
On Asymptotic Properties of the Parameters of
Differentiated Product Demand and Supply
Systems When Demographically-Categorized
Purcahsing Pattern Data are Available

著者 MYOJO Satoshi, KANAZAWA Yuichiro
year 2007-10
シリーズ Department of Social Systems and Management

Discussion Paper Series ~ no. 1185
URL http://hdl.handle.net/2241/100198

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/56648178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Department of So
ial Systems and ManagementDis
ussion Paper Series
No. 1185On Asymptoti
 Properties of the Parameters ofDi�erentiated Produ
t Demand and Supply SystemsWhen Demographi
ally-Categorized Pur
hasing Pattern Dataare AvailablebySatoshi MYOJO and Yui
hiro KANAZAWAO
tober 2007

UNIVERSITY OF TSUKUBATsukuba, Ibaraki 305-8573JAPAN



Abstra
tIn this paper, we �rst give asymptoti
 theorems for the framework proposed by Berry,Levinsohn, and Pakes (1995) to estimate the system of demand and supply models. Wethen generalize the idea given by Petrin (2002), whi
h extends the framework by adding newmoment 
onditions when demographi
ally-
ategorized pur
hasing pattern data are available.We also gives the asymptoti
 theorems to this GMM estimator and show that the use of theadditional moment 
onditions allows us to estimate of the demand side parameters morepre
isely. Finally we run Monte Carlo experiments to evaluate these asymptoti
 theoremsand show that the additional summary information on the 
onsumer's 
hoi
e 
ontributes thepre
ision of the estimate.



1 Introdu
tionRe
ent studies, extending the framework proposed by Berry, Levinsohn, and Pakes (1995) (here-after, BLP (1995)), have been trying to integrate the information on 
onsumer demographi
s tothe utility fun
tions in order to make their models more realisti
 and 
onvin
ing. For example,Nevo's examination on pri
e 
ompetition in the ready-to-eat 
ereal industry (Nevo 2000 and2001) uses individual's in
ome, age and a dummy variable indi
ating the individual is a 
hildor not in the utility fun
tion. The ba
kground behind this is that publi
 sour
es of informationsu
h as CPS and IPUMS are widely available. Those sour
es 
an give us information on thejoint distribution of the U.S. household's demographi
s su
h as in
ome, age of household's head,and family size.Some re
ent studies went further and try 
ombining those demographi
s with the informationon 
onsumer's 
hoi
e under the \extended" BLP frameworks. For instan
e, Petrin (2002),referring to Imbens and Lan
aster (1994), tries to link demographi
s of new-vehi
le pur
hasersto the vehi
les they pur
hased. Spe
i�
ally, given a pur
hasing pattern su
h as \buying aminivan," he proposes to mat
h the model-predi
ted average 
onsumer's demographi
s withthe average 
onsumer's demographi
s quoted from CEX automobile supplement in the GMMestimation. Petrin (2002)'s framework presupposes the market information on the populationaverage, whi
h is readily a

essible through publi
 sour
es.Berry, Levinsohn, and Pakes (2004) (hereafter, BLP (2004)), on the other hand, uses detailed
onsumer-level CAMIP data provided by General Motors, whi
h in
lude not only individuals'
hoi
es but also the 
hoi
es they would have made had the �rst 
hoi
e produ
ts not been avail-able to them. In their new framework, the model-predi
ted 
ovarian
es between the �rst- andse
ond-
hoi
e vehi
le 
hara
teristi
s and household attributes are put 
lose to those 
al
ulatedfrom CAMIP data as additional moment 
onditions in the GMM estimation. Although themethod proposed by BLP (2004) should improve the out-of-sample model's predi
tion, it re-quires proprietary 
onsumer-level data, whi
h are not readily available to resear
hers, as theauthors themselves admitted in the paper: the CAMIP data \are generally not available toresear
hers outside of the 
ompany" (page 79, line 30).Asymptoti
 Properties of the Estimator in the Previous StudiesThe moment 
onditions used in BLP (1995) are orthogonal 
onditions of the unobserved produ
tquality �j and the unobserved 
ost shifter !j with the 
orresponding instrumental variables zdjand z
j . The moments are obtained by averaging �jzdj and !jz
j over produ
ts. As the numberof produ
ts J grows large, BLP (1995) 
laimed that the GMM estimator is 
onsistent andasymptoti
ally normal (CAN).In BLP (1995), �j are not obtained analyti
ally, but numeri
ally obtained as a solution of�(X; �;�d; PR) = sn. The market shares �j are approximated by the simulated values withrandom R draws of 
onsumers. This generates the simulation error in the evaluation of the �jand the !j. Furthermore, the sampling error produ
ed by the use of the observed market sharessn, whi
h are typi
ally 
al
ulated from random n draws of 
onsumers and thus not equivalentto the underlying true market shares s0, also enters the �j and the !j. As a result, what we
an a
tually evaluate for the sample moments in
lude the three distin
t randomness: sto
hasti
nature of the produ
t 
hara
teristi
s; randomness generated in the simulation pro
ess; andrandomness generated in the sampling pro
ess.In BLP (1995), the authors were aware that the number R of simulation draws and the size nof 
onsumer sample must grow at rates faster than the number J of produ
ts to establish CANproperties of the GMM estimator. They also a
knowledged that, even then, the asymptoti
varian
e-
ovarian
e matrix of the resulting estimator 
onsists of three distin
t 
omponents in1



