, and the term generated from
the simulation error €®*(8,) and substitute this relationship for £(84, s™, P%) in G%(84, s™, P®).
We decompose the unobserved cost shifter w(@, s, Pf) into three terms likewise and substitute
this relationship for w(@, s", P¥) in G%(0, s, P%).

Demand Side Derivation
Write
€(0a,s", P") = €(04,5°, P°) + {€(04,5", P") —€(04,5°, P™)}
+{€(04,8°, PT) — £(84,5°, P)}. (42)

For fixed 84, we use Taylor series approximation to the second and the third terms in (42).
Specifically, by the mean value theorem

0 = O'(X,E(ad’sn,PR)’od,PR) —s"
= U(X,E(od’SO’PR)’ed,PR) —s"

8U(X’E’0d’PR) {E(odasnaPR) - E(odasoaPR)}

o¢'
= SO —s"+ aa(X,géIed,PR) {E(odasnaPR) - E(odasoaPR)}
P R
= —¢€" ao-(X,géIOd,P ) {g(edasna‘PR) _6(0d7307PR)}

where £ is J x 1 vector of the values between &(84,s", P%) and £(84, s°, P%). Notice that we
write

do(X. €0, P | e
o¢ os| .. oo
91 |, 91 1g,

In other words, the matrix 9o (X, €, 04, P®)/0¢" contains £,,...,€&; in its 1st to the .Jth row,
all of which can be distinct. For notational convenience however, we suppress the indices in & j
and simply write €. From assumption A2(a) the matrix H (¢, 84, PF) = 0o(X,&,604, PR)/0¢
is invertible for each & € Ngo(64;€) with probability tending to one, we can write

(43)

OU(X,E,ed,PR) ! n
o€ ¢

E(od’snaPR) - E(od,SO,PR) = {

with probability tending to one. Likewise,

0 = U(X,E(od’SO’PR)’ed,PR) - SO
= U(X,E(Od’SO’PO)’Od,PR) - SO

do(X,€,04, PR
( ’gél & ) {E(odasoaPR) - E(odasoapo)}
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= G(XaS(edasoaPO)vodaPR) - O-(XaS(edaSOaPO)aodaPO)
0o (X, €, 0,4, PE
U( §§I d ) {g(edasoapR) - 6(0d7807P0)}
Jdo(X,€,04, P
o¢'

= €"(8) +

R
) {s(edasoapR) _E(odasoapo)}

where £ is .J x 1 vector of values between &(04,s°, P?) and £(6,4,s°, P°). By assumption A2(a),

~1
o (X, €, 04, PF) } *(8,) (44)

o¢'

with probability tending to one. Therefore, by substituting (43) and (44) for (42) and using the
notation in (36) we obtain

E(od’so’PR) - s(eda SOaPO) - {

£(04,8", PT)
o(X. € Ry ! do (X, €0, PR !
= E(Od,so,P0)+{8 (X’gé?d’P )} 6”—{ id gg,d )} €"(64)
= £(04,5",P°) + H '(£,04,P%)e" — H '(£,04,P7)e™(0,). (45)

Substituting (45) for G%(84,s™, P®) in (22) gives

G (Od, Sn, PR)
7IZIdE(0da sn, PR)
= T Z0(04,5°, P°) + T Zy {H7(€,04, P)e" — H™'(€,04, P™)e™(04) }

= GH04,8°, P°) + T 2y { H (€04, PP)e" — H(£,04, P)e™(8,)}

R

(46)
Now we approximate G%(84,s”, P®) within the neighborhood of 89 by the following function
G5(6a).
gg(Od) = G%(eda 807 PO)
+7 1 ZLH (6058, PY), 00, P0) {e" — €"(0D) |
(47)
Cost Side Derivation
Write
w(,s", P = w(0,s° P%) 4+ {w(8,s", PT) —w(8,s", PR)}
+Hw(8,s°, PT) —w(8,5°, P")}. (48)

Since g(+) is assumed to be continuously differentiable, the j-th element of the second term in
(48) can be rewritten by the mean value theorem as

w; (0, s", P —w;(8,s°, PT)
= ( _mgj( (ed,S 7PR)70d7PR)) _g(p] _mgj(s(edasoapR)aadapR))
( mg]( (ed,SO,PR),Od’PR)) _g(pJ _mgj(g(edasoapR)vadapR))
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(49)
where £ is between £(8,4, s, PR) and €(8,, s°, PR). By substituting (43) for (49) and using the
notation in (36), we obtain

w]'(o, Sn, PR) - w]'(o, SO, PR)

pr R
amgj(EaedaP )H,I(E od PR)Gn.

= —§(pj —my, (€ 04, P"))

o¢'
In vector form, this can be expressed as
w(8,s", PR —w(s,s", PF)
= —L(£04,P")M(& 04, P")H (€04, P")e" (50)
where
om,(&,604, P
M(€.0,,P) = 200& 00 1) (51)
9€
and
L(€7 0d7 P)
9(p1 —mg,(§,04, P)) 0
= . (52)
0 g(ps _ng(gaoda‘P))

Actually, J x J matrices L(E,Od,PR) and M(E,Od,PR) contain El,...,EJ in its 1st to the
Jth rows, all of which can be distinct, but we here suppress this fact for notational simplicity.
Similarly, we rewrite the third term in (48) by the mean value theorem,
w(@,s’, PR —w(8,s, P
= g(p - mg(f(oda 807 PR)7 eda-PR)) - g(p - mg(E(eda 807 P0)7 odapo))
= g(p - mg(f(oda 807 P0)7 eda-PR)) - g(p - mg(E(eda 807 P0)7 odapo))
_L(§7 0d7 PR)M(§7 0d7 PR){E(eda 307 PR) - 6(0(17 307 PO)} (53)

where £ is between £(04, s°, P®) and £(8,, s°, P°). Substituting (44) for (53) gives

w(8,s°, PR —w(8,s, PY)
= g(p - mg(E(oda soaPO)’ eda PR)) - g(p - mg(E(oda SOaPO)’ eda PO))
+L(§, 04, P*)M (£,04, PTYH ' (€,04, P™)e™(0,). (54)
By substituting (50) and (54) for (48), we have
w(8,s", PT)
= w(8,s’, P
+g(p - mg(f(oda 807 P0)7 eda-PR)) - g(p - mg(E(ada 807 P0)7 odapo))
~L(&, 04, P*)M(&,04, P")H ™" (€04, P")€"
+L(€,0a, PT)M (&, 04, P")H ' (€,04, PT)e™(84). (55)
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Thus, the supply side moments G4(8, s”, P?) = J1Z!w(0, s", P) are rewritten by (55) as
G4 (0,s", PT)
= J'Z.w(8,s", PR
= G%(0,s° P

+J*IZ'{( mg(€(0a,8°, P"), 0, P™)) — g(p — my(€(8a,8°, P°), 04, P")) |
~J' Z,L(E, 04, P")M(E, 04, P*)H ™' (£,0,, P")e"
+J7' ZLL(§, 04, PTYM (£, 04, PTYH ™' (£, 04, PT)e™(0,). (56)

We approximate the supply side moments G(8, s™, P®) within the neighborhood of 8° by the
following function G5(0).

g5(0) = G5(0,s°,P°) - J "' Z,LyM,H' {€" — €"(05)} (57)

where Ho = H (£(85,s°, P°), 0g, P°), Lo = L(£(6g, s°, P°), 05, P°), and
My = M(&'(eg,so,PO),Og’PO), Let

_ [ G5(64)

The first term in G;(@) is the sample moment evaluated at (s, P) = (s°, P°) and thus con-
tains neither the sampling nor simulation errors, while the second term is an approximation
for the difference between G ;(0,s", P®) and G;(8,s° P°). Note that the three components
in G4(04)—G%(8,,5°, P%), J-'Z)Hy'e", and J~' Z,H; ' €?(8%)—are not mutually indepen-
dent because they all include the product characteristics X as well as the unobserved product
quality £(84,s", PY), both of which are random. However they are uncorrelated if evaluated at
6, = 09 as shown below due to (31) and (33) in assumption Al. For the covariance between
G409, 5", P%) and J ' Z',H"'€", we have

Cov[GY(65,s°,P°),J ' Z,H ' €"]
= E[G}(63,5°,P%) - J ' ZH; "]
— E[G} (05, 8", PO E[J ™ ZyH ;' €"]
= Ex¢lBaeglG7(00,8°, P") - J 7' ZyH 'e"| X, £(85, 5", P1)]
— Exi (G700, 8", P)) Exg[Eeiel ' ZoHy '€"| X, £(05,8°, PO)]]
= Ex¢G1(04,5°, P°) - T ZyH " Eexgle”| X, (05, 5", P1))]
— B, (G700, 8", P") | ExelJ 7 Z3H ' Eejxgle"| X, €(85, 5", P°)]
= Ex¢[G1(03,°,P°) - ZyH," - 0]
— B, ¢[G7(00,8°, P") | ExelJ ™ ZyHy' - 0]
= 0.

Similarly, we obtain Cov[G%(8Y, s°, P?), J*IZ'dHO*leR(Og)] = 0. Since €” and €®(8Y) are gen-
erated by the distinct sampling process given (X, & (0 0 PY%), they are conditionally indepen-
dent. Thus, for the covariance between J ™' Z,H ' e" and J~'Z/,H ;" '€®(0Y), we also obtain
Cov[J 'Z,Hy'e", J ' Z,H;' €(8%)] = 0.

On the supply 51de we can snmlarly show that the three components in G5 (8°)—G4(8°, s°, P?),
J1Z LoMoHy len and J*IZ'CLOMOHO_IGR(Og)—are mutually uncorrelated by using Al.
These facts enable us to calculate the asymptotic variance-covariance matrix of .J %g 7(08%) as a
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sum of the three variance-covariance matrices, each derived from the three separate components
in G7(6°).

We prove that (1) the difference between J%GJ(O, s", P) and J3 G1(0) to be 0y(1) within
any shrinking neighborhood of @°, and thus the estimator @ which minimizes ||G()|| has
the same asymptotic distribution as @ which minimizes ||G;(8, s", P%)||. Then we prove that
(2) 0 is asymptotically normally distributed with variance-covariance matrix consisting of the
three components corresponding to the term G ;(8, s°, PY), the term involving €” and the term
consisting of €(8Y) by applying a version of Theorem 3.3 in Pakes and Pollard (1989).

Assumptions B5(a)-(e) are conditions that enable us to control the differences between
J2G(6,s", PR) and J2G;(8) within the shrinking neighborhood of (£(89, s°, P°), 89, PY). Es-
pecially, in B5(a)-(d), we assume those differences have stochastic equicontinuity-like character-
istics at (&,04, P) = (£(8Y, s, P°),8Y, P%). The assumptions B5(a) and B5(b) are respectively
on the sampling and the simulation errors for the demand side moments, while B5(¢) and B5(d)
are on those for the supply side moments. Assumption B5(e) is on the profit margin.

Assumptions B1, B2 and B3 have essentially the same roles as the conditions (v), (ii) and (iii)
respectively in Theorem 3.3 of Pakes and Pollard (1989). Assumption B1 is on the true parameter
6°. Assumption B2 is the differentiability condition (differentiable in @) for the expectation of
G ;(0,5° P%. Given assumption B2, B3 implies that G ;(8,s°, P°) can be approximated by
;0 —0° + G(0°s° P%) near 8°. Assumptions B4(a)(c) determine the magnitude of the
three components in J 3 g J(OO), where each component is shown to follow asymptotically normal,
while assumptions B4(d)—(f) are the Lyapunov conditions used in the central limit theorem.
Assumption B6 is the regularity condition for the profit margin m,(&, 84, P) which guarantees
its smoothness in terms of & and 8.

Assumption B1 6° is an interior point of ©.
Assumption B2 For all 0 in some § > 0 neighborhood of 6°,

d
oo - (UGG

= T(0-6%) + o]l — 6] (59)

! !
uniformly in J. The matriz Tj = (F%I,Fﬁl) —-T = (I‘d/,l"c') as J — oo, where Ty has full
column rank.

Assumption B3 For all sequences of positive numbers 7 such that 557 — 0,

(@) sup [T {GY(04,5°, P*) - By, (G (04,5, PO)]}
102—09/1<d
1
— 73 { G50, 5", P°) = Ex, [[G5(65, 5°, P)]}|| = 0p(1)
(60)

and

L[ e )
(b) 10 Sglolﬁ)<5 HJ2 {G’J(O,SO,PO) — Ewl,w[GJ(e,SO,PU)]}
R0

~—

~73{G5(0°,5%, P°) — By, w[G5 (6%, 5%, PO)]}|| = 0p(1):
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Assumption B4 Let

_Z’c
Set

Suppose that

Z,H '(¢,0,P) = (af(&64,P),.
L(€70d7P)M(gvedap)Hil(Evedap) = (ai(gveda ) -, aQ
_ 1 d(saoda )Ejia )
. — J
Vil 0a ) = nﬁ%}( $E04 P )
. _ 1 [ ad(€,04, P (X, €,00)
Y ;( (€.04, P)6,(X.€,64)
. 16(69,s°, P72 \] _
(@) i Vg l( Z/w(0°,5°, %) /]2 )l =
(b) !ljlm anX{[YJz(E(egaSoapo)aogapo)] = (I>2’
(C) RI}I—I>1 RVe x§[ (E(e soaPO)’eg’PO)] = (I>3

(62)
(63)

(64)

for finite positive definite matrices ®1, @y and ®3. Suppose that the following Lyapunov condi-

tions hold.

J
(d) zExl,f,Wl,w H(
(e)
(f) REG*,X7£[||Y]T‘( (eda

for some 6 > 0.

]EJ (63, 2;
2

2Gw;( 00 o pPY/J

OPO)/Jl )

2+6

1 Eexel||Y 7i(€(0, 8°, P°), 85, P%)||*T°] = o(1),
s%, PY), 89, PY)||*]

= o(1)

Assumption B5 For all sequences of positive numbers §y with 05 — 0, we assume

()

(b)

sup sup HJ‘izd{
Had—ﬂgHS(SJ (fl,P)E{Ngo(e 5])}J><NP0 d)
= 0p(1);
sup sup HJ__Zd{
[1604—09]1<d (&1,P JE{N, 0(09:6.)} xNpo(9r)
—Hae(%ﬁ\z%ur
sup sup HJ*2Z'

[[0a—09]1<0s (&1,62,P)e{N,

x {L(&,04, P)M (&,,04,P)H"'

= op(1);

sup
[10a—09]1<d7 (&1,62,P)e{N,

sup

X {L(glaedap)M(Elaedap)H

= op(1);

sup sup
Had 00H<6J PGNPO 5.]

+0(09:8)12 XN po

- (52, 64, P) — LyMoH; '} €"||

0(90 51)}2J ><N

iz

- (€2a6’d,P)€ (6a)

_1(6170dap) - Hal} €"

~1(¢,,04,P)

—~ LyMyH,'e

€"(84)

o}

772209 (0 — my (€(0u, 5", F°), 04, P)

—g(p — my(£(04,5°, P°), 04, P)}|| = 0p(1)
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where &, = (€14,...,&1y) and & = (€sq, ..., Eoy) are respectively a set of distinct J vectors, each
vector corresponds to each row of J x J matrices L(&,04,P), M(€,04,P) and H '(€,0,4, P).

Assumption B6 For every finite .J, for all 84 € ©4, and for all P in a neighborhood of PP,
M(€,04,P) = 0my(&, 04, P)/0€' (73)
exists and continuous both in & and 0.

Theorem 2 (Asymptotic Normality of é) Suppose that A1-A7 and B1-B6 hold for some
n(J),R(J) — oo. Then, the estimator @ that minimizes ||G;(0,s", P®)|| is asymptotically

normal at the rate of J3:

6 — 6% % N0, (I'T) " 'I"er(I'r) ] (74)

[SIE

J

with ® = @1 + @9 + P3.

4 Estimating Demand and Supply Systems with Purchasing In-
formation on the Consumer’s Demographics

4.1 Additional Moments with Purchasing Information

The framework in BLP(1995) uses the orthogonal conditions between the unobserved product
characteristics (£;,w;) and the exogenous instrumental variables (z;l,z;f) to obtain the GMM
estimate of the parameter . For some markets, however, market summaries such as averaged
demographics of consumers who purchased specific type of products are publicly available, even
if their detailed individual-level data such as purchasing history are not. In the U.S. automo-
bile market, for instance, we know the median income of consumers who purchased domestic,
European, or Japanese vehicles from publications such as the Ward’s Motor Vehicle Facts €
Figures. In this section, we first generalize the idea given by Petrin (2002), who extends the
BLP framework by additional moment conditions constructed from the market summary data
to the GMM. We then give the asymptotic theorem to this GMM estimator and uncover the
conditions under which the use of the additional moment conditions allows us to estimate of the
demand side parameters more precisely.

First we define some words and notations. Discriminating attributes is the product charac-
teristic or attribute that enables consumers to discriminate some products from others. When we
say consumer ¢ takes a discriminating attribute ¢, this means that consumer chooses a product
from a group of products whose characteristic or attribute have discrimating attribute ¢. An au-
tomobile attribute “imports” is one of such discriminating attributes. When we say a consumer
chooses this attribute, what we mean is that the consumer purchases an imports. Similarly,
“minivan” and “costing less than $10,000” are examples of the discriminating attribute as we
define here. We consider a finite number of discriminating attributes (¢ = 1,...,N,) and de-
note all the products involved in attribute ¢ as Q,. By definition, discriminating attributes for
outside good is undefined.

We next consider expectation of consumer’s demographics conditional on a specific discrimi-
nating attribute. Suppose that some information on demographics for consumer ¢ are available.
Demographic variables such as age, family size, or, income, is already numerical, but for other
demographics such as having children, belonging to certain age group, choice of residential
area, can be numerically expressd using indicators. We denote this numerically represented D
dimensional demographics as v§ = (v, ...,v/p)’. We assume that the joint distribution of de-
mographics v{ has a bounded support. The consumer #’s observed demographic v;,,d = 1,...,D
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is averaged over consumers who choose discriminating attribute ¢ in the population to obtain
the conditional expectation ngq = Elvy|C; € Qq,X,E(Bg, 5%, PY)]. An example of this condi-
tional expectation would be the expected value of income of consumers in the population P°
who purchased imported vehicles.