responses to these three randomnesses. In the paper, they reported that estimating the random
oeÆ
ient logit model for demand model would require n and R to grow on the order of J3, andthat the pre
ise proofs for the asymptoti
 theorem of the GMM estimator were still in progress.In Petrin (2002), the additional moments are the set of fun
tions of the expe
ted value of
onsumer' demographi
s given spe
i�
 produ
t 
hara
teristi
s 
onsumers 
hose (e.g., expe
tedfamily size of households that pur
hased minivans). The evaluation of these new moments arealso a�e
ted by the aforementioned simulation and sampling errors. This is be
ause he evaluatesthe 
onditional expe
tations of 
onsumer demographi
s assuming that produ
t 
hara
teristi
s(X ; �) are given, and the � in
ludes the simulation and the sampling errors for the reasonselaborated at the beginning of this se
tion.In addition, the extra market information themselves possibly 
ontain another type of sam-pling error. This is be
ause the extra market information is typi
ally estimate for the populationaverage demographi
s obtained from the sample of 
onsumers (e.g., CEX sample) separate fromthe one from whi
h the observed market share sn is 
al
ulated. This error may also a�e
t on theevaluation of the new moments. In summary ea
h of the three errors (the simulation error, thesampling error in the observed market shares, and the sampling error in the extra information)as well as the sto
hasti
 natures of the produ
t 
hara
teristi
s and the 
onsumer demographi
sare likely to a�e
t the new moment 
onditions. The estimator proposed by Petrin appears toassume that we are able to 
ontrol the impa
ts from these errors. Unfortunately, Petrin (2002)did not provide any asymptoti
 theorems for the estimator.Berry, Linton, and Pakes (2004) presents the asymptoti
 theorem for the random 
oeÆ
ientlogit models of demand estimated by the demand side moment 
onditions and showed the ratesof R and n at whi
h they are able to establish CAN properties of the GMM estimator relativeto J . However, the asymptoti
 theorem for the GMM estimator with the simultaneous use ofthe demand and the supply side moment 
onditions are yet to be known, although they 
laimedthat \it is straightforward to add the pri
ing equation to the analysis" given in what follows(page 618, line 11).BLP (2004) 
laimed that if the number of 
onsumers sampled in the CAMIP data grow fasterenough when the number of produ
ts grows large, the estimator with their new framework isalso 
onsistent and asymptoti
ally normal. In the study, the authors take into a

ount thesimulation errors and the CAMIP data's sampling error in the 
al
ulation of the asymptoti
varian
e of the estimator. They justi�ably negle
ted the sampling error in the observed marketshare sin
e the pre
ise market share data are readily available in the U.S. automobile market.To obje
tively and pre
isely estimate the U.S. 
onsumers' automobile preferen
es using unbiasedpubli
ly-available data, we thought it best to use the framework 
onsidering both the demandand supply side with additional demographi
s information. BLP (2004), as good as they maybe, fell short in this regard be
ause they only 
onsider the demand side and they use the CAMIPdata generally not available outside of the GM. We therefore 
hoose to pro
eed following Petrin(2002)'s footsteps.In this paper, we provide general 
onditions under whi
h the extension of the GMM estimatororiginally proposed by Petrin (2002) has CAN properties. The assumptions we make use of forthe demand side spe
i�
ation and the notations of the proof generally follow the asymptoti
theorems given in Berry, Linton, and Pakes (2004), but we 
onsiderably extend their theoremin three dire
tions: �rst we 
learly state that the asymptoti
s we set forth is not 
onditioned onthe produ
t 
hara
teristi
s, whi
h we will see is sto
hasti
; Se
ond, we in
orporate the supplyside as well as the demand side; Third we in
lude additional demographi
s moment 
onditions.Ex
ept BLP (1995) and BLP (2004), studies in marketing and industrial organization ap-peared to ignore the e�e
ts of the errors generated by the simulation and the sampling pro
essesand thus did not adjust the varian
e-
ovarian
e matrix of the estimator when employing BLPframework (See in Table 1). As for the simulation pro
ess, this is probably due to a 
omputa-2



Table 1: The Consideration of Errors in the Past StudiesDemand Side Moments Supply Side Moments Additional MomentsSimulation Error Sampling Error Simulation Error Sampling Error Simulation Error Sampling Error Extra Information ErrorBLP (1995) 
 
, but negligible 
 
 | | |Sudhir (2000) � � � � | | |Nevo (2001) � � � � | | |Petrin (2002) � � � � � � �BLP (2004) 
 
, but negligible | | 
 
, but negligible 
The symbol 
 (�) indi
ates the error was (not) took into a

ount in the evaluation of the moment.\|" means that the study did not use the 
orresponding moment 
onditions.3



tional burden in
urred to evaluate the simulation error. To numeri
ally isolate the magnitudeof the simulation error, for instan
e, resear
hers have to repeat the estimation algorithm withmany independent sets of R simulation draws of 
onsumers with the observed market share�xed.2 Ba
kground on the BLP (1995)'s Framework2.1 Demand Side ModelThe dis
rete 
hoi
e di�erentiated produ
t demand systems formulates that the utility of 
on-sumer i for produ
t j is a fun
tion of parameters, �d, observed produ
t 
hara
teristi
s, xj,unobserved (by the e
onometri
ians) produ
t 
hara
teristi
s, �j , and random 
onsumer tastes,�ij. Given the produ
t 
hara
teristi
s (xj ; �j) for the all (J) produ
ts marketed, the 
onsumereither 
hooses to buy one of the produ
ts or not to buy any produ
t, in whi
h 
ase we say the
onsumer 
hooses the \outside" good. Ea
h 
onsumer makes the 
hoi
e that maximizes his/herutility. Di�erent 
onsumers may make di�erent 
hoi
es be
ause of their tastes, and their tastesfollow the distribution denoted by P 0.Although the most produ
t 
hara
teristi
s are not 
orrelated with the unobserved produ
t
hara
teristi
s �j 2 <, j = 1; : : : ; J , some of them (e.g., pri
e) are likely to be 
orrelated withthe �j.1 We denote the ve
tor of observed produ
t 
hara
teristi
s by xj = (x01j ;x02j)0 wherex1j 2 <K1 are the ones that are not 
orrelated with the �j in the sense thatE�jx1 [�jjx1j℄ = 0 and sup1�j�J E�jx1 [�2j jx1j℄ <1 (1)with probability one. Produ
t 
hara
teristi
s in the x2j 2 <K2 are 
orrelated with the �j. Theset of observed produ
t 
hara
teristi
s for all the produ
ts is denoted by X = (x1; : : : ;xJ)0.In this framework, we assume the set of exogenous produ
t 
hara
teristi
s (x1j ; �j); j =1; : : : ; J are random sample of produ
t 
hara
teristi
s of size J from the underlying populationof produ
t 
hara
teristi
s. Thus, (x1j ; �j) are assumed to be independent a
ross j, while x2jare in general not independent a
ross j sin
e they are endogenously determined in the marketas fun
tions of produ
t 
hara
teristi
s of the other produ
ts as well as its own produ
t.The demand model determines the pur
hase probability of a 
onsumer as a fun
tion ofhis/her attributes and the produ
t 
hara
teristi
s in the market. A distributional assumptionon the 
onsumers' unobservable heterogeneity is made to obtain expe
ted pur
hase probabil-ity 
onditional on produ
t 
hara
teristi
s and 
onsumer attributes. The 
onditional pur
haseprobability �ij of produ
t j is a map from 
onsumer i's attributes �i 2 <v, a demand sideparameter ve
tor �d 2 �d, and the set of 
hara
teristi
s of all produ
ts (X ; �), and is thusdenoted as �ij(X ; �;�i;�d). BLP (1995)'s framework generates the ve
tor of market shares,�(X; �;�d; P ), by aggregating over the individual 
hoi
e probability with the distribution P ofthe 
onsumer attributes �i as�j(X; �;�d; P ) = Z �ij(X ; �;�i;�d)dP (� i) (2)where P is typi
ally the empiri
al distribution of the attributes from a random sample drawnfrom P 0.Note that these market shares are still random variables due to the sto
hasti
 nature of theprodu
t 
hara
teristi
s X and �. If we evaluate equation (2) at (�0d; P 0), where �0d is the true1The unobserved produ
t 
hara
teristi
s �j are produ
t 
hara
teristi
s diÆ
ult to measure or observe byresear
hers. They typi
ally in
lude 
onsumers' per
eption on style, brand equity, e�e
t of promotional a
tivity,and servi
e at point-of-sale. 4



value of the parameters, it will give the \
onditionally true" market shares s0 given the produ
t
hara
teristi
s (X; �) in the population, i.e.,�(X ; �;�0d; P 0) � s0: (3)Equation in the form of �(X ; �;�d; P ) = s 
an, in theory, be solved for � as a fun
tion of(X ;�d; s; P ). BLP (1995) provides general 
onditions under whi
h there is a unique solutionfor the �(X;�d; s; P ) that satis�ess� �(X; �;�d; P ) = 0 (4)for every (X ;�d; s; P ) 2 X � �d � SJ � P, where X is a spa
e for the produ
t 
hara
teristi
sX, and P is a family of probability measures. If we solve the identity in (3) with respe
t to� under the 
onditions that guarantee the uniqueness of the � in (4), we are able to retrievethe original �j whi
h we assume are independent a
ross j. However, if we solve (4) at any(�d; s; P ) 6= (�0d; s0; P 0), the resulting �j(X ;�d; s; P ) are not equivalent to the true value of�j. For this �j(X ;�d; s; P ), the independen
e assumption is violated be
ause the two fa
torsfor �j|the market share sj and the endogenous produ
t 
hara
teristi
s x2j for produ
t j|areendogenously determined through the market equilibrium (e.g., Nash in pri
es or quantities) asa fun
tion of the produ
t 
hara
teristi
s not only of its own but also of its 
ompetitors.2.2 Supply Side ModelThe supply side model formulates the pri
ing equations for the J produ
ts marketed. We assumean oligopolisti
 market where a �nite number of suppliers provide multiple produ
ts. Suppliers(m = 1; : : : ; F ) are modelled as maximizers of pro�t from the 
ombination of produ
ts they areprodu
ing. Spe
i�
ally, supplier m maximizes the following pro�t fun
tion.PRm = Xj2Jm(pj � 
j)Ms�j(X; �;�d; P ); m = 1; : : : ; F; (5)where Jm denotes the set of produ
ts provided by supplier m, and pj and 
j are respe
tivelypri
e and marginal 
ost of produ
t j, and Ms denotes the potential market size. By assumingthe Bertrand-Nash pri
ing for supplier's strategy, the �rst order 
ondition in terms of pj is givenas �j(X; �;�d; P ) + Xl2Jm(pl � 
l)��l(X; �;�d; P )=�pj = 0 for j 2 Jm: (6)This equation 
an be expressed in matrix form�(X ; �;�d; P ) +�(p� 
) = 0 (7)where � is the J � J non-singular gradient matrix of �(X ; �;�d; P ) with respe
t to p whose(j; k) element is de�ned by�jk = 8><>: ��k(X ; �;�d; P )=�pj ; if the produ
ts j and k areprodu
ed by the same �rm;0; otherwise. (8)Solving (7) with respe
t to 
 gives
 = p�mg(�;�d; P ); (9)5