Since the conditional expectation can be written as

E[vg|Ci € Qq, X,£(84,5°, PV)]
= /l/tod Pr[dl/tod|0t € Qqaxag(odasoapo)]
fytod PI'[CZ € QQ|X7€(0d7807P0)7Vtod]P0(thod)
Pr[C; € Q41X ,£(04,s°, PY)]
[v2,Pr[Cy € Q41X ,€(04,8°, P°), v, PO (dvy)
Pr[C; € Q4| X,&(04,s°, PY)]

0 Zjqu Utj(XaE(odasoaPO)?Vt;od)
tdeEQq Uj(XaE(odasoaPO)’edaPO)

P%(dv,), (75)

we can form an identity

0 ZjEQq Utj(Xa E(ada 807 Po)a 147 od)
e Zjqu O-j(Xas(oda SO,PU)’Od’PO)

Mg — P’(dvy) =0 (76)
at 8, = 03 forg=1,...,Ny,d=1,...,D. Although PV is so far assumed known, we typically
will not be able to calculate the second term on the left-hand side of (76) analytically and will

have to approximate it by the i.i.d. sample vy, = 1,...,T from the underlying distribution P°.
The sample moments G (0, 5%, P% n°) corresponding to (76) are

1 T
Gga]‘,T(odv SO’PO’ 770) = 770 - f Zug ® ¢t(€(0d7 807P0)7 0d7 PO) (77)
t=1
where
77?1
: ZjEQl O'ij(Xaé'th;ed)
77(1)Np E]‘egl o (X.&£.04.P)
n’ = |, %u€.84.P)= : (78)
770D1 ZJEQN;, oe; (X & we;0,)
. e, o X £
n%Np

The symbol @ denotes the Kronecker product. The quantity (&, 84, P) is the consumer ¢’s
model-calculated purchasing probability of products with discriminating attribute ¢ relative to
the model-calculated market share of the same products. This random sample v, t =1,...,T
of consumers is taken independent of the sample v,,r = 1,..., R in (20) for calculating the
simulated market shares o ;(X ,€,04, P). Note that these additional moment conditions are
conditional on product characteristics (X, &(89, s, PY)), and thus depend on the indices .J and
T.

Suppose that we do not know the conditional expectation of demographics ngq, instead, we
have its estimate nd]\g from independent sources such as CEX automobile supplement in the case
of Petrin (2002). We assume N independent consumer draws with their purchasing histories
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are used to construct n™ = (nlY, ... ,n{VNp, cemN ,nng)’ and define the sampling error €V

contained in n'V as follows.
eN:nN—nozﬁZe#. (79)

In short, we assume here that n'V is the sum of N conditionally independent random variables
given the set of product characteristics (X, &) of all products. Note that quantities n and N
are respectively the number of samples taken to calculate the observed market share and the
observed demographic average of consumers purchasing product with discriminating attribute.
As such they are beyond the control of researchers. On the other hand quantities R and T
are respectively the number of samples taken to simulate the model-calculated market share
as well as the model-calculated demographic average of consumers purchasing product with
discriminating attribute from the population PY of consumers. They are both chosen by the
researchers and these two samples must be independent.

Since we evaluate the unobserved quality &€(84, s, P) at (s, P) = (s™, P®) in (77), the sample
moments we can calculate are

T

1
G?,T(oda Sna PR,T’N) = 77N - f Zl/g ® ¢t(£(0da SnaPR)a edaPR) (80)
t=1

for 64 € ©4. As an extension to BLP(1995), we use G57(8q,s", P, n") to estimate 6, in
addition to the two sample moments G%(84,s", P®) in (22) and G5(0, s", P) in (23). The
objective function we minimize in the GMM estimation is the sum of norm of Gfﬁ(ed, s", PR,
G5(0,s", P®), and GGr(04, s", PR nN), that is, the norm of

Gfd](ed, Sn, PR)
Gir(0,s", PE 9™y =| G4(8,s", P?) ) (81)
G%,T(od’snaPRanN)

In the following, we derive the CAN properties for the GMM estimator 6 which minimizes
|G y7(8,s", PR nN)||. Notice that the first two moments G4 and G§ in G 7 are sample
moments averaged over products j = 1,...,J, while the third moment G is averaged over

consumers t = 1,...,T. To derive asymptotics for é, we have to increase two distinct sample
size indices J and T simultaneously. We assume the sample size T' of consumers is always greater
than the number of products .J, and then T grows faster than .J, that is, J/T — 0 as J — oc.

4.2 Consistency

For any 0 > 0, we show that lim;7_, Pr[||@ — 6°|| > 6] — 0. The proof is a straightforward
extension to the consistency proof for 6 in Theorem 1.

Assumption A8 bounds [|G5 (84, s°, P°,n°)|| away from ||GL‘}’T(03, 5%, PY n0)|| over 84 out-
side of a neighborhood of 03. This condition parallels assumption A5, which bounds G ;(8, s°, P?)
away from G ;(6°,s°, P?).

In assumption A9, we assume an asymptotic property the discriminating attributes ¢,q =
1,..., N, must obey. We guarantee non-zero aggregate market shares for products with dis-
criminating attribute ¢ when the number of products J grows large. With this assumption and
the following assumption A10(b), the additional moment defined in (77) has finite variance at
0, =6
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Assumption A10(a) specifies properties for error contained in the additional information né\f].
We assume 7751\; is unbiased for the true value 772q and consistent at a rate of N'/2 given the
product characteristics (X, £(0Y, s, PY)). Assumption A10(b) guarantees a finiteness for ngq.

Assumption A1l is on the proportion of the probabilities taking discriminating attributes
between individual ¢ and population P, v,(&, 84, P). We assume that the average absolute dis-
tance between v, (€, 04, P) and ,(£(84, 5%, P°), 84, P°) converges to zero in probability within
the 0 neighborhood of £(@4, s°, P°) for any 84 € ©,4. This assumption will be used to guarantee
that we can bring the sample analogue of the additional moments, G5 (04, s", PR nN), close
enough to G5 (0y4, 5%, PY n™V) for any 6.

Assumption A8 For all § > 0, there exists C(0) such that

llm Pr inf Ga 0 7SO7P07 0 - a 007807P07 0 > C 5 = ]_
[W 5 1G58 n°) — G47(85 n%)|| > C(5)

J,T— 00 0
%4

(82)
Assumption A9 For all discriminating attributes ¢ = 1,...,N,,
—2
{ > Uj(XuE(eS,SU,PU),@gaPO)}
JEQq
has a finite mean and variance for every J.

Assumption A10 (a) For all observed consumer’s demographics d =1,...,D and for all dis-
criminating attributes ¢ = 1,..., Ny, the sampling error 77[]1\; — ngq has zero mean and variance

of order 1/N conditional on product characteristics (X ,£(0%, %, P°)) of all products, i.e.,

Ee#\x,ﬁ I:T/(]i\(; - 772q|X7 6(037 307 PO)] = 07 (83)
Ve#\x,g I:Th]i\(; _n2q|Xa£(031301P0)] = Op(l/N) (84)
(b) For all observed consumer’s demographics d =1, ..., D and for all discriminating attributes
g=1,...,Np, 772q has a finite mean and variance for all J, i.e., EX7§[772Q] < 00 and Vx,g[ngq] < 0.

Assumption A11 For any 04 € Oy, and for all 6 > 0,

lim Pr sup T 2| (€, 04,P) — W(E(Bq, 8", P°),04, PO)|| > 6| =0, (85)
S0 L(g,P)EN 0 (04:6)x N po ()

where ‘I’(E,Od,P) = (’l/)l(s,ed,P)a- . 71/)T(£70dap)),‘

Theorem 3 (Consistency of é) Suppose that A1-A11 hold for some n(J,T), R(J,T), and N,
all of which grow infinitely as J and T grow infinitely. Then, 62 6.

4.3 Asymptotic Normality

To derive the asymptotic normality of 6 in Theorem 2, we approximated the demand side
moments G4(84,s", P) and the supply side moments G4(8, s", P®) respectively by G%(84)
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and G5(@) within the shrinking neighborhood of 0°. Similarly, we will use an approxima-
tion to the additional moments Gf},T(Bd,s",PR,nN ). Decompose the additional moments
G5 r(04,8", PR nN) into four terms.

G5 (84,8", P, n™)
= Gir(0q, s, P n°) + {G5 (04, s", PE nN) - Jr(04, %, PR M)}
+{G5 (04,5, PF,n") — G5 1(04,5°, P°,n™)}
+{G%7(04,8°, P’ 0™) — G41(04,8°, P°,n°)}. (86)

The second term in (86) can be written as

G?,T(edasnaPRvnN) - 3,T(0daSOaPRa77N)

1 T
= TIN - T ZV? ® ¢t(£(0dasnapR)?0d’PR)
t=1
1 T
- {T’N - ? Zl/g ® Ttbt(E(odasoaPR)?ed’PR)}
t=1

T
- _% Zl/g ® {'/)t(f(od, Sn, PR), ed,PR) — ¢t(€(0d’ SO,PR), ad’ PR)}
t=1

T
- _% Zl/g ® {Trbt(E(odaso,PR),ed,PR) — ¢t(£(0da SO,PR),Od,PR)
t=1

+ 8¢t(ET7 Ioda PR)
13
T

- _% Zl/g & Tt(sTaodaPR)(S(odasnaPR) - E(ed’so’PR)) (87)
t=1

(€645, P") - €(6.5". P}

where Y (&,0,4, P) = 01,(€,04, P)/0¢' and ¢F = (EI, e ,ETI) is the set of intermediate vectors
between £(0,4, 8", P®) and £(0,,s°, P®). Substituting (43) for (87) gives

G5 (04, 8", P n™) — G5.1(84,5°, P* ™)
- _% tz:ug @ Yi(€7,04, PYH ™ (€,0,4, PT)e™. (88)
The third term in (86) is
G51r(04, 8", P ™) — G7(04,8°, PO, ™)

1 T
= 0V = 2> v @y (€(04, 8, PT), 04, P
t=1

T
- {nN - l Zug ® ¢t(€(0d7807P0)70d7P0)}
t=1

T
T
- _% Zl/g ® {¢t(5(9da 307 PR)? 64, PR) - ¢t(€(0d, SO,PO), Od,PU)}
t=1
| T
= —F2 V® {%(E(ed, %, P°),04, PR) — 4, (£(84, s°, P°), 8,4, P°)
t=1
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+a¢t(£*,;vd,PR)

T
- _% Zl/g ® {’l,bt(g(od,so,PO),ed’PR) - ,(pt(s(ed’SO’PO)’od,PU)
t=1

(€645 ") ~ (00,5, 7))}

FLUE 00, P) (60,5, PT) — €045, 1) (59)
where ¢t = (Eji, - ,Eti]) is the set of intermediate vectors between &(04, s°, P®) and £(84, s°, P?).
Substituting (44) for (89) gives
G?,T(oda 307 PRa 77N) - G?,T(eda 307 Poa 77N)

T
- _%Zug@) {¢t(£(0dasoapo)70d7PR) - ¢t(€(0d7307P0)70d7P0)
t=1

Y. (&4,04, PYH (€, Od,PR)eR(Od)}. (90)

The fourth term in (86) is
G?,T(odasoapoanN) - L‘},T(edasoapoano)

1 &,
= " = 52 v @[04, 5", P"), 04, ")
t=1

T
— {7’]0 — %Zl/g () '¢t(§(0dasoap0)aodapo)}
t=1

= 7" —n’. (91)

Consequently, by substituting (88), (90) and (91) for (86), we can rewrite the additional moments
G5 r(04,8", PR nN) as follows.

GL‘},T(eda Sna PRa TIN)
= ?,T(odasoapoano)

T
_% Zl/g ® {¢t(€(0d7307P0)70d7PR) - 1/%(5(9(1, SOaPO)aodaPO)
t=1

XL (ET,00, PRV E, 04, PR — Y4(€1, 04, PRYH (.04, PR)eR(ed)}
JIR ) (92)

We use the following approximation G5 1(84) to GL‘}’T(Bd, s™, PR ).

1 T
gf},T(ed) = G%,T(eda Soa PO,T’O) - f Zl/g ® T?Hal{en - GR(OS)}
t=1
Y . (93)
where Y? = Y, (£(8Y, s°, P%), 89, PY).
In order to obtain the asymptotic normality of 8, we will take the same path as the proof of
Theorem 2, that is, we first show that the sample moments Gy 7(0, s, P, n™) in (81) are well
approximated by

G5 (64)
Gir(0) = g5(0) (94)
5r(04)
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within the 077 neighborhood of 0° where & 7,7 is converges to 0 as J,T" — oo, and then show
that the estimator which minimizes the norm of G ;7(6) is asymptotically normal.

Assumption B7 plays the same role on the additional moments GL‘}’T(Od,s”,PR,nN ) as
assumption B5 does on the G ;(8, s", PT), or it guarantees that the difference between Gir(04)
and G (04, s", P nN) is stochastically small enough within the neighborhood of Y.

Assumption B8 and B9 are used in a same way as assumption B2 and B3. Assumption B8
is just a differentiability condition for the expectation of G 1 (64, s%, P% %) at Y. Given BS,
assumption B9 approximates GY (64, 5%, PY n0) by L5 7(0q — 0%) + G 7(8Y% 5", P°, 1% near
8",

In assumptions B10(a)—(d), we specify the asymptotic covariance for the four terms in
T3G50(8), or T2 G (65,8, PO, "), T™2 TL vp@ XY H, e, T2 Sl vf@ X H, 'e(6),
and T3 (™ —n"). These terms are mutually independent conditional on the product character-
istics (X, £(0Y%, s°, P)), and thus the asymptotic covariance of T3 L‘}’T(ﬂg) is the sum of the four
covariance matrices. Assumptions B10(e)—(h) are respectively Lyapunov conditions necessary
to ensure the four terms converge to the normal distribution.

Assumption B7 For all discriminating attributes q(q¢ = 1,...,N,), and for any 0+ such that
d;.r = 0 as J,T — oo,

() sup sup 74 Y [Tu(6. 00 PYH (6,00, D)€"
10a—0311<0., 7 (€1,€2,P)E{N 0 (030, 7)}>7 xNpo (85, ) t=1
_Tt(€(027 307 PU)? 037 PO)Hil(E(oga 307 PO)? 037 PO)en] ‘ = OP(]-); (95)

T

(b) sup sup ‘TE > [Tt(€1, 64, P)H '(&,,04, P)e"(6,)
102—0311<d., 7 (€1,€2,P)E{N0(03:0.,7)}*T xNpo (4., 7) =1
SX((60 5", ), 05 PO H (6%, 5, ), 63 PO)eT (6] | = o1 (96)

(c) sup T2 S (B,) = 0,(1). (97)
16a—0311<05, 7 jeQ,

Assumption B8 For all 8, in some § > 0 neighborhood of 69,
BlGS1(84,8°, P*,n")] = T5.1(84 — 03) + o(||64 — 6gl)) (98)

uniformly in J and T. The Matriz TG — T'* as J,T — oo, where I’y has full column rank.

Assumption B9 For all sequence of positive numbers 051 such that 6;7 — 0 as J, T — oo,

sup  |[TH{G7(04,5°, P',0°) = BIGS1(84, 8", P°,n°)]}
104—0911<d4,7

1
TG (63, 5%, P°,n°) — E[GY1(8%, 8", P*.n°)]} || = 0, (1). (9)

Assumption B10 Let

T

— > v ®Y(&,04,P)H '(£,04,P) = (al(£,04,P),...,a%(¢, 04, P))
t=1
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and set

1 J
Y%T'(Eaadap) = —Za@(ﬁ,ﬂd,P)eji,
7 n\/T — J

J
Y50, (€,00,P) = Riﬁ;a;(s,ed,meyr(x,s,ed»
Suppose that
(2 JggooTzvyx,g 0= i w6605 )60 )| =, (100)
(b) JTllrlfgoonVeux,f[YJTz(ﬁ(odaS 0,P%),09, P = @5, (101)
@l RVe Y (603, 8°, P°), 00, P)] = @ (102)
(@ NV TN elf] = 2 (103)

for finite positive definite matrices ®¢, ®5, ®5 and ®F. Suppose that for some § > 0,

(e) ZEux,g {0 — vf © 4, (£(65,8° P°),00, PO)}VT|F] = o(1),  (104)

t=1
() nEeueelll Y97, (€09 s°, P°), 8%, PO)|[2+7] = o(1), (105)
(&) REcueelllY 5, (€(85 8%, P°), 0%, P°)[[>*9] = o(1), (106)
(h)  NEanelllT2N el |27 = o(1). (107)

Theorem 4 (Asymptotic Normality of é) Suppose that A1-A11 and B1-B10 hold for some
increasing n(J,T), R(J,T), N, such that T/J — 0o as J — oo and N — co. Then, the estimator

0 that minimizes ||G ;1(8, 5™, PR, qN)|| is asymptotically normal at the rate of J3:
J5(6— 6% % N(0, V).
The variance-covariance matriz 'V is written as
V = (T + 1T~ '1"e0(I'T 4+ 1vre)~!
where ® = &1 + Py + Pj.

Remark 1 The variance reduction of the estimates through the use of additional moments is
due to the component T'”'T"* in the asymptotic covariance matrix in Theorem 4. Notice also
that this asymptotic covariance matrix assumes the ratio of the two size indices, .JJ/T, converges
to 0 as J goes to infinity. For the finite sample where T" does not dominate J, the covariance
matrix will be

J
V = (I'C + %1% ! (r’@r + f1““”<I>0L1“a> (I'T + 1vrY)~! (108)
where ®* = ®{ + ®5 + ®5 + ®{. The term (J/T)T'*'®°T” increases variance of the estimated

parameters. Consequently, the use of the additional moments does not necessarily improve the
accuracy of the estimates.
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5 Concrete Examples

In this section, we discuss the conditions that guarantee the assumptions in the previous sections.
When the number J of products in the market grows large, the dimension of the market share
vector increases. This implies that almost all elements of the market share vector decrease to
zero. The rate at which the market share converges to zero and the response of market share to
the change of the unobserved product quality, both of which determine the appropriateness of
the assumptions, depend on the underlying distribution of the product characteristics and the
consumer heterogeneity as well as the structure of competition in the market.

In the following, we consider two primal examples to examine the assumptions. The first is
the simple logit model in which we can analytically solve the equation (4) in terms of £ and thus
do not incur the simulation error in the model. Without the simulation error, it is fairly easy
to verify the assumptions for the logit model. The second is the random coefficient logit model.
As discussed in BLP (1995), this model has useful properties when product characteristics and
consumers’ taste are multi-dimensionally distributed and then nature of competition among
products is complex. Our main concern in the previous section is also in the efficient estimation
for the random coefficient logit model. However, the random coefficient logit model has no
closed-form solution for (4) and for the inverse of H (&, 64, P). Thus, our examination has to
rely on its stochastic approximation.

Logit Model
The utility function of consumer ¢ for product 7 in one of the simplest logit model is given by
uij = 0j +vij, 0j = Oppj + o) +; (109)

where p; and x; are respectively the price and the characteristic of product j, and (6),,0,) is
the set of demand parameters 8,;. The assumption that the consumer heterogeneity v;; being
extreme-value distributed derives the probability of consumer 7 choosing product j as

o:(£,0,P) = exp(0) 110
16,6, 7) L+ ¢y exp(dy) o

If we assume that the distribution of ¢; has a bounded support, the stochastic magnitude of
0j is Op(1/J). This implies that when the number of products grows large, the market share
for each product, including outside good, decreases to zero at the same rate. Therefore we can
reasonably assume the following condition on the rate at which the market share approaches
zero when we use the logit model for demand.