where mg � ���1�(X; �;�d; P ) (10)represents the ve
tor of the pro�t margin for all the produ
ts on the market. We suppress Xin the expression of mg for notational simpli
ity.We de�ne the marginal 
ost 
j as a fun
tion of the observed 
ost shifters wj and the unob-served (by resear
hers) 
ost shifters !j asg(
j) = w0j�
 + !j (11)where g(�) is a monotoni
 fun
tion and �
 2 �
 is a 
ost side parameter ve
tor. While the
hoi
e of g(�) depends on appli
ation, we assume g(�) is 
ontinuously di�erentiable with a �nitederivative for all realizable values of 
ost. Suppose that the observed 
ost shifters wj 
onsistof the exogenous ones w1j 2 <L1 as well as endogenous ones w2j 2 <L2 , and thus we writewj = (w01j ;w02j)0 and W = (w1; : : : ;wJ)0. The exogenous 
ost shifters in
lude not only the
ost variables determined outside the market under 
onsideration (e.g. 
rude oil pri
e), butalso the produ
t design 
hara
teristi
s that suppliers 
an not immediately 
hange in response to
onsumer's demand. The 
ost variables determined at the market equilibrium (e.g. produ
tions
ale) are treated as endogenous 
ost shifters. The unobserved 
ost shifters !j are assumed tobe un
orrelated with the exogenous 
ost shifters w1j , and then satisfy the 
ondition thatE!jw1 [!jjw1j℄ = 0; and sup1�j�J E!jw1 [!2j jw1j ℄ <1 (12)with probability one.As in the formulation of (x1j; �j); j = 1; : : : ; J , on the demand side, we assume the set ofexogenous 
ost shifters (w1j ; !j); j = 1; : : : ; J are random sample of 
ost shifters of size J fromthe underlying population of 
ost shifters. Thus (w1j ; !j) are assumed to be independent a
rossj, while w2j are in general not independent with respe
t to j as they are determined in themarket as fun
tions of 
ost shifters of other produ
ts.Substituting (9) for (11) and evaluating �j at �j(X;�d; s; P ); j = 1; : : : ; J , gives the redu
edform of the unobserved 
ost shifters !j.!j(�; s; P ) = g(pj �mgj(�(X;�d; s; P );�d; P )) �w0j�
 (13)where the parameter ve
tor � 
ontains both the demand and supply side parameters, i.e., � =(�0d;�0
)0. Sin
e the pro�t margin mgj(�;�d; P ) for produ
t j is determined not only by itsunobserved produ
t 
hara
teristi
s �j, but by those of the other produ
ts on the market, these!j are in general dependent a
ross j when (�; s; P ) 6= (�0; s0; P 0). However, when (13) isevaluated at (�; s; P ) = (�0; s0; P 0), we are able to re
over the original !j; j = 1; : : : ; J , whi
hare independent a
ross j. De�ne g(x) � (g(x1); : : : ; g(xJ )) and rewrite (13) in ve
tor form!(�; s; P ) = g(p�mg(�(X;�d; s; P );�d; P )) �W�
: (14)2.3 GMM EstimationZero moment restri
tions between unobserved 
hara
teristi
s (�j; !j) and exogenous instrumen-tal variables (zdj ;z
j) will be imposed to estimate � by the generalized method of moments(hen
eforth, GMM).Let us de�ne the J �M1 demand side instrument matrix Zd = (zd1; : : : ;zdJ)0 whose 
ompo-nents zdj 
an be written as zdj (x11; : : : ;x1J) 2 <M1 , where zdj (�) : <K1�J ! <M1 for j = 1; : : : ; J .It should be noted that the demand side instruments zdj for produ
t j are assumed to be a fun
-tion of the exogenous 
hara
teristi
s not only of its own, but of the other produ
ts (x11; : : : ;x1J)6



in the market. This is be
ause the instruments, by de�nition, must 
orrelate with the produ
t
hara
teristi
s x2j , and this endogenous variables x2j (e.g. pri
e) are determined by both itsown and its 
ompetitors' produ
t 
hara
teristi
s as we mentioned above.Similar to the demand side, we de�ne the J �M2 supply side instrumental variables Z
 =(z
1; : : : ;z
J)0 as a fun
tion of the exogenous 
ost shifters (w11; : : : ;w1J ) of all the produ
ts.Here, z
j(w11; : : : ;w1J ) 2 <M2 and z
j(�) : <L1�J ! <M2 for j = 1; : : : ; J .Considering the sto
hasti
 nature of produ
t 
hara
teristi
s X1 as well as of �, we set forththe demand side restri
tion as Ex1;� hzdj�j(�d; s0; P 0)i = 0 (15)at � = �0 where the expe
tation is taken with respe
t not only to �, but also to X1. Supplyside restri
tion we use is Ew1;! hz
j!(�; s0; P 0)i = 0 (16)at � = �0. Hereafter, we suppress the dependen
e on X andW in the expression of �j(�d; s; P )and !j(�; s; P ) respe
tively for notational simpli
ity. We suppose that the number of restri
tions(M1 +M2) is equal to or greater than the number K of parameters in �.Now let us form the average of zdj�j(�d; s0; P 0) and z
j!j(�; s0; P 0) asGdJ(�d; s0; P 0) � J�1 JXj=1zdj�j(�d; s0; P 0); (17)G
J(�; s0; P 0) � J�1 JXj=1z
j!j(�; s0; P 0): (18)The GMM estimator for �0 minimizes the sum of norms of GdJ(�d; s0; P 0) and G
J(�; s0; P 0),that is, it minimizes the norm ofGJ(�; s0; P 0) =  GdJ(�d; s0; P 0)G
J(�; s0; P 0) ! : (19)To derive the asymptoti
 properties of this estimator, we have to make assumption for howGJ(�; s0; P 0) behaves as the number of produ
ts J tends to in�nity.We know that the (�j(�d; s0; P 0); !j(�; s0; P 0)) are dependent a
ross j at � 6= �0. More-over, sin
e zdj and z
j are respe
tively fun
tions of the exogenous 
hara
teristi
s X1 and theexogenous 
ost shifters W 1 of all the produ
ts, they are also dependent a
ross j. This impliesthat the uniform 
onvergen
e of the obje
tive fun
tion jjGJ(�; s0; P 0)jj to jjE[GJ(�; s0; P 0)℄jjover all possible � 2 � is not guaranteed.2 As a result, the standard 
onsisten
y proofs of theGMM estimator that assume uniform 
onvergen
e of the obje
tive fun
tion are not appli
able.Instead, we set the 
ondition whi
h bounds jjGJ(�; s0; P 0)jj away from zero for all � outside ofa neighborhood of �0 as Berry, Linton and Pakes (2004) did. This 
ondition enables us to useTheorem 3.1 in Pakes and Pollard (1989) to derive the 
onsisten
y.If we 
an further assume that J 12 [GJ(�; s0; P 0)�E[GJ(�; s0; P 0)℄℄ 
onverges to J 12 [GJ(�0; s0; P 0)�E[GJ(�0; s0; P 0)℄℄ in probability as the sto
hasti
 � 
onverges in probability to �0, that is, thepro
ess J 12 [GJ(�; s0; P 0) � E[GJ(�; s0; P 0)℄℄ is sto
hasti
ally equi
ontinuous at �0, and thatJ 12GJ(�0; s0; P 0) 
onverges weakly to the normal distribution, the GMM estimator for �0 
anbe shown to be asymptoti
ally normal by Theorem 3.3 in Pakes and Pollard (1989).2The expe
tation symbol E[�℄ here means that taking expe
tation over (x1j , �j , w1j , !j).7



We have two separate problems in the evaluation of jjGJ(�; s0; P 0)jj. Although P 0 is sofar assumed to be known, we typi
ally will not be able to 
al
ulate �(X ; �;�d; P 0) analyti
allyand will have to approximate it by a simulator, say �(X; �;�d; PR), where PR is the empiri
almeasure of some i.i.d. sample �1; : : : ;�R from the underlying distribution P 0. Simulated marketshares are then given by�j(X ; �;�d; PR)= Z �ij(X ; �;�i;�d)dPR(� i) � 1R RXr=1�rj(X ; �;�r;�d): (20)Se
ond, we are not ne
essarily able to observe the true market shares s0. Instead, the ve
tor ofobserved market shares, sn, will typi
ally be 
onstru
ted from n i.i.d. draws from the populationof 
onsumers, and hen
e is not equal to the population value s0 in general. The observed marketshare of produ
t j is snj = 1n nXi=1 1(Ci = j); (21)where Ci denotes the 
hoi
e of the randomly sampled 
onsumer i, and the Ci are assumed tobe i.i.d. a
ross i. The indi
ator variable 1(Ci = j) takes one if Ci = j and zero otherwise.We substitute �(�d; sn; PR) given as a solution of sn��(X ; �;�d; PR) = 0 for (17) to obtainGdJ(�d; sn; PR) = J�1 JXj=1zdj�j(�d; sn; PR): (22)Furthermore, substituting!(�; sn; PR) = (!1(�; sn; PR); : : : ; !J(�; sn; PR))0 obtained from eval-uating (13) at � = �(�d; sn; PR) and P = PR for (18) givesG
J(�; sn; PR) = J�1 JXj=1z
j!j(�; sn; PR): (23)The a
tual obje
tive fun
tion is thus jjGJ(�; sn; PR)jj. Consequently, our estimator of �, say �̂,satis�es jjGJ(�̂; sn; PR)jj = inf�2� jjGJ(�; sn; PR)jj: (24)In the expression of jjGJ(�̂; sn; PR)jj, there exist three distin
t randomness: one generatedfrom the draws of the produ
t 
hara
teristi
s (x1j ; �j ;w1j ; !j), one generated from the samplingpro
ess of 
onsumers for sn, and one generated from the empiri
al distribution PR. The impa
tof these randomness on the estimate of � will be de
ided by the relative size of the sample|J ,n, and R. Unless n and R are mu
h larger than J , the impa
t from the sampling error and thesimulation error may not be negligible. We are going to operationalize the sampling and thesimulation errors in the following.2.4 The sampling and simulation errorsThe sampling error, �n, is de�ned as the di�eren
e between the observed market shares sn andthe true market share s0. Spe
i�
ally, its 
omponent �nj for the produ
t j is�nj � snj � s0j = 1n nXi=1 1(Ci = j) � s0j = 1n nXi=1 n1(Ci = j)� s0jo= 1n nXi=1 �ji (25)8