Condition S1(a) There exists positive finite constants ¢ and ¢ such that with probability one

<sY <=, j=0,1,...,J. (111)

<o
Sl o

(b) The constant ¢ further satisfies the relationship ¢Jp, < J for each firm m =1,..., F, where
Jm 18 the number of products firm m produces in the markets.

Condition S1(a) leads us to 32- = O,(1/J). In addition, this condition bounds the market
share for each product away from zero for any fixed J, and then the inverse of the market share
is stochastically of order of J, i.e., 1/39- = Op(J). By condition S1(b), we exclude the event
that the aggregate market share for any of firms dominates in the market, i.e. 3 ;c 7 52 <

> ieTm ¢/J = ¢Jp/J < 1 at any given J. This guarantees that the inverse of the aggregate
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market share for the other firms’ products and the outside good, is finite and thus its stochastic
magnitude is of order one, i.e., 1/(1 — 3,7 s?) = 0p(1).

The limiting behavior of the market shares, both observed and model-calculated, are assumed
in assumption A3. Assumptions A3(a) and (b) control the way in which s" and o (€, 84, PF)
approach to the true market share s and o (£, 84, PY) respectively. To guarantee assumption A3
to hold, we require conditions on the growth rates of n and R as J grows large as well as on
the limiting behavior of the true market share s”. We below derive the growth rates of n and R
necessary to ensure A3 when condition S1 is satisfied.

First, we derive the rate for assumption A3(a). For any 6 > 0,

Pr [pso(s", s%) > 5]

n_ g0
= Pr| max |-Z 5 )
0<j<r| s
sn — g0
< ZPrl J 5 LI >6
=0 8§
s — 0 J s — g0
:ZPr]0]>5+ZPr]0]<—5
=0 8§ =0 8§
J s — g0
= ZEx,g [Prl 980 J >5‘X,£(03,30,P0)H
=0 J
J sn — g0
+> Exe lPrl 1 0 L < —6‘X,§(03,30,P0)H
§=0 J

X,g(es,s",P“)H

J n
= Z Ex¢ [Pr lz €5i > n532
=0

i=1

n

J
+ Z Ex¢ lPr [Z €ji < —n552-
Jj=0 ]

X,s(og,so,PU)H . (112)
=1

Since |e;;| < 1 and €j; are independently distributed across i conditional on (X, &(89, s°, P%))
with conditional mean zero and conditional variance s}(1 — s9) by assumption Al(a), under
condition S1(a), we can rewrite the first term in (112) by the Bernstein inequality as

X,s(eg,s",PO)H

J n
Z EX@ lPI‘ [Z €j; > nés?
7=0 i=1
J [ (nés?)?
= 2 Vg [0 il X, £(85, 8, PP)] + 2005

zJ:E [ ( (nds))? )]
= x¢ [OXP | 7570 0 0
i i 2nsj(1 — s}) + 2nds)

J i 52
- Z;)Ef P (‘2(1 —50)/(ns?) +26/(n32)>]
= J Bxelexp(~520,(n/D))]. (113)

The upper bound for the second term on the right hand side of (112) is obtained similarly. If
the term exp(—d20,(n/J)) is individually uniformly integrable, the left-hand side of (113) is
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bounded by J exp(—620(n/.J)). By Cauchy’s convergence test (ratio test), we have a sufficient
condition to ensure J exp(—3d20(n/J)) to decrease to zero: J'*€/n — 0 for any € > 0. This
guarantees assumption A3(a). Notice that since the logit model incurs no simulation error in
the evaluation of €, we do not need to take account of assumption A3(b) for the case of the logit
model.?

In assumption A4, we simply assume that the instrumental matrices Z; and Z. are respec-
tively stochastically bounded.

To guarantee assumption A5, it is sufficient that the first order derivative matrix of G'7(8, s°, P?)
in terms of @ € © is of full column rank, since then for all § > 0, there exist C' such that

_ _ 0G 7(0*,s°, PY)
inf ||Gs(0,s°,P°) —G;(6°s°, PY)| = inf i 0—0°
s 5) 1G( ) — G )|l s 5) 50 ( )
> inf C||@—6°| =C6
0ZN o (0)

in probability tending to one as J — oo. In the following, we examine what it means to have

0G 1(0,s°, P%) /06" being of full-column rank. We should note that the demand side moment

contains only the vector of demand parameters, @4, while that for cost side contains both of

demand and cost side parameter vectors, 8; and 6., as noted on page 6. This means that the
matrix G ;(0, s, P%)/06' takes the following form

0G;(0,8°,P%) [ 8G%(8,,s°, P)/06), 0 m

00’ N 0G5(0,s°,P%) /00, 0G5(8,s°, P%) /06 (114)

This matrix is full-column rank if the components G4 (84, s°, P°) /06!, and 0G4(0, s°, P°) /98,
are respectively of full-column rank, regardless of the value of 0G(0, s°, PY)/08!;. Moreover,
we know that 9G5(0,s°, P*)/00!. = —J 1 Z'W by the definition of the cost side moment in
(18) and the assumed linear dependence of w on W in (14). By properly choosing the cost side
instruments Z,. and cost shifter W, we can construct G5(0, s°, P%)/90". to be of full-column
rank for all J. Therefore we only need to check 0G%(84,s°, P%)/08!, below. The first order
derivative of G%(04,s", P%) in terms of O, can be rewritten as

8(;J(oda 80, PO)
00/,

L 0E(04,8°, PY)

_ 1zt ) )

= Iz

8a(£(edasoapo)aodapo)

= —J'Z/H'(&(04,5° P°),04,P°) -
00’

(115)

since do(+)/0¢' - 0€ /067 + 0o (+)/90); = 0 from the implicit function theorem.
For the case of the logit model, we have

H(E(Gd,S,P),od,P) =5- SS,? and Hﬁl(‘s(edasap)?odap) =s! +ii,/307 (116)
where S = diag[s] and 7 = (1,...,1). Furthermore,
si(p1 —Xpisi) sl — X xjs;)

8U(E(Od,S,P),0d,P) _
07, =

: : (117)
sy(ps — 2 pjsj) si(wy— 2 xjs))

%A sufficient condition for assumption A3(b) could have been shown to be J'™¢/R — 0 under condition S1(a)
by the similarly way, but this condition would have to hold uniformly over 6.
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Substituting (116) and (117) for (115) gives us dG% (84, s°, P°) /00!, = —T (2 z;lpj,z,z;lxj).
Therefore, unless the price p; is a linear function of the product characteristics z;, 0G%(04,5°,P%) /00,
with the logit model will be automatically of full column rank.

Assumption A6 can be verified by the similar way as A5, that is, to see whether the first
order derivative of (o (€,04, P)) with respect to & is of full-rank, whereas the dimension of
ot y(a(€,04, P))/0¢" increases as J grows large. In the logit model case, this matrix is of
full-rank since 97 5(o(&,04, P))/0¢ =1

In assumption A7, we guarantee that the profit margin my(£(04, s", P%), 04, P®) shows the
same distributional characteristics as mg,(£(04, s°, P°), 8,4, P°) as £€(84, ™, P%) and P® converge
to £€(04, 5%, P°) and PY respectively. Using the logit model for demand determines the structure
of the profit margin of product j via the response of market share to the price change

an(g,od,P) _ OPU]'(I - Uj) (l = j) (118)
Ipy —0p0j0; (L #7)
The profit margin of product j with the logit model is calculated as
mgj (E(eda S, P)7 0d7 P) = _{A_IU(€(0d7 S, P)7 oda P)}]
1
= — (119)

Op(1 =3 sc 7i s1)

where 7/ denotes the set of all products of the firm that produces product j, i.e., J = J,, if
j € JIm, and 6y, in (109) is expected to be negative. The (119) implies that when we employ the
logit model for demand, the profit margin is the same across the products one firm produces
and is increasing in the firm’s aggregate market share. Hence, we obtain the fact that J/n — 0
guarantees assumption A7 under condition S1 as follows.

J_1||mg(€(0d7SnapR)veda‘PR) - mg(‘s(edasoapo)?adapo)HQ

F
= Jfl Z Z [mgj(S(odasnapR)aodapR) - mgj(S(edaSOaPO)aodaPO)]Z

mzl]EJm
F 2
1 1
-y X ]
m=1jE€Tm 0 p(1 = e, Sl ) 01— Zleﬂg 50)
2
_ 10 2 XF: l St g, (57 = 1) - ]
- — Xieg, 51 — Ziegy s7)

2
1
—1p—2
0,25 T :
Z [1—5 1—Zzejm3?]

where by, = Y e (sP—sD)/(1=31c7.. s7). We know that 1/(1=3",c 7 s?) = Op(1) by condition
S1, and that s — s) = O,(1/v/nJ) by assumption Al(a). Therefore, b, = J,O,(1/VnJ) -
O,(1) < (J/€)Ou(1/VnJ) = Op(y/J/n) by condition S1(b). This gives
J_1||mg(€(0d7SnapR)veda‘PR) - mg(‘s(edasoapo)?adapo)HQ
2
= F | 0y(VJ/n)
< O — |l A On(D)
¢ |1-0y(/J/n)

= Op(J/n), (120)

assuming the parameter associated with the price is negative and away from zero.
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We next examine the asymptotic normality in Theorem 2. In Theorem 2, the variance of
the GMM estimator consists of the three components, ®;, ®2, and ®3, each of which is due
to the randomness of the product characteristics, the sampling error, and the simulation error
respectively. Assumption B4(a), (b), and (c) bound these variance components as .J goes to
infinity. In the logit model case, ®3 = 0 because there is no need for simulation, and thus no
simulation error. We focus on B4(b) here. Without loss of generality, we assume below that
the instrument matrices, Z; and Z,, are respectively J x 1 vectors. Then, since the conditional
variance of €;; is given as 52(1 — 59) in assumption A1, @5 generally takes the form of

J
A

de pye
- J}zigloow X
25?8 = (L5 ags)” ¥; ajags) = (; afs)) (5 ajs))
Ex¢ [ >jajaj §— (Z] 5)( jass 5)) Z]( cy2 9_ (x; at )2 (121)

where aj-l and af are respectively jth elements of Z’dH o and —Z.LoM H a . If we simply use
g(x) = x as the cost function in (14), the logit model derives

. c
d _3 Zl Zl c __ ZlijJn Zl . 1’ e J. (122)

a. = a. — ] =
0 0o ° . 0 )
7S] s (= s)?

Let a(J) = Jz4/s},8; = zgsg/(Jstg) and thus a;l = a(J)(1 + p;), then
)2 0 d 02
Ej(aj) Sj— (Zj ajsj)
= Zj o J)2(1 + 5]')2 § = (2 )1+ 8;)s))?

= (5892 4201 = X5 sD(Z Bys9) + 55 857 — (2 Bys9)?]
53(1 — Q)+ 20, 8580 — (X, 855907 + %, ]232]
2 [38(1 — s9) + 25 max; |3;] - > 39- + max; |/3’j|2 . jsg]

J)?(1 = s6) [s0 + 250 max; | 5] + max; [3;]7] .

Assuming zjl/é = 0,(1), we have a(J) = Oy(J?) and B; = Op(1/J) under condition S1 and
assumption A4. Then, the (1,1) element of ® is

1
Ol = lim — Eye [ZJ( 9250 — (3%, agsgy] = O(J2/n). (123)

J,n—00 nJ

IN

By the similar calculation, we obtain ®5° = O,(J/n) and ®4¢ = O,(.J?/n). Therefore, we need
to increase n at least as fast as J? in order to bound ®, finite.

Assumptions B4(d), (e), and (f) are the Lyapunov condition necessary to guarantee that the
three terms in J'/2G 1(00) follows asymptotically normal respectively. We just check assump-
tion B4(e). Hence,

nEe,X,f[ |YJZ(€(037 SO, Po)a 03? P0)||2+6]
B L (202
= (g2l [{(E]‘ a?gji)2 + (X ajeji)Q} ] .

We obtain
|32, adejil

E] |(1 €]z| < maxj<;j<Jj |(1 | Z] |€]z| = maXi<;j<J |(1 | Z] |1( ]) 0|
maxi<;<.j |a-| . Ej{l( i =17)+ s?}

2max1<]<J |a |

VAN VAR VAN
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Similarly, we have |3, afe;i| < 2max1<3< 7 |a§]. Under condition S1, a;-l and af for the logit
model given in (122) are respectlvely 0,(J?) and O,(J). Therefore,

n EE,X,§[| |YJZ(€(0d7 s, Po)a 03, P0)||2+6]
< (nltog@Ero/2y-1p [{Op(J2)2 + Op(J)2}(2+5)/2]

J3+36/2
eeefon (228 o

If we impose that n increases as fast as J?, i.e., n = O(J?), the Lyapunov condition B4(e)
follows for 6 > 2 by (3 +38/2) —2(1+6) =1-4/2<0.4

Finally, we examine assumption B5. The equicontinuity-like conditions in B5 guarantee that
G(0,s", P") is well approximated by G (@) near the neighborhood of (8°,£(89,s°, P°), P%)
and then the first order residual terms in Taylor approximation can be negligible as J goes large.
B5(b) and B5(d) are assumptions respectively on the demand and cost side residuals caused by
the simulation error, and B5(d) is on the properties of the cost function g(-) and of the profit
margin mg(-) near P, they are all unnecessary to check in the logit model case. Then the
remained to check are B5(a) and B5(c). Since the jth element of Z,H ! is z;-i/s]- + Jz /50 for
the logit model, the residual for the demand side moment in B5(a) evaluated at the observed
market share s” can be bounded as follows.

I P Zy{H ™ (&(84, 8", P°), 04, P°) — Hy '}
= |J_1/QZj:1{zg/s?+Jéd/s’(}—z;-i/sg—Jéd/sg}eﬂ
= T2 {18 — 180D — 89 + T2(1/s — 1/8)(s7 — sD)}
g2y 1{z‘-l( = s9)2/(ss9) + JE(sT — s9) (s — )/ (s s0)}
J-1/2 |db2/( +bj)|+J1/2|Zd|-|bo/( +bo)| - (1/s0) - 5=y s} — s
T2 maxl<]<J|z| T 103/ (L4by) [+ T2 - bo/ (1 + bo)| - (s9/58) - S5y [bl,
(125)

IANIN

where b; = (s — 32)/39-. From condition S1, assumptions Al(a), and A3(a), we have b;
Op(+/J/n) = 0,(1). Thus b?/(l +b;) = O0,(J/n)/(1+0p(1)) = Op(J/n). Assuming max; |zd| =
O, (1), both of the first and second terms of the right hand side in the above 1nequahty are
O,(J3?/n). Therefore, we need n to grow faster than J32. For B5(c), let us abbreviate
8% = 2je, Sp and sojm = icTn 39- and assume Z, = It Y ieTm 25 = O,(1), then

|J_1/QZIC{L(£(0daSnaPO)?odaPO)M(E(edasnaPO)?edaPO)H_I(E(edasnaPO)’edaPO)

—LoMyH;"'}e"|
= |J*1/2z=£1{ac-( £(84,5", P"), 04, P) — a5 (£ (04, 5°, P*), 0,4, P)} (s — s2)]
— |j1/2 Z Z { Yiegi A B Yiegi A }(Sn_s‘?)
m=1jETm ( _Zlej,{; s?)Q 0p(1—zl€j% 3?)2 J J
1 1
— J—1/2 9_1J P { - }(Sn —SO )
mzzl O (T E (N ES
F 0
1 s — g
_ —1/2 “17 =zc Tm, Tm.
= R i R L
1—2 s7m s7m + Im_ " JTIm Im
J 1= SJ

“Obviously, if we allow n to grow at the order of J?, this requirement of § > 2 can be relaxed to § > 0 as BLP
(1995) claimed.
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n _ .0 n _ .0 2
95 Tm Osym _ <sjm 037m> . 0
l=s7. l=s7. 8Fm — 5

F
= TN 0 T —— (o ’)’g
m=1 1 _ 28.77)1 _Osjm + <sjm _Osjm> Tm
l—st l—st
s s —s0 2
TIm__"JIm Im__"JIm
il 2 150 ( 150 > s — g0
< 0 _1J_1/2 I 1z¢ JIm JIm JIm TIm
= |P| m|zjm| n .0 n .0 2 (1 SU )2
m=1 1_28.7777, sjm + sjm sjm Tm
1—5?7 1—5?7
m m

-0 J/n) = Op(J/n
= |017|71t771/2 F-0(J) - Op(l) (1 i 9 I)()(\Z\/TJ/—)TL) _’_Ig (/J/)n)> -Op <\/J/7n>

= 0,1 /n) (126)

where, by condition S1 and assumption Al(a), we use (1 — s )7 = Op(1) and s% —sY =
3 g (7 = 50) = JmOp(1/Vnd) = Op(y/T]m), and thus (s — s )/(1—s% ) = Op(\/T]n).

To summarize, when we use the logit model for demand, the rate of increase for n relative
to J required to guarantee the consistency of the GMM estimator is of order of J'*¢ by the
argument following (113) and (120), while the rate for the asymptotic normality is of order of
J? based on the argument following (123)—(126).

We should note that, to guarantee the CAN property of the estimator in Theorems 1 and 2
for the use of the logit model, we have assumed that the number .J,,, of the products produced by
firm m increases as the number J of products in the market grows. Instead, the CAN property
is equally obtained if we fix the number of products a firm produces to be one and increase the
number F of firms in the market, ie, J,, = 1 and F = J — oo. As seen in (119), the logit
model cannot have different profit margins across the products produced by the same firm, and
accordingly, a number of empirical studies that use the logit model have assumed that each
firm produces a product or a composite product in the market. This empirical use of the logit
model implicitly assumes that the number of firms in the market grows. Nevertheless the CAN
property of the logit estimates can be similarly obtained with the slight modification on the
setup of Theorems 1 and 2.

As for Theorems 3 and 4, it should be noted that additional demographically-categorized
purchasing information does not lend itself to finer and more accurate estimates for logit model.
This is because, for logit model, consumers’ demographic information are all summarized in the
error term and is integrated out. As a result, individual purchasing probability for a product is
the same accross consumers and agree with the market share.