for j = 1; : : : ; J , where �ji � 1(Ci = j) � s0j indi
ate the di�eren
e of the sampled 
onsumer's
hoi
e from the population market share (s0j ) and are assumed to be independent a
ross i.Note that from (4), for any �d 2 �d, the unique solutions � forsn � �(X; �;�d; PR) = 0 and s0 � �(X ; �;�d; P 0) = 0are written as �(�d; sn; PR) and �(�d; s0; P 0) respe
tively. In other words, substituting these�s ba
k into �(X ; �;�d; PR) and �(X; �;�d; P 0) retrieves sn and s0 respe
tively. Therefore forany �d 2 �d sn = �(X ; �(�d; sn; PR);�d; PR) (26)and s0 = �(X; �(�d; s0; P 0);�d; P 0): (27)If we evaluate (4) with the observed market share sn and the underlying population P 0 of
onsumers, the resulting �(�d; sn; P 0) satis�es the equationsn = �(X; �(�d; sn; P 0);�d; P 0) (28)for all �d 2 �d. Furthermore, for all �d 2 �d, the �(�d; s0; PR) whi
h is obtained by evaluating(4) with the true market share s0 and the empiri
al population PR of 
onsumers satis�ess0 = �(X; �(�d; s0; PR);�d; PR): (29)The simulation pro
ess generates the simulation error �R(�d), whi
h is for any �d a di�er-en
e between the simulated market shares in (20) obtained from a sample of R 
onsumers whosedistribution follows the empiri
al distribution PR and those obtained from the population dis-tribution P 0 of all the 
onsumers. That is, the simulation error �Rj for produ
t j with sample ofR 
onsumers is�Rj (�d) � �j(X ; �(�d; s0; P 0);�d; PR)� �j(X ; �(�d; s0; P 0);�d; P 0)for j = 1; : : : ; J . From (27), �Rj (�d) 
an be rewritten as�Rj (�d) = 1R RXr=1�rj(X ; �(�d; s0; P 0);�r;�d)� s0j= 1R RXr=1n�rj(X ; �(�d; s0; P 0);�r;�d)� s0jo= 1R RXr=1 ��jr(X; �(�d; s0; P 0);�d) (30)where ��jr(X; �;�d) = �rj(X ; �;�r;�d)��j(X; �;�d; P 0) are by de�nition independent a
ross r
onditional on (X; �).2.5 Metri
s, Neighborhoods, and NotationsWe will work with the produ
t spa
e �� SJ �P. The parameter spa
e � is a 
ompa
t subsetof <K and we use the Eu
lidean metri
 on �, �E(�;��) = jj� � ��jj. The spa
e for the marketshare ve
tor s is J + 1 dimensional unit simplex SJ ,SJ = 8<:(s0; : : : ; sJ)0����� 0 < sj < 1 for j = 0; : : : ; J; and JXj=0 sj = 19=; :9



Sin
e the market share sj generally shrinks as the number J of the produ
ts on the marketin
reases, we need to make sure the speed at whi
h the sj be
oming 
lose to the true share s0jought to be faster than the speed at whi
h s0j 
onverges to zero. To as
ertain this, we need touse the metri
 �s0 on SJ �s0(s; s�) = max0�j�J �����sj � s�js0j ����� :The P is the set of probability measures of 
onsumer's attributes. The L1 metri
 �P (P; P �) =supB2B jP (B)�P �(B)j is adopted on P, where B is the 
lass of all Borel sets on <v, where v isthe dimension of the 
onsumer attributes in the pur
hasing probability. This metri
 will be usedto measure the distan
e between the empiri
al distribution PR and the underlying distributionP 0 of 
onsumer's attributes.Sin
e the dimension of the unobserved produ
t 
hara
teristi
s � in
reases, element by element
onvergen
e of � to �� does not automati
ally guarantee that jj� � ��jj = op(1). In the proof,all we need is the 
onvergen
e of the unobserved produ
t 
hara
teristi
s � as ve
tor to anotherve
tor ��, not an element by element 
onvergen
e. Hen
e we use the averaged Eu
lidean metri
��(�; ��) = J�1jj� � ��jj2 = J�1PJj=1(�j � ��j )2, whi
h of 
ourse allow the possibility that a�nite number of elements in � do not 
onverge to the 
orresponding elements in ��.With these metri
s, we de�ne the Æ neighborhoods for �0; P 0, and s0 respe
tively as N�0(Æ) =f� : �E(�;�0) � Æg, NP 0(Æ) = fP : �P (P; P 0) � Æg, and Ns0(Æ) = fs : �s(s; s0) � Æg. Also forea
h �, the Æ neighborhood of �(�d; s0; P 0) is de�ned by N�0(�; Æ) = f� : ��(�; �(�d; s0; P 0)) �Æg. The notation we use for the Eu
lidean norm of any m�n matrix A is jjAjj = ftr(A0A)g1=2.We use the Op(�) and op(�) notation of Mann and Wald (1944) to denote the sto
hasti
 order ofmagnitude. When applied to ve
tors and matri
es, the symbols should be interpreted elementby element. If x is a k � 1 ve
tor, diag[x℄ denotes a k � k diagonal matrix with the element ofx along its prin
iple diagonal.3 Asymptoti
 Theory for BLP (1995)3.1 Consisten
yIn this se
tion, we derive the asymptoti
 theorems for the BLP framework. Our proofs aredi�erent from the one in Berry, Linton, and Pakes (2004) in two ways. First, in Berry, Linton,and Pakes (2004), the asymptoti
 theorems appear to be established under the 
ondition that(X ; �) is given while the dimension J of the produ
t 
hara
teristi
s grows in�nitely. Our proofsfor the theorems do not 
ondition on (X; �). Se
ond, we derive the theorem not only forthe demand side model but for the system of demand and supply models. We �rst des
ribeassumptions needed to obtain the 
onsisten
y of the estimator.In Assumption A1(a), we assume that the observed market share snj for produ
t j is theBernoulli random variables averaged over the n sampled 
onsumers (i = 1; : : : ; n). Assump-tion A1(b) guarantees that the simulation error ��jr de�ned in (30) relative to the number R ofthe simulation draws is of the same order as the sampling error �ji relative to the number n ofthe sample. These are used to 
ontrol the magnitudes of the respe
tive errors. Note that inA1(a), sn and s0 are the result of 
onsumer behavior, and the 
onsumers are assumed to beable to observe the true \unobserved" produ
t 
hara
teristi
s, �(�0d; s0; P 0). As a result, we 
an
ondition on X and on �(�0d; s0; P 0), but not on a general � when evaluating the moments ofthe di�eren
e sn � s0. On the other hand, in A1(b), �(X ; �;�d; PR) and �(X ; �;�d; P 0), bothof whi
h are model-
al
ulated shares, are just the devi
e resear
hers use and they are not ableto observe the unobserved produ
t 
hara
teristi
s, true or otherwise. As a result, we need to10