Therefore we defer to the next subsection of the random coefficient logit model on the exam-
ination of how fast the number T of consumers drawn to match the observed demographically-
categorized purchasing information must increase relative to the number J of products on the
market and the number R of consumers used to simulation in order for us to have Theorems 3
and 4. We also see that the number N of the sample size to calculate such purchasing information
must increase infinitely relative to T

Random Coefficient Logit Model
In what follows, we assume a random coefficient logit model with one random coefficient:
wij = 05+ 0pvixy +vij  with 05 = Oppj + O + (127)

where v represents consumer i’s random preference on the characteristic z; relative to the
price. The parameter 0} shows the magnitude of the preference, and when 6} = 0, the model is
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simple logit model. Provided that v;;’s are i.i.d. extreme value, the probability o;; of consumer
1 choosing product j is given by

exp(d; + Oyvia;)
1+ 7y exp(0y + Obvfay)

0ij (& vi;04) = (128)

The market share of product j is obtained by integrating (128) in terms of v/ over the population
P We simulate it with a random sample of R individuals as

1 zR: exp(d; + Oyviz;) (129)

0,P%) = ori(E, 0,0
7 (&, Z (& a) = Rr 11+Zk 1 exp(0g + 0lviFxy)

In the following, we put forward Condition S2 on the magnitude of the individual choice prob-
ability stronger than Condition SI(a). Although the condition makes individual’s behavior
restrictive, this treatment allows us to calculate the rate of n, R, N, and T relative to .J, at
which the random coefficient logit model follows our limiting theorems.

Condition S2 For all consumer r with the demographics v,, and for all possible value of
the product characteristics (X, &), there exists positive finite constants ¢ and € such that with
probability one

IN

inf o v, 0
0,60, r](ﬁa rs d)

Slio

< sup oy5(&, v 04) <
004

, 7=0,1,...,J (130)

<l al

Obviously, Condition S2 is a sufficient condion of Condition S1(a) because substituting & =
£(04,5°, P%) and integrating both sides of the inequality over the population P° immediately
leads to Condition S1(a). With Condition S2, the individual choice probability o,;(&,v,;04)
and its inverse are respectively Op(1/J) and O,(J). We assume that our two sets of simulation
draws of individuals v,,r = 1,..., R and of the individuals v;,t = 1,...,T satisfy condition S2.

As stated above, the random coefficient logit model has no closed-form solution to the inverse
of H. However, under condition S2, we can approximate it by

_1(53 oda PR)

1
= E_I(andaPR) +

00 (Sa oda PR)

where X (&, 0,4, P) = diag(o1(&,04, P),...,05(&,04, P)). In the appendix of Berry, Linton, and
Pakes (2004, pp.651-652), an approximation essentially same as this was used to show that, even
when we use the random coefficient logit model, the limiting behavior of the residual term on
the sampling error in the demand side moment (46) is fundamentally similar to that for the logit
model. As a result, the random coefficient logit model requires the same rate .J? for n relative
to J as the logit model to guarantee the GMM estimator to follow asymptotically normal. As
for the number R of simulation draws, they presumed that symmetric arguments hold for R.
Furthermore, in the appendix of this paper, we show that the arguments above apply to our
supply side specification too. Therefore, for Theorem 2 to hold for the random coefficient logit
model, the number n of the sample size for caluculating the observed market share must increase
at the rate of J? and the number R of the simulation draws must increase at the rate of J? as
well.

Applicability of assumptions A5 and A6 in Theorem 1 to the random coefficient logit model
would have to be checked via numerical computations on a case-by-case basis because these

(14 Opy(1/0)) 3, (131)
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assumptions require us to examine full-rankness of the matrices that contain the inverse of H.
Assumption A7, on the other hand, can be verified relatively easily using (131).

Now we turn our attention to cases where we have at our disposal additional moment con-
ditions on demographically-categorized purchasing information. We suppose that we are now
interested in estimating the parameter 0% in (127) more accurately by using the information on
consumers who choose specific sets of attributes in products. Denote the set of products having
this attribute by Q. Hereinafter, assume that we have a consistent estimate n, which was
constructed from N independent consumer draws from the population P?, separate from the n
independent draws from P° for calculating the observed market share, with the expectation n°
of " conditional on the individual choosing a product in Q. We further assume that n™N satisfies
assumption A10, that is, »’¥ has the conditional expectation, corresponding to (83) but written
in the spirit of (75),

n° = EWF|C; € Q,X,£(89,5°, PY)] (132)

and the conditional variance of order O,(1/N) for (84). Given n, we will draw T individuals
from the population P° to construct an additional moment,

1

T
= > viun(€(Ba, 8", P), 04, PF) (133)

t=1
where ¥4(€,04, P) = 30 01j(&,v1,04)/ X jco 05(€, 04, P). In the following, we will derive the
condition to guarantee that the specification above satisfies the assumptions in Theorems 3 and
4 under Condition S2.
On assumption A8, we require that the 1 x 3 matrix 8G§7T(0d,30,P0,n0)/60g is of full
colmun rank. We can rewrite this matrix as

8GLai,T(0da Soa PO, T’O)

G%,T(oda s", PRvnN) = 77N -

o0’,
1 & Oy (€,04,P%) | 0. 00 (€,04,P%)  1y(&,04, P°)
- vr %H ’0 ,P ) ) + ) ) .
T; ' €' (&0 17) 004 084 £=(0,,50,P0)

Here, the component H~! has no closed form expression, while we can approximate it within
O,(1/J)/oq error by taking R — oo in (131). As a result, to verify assumption A8, we would
have to have the representative utility J;, consumer’s random preference v, and its associated
parameter value 0} fixed. We will check the singularity of 0G%7/96; in our computational
example in the next section.

For assumption A9, we assume the number of products in Q increases as fast as the number
of products in the market, which guarantees both of 3-,c0 0; and 1/ 37,0 0 to be Op(1) under
Condition S2.

To check assumption All, we decompose

T71/2||W(£(0dasnaPR)’edaPR) - ‘Il(E(odasoaPO)’edaPO)H
< T71/2||‘Il(€(0daSnapR)aodaPR) - \II(S(ed’SO’PO)’od,PR)H
—|—T71/2||lIl(£(0d,sO,PU),ed’PR) - W(E(odasoapo)’edaPO)H (134)
where ¥ = (¢1,...,%7) is a T x 1 matrix. The square of the first term in (134) is bounded by

T71||q’(£(0d1snapR)’odapR) - lI’(E(odasOaPO)’edapR)HZ

8‘11(6*, oda PR)
o¢'

2

- pl (&(84,s",PT) — €(04, 8", P°))
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Haw £, od,PR)

‘ 71||£(0d78n7PR) - €(ed7307P0)||2

where £* is between £(64, s™, P®) and (84, s°, P%). In the proof of Theorem 1 (equation (A.6)),
we have shown that J=1||£(84, 8", P?) — £(84, 8%, P%)||? = 0,(1). Thus, it remains to show that
|0 (£*,04, PR)/0¢||> = Oy(T/J) to guarantee this whole term to be o,(1). For the random
coefficient logit model, we obtain the jth element of Y, as

0 0,4, P
{Yi(€.04,P)}; = W%fjd)
_ o ({5 € QF = Ypeg ouk)
Ekeg Ok
_ZkGQ Otk . ]-{‘] S Q}fO'r]dP— ZkGQfo-rjUrde (135)
Zkeggk Ekeg Ok

where 0,; = 0,j(§, v, 04), 01 = 04j(&,v4,04) and 05 = 0;(€,604,P). Under Condition S2,
both of o,; and o; are Oy(1/J), while 3-,.g 0 and 1/ 37 ;-5 05 are both Op(1). Thus, we have
9 (€,84,P)/0¢; = Op(l/J)a and so

H3‘1’£ 04, P

J T 2
ZZ <a¢t E eda )) — JTOp(l/J)2
j=1t= 0%
= 0,(T/J).
The square of the second term of (134) is

T71||\IJ(E(0d’SO’PO)’Od,PR) - W(E(0d7307P0)70d7P0)||2

T
= T_l Z{wt(s(ed’so’PO)’od,PR) - wt(S(edaSOaPO)aodaPO)}Q

B T_l d EjEQO-tj(S(odaSoapo)autaod) . EjEQO-tj(S(odaSoapo)autaod) ?
= | Xjeq0i(€(04,8° P),04,PR) 30 0i(€(04,8% PP),04, PP)
{ EjEQ{Uj(S(ed’SU’PO)’odaPR) - Uj(E(odasoaPU)aedaPO)} }2
EjEQUj(E(OdvSoapo)vedapR) ’ E]-EQO'j(E(od,SO,PO),ed,PO)

jeEQ

— ZjeQOzu(l/\/m) }2 )
- {EjegOp(l/J)-EjeQOp(l/J Z JE%O (1/J)
= Oy(J/R)

. 2
XT?I Z {Z Utj(S(oda soaPO)ayta od)}
t=1

under assumption Al(b) and Condition S2. As a result, R is required to grow slightly faster
than J.

We next move on to assumptions in Theorem 4. For assumption B7(a), it is sufficient to
show that two components in the norm of (95) is respectively o,(1). Write O']R = 0,(&, 04, PR)
and UjT = 0;(&, 04, P") for notational simplicy, and then we approximate the jth element of

T S Y€, 04, PRYH 1 (€,04, PR) by using H ! in (131) and 94/9¢; in (135) as follows.

T
{Tl Z Tt(Ea eda PR)Hil(Sa oda PR)}

t=1 j
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. 122‘%5—%) H7 (€, 04, PP)

= 1z 1
T ¥ o11) 010 o )R™' 3L or)or] 1
B e e B TR
+[UJT'1{j € QT 'S (Xicoou)oy;
EZEQUI
(ool 1{je Q) -RTEE I(Zleggrl)grj}] L (136)
(Zlegaz )2 U]R

As for the first component of (95), under Condition S2, we obtain from (136),

T
HT1 > (€04, PPYH e

t=1

J T
S {r vt g
J

j=1 t=1
_ HTI EL(EZEQ Utl)UtO _ (ZleQ UlT)Rfl 25:1(2169 Url)Uro}
Yot (Xicoal)?
! 1(s7 = 59)
X]—]]{](l + Op(1/J))
a0
+z]: {U]'T HjeQt -1 Z}%ﬂzleggtl)at]‘
; >1eQ 0]
oo/ NHof - 1{je Q- R L (Cieo Url)gr]}} s — )
(EZEQUZ ) JR
B ‘ {Tl Y1 Op(1) - O0p(1/J)  Op(HRITL, Op(1) - Op(1/) }
B Op(1) Op(1)?
Y71 0p(1/v/nd)
. Op(l/J)opu)—T—lzT: Op(1) - Op(1/J)
+§{ o)
CO0,(W{0p(1/0)0,(1) = RTETF, 0,(1) - 0p(1/)} } 0p(1/v/nd) ‘
Op(1)? O,(1/.7)

- o)

We can also obtain for the second component, [|T~' 7, YYH €| = 0,(,/J/n) using (131)
and (135) with (&, 8,4, P) = (£(8Y, s°, P%),8Y, P%). As a whole, we have

T
HT‘W > {Yi(&,04, PRYHT (€,04,PF) — T H| ') Le
t=1

T
T'> Y)H ')}

t=1

T
T 'Y {Y1(&, 64, PFYH (€04, PF)e”|| + T?

~ 10, (JI7m) + %0, (/37)
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= O <\/m>

Therefore, we have to increase n faster than 7'J. We notice that the requirement above for
assumption B7(a) is stronger than what is required for theorem 2, that is, n grows faster than
J?, because we assume the number 7' of consumers used in evaluating the additional moment is
greater than the number J of the products in the market.

As for assumption B7(b), through a quite similar calculation as for assumption B7(a), we
can show that the number R of simulation draws is needed to grow faster than T'J.

We can easily see that assumption B7(c) requires R grows faster than T'.J as follows.

\/T Z E?(ed) = \/T Z(Uj(g(adasoapo)vedapR) - 50)

J

JjeQ JjeQ
= VTY 0, (1/VJR)
JjeQ

o, (7).

In assumption B10(a), we need to keep the variance of >°1' ; YL‘}?T’Z-, which is the residual
component in the additional moment T/ QQﬁ,T(Bg) in terms of the sampling error, bounded.
Write o; = 0;(£(83, s°, P%), v,07) and 09 = 0;(£(65,s°, P°), 07, P°), then

ai’ = af(§(0g,s°, P"), 0, P)
= (- Y H, 'Y,

o Zle Vfggj(l{j € Q} - ZlEQUw(t)l) ) 1 Z?:l viog ZleQU?l . 1 (1+0,(1/.7))
- S eo s? O Seo s? s0 +0,(1/
1€Q 5 j 1€Q 5] 0
= a(l+ 6+ 0,(1/J)) (137)
where
S ol Yooy 1 Y viol(1{j € @} — Yo ol) )
o= _2t=1"t k0 OZEQ N t=1"1 ;J l€Q 7t .S_g_
21e0 S 50 Y1 Vo Yieg o 5j

The a and § are respectively O,(T") and Op,(1) under Condition S2. Using a;‘-”o calculated
above, the expectation of the principal component of Yf}?ni with respect to €;; conditional on
(X,£(09, 8%, PY)) is calculated as follows.

S (a2)2s0 — (S, a20s0)?
= Y7 a?(1+4 85+ 0p(1/7))%s) = {X ] a1 + B + 0p(1/.1))s]}2
= 02 [0 = SR (L+ Op(1/))2 + 2Ty Bis)sh(L + Op(11)) + Ty 8358 = (S B0
< a?[s§(1 = sD)(1+ Op(1/))? + 2max; |B;] - (7 59)s§(1 + Op(1/.1)) + max; |82 - 527, 5]
= o?(1 =) [s§(1+ Oy(1/J))* + 2max; B;]s(1 + Op(1/])) + max; |3]*] .

Substituting o = O,(T) and f; = Op(1), we further obtain

S (45288 — (S agsl)?
= Op(T)*(1 = 0y(1/7)) [Op(l/J)(l +0p(1/7))% +20,(1)0y(1/T) (1 + O, (1/)) + Op(l)Z]
= Op(TZ)-
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Therefore the variance of > 7' ; §0TZ i

nyv,x,ﬁ[ i1 f}OTi]

= Y 1E“,X§[(1/n2T)( 1a 6]2)2]

= (1/nT)Euxe | j:l(a;w) Fejxele4]X, (65, 80, PV)]
+Z#kaqoaﬁoEe|xg[fji€ki|X,E(9OaSO,PO)]]

= (1/nT) By [S)=(a2)s 0(1—s> 5 03005057

= (1/nT) Byxg [S71(a%)2s) = (71 a®s0)?]
= (1/nT) Byl 05 (T?)]
= EunglOp(J/n)].

To keep this variance bounded, n is needed to grow as fast as J.

Similar calculation holds for assumption B10(c) and derives that R is required to grow as
fast as J.

We assume in A10(a) that the additional information n”™ is v/N consistent with n°. In
assumption B10(d), we bound the variance of the residual term in the additional moment
T/ 299;(03) corresponding to the sampling error contained in the additional information. We
see

NVG#,X,g[T1/2N71€#] = Exyf[ve#|x,§[T1/2(T/N - 770)|X7 5(037 307 PO)”
= ExglOp(T/N)].
To hold B10(d), we require that the sample size N for additional information grows as fast as
the sample size T" of our consumer draws in constructing the additional moment does.

Assumption B10(f) gives the Lyapunov condition the residual term » ;" ; Y‘}?T,i in the addi-
tional moment follows. Since af” in (137) is Op(T’) under Condition S2, we obtain

|YJT1 ]

nEeux,ﬁ[

_ J 1a EJZ|2+6]

4n1+5T(2+5)/2 Eex.l

< m Ev X,£[2 +5 max; |aa0|2+5]

= EuxelOp(n~ (1+5)T(2+5)/2)].

Substituting n = O(T*) and solving (2 + 6)/2 — k(1 + §) < 0 gives k > 1 for any § > 0, which
means that n is necessary to grow faster than 7.

By similar argument for assumption B10(g) and B10(h), we obtain the fact that R and N
are required to grow faster than T respectively.

In summary, for the random coefficient logit model, the estimator with the additional moment
has consistency in Theorem 3 when n and R grow faster than J. The asymptotic normality in
Theorem 4, on the other hand, requires that n and R to grow faster than T'.J. Moreover, N has
to grow faster than T'.

6 Computational Results

In this section, we run Monte Carlo experiments to evaluate the theorems derived in the previous
sections. By repeatedly estimating a demand and supply system with randomly generated data
sets, we verify the asymptotic normality of the GMM estimator. Through experiments, we
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examine how the sampling and simulation errors in the observed data and the simulated market
share affect the results. Furthemore, we show that the use of additional consumer purchasing
information well contributes the accuracy of the resulting random coefficient estimate.

The consumer’s utility function we specify here is the following random coefficient logit
model.

uij = —ap; + PV + & + € (138)

where the unobserved quality £; and the exogenous product characteristics x; are respectively
random draws from N(0,1) and N(1,1). Unless otherwise stated, the random draws in the
data set are i.i.d. The price of product p; is, on the other hand, treated as endogenous and then
determined in the market. The v/{ is a consumer’s taste for x; and distributed from N (0,1). The
€;j’s are i.i.d. extreme value draws. We set the demand side parameters o = 1.0 and 3 = 1.0.
The market share o; is calculated by

. / exp(—ap; + Bz;v) + &) P(dvy). (139)

14+ Zl 1exp(—ap; + Bxw? + &)

The true market share s? is obtained by evaluating (139) with the underlying distribution P"
of v?. We draw 10,000 consumers from N(0,1) as the underlying population.

For the supply side, we assume there exist five oligopolistic suppliers in the market and
they produce the same number of products. These suppliers are assumed to have the same cost
function

¢ = ;7 + wj (140)

where the unobserved cost shifter w; is a random draw from N(0,1). For cost side parameter,
we set v = 1.5. At the Bertrand-Nash equilibrium, the suppliers determine the price of their
products to satisfy

fp)=c-p-Ale=0 (141)
under the population P°. The (4, k) element of the .J x J gradient matrix A is given by

doy,/0pj, if the products j and k are
Ay = produced by the same firm; (142)
0, otherwise.

The true market share s? and the price p; are determined at the equilibrium, and thus the values
of p; are obtained by solving (141), that is, J dimensional nonlinear simultaneous equations. In
practice, an iteration algorithm is required to solve (141), and we adopt the Newton-Raphson
method.

We first estimate the system of demand and supply given in (139) and (140) by the BLP
framework. To estimate the models, we construct the three instrumental variables from x;, one
is ; itself, one is the company average of x;, and one is the average of x; over other companies.
Table 2 gives the result for the mean estimated values across 100 Monte Carlo experiments when
n = oo fixed, i.e., the observed market shares have no sampling error. Each column corresponds
to the different number J of products, while each row corresponds to the different number R of
consumer draws used in the simulation process. The values in parenthesis show the simulated
standard error—the standard error of the estimated parameters across the simulation. In the
table, we can observe the simulated standard errors of parameters decrease as .J increases. For .J
fixed, the increasing R also contributes the reduction of the standard errors. The standard error
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Table 2: Mounte Carlo Results for the BLP Framework, 100 repetitions, n = co

«(1.0) B(1.0) ~(1.5)
# of Consumer # of products (J) # of Consumer # of products (J) # of Consumer # of products (J)

Draws (R) 10 25 50 100 Draws (R) 10 25 50 100 Draws (R) 10 25 50 100
10 0.974 0.953 0.952 0.934 10 1.303 1.385 1.223 1.177 10 1.558 1.543 1.546 1.518
(0.266) (0.174) (0.138) (0.134) (1.207) (1.172) (0.909) (0.760) (0.388) (0.265) (0.191) (0.176)

50 0.974 0.990 0.989 0.971 50 0.957  0.983 0.958 0.936 50 1.595 1.609 1.602 1.574
(0.166) (0.110) (0.079) (0.060) (0.702) (0.539) (0.406) (0.306) (0.316) (0.164) (0.121) (0.089)

100 0.982 0.997 0.989 0.979 100 0.909 0.981 0.912 0.935 100 1.583 1.613 1.605 1.582
(0.156) (0.123) (0.058) (0.045) (0.749) (0.692) (0.363) (0.274) (0.246) (0.164) (0.101) (0.071)

10J 0.982 0.993 0.994 0.982 10J 0.909 0.919 0.887  0.900 10J 1.583 1.614 1.610 1.586
(0.156) (0.099) (0.056) (0.036) (0.749) (0.543) (0.347) (0.238) (0.246) (0.158) (0.097) (0.073)

J? 0.982 0.988 0.992 0.982 J? 0.909 0.930 0.886  0.896 J? 1.583 1.610 1.608  1.587

(0.156) (0.093) (0.055) (0.035)

(0.749) (0.605) (0.325) (0.240)

(0.246) (0.156) (0.098) (0.073)

Standard error across repetitions stands in the parenthesis.



for 8 is much larger than those for o and . This is because 3 is the coefficient for the random
term depending on the consumer taste v as well as the product characteristics z; and thus
the uncorrelated relationship between the unobserved quality £; and the instrumental variables
involves less information on . In particular, when the number of simulation draws is small
(R = 10), the estimated value of /3 is upwardly biased.

Table 3 gives the result for the case where the observed market share s7 contains the sampling
error. Here, we fixed the number R = 100 for the simulation draws of consumer. We construct
the observed market share s} from a multinomial sample of size n with the response probability
(38,...,39). When n is not large enough, there are zero-share products. We remove these
products in estimating parameters. In the table, we observe the larger n becomes, the smaller
the simulated standard error becomes for any fixed J.

We next implement the Monte Carlo simulation for the extended framework with the ad-
ditional moments. As the additional moment, we suppose to have the information on (1) the
expected value of v{ over consumers who choose products priced higher than the average price;
and (2) the expected value of v/ over consumers who choose products with x; greater than the
average of x;. That is, the additional moments are

77(1) = E[Vﬂcz € Q{pj Zﬁ}awag]a (143)
my = EWIC; € Qfw; > 7}, 1,¢] (144)

where Q{p; > p} and Q{xz; > Z} represent respectively the set of products priced higher than
the average p, and the set of products with x greater than the average .

Table 4 is the result for the case where we know the expected values in (143) and (144) exactly
and no sampling error in the additional information (N = oo). To calculate the additional sample
moments, we draws 7T’ consumers from the population and then calculate the conditional average
of v by using their purchasing probabilities. To make the effect of the additional moments clear,
we use the true market share s? as the observed market share (n = oco) and fix R = 100. The
result indicates if the number of consumer draws 7T is large enough, the additional information
considerably reduce the standard error of 5. For the case of J = 50,7 = 1000, the standard error
of 8 with the additional moments decreases to 0.137 in table 4 from 0.363, which is the value
without the additional moments in table 2 (R = 100 row, J = 50 column). On the other hand,
if T is small, the standard error of 3 increases rather than decreases by using the additional
moments. The standard error of 5 at T'= 50 and J = 50 increase to 0.392 in table 4 from 0.363
in table 2. Moreover, the additional moments have slight influence on the standard errors of «
and v in any value of T'. This is because the additional information is on the consumer’s taste
v? and contains less information on o and 7.

We next consider the case where the additional information contain the sampling error.
Drawing N consumers from the population, we use the following estimate 7" instead of n° as
the additional information,

N o —
vy - H{Cy € Q{p; >p
i'=1 p
N _
vi - 1{Cy € Qz; > T
o=y {Cr € Qfz; 2 7)) (146)
i'=1 Ny

where N, = Y0, 1{Cy € Q{p; > p}} and N, = X0_, 1{Cy € Q{x; > x}} are respectively
the number of consumers who choose products priced higher than the average and the number
of consumers who choose the product with = greater than the average. This estimators are

®The first order derivatives of the additional moments in terms of o are almost zero, while that for + is just
7ero.
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Table 3: Monte Carlo Results for the BLP Framework, 100 repetitions, R = 100

«(1.0) B(1.0) ~(1.5)
# of Consumer # of products (J) # of Consumer # of products (J) # of Consumer # of products (J)

Draws (n) 10 25 50 100 Draws (n) 10 25 50 100 Draws (n) 10 25 50 100
500 0.978 0.978 0.891 0.857 500 1.004 1.206 1.029 1.209 500 1.495 1.471 1.362 1.276
(0.180) (0.235) (0.107) (0.082) (0.824) (1.348) (0.476) (0.457) (0.274) (0.189) (0.178) (0.134)

1000 0.987  0.988 0.935 0.918 1000 0.972 1.108 1.000 1.115 1000 1.528 1.529 1.458 1.396
(0.160) (0.186) (0.088) (0.072) (0.829) (1.066) (0.505) (0.398) (0.241) (0.174) (0.134) (0.105)

2000 0.980 0.991 0.961  0.959 2000 0.938 1.005 0.977 1.055 2000 1.536  1.5564 1.520 1.484
(0.164) (0.134) (0.078) (0.058) (0.787) (0.698) (0.454) (0.328) (0.241) (0.161) (0.110) (0.084)

10J 0.917 0.925 0.891 0.918 10J 1.054 1.290 1.029 1.115 10J 1.329 1.377 1.362 1.396
(0.194) (0.155) (0.107) (0.072) (0.913) (1.483) (0.476) (0.398) (0.365) (0.228) (0.178) (0.105)

J? 0.917 0.974 0.963 0.984 J? 1.054 1.127 0978 0.945 J? 1.329 1.493 1.520 1.570
(0.194) (0.134) (0.086) (0.046) (0.913) (1.206) (0.557) (0.267) (0.365) (0.186) (0.124) (0.067)

00 0.982 0.997 0.989 0.979 00 0.909 0.981 0.912 0.935 00 1.583 1.613 1.605 1.582

(0.156) (0.123) (0.058) (0.045)

(0.749) (0.692) (0.363) (0.274)

(0.246) (0.164) (0.101) (0.071)

Standard error across repetitions stands in the parenthesis.
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Table 4: Monte Carlo Results for the Extended BLP framework, 100 repetitions, n = oo, N = oo, R = 100

a(1.0) B(1.0) ~(1.5)
# of Consumer # of products (J) # of Consumer # of products (J) # of Consumer # of products (J)
T 10 25 50 100 T 10 25 50 100 T 10 25 50 100
10 0.985 0.978 0.989  0.993 10 0.930 1.039 0.954 0.999 10 1.630 1.594 1.620 1.607
(0.139) (0.100) (0.071) (0.061) (0.568) (0.683) (0.469) (0.530) (0.229) (0.168) (0.110) (0.085)
50 1.007 0.985 0.989 0.993 50 0.978 0.999 0.978 0.958 50 1.648 1.605 1.621 1.608
(0.126) (0.089) (0.067) (0.055) (0.411) (0.356) (0.392) (0.316) (0.236) (0.163) (0.115) (0.080)
100 1.019 0.988 0.997 0.996 100 0.974 0.991 0.953  0.933 100 1.677 1.610 1.629 1.610
(0.135) (0.084) (0.066) (0.057) (0.336) (0.284) (0.317) (0.249) (0.250) (0.159) (0.107) (0.083)
500 1.017 0.988 0.996 1.008 500 0.991 0.961 0.981 0.958 500 1.676  1.617 1.620 1.615
(0.122) (0.075) (0.062) (0.057) (0.271) (0.227) (0.169) (0.148) (0.241) (0.134) (0.089) (0.083)
1000 1.025 0.982  0.992 1.002 1000 0.989 0.929 0.956 0.967 1000 1.682 1.614 1.617 1.610
(0.133) (0.072) (0.062) (0.054) (0.234) (0.134) (0.137) (0.134) (0.238) (0.139) (0.097) (0.087)
10J 1.019 0.983 0.996 1.002 10J 0.974 0.967 0.981 0.967 10J 1.677 1.612 1.620 1.610
(0.135) (0.078) (0.062) (0.054) (0.336) (0.233) (0.169) (0.134) (0.250) (0.143) (0.089) (0.087)
J? 1.019 0.992 0.996 0.999 J? 0.974 0.959 0.954 0.955 J? 1.677 1.620 1.621 1.606
(0.135) (0.079) (0.056) (0.062) (0.336) (0.184) (0.125) (0.087) (0.250) (0.142) (0.092) (0.087)

Standard error across repetitions stands in the parenthesis.



unbiased for 7° conditional on = and £.° Table 5 shows the result for this case. In the table, we
can observe the standard error of 5 is decreasing in V.

Next, we evaluate the asymptotic theorem in the previous sections that gives the asymptotic
distribution and the asymptotic variance of the parameter estimates. For J = 25, R = 2000,n =
2000 fixed, we implement 1,000 Monte Carlo simulation using the BLP framework, and then
we calculate the average and standard error of the estimate across these different simulation
data-set. We also obtain the asymptotic variances of the GMM estimates given in (74). For
each data-set, we calculate the moment conditions and their derivatives in terms of parameters
(the parameters are fixed at true values). By averaging resulting values over data-sets, we obtain
the estimate for the expected values I' j7 and @ respectively. For the extended framework, we
implement the same simulation with J = 25, R = 2000, n = 2000, N = 2000,7 = 500 fixed. The
variances of the estimates are obtained using (108). Table 6 shows the result. In the table, the
simulated standard errors of estimates are relatively consistent with the asymptotic standard
errors.

Finally, we make density trace plots for the estimated parameters from the 1,000 estimates
used in table 6. (To make these plots, we use the command in the S-plus package with de-
fault options.) The solid lines in Figure 1 and Figure 2 show the densities of the estimated
parameters, while the dotted lines show their asymptotic distributions using the true values of
parameters and the asymptotic variance in Table 6 as mean and variance. In the figures, the
simulated distributions of the estimates for the demand parameters o and g look fitting well in
the asymptotic distributions, while that for the cost side parameter v does not seem so much.
However, the shape of the simulated distribution is relatively close to that for the normal. We
consider our asymptotic distribution in the theory is a relatively good approximation for the
asymptotic distribution of the parameter estimates.

Appendix Proofs

Proof of Theorem 1

The consistency argument is established by showing that
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Table 5: Monte Carlo Results for the Extended BLP framework, 100 repetitions, n = oo, R = 100,717 = 1000

«(1.0) B(1.0) ~(1.5)
# of Consumer # of products (J) # of Consumer # of products (J) # of Consumer # of products (J)
N 10 25 50 100 N 10 25 50 100 N 10 25 50 100
500 1.023 0.995 0.991 1.004 500 0.980 0.970 0.950 0.998 500 1.679 1.624 1.617 1.611
(0.138) (0.079) (0.061) (0.054) (0.274) (0.241) (0.195) (0.216) (0.241) (0.138) (0.096) (0.080)
1000 1.011 0.991 0.998 0.999 1000 0.974  0.949 0.953 0.956 1000 1.673 1.619 1.624 1.608
(0.125) (0.075) (0.061) (0.054) (0.240) (0.185) (0.171) (0.169) (0.246) (0.135) (0.093) (0.084)
2000 1.023 0.989 0.995 1.002 2000 0.994 0.967 0.946 0.967 2000 1.681 1.619 1.621 1.609
(0.136) (0.075) (0.060) (0.052) (0.254) (0.199) (0.145) (0.167) (0.238) (0.141) (0.096) (0.081)
10J 1.023  0.985 0.991  0.999 10J 1.022  0.953 0.950 0.956 10J 1.675 1.613 1.617 1.608
(0.140) (0.081) (0.061) (0.054) (0.435) (0.283) (0.195) (0.169) (0.253) (0.141) (0.096) (0.084)
J? 1.023 0.987  0.986 0.994 J? 1.022 0.926 0.944  0.955 J? 1.675 1.619 1.613 1.603
(0.140) (0.065) (0.058) (0.051) (0.435) (0.210) (0.145) (0.127) (0.253) (0.136) (0.092) (0.086)
00 1.025 0.982 0.992 1.002 00 0.989 0.929 0.956 0.967 00 1.682 1.614 1.617 1.610
(0.133) (0.072) (0.062) (0.054) (0.234) (0.134) (0.137) (0.134) (0.238) (0.139) (0.097) (0.087)

Standard error across repetitions stands in the parenthesis.



Figure 1: Kernel Density Estimate of Parameters, BLP Framework, J=25, n=2000, R=2000
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Figure 2: Kernel Density Estimate of Parameters, Additional Moment Framework, J=25,
n=2000, R=2000, T=500, N=2000
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Table 6: Simulated and Estimated Standard Errors (J = 25,n = 2000, R = 2000, N = 2000,T =
500)

o B Y
BLP framework Mean 0.976  0.900 1.552
Monte Carlo Std. Error 0.090 0.533 0.157
Asymptotic Std. Error  0.088 0.393 0.186
Additional Moment Mean 0.996 1.022 1.570
Method Monte Carlo Std. Error 0.077 0.254 0.149
Asymptotic Std. Error  0.074 0.221 0.184

(1-i) the estimator @ defined as any sequence that satisfies

1G(6,°, PO)|| = jnf ||G(8, 5%, P°)]| + 0, (1) (A1)

is consistent for 8°, and
(1-ii) supyee ||G (8, 8", PR) — G (0, s°, P%)|| converges to zero in probability.

A consequence of (1-ii) is that ||Gs(8,s™, P®)|| and ||G ;(8, s°, P°)|| have a same asymptotic
distribution uniformly in @, and thus the estimator 6 which minimizes the former is very close
to the @ that minimizes the latter. Therefore 6 is to be consistent for ° from (1-i).

We first show (1-i) by using Theorem 3.1 of Pakes and Pollard (1989) which gives a sufficient
condition under which an optimization estimator can be consistent for the true parameter value.
Their theorem guarantees that an estimator 8 that satisfies (A.1) is consistent for 8° if

(i-a) G7(0° 8% P%) = o0,(1), and

(i-b)  sup [||Gs(0,8°, P)||7t = 0,(1) for each § > 0.
0¢N 0 (9)

Proof of (i-a)

We show (i-a) by applying Bernoulli’s weak law of large numbers to each row of G ;(0°, s°, P%) =
!
(Gf‘;(@g,so,PO)l, GS(OU,SO,PO)I) . We illustrate how this can be done using the demand-side
sample moments. The supply-side sample moments can be approached similarly. The m-th
element of the demand side sample moments G%(0°, s°, P?) is the average of z]dmfj(eg, s%, PY)
over j where z;-imfj(Og, 5%, PY%) are not independent across j due to the interdependence of zfm—
zfmf Vi (02, s%, P) are just conditionally independent given X . Bernoulli’s weak law of large num-
bers does not require independence nor identical distributedness among the zfmfj(ﬂg, s%, PY),
but requires the variance of .J ! ijl z;lmfj(ﬂg, s%, P) to converge to zero as .J goes to infinity.
d

Since zj,, are functions of X'; and the conditional expectation of fj(Bg, s, PY) given X is zero

in (1), the expectation and variance of J ! E}]:1 z;lmfj(ﬂg, s, PY) are respectively

Bxi [77 X1 2 (05, 8%, P)]
= Ex1 [Eﬂxl {Jil ijl Zjdmgj(eg’so’Po)‘Xl]]
Exi [/ 571 2 Be [65(05, 5% P)| X1]]
— 0,
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Vi eI 71 20,65(07, 8°, PO)]
= By [Vew [T 127 zdmgj(eo,so,PO)‘Xl]]
+ Vi [Bep [T 5700 285(65, 8%, P°)| X1
= Ex [Vew [T 5o 2 gj(e 8%, PO X1]]
= B [T 251 (00) Ve, (€505, 5° P)| X1 ]]
= Ex [T () B, [€2(65, 5% P)| X1]].

Since the conditional variance of ¢; in (1) is bounded by some constant M > 0 or
E¢lx; [532-(00, 5%, P%)| X ] < M with probability one, we have

T2 () B, [€2(0%,8°, PO)| X1| < (1/1)(S]-1 (24,02 /1) M

We know that Z ( )2/ J is Op(1) and uniformly integrable by A4(a). Uniform integrability
guarantees that the order of magnitude does not change after taking expectation, and this enable

us to claim Ey, | 3] 1( ' )2/J] = O(1). Hence

Vxl;f[‘]_l Ej:l Z‘;imé-j(037 807 PO)]
= By [J72 070 (20,)% B, [€2(85, 80, PY)| X 1|

M
< S B[ (550)? /]

M
= 7-0(1)—>0aSJ—>oo.

Bernoulli’s weak law of large numbers ensures that the m-th element of Gﬂ(@g, s%, P%) converges
to the corresponding element of EX17§[G§(03, 5%, P%)] = 0 in probability, i.e.,

J
- d(p0 O po T $0 po
}gr;oPr[|{GJ(0d,s,P)}m|>e] = JlggoPr E_ mf’]O P/ J| > €
1 4 :
- 0 po
< Jim, Ve | S 0 P

< ! lim M O(1)

2 J—=oo J
= 0.
Thus ||G4(8Y, s°, PY)|| = ( ) Similarly, we can show that the supply side moments G](O , 80, PY)
converge to Ey, »[G5(8°, 8", P?)] = 0 in probability by (12) and A4(b). Hence ||G ;(8°,s°, P0)|| =

op(1).