treat � as unobserved and unknown, and we need to 
ondition on the unobserved and unknown� along with on the X.Assumption A2 is regularity 
ondition for the share fun
tion. In A2(a), we �rst assume thatthe model-
al
ulated market share �j(X ; �;�d; P ) for produ
t j will not abruptly 
hange as theunobserved produ
t quality �k for produ
t k 
hanges. Moreover the H in (36) being invertiblemeans one 
an quantify the 
hange in unobserved produ
t quality ��j for produ
t j(j = 1; : : : ; J)asso
iated with the 
hange in the model-
al
ulated market share ��k for produ
t k(k = 1; : : : ; J).Assumption A2(b) stipulates how the model-
al
ulated market share �j(X; �;�d; P ) for produ
tj is a�e
ted by the 
hanges in unobserved produ
t quality for produ
t k. It is positively a�e
tedby the improvement of its own unobserved quality, but adversely in
uen
ed by those of the otherprodu
ts. The set of assumptions A2(a) and (b) is a suÆ
ient 
ondition for the existen
e of aunique solution � to (4) for every (�d; s; P ) (See appendix in Berry (1994) for detail).It looks as if we need a similar setup for the supply side unobserved 
ost shifter !j relative tothe model-
al
ulated market share �k. This is not so, however, be
ause as 
learly seen in (13),the !j(�; s; P ) 
an be obtained as a fun
tion of �(�d; s; P ) aside from the observed (pj;wj)and the parameters (�d;�
) on
e we de
ide to 
hoose whi
h (s; P ) to evaluate, enabling the
hara
teristi
s of �(�d; s; P ) to transmit to !j(�; s; P ). Therefore what we need is the fa
t thatthere exists a pro�t margin mgj(�(�d; s; P );�d; P ) in (10) that is at least lo
ally smooth withrespe
t to �(�d; s; P ) along with smoothness in g(�). Assumption A2(
) guarantees the existen
eof ��1, whi
h in turn guarantees the existen
e of mgj(�(�d; s; P );�d; P ) in (10). We repla
elo
al smoothness of mgj(�(�d; s; P );�d; P ) relative to �(�d; s; P ) with the assumption A7. Wewill 
ome ba
k to this when explaining A7. As for smoothness of g(�), we reiterate that thesingle argument fun
tion g(�) is monotoni
 and 
ontinuously di�erentiable with �nite derivativefor all realizable values of 
ost. We 
hoose not to in
lude this in the assumptions simply be
ausethis does not rise to the same level as the other assumptions are.In the situation we are 
onsidering here, the number J of the produ
ts in the market in
reases.This means that the \
onditionally" true market shares s0 and also the theoreti
al market shares�(X; �;�d; P 0) generally approa
h to zero as J grows large. Assumptions A3(a),(b) guaranteethat sn and �(X ; �;�d; PR) 
onverge to s0 and �(X ; �;�d; P 0) faster respe
tively than thespeed at whi
h s0 and �(X ; �;�d; P 0) 
onverge to zero.Assumption A4 is on instrumental variables. Throughout the paper, we treat the produ
t
hara
teristi
s x1j as exogenous and so are the demand side instruments zdj . We impose inA4(a) a sto
hasti
 boundedness and an uniformly integrability on zdj . In assumption A4(b), thesame restri
tions are imposed on the supply side instruments z
j .Assumption A5 is a 
ondition that bounds jjG(�; s0; P 0)jj away from jjG(�0; s0; P 0)jj (whi
h
onverges to zero in probability) over � outside of a neighborhood of �0. This 
ondition 
orre-sponds to 
ondition (iii) in Theorem 3.1 of Pakes and Pollard (1989).For all �d, the value of � = �(�d; s0; P 0) that satis�es the equation �(X; �;�d; P 0) = s0 isassumed unique. Sin
e the sum of the market shares in
luding that of the outside good{s00{is�xed to be one, this �(�d; s0; P 0) also satis�es�(X ; �;�d; P 0)=�0(X ; �;�d; P 0) = s0=s00:De�ne a fun
tion � J(�) : <J ! <J su
h that � J(s) = (log(s1=s0); : : : ; log(sJ=s0)). Then, from(27), the relation is equivalent to saying that� J(�(X; �;�d; P 0)) = � J(s0) = � J(�(X; �(�d; s0; P 0);�d; P 0))at � = �(�d; s0; P 0) for all �d. Assumption A6 guarantees that any � outside the Æ neighborhoodof the �(�d; s0; P 0) 
annot make � J(�(X ; �;�d; P 0)) 
lose to � J(s0) within the range of C(Æ)in terms of the averaged Eu
lidean distan
e with probability tending to one. The 
hoi
e of this11