Proof of (i-b)

Next we show (i-b). For every (¢,0) > (0,0) and any positive function of §, C(¢), following
relationship holds in general.

f 0 po 0.s% PY| >
{HQJI\EO ||GJ(0 S ) GJ(O » S, )|| = 0(6)}

60

inf ||G;(0,s° P° G;(0° s°, PO >
C {gg‘/l\}l (5)” J( , 87, )||+|| J( » S, )||— ()}

ol



€

inf 0 pOy[| > _ £ { 0 g0 po >f}.
C {GQ}\P@IIGJ(O,S, )|| > C(6) 2}U IG;(8°,s°, PY)|| >

60 2
(A.2)
Taking probability of both side of (A.2) gives
Pr| inf ||Gs(0,s° P°) —G;(0° s P >C(6
0€N90(6)|| 7( ) — G )| > C(9)
< P inf  ||G(80.s°, P° >05—5u{G000P0 >5}
< rHMl\go(é)ll 7(0,8%, P[] > C0) = 3 1G5(67, 57, PP)|| > 5
< Pr[ inf (1G(6,5" )| > C(5) = §| + Pr[IG(6%, s, P > 5.
0ZN o (9) 2
We thus obtain
Pr| inf ||G,(8,5° P > C®5) — <
0€N00(6)|| 7( ) > C(9) 2]
> Pr| inf ||Gs(8,s° P°) —G(0°s" P >C(
> L, N90(6)|| J( ) — G ) > C(0)
~Pr (G (6", 5%, ) > 5. (A.3)

Since ||G;(8°, s°, P°)|| = 0,(1), for any e there exists .J; (¢) such that if J > J;(e),
Pr[||G;(68° 5%, PO)|| > €/2] < €/2. By assumption A5, for any (e,0) > (0,0), there exists
C(6) > 0 and Ja(e, ) such that when J > Jy(e, d)

P inf ||G;(0,5°,P% —G;0° s PO >C6)] >1-
rlgﬁl(é)n 1(0,5°, P%) — G(6°,8°, P)|| > C(5)| >

60

N ™

Therefore, from (A.3), for any (e,d) > (0,0) there exists C'(6) > 0, Ji(€) and Jo(€,0) such that
when J > max{.J;(€), Ja(€,0)},

Pr

inf  ||G,(0.s°, PY)|| > C(8) — <
9&/1\20(5)” J( y S, )||— () 2]

> P inf ||Gs(0,s° P°) —G;(8° %, P> C(
r[%}\go(é)ll J( ) J( )| = C(6)

~Pr |G (6%, %, )| > 5

v

1-— =1-—e

NN e
N ™

Thus we have

lim P inf ||G7(0,s° PO)|| > C*(e, 8| >1—
im r[”lpé)ll 7(0,8°, P)|| > C*(e,0)| > €

J—00 90

by setting C*(e,0) = C(d) — €/2. This is equivalent to (i-b), i.e.,

lim Prl sup ||G7(0,5°, PO)|| 7t > CF(e,0)| <€

J—00 0€N90 (5)
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with C#(e,0) = 1/C*(e, 6).
We next turn to show (1-ii), or

sup ||G 7(8,s", P?) — G ;(8,5°, P°)|| = 0,(1). (A.4)
0coO

From the definitions of G ;(8, s™, P®) and G (8, s°, P%) in (17), (18), (22), and (23), we have
Sup||GJ(0,8n,PR) - GJ(0a803P0)||2
e
< sup ||J IZ {S(Oda ) _S(Odasoapo)}||2

04€04

+sup||J ' Zi{w(8, 5", PT) — w(8, s°, P")}||?
0co

< THIZGZall x sup TH[EBa, 5", PT) = €(0a, 8", P
FISIOF]
+J Y Z.Z.|| x sup J |w(8,s", PT) — w(8, s, PY)|? (A.5)
fcoO

where the terms ||Z;Z4||/.J and ||ZZ,||/J are respectively O,(1) by assumptions A4(a) and
A4(b). Thus it remains to show that

sup J[|€(84, 5™, PT) — £(04,8°, P°)|” = 0p(1), (A.6)
0€04
and
sup J~|w (8, 8", P) — w(8,s°, PO)|* = 0,(1). (A.7)
[USC)

In order to show (A.6), we first show that

0sug Jf%HTJ(O-(XaE(odasnaPR)?edaPO)) - TJ(U(X,S(ed,SO,PO),od,PO))H
1€Oq

= 0,(1) (A8)

and then show that (A.8) implies (A.6) by using assumption A6. The proof for (A.7) is directly
derived from (A.6) and assumption A7.

Proof of (A.6)

Since for any 8,4, s" = o(X,£(04, s, PT), 84, P) from (26) and s° = o(X, £(04,s°, P°), 84, P%)
from (27), the left-hand side of (A.8) is bounded by

gsug J_%HTJ(O-(XaE(odasnapR)’odaPO)) - TJ(U(XaE(edaSOaPO)aodaPO))H
d1€0q

1
= sup J72||Ts(0(X,€(04,8", P),04,P%) — 7;(s°)
0,604

Hry(s") = T1(0(X,€(84, 8", PT), 04, PT))} |

_l
< J7E||Ts(s™) — 7Y
+Gsup J- 2||"-J( (Xag(odasnapR)vadapR)) _TJ(U(Xas(odaSna-PR)vodaPO))H
1€EO
< JE||rs(s™) = Ta(sY)]
+ sup sup T3 |75 (0(X, €84, PT)) — 75(0(X, €04, P°))|l. (A.9)
1€0g
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In the following we show that both the two terms in (A.9) are o,(1) as J — oo. By the mean
value theorem, for some intermediate values 5; = s? +q; (s} — s?) (0<q; <1),57=1,...,J, the
square of the first term is

T (s") = 7(s7)?

J
T~ Nlog(s7 /s5) — log(s9/s0)]?
j=1

J
I llog(s?) —log(s}) — {log(sg) — log(sp)})”
j=1

(s- )
J=1 5
T [s0\? [gn — 0\ 2 S0\ |gn — 40 J [0\ /g _ g0
S \5i s; 30 50 o\Si s;
2 2
+ —_ 0
SQ 2 ST." — SQ 2 30 STL _ SO SQ ST." — 30.
Smax_—] max ]0] —|—2_—0 Uoomax_—]maxjoj
1<5<J \ 85 1<j<T s§ 30 sy [1<i<T\8j ) 1<G<T | 8§
2 2
+ —_ 0
s? 0 59‘ — 32 s — 50
= max |- ax | = | - max 0 max 5
1<5<J Sj 1<<J S 1<5<J Sj 1<5<J S
0 n _ <0 SQ STP — SQ
+2 f_o %0 5 %0 max | -~ | max |-Z g J
30 50 1<\ 85 ) 1<i<T | 8]
n 59\ . (0. (56— s — 5o
So S0 88 88
< 0,(1)- 0p(1) - 0p(1) - (1) + Op(1) - 05(1) - Op(1) - 0y(1)
+0p(1) - Op(1) - 0p(1) - 0p(1)
= op(1) (A.10)
where o0,(1) terms come from A3(a), while O,(1) terms follow the next equation.
s? s? 1
) = = ma
o%% 5 orélgang 52 + q5(s} — s?) osior \ 1+ q;(s% — s?)/s?

1
= — | = 1).
oréljaSXJ (1 +qj - 0,,(1)) Op(1)

For the second term of (A.9), by the mean value theorem, we obtain for given (X, &,80,),

J

T (o(X,€,04,PF)) — 1,(0(X,€,04,P°))|

o4



J
= J lzlog U] X 5 eda )/UO(XagaedaPR))
7=1
—log(0j(X,€,04,P")/00(X, &, 84, P°))

J
= J"Y [log(oj(X, €, 04, P%)) —log(o;(X,¢,04,P°))
j=1

—{log(oo(X §,04, P™)) —log(o(X,€,04, P°))}*
_ 12 lay (X,€,04,PR) —0;(X,€,04,PY)

gj

00(X,6,04,PF) - ao(X,e,ed,PO)r

00

gj

_ J1i<@xwd, ") -

Jj=1

e 12":<ajxsed, ") -

« (oo(X,s,ed,PR) - oo(X,s,od,P°>>

ao

Uj(X7£70d7P0)>2

9j

aj(X,s,od,P°)>

e 12 (00 (X.€04, P )—ao(X,s,ed,P0)>2

o

IN

IZ 0;(X &, 9d,P°) 0;(X,€,0,4,PF) — 0,(X,£,0,,P")\°
Uj(XaEaedaPO)

O-O(XasaedaPR) - 00(X7€70d7P0)
O‘O(X,E,ed,PO)

(oj(X,e,ed,P°)> (aj(X,e,od,PR) _ aj(X,s,od,P°)> ‘

Uj(XagaedaPO)

) (Uo X, ¢,04,PF) - ao(X,s,od,P°)>2

(93X 6,00, PR) = 03(X,€,04, )\
X
0<j<J Uj(XaEaedaPO)

O-O(XasaedaPR) - 00(X7€70d7P0)
O‘O(X,E,ed,PO)
O-j(XagaedaPR) _O-j(XvsaedaPO)
O-j(XasaedaPO)

N (aO(X,g,ed,PR) —ao(X,E,Hd,PO)>2 (A.11)

IN

NE
IS4
"

+2 O-O(Xagaedapo)
a9

oi(X,€ 04 P°
X max i ’E;’ @ ) max
0<5<J 0 0<<J

00

where Gj,7 = 0,...,J are values between 0;(X,¢&, 804, P) and 0;(X,€,64,P%). We need to
show that (A.11) is op(1) uniformly over € and 84 € ©4. A straightforward application of A3(b)
to the relative difference share terms in (A.11) yields that they are all of order 0,(1) uniformly
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over £ and 0, € ©4. As for the relative share term,

(Uj(X7£70d7P0)>

gj

max
0<j<T

max Uj(XaSaodaPO)
0<<J O-j(XagaodaPO) + qj(o-j(vaaodaPR) - O-j(XvsaedaPU))

1
T o (1 + 4;(0,(X. €04, PF) — aj(X,s,0d,P°))/aj(X,£,0d,P°)>

1
(1)> = 0,(1) (A.12)

= max ————
0<j<J (1 +qj - 0p

where 0 < ¢; < 1. Again utilizing A3(b) yields that (A.12) holds uniformly over £ and 84 € Og.
Thus

sup SupJ*%HTJ(U(XaSaodaPR)) - TJ(O-(XaEaedaPO))H = Op(l)-
04€04 ¢

Hence we obtain (A.8).
By assumption A6, for all @, € Oy, if J~1||€(04, 5", PT) —£(0,4,5°, PY)||> > § for some § > 0,
then there exists C'(J) such that

Glg(g J7%||TJ(U(X35(0dasnaPR)?edaPO)) - TJ(O'(X,S(od,SO,PO),od,PO))H > 0(6)
d d

with probability tending to one as J — oco. In other words, its contrapositive statement is that
whenever

Gsu(g J_%HTJ(O-(XaS(odaSnapR)’odaPO)) - TJ(O'(X,E(Od,sO,PO),ed,PO))H = Op(l)
1€Oq

holds, A6 implies supy,co, J1€(04, 5™, PR) — €(04,5°, PY)||?> < 6, or in the presence of A6,
(A.8) implies (A.6), i.e., for any 84 € ©4 and § > 0,

Pr[¢(04, 8", P") & No(04;0)] — 0. (A.13)
Proof of (A.7)
By the Glivenko-Cantelli theorem,
Pr[PR ¢ Npo(5)] = 0 (A.14)

for § > 0 as R — oo. From (A.13) and (A.14) as J, R — oo, for given § > 0, Pr[£(84, s™, PT)] €
Neo(84;6), PR € Npo(8)] — 1 or

Pr[(£(84,8", P), PT) € Neo(04;6) x Npo(3)] — 1.

Thus assumption A7 guarantees that the differences in the profit margin behave uniformly over
0, € 0, as

Gsu(g Jf%ng(S(edaSnapR)’odaPR) - mg(E(odasoaPO)’edaPO)H = Op(l)-
EASIOF]
(A.15)
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Since ¢(-) is assumed finite for all realizable values of cost, we can derive (A.7) by using (A.15)
in the following inequality with the definition of w;(8@, s, P) in (13).

sup J ' ||w(8, s, P) — w(8, %, P°)||?
0eO®

J
2
= ngg Jfl Z {g(p] _mgj(S(odasnapR)vodaPR)) _g(p] —mgj(S(ed’so’PO)’od,PU))}
€Oy j=1

J

2
= HSIGII@) J_l Z |:g(p] _m_gj){mgj(S(edaSnaPR)’odaPR) - mgj(E(odasoaPO)’edaPO)}}
1€O, j=1

sup sup |g(p; —Mg;)|”
04€04 1<5<J

IA

J

2

X 08161(19) Jfl Z {mgj(E(odasnaPR)?edapR) - mgj(S(edaSOaPO)’odaPU)}
FISCF) j=1

= sup sup |g(p; — mg,)|’
04€04 1<5<J

X 0511913 J71||mg(€(0d7Sna-PR)aedaPR) - mg(ﬁ(ed’SU’PO),ad’PU)HZ
1€0Oq

= o0p(1)

where Ty, are between mgj(f(ﬂd, s, PR, 0,4, P%) and myg; (€(04,5", P%),8,, P°). Notice that
Ly generally represents the marginal cost. We should also note that the difference between
w(0,s™, P?) and w(, s°, P%) includes only the demand side parameters @4 because of the linear

dependence of w(@, s, P) on the supply side parameters 0. as seen in (13). O
Proof of Theorem 2

To establish Theorem 2, we show that for the approximation G ;(6) = (gﬂ(ed)’, 93(0)'), defined
in (47) and (57) to G (8, s", P%),

(2-1) supjjg_go||<s, J%[gj(e) — GJ(O,s”,PR)]H %0 when 6; — 0, and

(2-ii) an estimator that minimizes ||Gs(@)|| over @ € © would be; (1) asymptotically normal at
rate J %, and (2) have a variance-covariance matrix which is the sum of three mutually
uncorrelated terms (one resulting from randomness in the draws on exogenous variables

(%15, &), W1, w;), one from sampling error €}, and one from simulation error ef(Od)).

Given consistency, a consequence of (2-1) is that the estimator obtained from minimizing||G 7(8)]],
has the same limiting distribution as our estimator that minimizes ||G (8, s, P®)||. Since the
former is easier to analyze, we work with it.

proof of (2-i)

We show (2-1) by establishing that for any d; — 0,

sup |[J2[G5(84) — G584, 8", P))|| = o0,(1), (A.16)
[10a—031/<ds
1 (& C n
sup ||73[G5(8) — G5(8, 5", PP))|| = o,(1). (A.17)
[|60—00]]<d,
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We first show (A.16). From (46) and (47), ||72[G%(84) — G4 (64, s™, PF)]|| can be rewritten as
[72199(0a) — G5(04. 5™, PP
= |77z [HG e - Mol
—{H™'(& 64, PM)e" — H7'(£,04, PT)e™(0,)}] |
7722 {Hy' — H'(€,00, P™))e"|
+|| 7z H €R(8)) — H (€, 04, PR)eR(00)}| (A.18)

IN

We show the two terms in the right-hand side of (A.18) are respectively 0,(1) uniformly in
6, within the shrinking neighborhood of 8%. We know that for each 8, both £(84, s”, P®) and
£(04,s°, PT) converge to £€(04, s°, P°) in probability in terms of averaged Euclidean distance as n
and R grow. Since £ is intermediate between &(84, s”, P®) and &(84, s°, P%), it also converges to
£(04,5°, P). Thus, for any sequence 65 — 0, Pr[(&;,...,&,) & {Ngo(ﬂg;d])}]] — 0. Moreover,
for any 6; — 0, we have Pr[pp(P®, P%) > §;] — 0 as R grows by the Glivenko-Cantelli theorem.
Therefore, by using assumption B5(a), we have

Pr [ sup |[J2Z{HG' — H ' (€04, PT)}e"|| > c]
[10a—0911<d,;

< Pr { sup sup HJ_%Zf]l{HO_1
102—0911<05 (&,P)E{N0(83:0.0)} xNpo(ds)

~H7(&,04,P)}e"|| > c}
+Pr[(&,..., &) & {Neo(03;00)} ]+ Pr[PF & Npo(6)]
— 0. (A.19)

Notice that in the expression of H (&, 8, P), as mentioned before, we have suppressed the
fact there exist different €s for different rows in H (&, 84, P'). Therefore, in (A.19), we have to
evaluate H(&,0,, P) row by row with distinct E]-,j =1,...,J.

For the intermediate vectors §j,j = 1,...,J between £(84,s°, P®) and £(84,s°, P°), we

have Pr[(€ ,...,&;) {./\/'50(03; 67)}’] — 0 for any §; — 0. Thus for the second term in (A.18),
by assumption B5(b),

Pr [ sup HJf%Zil{HO_leR(OS) — H (¢, Od,PR)eR(Bd)}H > c}
[10a—0311<d,

< Pr { sup sup HJfé Z{Hy'e®(0Y9)
104—0311<05 (&,P)E{N¢0(63:6,)} xNpo (41)

~H (6.0, D)0} > ]

+Pr[(€),- 5 &)) & {Neo(0:00)}] + Pr[PT & Npo(67)]
- 0. (A.20)

We next show (A.17). From (56) and (57), we know that

1731G5(8) — G5(8, s, PR)]||
1
= H — J3Z.LoMoH, {e" — €%(69)}

_J_%Z,C |:g(p - mg(S(edaSOaPO)aodaPR)) _g(p - mg(S(edaSOaPO)vodaPO))
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~L(€,04, PP)M(€,04, PP)H 1 (€,0,4, PF)e"

+L(¢§, 9d,PR)M(faed,PR)H_l(Eaed,PR)GR 9d)] H
7722, [g(p — my(£(84, 5", P°), 04, PR)) — g(p — my(£(04, 5", P°), 04, )] |
+||J72 ZI{ Lo Mo H — L€, 84, P*)M(E, 00, PP)H ' (€,04, P™) }e" |

|72 ZL{ Lo Mo H 'R (65) — L(&, 04, PR)M(£,04, PPYH (£, 04, PF)e™(8)} |
(A.21)

We need to show that the three terms in the right-hand side of (A.21) are respectively o, (1)
within the §; neighborhood of 89, From assumption B5(e), we know that

_1
sup HJ 2Z,C[g(p - mg(S(edaSOaPO)aodaPR))
[104—0911<d.

—g(p — my(£(0a, 5", P), 04, P*))]|| = 0p(1). (A:22)

With the argument similar to obtain (A.19), we can derive for the second term on the right-hand
side of (A.21) by using B5(c),

10a—03/1<4s

~LoMyH,'}e"

Pr| swp [T EZULE 6, PRME 6, PYHE 00, PT)

< Pr[ sup sup HJ
102—0911<0.5 (€1,62,P)E{N0(83:0.1)}> XN po

X{L(gl’od’P)M(Sl’od’P)H_1(€270d7P) - LUMOHal}enH ~ C:|

+Pr((€y,. .. &) & {Neo(0%:00)} ]+ Pr(€r,.. ., 7)) & {Neo(89:00)}]
+Pr[P™ & Npo(4,)]
— 0.

For the third term on the right-hand side of (A.21), we obtain by assumption B5(d)

Pr| sup |7 EZUE(E 64 PRIM(E 64 PRI (E 00, PP (6

1104 —09/1<ds
—LoMoHy e (0%)]| > c]
< Pr{ sup sup HJWZ'
102—0311<0 (€1,62,P)E{ N0 (03:67)}* xNpo

X{L(ElaodaP)M(slaodaP)Hil(EwodaP)eR(ed) LoMoH;'€"(67) }H > C]
+Pr{(€,-- &) ¢ {Neo(03;6)Y 1+ Pr((€,,....€,) ¢ {Ngo(od; o)}
£ PHPR & Npo(6)]
— 0.
proof of (2-ii)
We now turn to show (2-ii). In order to show that the estimator that minimizes the norm

of G;(0) is asymptotically normally distributed we apply a version of Theorem 3.3 in Pakes
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and Pollard (1989). A difference here is that the expectation of G;(@) could vary with .J.
This is because the derivative of (£(6y, s, P),w(8, s, P)) with respect to @ and the instrumental
variables (Z 4, Z.) both depend on the number and characteristics of the all products marketed.
The version of the theorem we use is:

Let @ be a consistent estimator of 6°, the unique point of © for which E[G;(8°)] = 0. If:

(D) 11G.1(8)|| < 0p(J2) +infy ||G.1(0)]];

(ii) E[Gs(0)] is differentiable at ° with a derivative matriz T'; of full rank, and Ty — T as
J — ooy

(iii) for every sequence {0;} of positive numbers that converges to zero,

16,(6) ~E[G,(0)] -~ G,(8°)]] _
lo~°l1<s; J% + ||G.5(O)]| + || E[G 1 (8)]]]

op(1);

(iv) J2G,(6°) % N(0, ®);
(v) 8° is an interior point of ©;
then
JZ(0 - 6% % N(0,(I'T) 'I'&I(I'T) ).

The set of assumptions, Eg|y, €;(89, 8%, PY)|z1,] = 0 given in (1),
Eulw, [wj(OS,SU,POHWU] = 0 given in (12), EE‘X’5[6”|X,§(03,30,P0)] = 0 given in Al(a), and
EE*|X’§[€R(0d)|X,€(0d,SO,PO)] = 0 for each @, given in assumption Al(b) ensures that the

unconditional expectation E[G%(8%)] = 0 and E[G5(0°)] = 0. Noting the fact that under
(6°, 5%, P), E[G(87, 5%, P°)] = 0 and E[G5(8°,s°, P")] = 0.

E[G7(87)]
= B[JZut(05, 8", P)) + T ZyH e — T 2, H e (6))]
= B [/ 2000, 5% P°)] + Ecxy ¢ [J T ZUHG "] — By ¢ [J 71 Z0H €™ (0)]
= B [/ 2005, 5% PO)] + Ece [T Z4HG €| = Eer o [T 24 H € ()]
x|
X, £(0%,5°, )]

= By [Bep |11 Z0£(6), 5%, P°)

+ Bt [Edee |/ Z4Hg e

— Bt [Eepee [/ Z0H, R (05)] X, £(6% 5%, PO)]]
= Bu [J 120 By, [£065,5°, P)| X1]]

+ Ex,§ I:JilzilH[;l E€|X,§ [en‘Xa 6(027 307 PO)]]

~ Bxe [J7Z4H " B [€R(00)] X, (65, 5%, PY)] |
— 0’

E[G5(6°)]
= E[J 'Z.w(@° s P’ — J ' Z . LoMyH  {e" — €(09)}]
- EWl,w[Jilchw(ooa 307 PU)] - Ee,xl,ﬁ,wl [JilZIcLOMUH()_IGn]

+ Ef*,Xlaﬁ,Wl [Jle,cLOMOHO_IGR(Og)]
= Ewiwll ' Z.w(0° 8", P*)] — Bexew[J ' Z.LoMoH, ' €"]
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+Eexemn [J ' ZLLoMoHy €"(609)]
= B [Bow [J ' Zw(0° s, P*)|W]]
— Exe o [Bepe e [/ ZeLoMoH | '€"| X, £(65, 8°, P°), W1]]
+ Ex g [Berf g [T ZLLoMoHG ' €7(6)| X, €(67, 5", P°), W]
= EWI[J_IZ’cEw‘WI[w(OO,30,P0)|W1]]
—Exewn [/ ' ZLLoMoH" Eox g, [€"1X, £(65, 8%, P°), W1]]
+ Bxgn 17 ZeLoMoHG B, [€7(00)| X, €(0, 8°, P°), W]
= B, [J7' 2 Bupw, [w(6°, 87, P7) W]
— Bxew [T ZLLoMoHG B e[€"| X, £(8, s, PO)]]
+ Bxen[J 7 ZeLoMoH g By c[€7(07)| X, €(67, 8°, P°)]]
= 0.
We confirm that under the assumptions we give in the theorem each of the conditions (i)—

(v
satisfied. Any estimator that minimizes ||G;(8)|| satisfies (i). Since E[J~'Z/,H'{e"—€*(89)
0, we have from (47)

E[G7(84)] = E[G7(84, 8", P°)].
Similarly, since E[J ™' Z.LoMH ' {€" — €/(89)}] = 0, we obtain from (57)
E[G5(9)] = E[G5(0,5°, P°)].
Thus

d ! c N’

= (@55 (4.23)
by assumption B2 and condition (ii) is satisfied. We can show (iii) as follows.

- 1G(8) — E[G,(0)] — G,(6%)]
lo-e0l1<s, T3 + (|G 5(8)]| + || E[G(8)]]

< sup  J3||Gs(8) —E[Gs(8)] — Gs(67)]]
[|0—0°||<d4

< sup  J7||G%4(B4) — E[G4(84)] — G4(69)]]
[104—09]|<d;

+ sup J3||G5(6) — E[G5(8)] — G5(6°)]
[|0—0°||<d4

= op(1) +0,(1)
= o0p(1)

where the first o,(1) term comes from
1
sup  J2(|G7(8a) — BIGT(8a)] — G5(69)|
10a—0311<0.s

= sup  J7[|G9(84,8°, P°) + I ZH e - €R(6) )

10a—0911<d,

e [G(04,8°, PY) + T ZyHT {e" — eR(60) }]
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G485, P°) — T ZuH e — (D)}

1
= sup J?2
[104—0911<5.s

= 0p(1)

by assumption B3(a), and the second o0,(1) term comes from

7(84,5", P°) = Ex ¢ [GY (04, 5%, P°)| — G5(65, 5, P°)|

sup J%]|g5(6) — EIG5(0)] — G5(6%)]|

10—0°]|<d

1
< sup J?2
10a—03]|<d5

~ Eee 6o 0G5 (0, 8%, P) = T ZLLo Mo H e — €(89)}]
—~G5(6°, 5", P°) + 7' ZLLoMoH e — €"(8))}|

<(0,s°, P’ — J'Z LoMyH ' {e" — €"(89)}

1
= sup J2
[160a—0911<d,;

= o0p(1)

by assumption B3(b). Assumption Bl ensures condition (v). Let us turn to show (iv). We set

5(0,5", P°) = By, 0[G5(0, 5%, PO)] - G5(6°, 5", P°)|

(a{(€,04,P), ..., a5(£,04,P)) = ZyH '(€04P), (A.24)
(a{(ﬁ',@d,P),...,a?](g,ed,P)) = _Z,CL(E’Od,P)M(E’ed,P)H_I(g,Od’P).
(A.25)
Decompose J%gJ(OO) into the tree terms:
J2G;(6°)
_ 3 0 —1 Z,d 0 n R0
= J1G(0°,8°,P%) +J (—Zg£0M0H01>{6 (69}
_ J 2Zd§]( a,8°, P°) -1 WHy' n_ _R(p0
= ;(J 2zw](0 0 PO) +J 2 —Z’CLOMOHE {6 — € (Od)}
7 L4 $0 po n
J 2 2] fg(ad, , P?) 0
- Y 1;(£(69, 8%, P°), 6°,
;<J o o ) Y ot P
R
= Y5,.(£(09, 8, P%), 03, P°) (A.26)
r=1

where

J .
Viteonr) = o3 ((Geoelon),
2 ] ’

nJ j=1 )Eﬂ
. 1 K[ ade, 0y, )e*r(X,s,ed)>
(&0l = Rﬁjzl< (6,64 P)c, (X660 )

Note that the first term on the right-hand side of (A.26) is random because of the product
characteristics (X1,&) and the cost shifter (W,w). However, at (8°,s% P°), these &;’s and
w;’s are independent as stated in page 5. This forces us to condition only on (X, W) to
make the each component on the term independent. On the other hand, the second term on
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the right-hand side of (A.26), originating from the sampling error in calculating the observed
market share, is dependent on (X, &, W, w). Similarly for the third term corresponding to the
simulation error in calculating the market share. We show that

{v[priaen])}) v (2.27)

is asymptotically normal with mean zero and variance one for any real constant vector b such
that 8'b = 1. Then the Cramér-Wold device says that .J 3G 7(8°) converges to multivariate nor-
mal. Since the three terms in (A.26), denoted T j1, T j2,T j3, have mean zero and are mutually
uncorrelated, it is sufficient to show that each of {V[b'T 5]} Y/26'T ;;,1 = 1,2,3 is asymptoti-
cally normal.” Notice that each element of T'j; is the sum of non-independent, but conditionally
independent random sequence. Thus we have to use a version of central limit theorem which
is applicable to conditionally independent random sequences. In appendix 7?7, we derive the
version for Lyapunov central limit theorem.

The first term b'T j;:

Given (X1, W), (z;lfj(ﬂg, s, PY), zjwj(OO, 5%, P%)) are conditionally independent across j. Set

—1/2
G = {V b3 ; <Z§lfj(93’8°apo) ) } b3 ( z¢;(05,5°, P) )

zjwj(ﬂo, s%, PY) zjwj(eo, s%, P%)
and Z = (X1, W) for the central limit theorem in the appendix. Then, by assumption B4(a)
and B4(d), we can show that the Lyapunov condition is satisfied for the first term as follows.

/ [ o (285,50, P0) ]
. /] 7—= I\YVd> ’
fin 2 E {V > () |

J

J=1

~1/2 244
b ( 216,67, s°, P°) )

z;fwj(eo, s?, PY)
—(2+9)/2

—(2+446)/2
b}

2+5]

J de (g0 <0 PO
_ / —(248)/2 (111246 7 _1 [ 256(04,8°, P7)
{b'®,b} [|6']| JIL%jgzlE [HJ 3 (

J d 0 .0 po
;-1 ijj(ed,s aP )
bJ 2 Z < zjwj(OO,SO,PO)

b ( 21¢;(0, s°, P°) )

zjwj(OO, s0, PY)

J—)ooj:1

lim EJ: {V

2+5]

AN
g
M~
——
S
<

_1 4 (z?é‘j(eg,so,PU) )

zgwj (00, s9, PO)

=1

d 0 .0 0
11(2+6 -1 ijj(od’s , PY)
<[P E [HJ ’ < z?wj(OO,SO,PO)

z?wj(OO, s0, PY)

2+5]

-2 d 0 .0 PO
Zblj—% ZJEJ(ed,S ?P )
= 2%w;(0°,s°, PY)

J

= 0
for some 6 > 0. Thus we have

{v (o)
=1

zjwj(eo, s%, PY)

4 N(0,1)
which is equivalent to saying that
J d 0 0 po
/ -1 ijj(odas , P w !
b ]Ezlj 2 ( z?wj(OO,SO,PO) ~ N(0,b'®b). (A.28)

"These three terms are not mutually independent due to inclusion of the common random variables X and £.
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The second term b'T ;o = b X" | Y ;;(£(89, s°, P), 09, P°):
Abbreviate Y9, = Y 7;(£(09, %, P%), 89, P%). Given (X,£(0Y,s°, P%), W,w(0° s°, P)), Y.
are condltlonally 1ndependent across i.
Set ¢ = {V[' ", Y%} 26 YY), and Z = (X, £(0Y, s°, P%), W, w(6°, s°, P°)) for the central
limit theorem in the appendix. The Lyapunov condition for this term is

Jim S

1
{V [b’ZY%i]} ’ b'YY,
=1 =1
n —(2+8)/2 4
- n“l%o{v lbIZYgil} > EYY )
=1 =1
n —(2+0)/2
R ) S DY) o TN
=1

= {b'<1>2b}—<2+6>/2||b’||2”nﬁ:%o;E[HY%HH]

246

IA

=0
by assumption B4(b) and B4(e). Thus we have

b’ZY 5% N(0,b'®yb). (A.29)

The third term b'T ;3 = b' 2 Y (€(8Y, s, P°), 89, P):

The argument is completely same as that for the second term.

Abbreviate Y0 = Y%, (£(8Y, s°, P%), 89, PY). Then, by using the central limit theorem with
B4(c) and B4(f), we have

b’ZY*O 4 N(0,b' ®3b). (A.30)

Since the three terms in b'.J %g 7(8°) converges respectively to normal each of them are uncor-
related, so is b'.J? G;(0%).

b J3G,(8°) % N(0,b' ®b) (A.31)
where ® = ®; + ®, + ®3. This completes the proof for the theorem 2. O

Proof of Theorem 3

We will show that

(1-i)’ the estimator @ defined as any sequence that satisfies

||GJ,T(évSOvP0an0)|| = aig(gHGJ,T(easOvPOvno)H +0p(1)

is consistent for 8°, and
(1-ii)’ suppee ||Grr(8, 8", P, 0™) — Gyr(8,5°, P°,n°)|| = 0,(1).
To show (1-i)’, Theorem 3.1 of Pakes and Pollard (1989) requires
(-a)" Gr(8°,5%, PO, %) = 0,(1), and
(i-b)  sup ||Gsr(8,s° P° n°)|~' =0,(1) foreach § > 0.
0¢N,0 (6)
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Proof of (i-a)’

Since we have shown that G%(89,s’, P’) = 0,(1) and G5(8°,s°, P’) = 0,(1), the remaining
is to show that GL‘}’T(OS,SO,PO,HO) = 0y(1). We apply Bernoulli’s weak law of large number
to each row of G%’T(OS,SO,PO,T]O). We denote the element of G (64,5, P,n) correspond-
ing to consumer’s demographic d and discriminating attribute ¢ as {G' (04,8, P,n)}aq, d =
1,...,D,qg=1,...,N,. By the definition of 772(1 given in (76), the expectation and the variance
of {G§7T(03, 8%, P n°)},, are respectively
E{GY7(03,5°, P',n°)}aq]
= Ex,§ [EV|X,§ I:{Gg,T(ega 807 Poano)}d,q‘Xas(ega 807 PO)]]

B [770 1 iE [VO Ejggq Utj(XaS(odasoaPO)?Vt;og)
= 76 dqg = X, td
i ! T t=1 Vet EjEQq Uj(X?E(odasoaPO)aegaPO)

0 1 a 0
= Exg¢ [ndq—ftzzlndq]
= 0,
VI{GS (05,5, P*,n")Ya)
= Bt [Vopee [{G5(0% 5% PO, 1) oy | X, €003, 8%, P°)] |
+ Vg [Buise [{GYr(0% 5% P°,n")bag| X, €005, 5°, V)]
= Bug [Voe (G505, 8% PO,m) bag| X, €05, 5, PV)]]

= e [Vle,a [ng,q - %iuﬁd 2ijeo, 0ti(X ,5(6;3, 80, PY), i 69)
= Yjeo, 0i(X,€(0g, s0, P, 99, P0)

— B Vo l”t"dzjegq 01 (X, §(63, 8", P°),v1; 6)
T &% _ X, Ejqu Uj(XvE(eg,SO,PO),Og,PO)

B 2
1 B [{ 0 Z]‘egq O-tj(Xag(agaSOaPO)aut;eg)}
v|x,§

X,§(03,SO,P°)H

X,E(GS,SO,PO)H

X,s(os,sO,P")H

X,£(05,8°,P°)

= —E , Vd
T Y jca, 0i(X, €(6Y, 0, PY), 6%, PY)

- (|

1

i 2
- ?Ex,f 1/{2]'qu O'j(X,f(og,SO,PO),OS,PO)}

2
X Eu\x,f |:{Vtod ZjEQq Utj(X7€(037Soapo)aut;ag)} ‘X,g(eg,SU,PU):H
1 2
= ?EX,S |:1/{Ejqu Uj(X,S(eg,SO,PO),OS,PU)}

o 1
X Eulx,e {(th)Z ‘X,E(ega SO,PO)H -7 Ex,e

2
0
()]
Since the distributional support of consumer’s demographic is assumed bounded, its second

moment is finite, i.e., B, x¢[(v7) %X, £(09, 5%, PY)] = E,[(v)?] < M for some constant M < oc.
Assumption A9 guarantees that

Ex,ﬁ {1/ {Zjqu U]'(Xﬂg(ogvSO’PU)’egvPO)}Q] = O(l)'
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2
Moreover, we have Ey¢ {(ngq) } = O(1) from assumption A10(b). Thus the variance of
{G%,T(egasoapoano)}d,q is
VH{GYr(84, 5", P°.n°) }ayl
L 0 .0 poy o poy12] _ L 0 )2
S fEx,g |:M/{Zjegq Uj(XaS(odaS aP )70daP )} _?Ex,ﬁ (ndq)
< Op(1)T) + O,(1/T) = 0p(1).

Thus Bernoulli’'s weak law of large number ensures that {Gf},T(Og,sO,PO,nO) = 0p(1)}a,q as
T — oo (and hence J — 00).

Proof of (i-b)’

From argument similar to deriving (A.3), for any (¢,0) > (0,0) and C(0), the relationship

Pr

.f G 0 UPO 0 > 5_ 2
0}\}1(5)|| 50,8, P°,n")|| > C(6) f/]

60

- L inf (G0, P'0°) = Gy (6,5, P, n°) | > C(9)

60

—Pr[||Gr(6° 5% P, n") || > ¢/2] (A.32)

holds in general. Since G ;7(0°,s°, P°,n°) = 0,(1), for any € > 0, there exist .J;(e) and T} (e)
such that when J > J; and T > T}

Pr [||GJ,T(00, %, P )| > 6/2] <e/2. (A.33)

From assumption A5, for the € and for any § > 0, there exist Cy(d) and Ja(e, d) such that when
J > J

Pr | inf 1G5(8,5°, P%) — G (6°, 5", PO)|* < C2(9)] <

HQ 60

=~ m

From assumption A8, for the (e,4d), there exists C5(d), J3(€,0) and T3(e,d) such that when
J>Jgand T > T3

SIS

Pr[ inf ||G5(04,8°,P%n°) — §T(03,80,P°,n°)ll2<C3(5)]<
[edmg@ ’ :

Thus when J > min(Jy, J3) and T > T3

Pr l inf ||Gyr(0,5° P°,n°) — Gr(6°, 5", P°,n")||* < Ca(d) + 03(5)]
0¢N o (6)

=P inf Gj(0,s°,P% —G(6°s° PO
|, it {1605 P) = G (6., 1))

0

HIG (00, 8%, P*,n°) = G (60, 5" P12} < Ca(d) + Co )]

< P inf ||G,(0,s°, P%) — G,(8° s°, P%)|?
< r|ﬁ}\?(6)” J( , S, ) J( yS )||

0

+0€/i\}l£(6) ||G3,T(0dv SO,PO,nO) - L‘},T(egv SU,PO,UO)||2 < 02(6) + 03(6)]
0
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< Pr| inf ||Gs(8,s°, P") —G;(8° s° P < Cy(9)
OFN 4o (9)
+ Pr inf ||G§T(0d’30apovn0) - 3T(03’30’P0vn0)||2 < 03(6)
0ZN o (0) ’ ’
< £4°_°
- 4 4 2

By setting C'(d) = {C2(6) + 03(5)}%, we have

Pr [%yi\?f . |G 57(0,8°, P°,n°) —G;71(8° ", P* n")|| > C(6)| >1—

90(

[NCN e

(A.34)

By substituting (A.33) and (A.34) for (A.32), when J > max(Jy, Jo, J3) and T' > max(Ty,T>, T3),

Pr| inf 0 PO %) > PP Y I R
| it 16080 P > €0 - ef2] 21§ S <1
Then we have
limsupPr | inf ||Gsr(8,s% P° )| > C*(e,8)| >1—¢ (A.35)
5T 0¢Nyo ()

for C*(e,0) = C(6) — €/2 and hence (i-b)’ is shown.
Proof of (1-ii)’
We show

sup |G 7 (8, 8", P,n™) — Gir(8,5°, PO, n°) || = 0, (1).
0ecO

From (1-ii) in the proof of Theorem 1, we know that the first term of the right-hand side in the
following inequality converges to zero in probability as J goes to infinity.
sup ||GJ,T(0v Sna PR, 77N) - GJ,T(ov SO? PO, 770)”
e
< sup||Gy(8,s™, PR - G,(8,s° PY)|
0cO

+ sup ||G?,T(0dasn7PRanN) - 3,T(0d7307P07n0)||' (A36)
0,0,

In the following, we see the second term in (A.36) to be o,(1).

sup ||G?,T(0dvsnaPRanN) - 3,T(9d,80,P0,770)||

0,604
= 0828 ||77N - Til Zf:l V? ® Ttbt(E(odasnaPR)?edaPR)aodaPR)
d d
_{770 - Til Z?:l V? ® wt(g(eda 807 P0)7 0d7P0)7 0d7 PO)}H
< ™ =2’
+gsgg T_1 Zf:l V? ® {¢t(£(0dasnapR)vodapR) - Tﬁbt(E(odasoaPO)’edaPO)}H
d d
= |ln™ —n°||
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+ sup T71||(V0),{‘Il(£(0daSnapR)aodaPR) - \P(S(ed’so’PO)’od,Po)}H
0,604

IN

In™ —n°
+T—1/2||V0|| © sup T_1/2||‘Il(£(0dasnapR)’edapR) - \Il(E(od,so,PO),ed’PO)H’
0,604

= Op(Nfl/Z) + Op(1) - 0p(1) = 0p(1)

where W (&,604, P) = (¢,(€,04, P), ..., ¢¥7(€,04,P)) and v° = (vY,...,v%)". In the last equal-
ity above, ||[n" —n°|| = Op(N /%) comes from A10(a), and T~'/2||v°|| = O,(1) is because the
observed consumer demographics v7 are assumed bounded. The o0,(1) term follows the next
inequaility with assumption A11:

Pr sup T71/2||‘Il(€(0daSnapR)aodaPR) - ‘II(S(ed’SO’PO)’od,PO)H > 6:|
0,604
< Pr sup sup T_1/2||‘I,(£?0dap) - W(E(edasoapo)’edaPO)H > 6:|
0g€04 (§7P)EN§0(0CZ;S) XNP0(5)
+Pr£(04, 8", PT) & Neogg,.)] + Pr[P™ & Npogs)]
— 0,

where Pr[£(0q,s", P) & Neo,.0)] = 0 and Pr[P® & Npog] = 0. O

Proof of Theorem 4

In the proof of Theorem 2, we shown that the difference between G;(8,s", P) and G;(0) is
op(J_%) near 6°, or SUP||9—go||<s, J%||GJ(0,3”,PR) — G(0)]| = op(1). We show below that
G5 r(04, s", PR M) in (92) and G5r(0q) in (93) is op(T_%) within the ;7 neighborhood of
6°. This makes the difference between G;7(8,s", P% n") in (81) and G;7(8,) in (94) is
stochastically small enough near 6°.

For the element of Gﬁ’T(Od,s",PR,nN ) corresponding to consumer demographics d and
discriminating attribute ¢, we have

1
sup Tz
110a—0311<d,7

{gf},T(ed) - G?,T(edv s", PR, nN)}d,q

1
T

D=

= sup T:
[16a—0911<d,7

T
Z]/tod{'(/}tq(f(od’SO’PO)’Od,PR) - '(/)tq(g(od,so,PO),ed’Po)}
t=1

1 & -
5 Vi (6(65, 8%, P°), 65, P Hy e - €™ (6))}
t=1

X €00, PV (€00 PY)E" + X1y (€00, PR .00, PT)(0,)]|

T
< sup T1/2Zufd{wtq(s(od,sO,PU),od,PR)—wtq(s(od,sO,PO),ed,P")}\
[104—0%]|<d,7 t=1
T
+osup TV v [0 (€085, 8%, P), 05, PO Hp e
[10a—0911<6.7,7 t=1

~ Y (€",00, P H (€, 84, P")e"]

T
T2 3 05 [ X1 (€65, 80, P*), 03, PO) H ' " (6)
t=1

+ sup
[10a—031<d,7
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—Y,. (6,04, PRYH™'(¢,0,, PR)GR(Od)] ‘ (A.37)

where Y. is the gth row vector of Y. Thus, it is sufficient to show that the three terms in the
right-hand side of (A.37) are respectively o,(1) or,

T
sup T71/2Zytod{,(/}tq(g(edasoapo)aoda-PR) - '(/)tq(é'(od,sO,PO),ed’Po)}
t=1

[10a—03/<dT

= 0p(1), (A.38)

T
sup (T2 [ Y1 (€69, 8°, PP), 65, PO H e
[104—09]|<6.,7 t=1

~ Y1 (€7, 04, PYH 1 (€,04, P")e"

= 0,(1), (A.39)

T
T2 X1 (6080, 5°, P°), 05, P°) H '€ (65)

sup
[10a—03|<d T t=1
X1y (66,64 POH (€04, PRI 0] | = 0p(1). (A.40)

We can obtain (A.38) as follows.

sup

T
T_1/2 Z Vtod{’(/}tq(s(ada 807 P0)7 oda PR) - ,(/}tq(g(eda 307 PO)? 0d7 PO)}
10a—0311<ds,7 t=1

0 0 .
= sup T7—1/2 i ng{ 2 je0, Tt (£(04,8",P"),v;0,)
0a=03ll<0..x = "\ Cjeo, 0(€(04, 8%, PY), 04, PF)
 Xjeg, 9ti(€(0a, s% P%), vy 6,)
EjEQq 0;(&(04,8° PY),0,, P°)

104=0311<bs7 = X jeq, 0i(€(84, 8%, P0), 0,4, PO)
 Tiea, {76000 5" P04, 7%) — 0, (€025, 7). 00, P}
>jeo, 0i(&(04,8°, PP), 0,4, PF)

= sup
[10a—0311<8.1,7

Zjegq{_ef(od)}
X
Zjqu Uj(€(0d7 307 PO)? eda PR)

T
T*1/2 Z ng¢tq(£(0d, 80, PU), ed, P())
t=1

T
< sup (T 1 ) viytbg(€(Ba, 8%, P°), 84, P°)
[102—0%]|<d5,7 t=1
X sup 2 jeg, Tl/26§{(0d)
[104—09]|1<87,7 nggq Uj(E(odasoaPO)’edapR)
T
= sup Til Zng¢tq(€(0da SO,PO)aodaPO)
[10a—0911<8.,7 t=1
1/2 R
X sup 2jeo, T / & (0a) ‘
||0d_03||<6J,T ZjEQq {U](S(oda SO,PO)aodaPO) + E?(ed)}
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T
Til Zugd¢tq(€(0da SO,PO)aodaPO)
t=1

= sup
[16a—0511<d7,7
X sup 2jeg, Tl/Zef(od)
[10a—0911<6.7,7 ZjEQq 32 + Zjqu Ef(od)
T
= sup T~ vl (€(84, 8%, P°), 04, P)
[104—091<d,7 t=1
-1
0 1/2 R
X sup (Ejegq Sj) Ziegq T €j (64)
-1
l0a=03l1<0sr (14 (Seq, 80) T2 5jeq, TR (84)
T
= sup TN Y vipg(€(8a, 8%, P), 04, P")
[10a—0911<8.,7 t=1
Op(1) - 0p(1)
X sup Sy
16a—0%1<6,,7 | L+ Op(1) - T/20p(1)
T
= sup T_lZytod’(/}tq(s(odaSoapo)vodapo) 'Op(l)
[104—0%]|<ds,7 t=1
= op(1) (A.41)

where we use assumption A9 for (3_,cq, s?)_1 = Op(1) and assumption B7(c) for 3~ cq, T1/26§{(0d) =

0p(1). For the last equality in (A.41), we use the law of large number as follows.

sup 5 |773q| = [0p(1)]

[10a—0911<8.,7

T
T > vppbg(€(04,8°, P°), 04, P°)
t=1

where ngq = 0,(1) follows from assumption A10(b). For (A.39), we have

T
T2 N vy [ (663, 5, P°), 05, PO Hg e
t=1

Pr [ sup
[10a—031<d,7

_th'(ETaedapR)Hil(EvodapR)en] >c

T
< Pr [m?X |Vtod| ’ sup T71/2 Z |:‘rtl]'(€(037SU,PU)aaga‘PO)HO_IGn
[10a—0911<8.,7 t=1
~Y10. (&1, 00, PPYH (€, 04, PT)e"] | > ¢
< Pr [max lvpgl - sup sup T-1/2
t 102—0311<0., 7 (€1,€2,P)E{N 0 (03:05,7)}>7 XN po (81, )
T
x> [T (£(63,5°, P°), 00, PO H e
t=1

_TtQ'(€17adapR)Hil(g%edaPR)en] >c

+Prf¢t ¢ {Ngo(eg; 55r) )]+ Pri€ ¢ {Neo (0% 057)}]
+Pr[P" & Npo(6,,1)]
= o(1)
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where we use assumption that max; |vy;| < M (constant), B7(a) and the facts
Pr(¢t & {Neo(09;05m)} ] — 0, Pr[€ & {Neo (09 657)}] = 0, Pr[PE & Npo(6,r)] — 0. We can
also obtain (A.40) by similar argument as for (A.39) by using assumption B7(b).

What we next show is the asymptotic normality of the estimator @ that minimizes the norm
of G;r(0) in (94). To do this, we use a version of Theorem 3.3 in Pakes and Pollard (1989)
described in appendix ?7?, which gives asymptotic normality to the estimator indexed by two
distinct indices. From the theorem, if we can show the following five conditions,

(i) [1G7(8)]] = 0p(JT~7) + 0p(T~7) + infy |Gy (6) |;

(ii)’ E[Gsr(0)] is differentiable at #° with a derivative matrix T';7 = (T, 9r)" of full rank
where T' ;7 converges to (I',T*)" as J,T — oc;

(iii)* for every sequence {d7} of positive numbers that converges to zero as .J, T goes to infinity,

(a) - 16.(8) —E[G.(8)] -G8 _ 0,(1);
lo-ooli<asr J=2 + ]GO + | EGs @)
165,7(84) — EIG57r(04)] — G500
up - =
10a-0311<ssr T2 +[|GG7(8a)l| + || E[GT(8a)]l]

J3G,(0°) w & 0 )\
(T%g‘;,TwS)) N(“’(O <I>>>

(v)’ 6° is an interior point of O,

(b) op(1);

(iv)’

(vi)’ The size index T grows faster than .J (T'/J — oo as J — 00),

then, we have @ ~5> N (0, V) where
V = (I'T 4+ 1T 'I'ér(I'T + 1) L.

We are considering the situation where the number T' of consumer draws used to evaluate

the additional moments is larger and grows faster than the number .J of products, and thus (vi)’

is satisfied. Our estimator @ satisfies (i)’.

Since the three random variables €;;, €}, and e# in
G ;7(8) have respectively zero means given the set of product characteristics (X, £(65, s°, PY)),
we have E[G ;1 (8,5°, P°,n°)] = E[G;r(0)]. Thus condition (ii)’ follows from assumptions B2

and B8. We shown condition (iii)’(a) in the proof of Theorem 2. For condition (iii)’(b), we have

169,0(8a) — E[G5.1(84)] — G5 (83)]
p -1 a a
10a-031<ssr T2 + |G (0a)|] + || E[GT 1 (0a)]ll

1
< sup  T7||G57(04) — E[GG7(04)] — G567
102—0911<ds,7
1 1 &
= sup  T2|GGr(8a, 8", PYn’) — 5 > vl @ YVH e — €(0)} + 0" —n’
[10a—0911<6.7.7 t=1
1 T
- E[ f},T(oda soaPOa 770)] + f ZE I:Vg ® I\?I—I()_l{en - eR(eg)}] - E[WN - T’O]
t=1

1 & _
_Gf},T(egv SO’PO’nO) + f ZV? ® T?HO l{en - GR(Og)} - 77N - "70
t=1
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= swp 57(0a, 8", P°,n°) = E[G5r(8a, 8", P°,n°)] = G(04,8°, P°,m°)
[10a—0911<6.,7
= op(1)
from assumption B9. Assumption Bl guarantees condition (v)’. Let us show (iv)’. The
additional moments G (64) includes two random draws of consumer v7,t = 1,...,T and

e#,i’ =1,..., N, which are not included in G ;(@). Thus G (684) and G () are conditionally
independent, conditional on the set of product characteristics (X, £(8Y,s%, P%)), and then un-
correlated each other. Since we also know that J%QJ(OO) % N(0,®) as J — oo, what we have

to show is T'2 gg,T(og) 5 N(0,®%) as J, T — oo. Set

T
(atll(gaadap)a"'aa’(ll(ﬁaeda =- Zut ®‘rt(€ 04, ) 71(570d7P)'
t=1
(A.42)
Decompose T%ggT(og) into the four terms:
T2G57(8)
2 Lo 1 R
= T2G57(0g,s", P',n°) =T 2% v @ Y)Hy' {" — "(67)}
t=1
+T%( N —n?)
= ZT 77 _Vt®¢t(£( S PO ZY]TZ SO,PU),og’PO)
—ZYJT, 0", s°, "), 89, P°) + ZT%N*%# (A.43)
i'=1
where

Y%,T,i(éa eda P) =

P)ej;,

?}?T,r(gaadap) =

Since the four terms of T' gf},T(og) in (A.43) are conditionally independent given (X, £(8Y, s°, PY))
and thus mutually uncorrelated, we will show that each of them, denoted by TG 1, TG 19, T7 5
and T 14, are respectively asymptotically multivariate normal by using the Cramér-Wold de-

vice. We show that for any constant vector b such that b'b = 1, {V[b' JTl]}*l/ 20'TY ) for
I =1,2,3,4 is respectively asymptotlcally standard normal

The first term b'T% 7, — b S, T-F (0 — vf @ 1, (€(65, 5°, P°), 6%, PY):

Given (X,£(0Y,s°, PY)), b'Tfé( -V} ® 'wt(E(Og,sO,PO),Og,PO)) have zero mean and are
conditionally independent across t. Write 4 = q,bt(f (69, 5%, PY), 09, P°) and set

G = {V[blT__ Y0’ —vf @)} V2p T 2(n° — vy @) and Z = (X,£(0g,s°, P°))) in
the central limit theorem given in appendix ??. Then, the Lyapunov condition for this term is

—1/2 2+9
} b'Tz (77 -vy ®¢t)

T
{v lb’T% > (0" —vi o))

t=1

T
)
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‘2+5

b'T 77 —Vt®¢t)

}<2+5>/2 - [

~(2+8)/2
b} leb'llmE
t=1

H2+5

T
. f—L 0 _ .0 0
TIEEO{V [bT 2t§:1(n vy @)

IN

T
. / -1 0 _ .0 0
Tlgr;o{bV[T 2Y (" — vy @)

t=1

s - i )]

T
—(240)/2 : -3
= {p'®sp) ||b’||2+‘5T1;H;OZE{HT H vl ew)
t=
= 0

for some § > 0 by assumption B10(a) and B10(e). Thus we obtain

T /2 4
{vlb’T‘%Z(no—u;’@w?)} Zb’T (n° — v @) 4 N(0,1),

t=1

which is equivalent to

Z BT 2(n° — v @Y%) % N(0,b'®). (A.44)
The second term b'T ., = b’ JTZ(ﬁ(Og, 5%, PY%), 09, PY):
Abbreviate Y9, = L,,T,Z(g(o 0 PO) 69, P%). Given (X,£(8Y, s, PO) {v}l,), Y%, have
zero mean and conditionally independent across i. Suppose ¢; = {V[b’ VY YR Y S

and Z = (X,£(0Y%, 5% PY)) in the central limit theorem in appendix ??. Then the Lyapunov

condition for this term is
n —-1/2
{V [b' Z Y%?T,i] } b,YJTz

=1

(2+9)/2 & s
- nlLrgo{ [ZYJTZ] } ZEUUYJTZ }

246

n
Jim, 2 E
1=

2+6
< {b/@ab} (2+9) /2||b/||2+5 hm ZE {HY{,TZ
= 0
by assumption B10(b) and B10(f). Thus we obtain
Z b'Y 5 % N(0,b'®3b). (A.45)
The third term 6T 3 = b’ J*TT(E(Og, s0, PY), 09, PY):
For this term, we can obtain the asymptotic normality from a similar argument as for the
second term. Abbreviate YﬁfTo’r = JTT(E(Od, 0. P9),0Y, P%). By using assumption B10(c)
and B10(g), we obtain
R
S VY5, S N(0,b'®5b). (A.46)

The forth term b’ S0, TzN Left:
Given (X, €& (Od, O,PO)), €/, have zero mean and conditionally independent across i'. Suppose
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—1/2
G = {v[p i rAN-tet]] PYT2N L and Z = (X,€(6% %, PY)) in the central

limit theorem in appendix ??. The Lyapunov condition for this term is

N N _1/2 244
. -1 # La—1_#
]\;LI)HOOZE {V [bIZTQN ei/]} b,TQN Gi,
i'=1 i'=1
N 1 ~H02 N 1 246
= lim_ {v [b’ S TEINTled } SE { YT:N"'ef }
i'=1 i'=1
N 1 R N 1 244
< NIEI;O{V [b’ S TNl } 51+ S B [|riv et
i'=1 i'=1
5 5 - ! #| |20
_ {b/@Zb}*(%r )/2||bl||2+ lim Z E [HTENIGZV }
N—o00 i—1
=0
by assumption B10(d) and B10(h). Thus we obtain
N 1
ST UTENTel L N(0,b' ®5b). (A.47)
=1

The four terms in b'7T2 gg,T(og) respectively converge to the normal. Accordingly, b'T 3 3,T(03)
converges to the normal. Then the Cramér-Wold device leads us to obtain

T3G5.(85) % N(0, %) (A.48)

where ®* = & + &5 + & + ®¢. Therefore condition (iv)’ is satisfied and thus this ends the
proof of Theorem 4.0
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