metri
 is ne
essary be
ause we allow for the fa
t that the dimension of the model-
al
ulatedmarket share � in
reases. The fun
tional treatment � J is due to making this assumption easierto verify for logit-like demand models.In assumption A7, we assume the pro�t margins J� 12mg(�(�d; s; P );�d; P ) have sto
hasti-
ally equi
ontinuity-like 
hara
teristi
s in (�; P ) at (�(�d; s0; P 0); P 0) for any �d 2 �d. As wesee in the proof, we show that Pr[�(�d; sn; PR) 62 N�0(�d; Æ)℄ ! 0 and Pr[PR 62 NP 0(Æ)℄ ! 0for Æ > 0 as J grows large. With these 
onvergen
e in probability results along with assump-tion A7, we are able to show the averaged Eu
lidean distan
e betweenmg(�(�d; s0; P 0);�d; P 0)andmg(�(�d; sn; PR);�d; PR) is 
lose uniformly in �d 2 �d. We should note that assumption A7is not sto
hasti
 equi
ontinuity as de�ned be
ause the dimension of �(�d; s0; P 0) grows large,though �(�d; sn; PR) 
onverges to �(�d; s0; P 0) in probability in averaged Eu
lidean metri
.One more 
omment on the behavior of the dimension in
reasing �(�d; s0; P 0). It shouldbe noted that when evaluated at the true parameter value �0d as J in
reases, say, from 100 to500, the �rst 100 elements of �(�0d; s0; P 0) at J = 500 must be equal to the all 100 elements of�(�0d; s0; P 0) at J = 100. This fa
t does not hold in general when evaluated at �d 6= �0d. Forinstan
e there is no guarantee that the �rst 100 elements of �(�d; s0; P 0) at J = 500 are equalto �(�d; s0; P 0) at J = 100.Assumption A1 (a) Given the set of produ
t 
hara
teristi
s (X ; �(�0d; s0; P 0)), the di�eren
esn�s0 between the observed market share sn and the \
onditionally" true market share s0 have
onditional mean E�jx;�[�njX; �(�0d; s0; P 0)℄= E�jx;�[sn � s0jX; �(�0d; s0; P 0)℄ = 0 (31)with the 
onditional varian
e-
ovarian
e matrixV 2 = E�jx;�[(sn � s0)(sn � s0)0jX ; �(�0d; s0; P 0)℄= 1n �diag[s0℄� s0s00� : (32)(b) For ea
h �d, given the set of produ
t 
hara
teristi
s (X ; �), the di�eren
e �(X ; �;�d; PR)��(X; �;�d; P 0) have 
onditional meanE��jx;�[�(X; �;�d; PR)� �(X; �;�d; P 0)jX ; �℄ = 0 (33)with the 
onditional varian
e-
ovarian
e matrixV 3 = E��jx;� � n�(X ; �;�d; PR)� �(X ; �;�d; P 0)o�n�(X ; �;�d; PR)� �(X ; �;�d; P 0)o0 ���X; �� (34)whose order of magnitude relative to R is the same as that of V 2 relative to n or,R �O(V 3) = n � O(V 2): (35)Assumption A2 (a) For every �nite J , for all �d 2 �d, and for all P in a neighborhood ofP 0, ��j(X ; �;�d; P )=��k exists, and is 
ontinuously di�erentiable both in � and �d. The matrixH(�;�d; P ) = ��(X; �;�d; P )=��0 (36)is invertible for all J .(b) For every (X; �;�d; P ), ��j(X; �;�d; P )=��j > 0 for j = 1; : : : ; J ,12



and ��j(X ; �;�d; P )=��k < 0 for k; j = 1; : : : ; J; k 6= j.(
) For every �nite J , for all �d 2 �d, and for all P in a neighborhood of P 0, ��j(X; �;�d; P )=�pkexists for j; k = 1; : : : ; J , and the matrix � whose (j; k) element is de�ned in (8) is invertiblefor all J and 
ontinuously di�erentiable both in � and �d.Assumption A3 The observed market shares sn are 
onsistent with respe
t to s0, i.e., for anyÆ > 0, (a) �s0(sn; s0) = max0�j�J �����snj � s0js0j ����� = op(1): (37)Similarly, the simulated market shares �(X ; �;�d; PR) are 
onsistent with respe
t to �(X ; �;�d; P 0)uniformly over � and �d 2 �d, i.e.,(b) ��(X;�;�d;P 0)(�(X; �;�d; PR);�(X ; �;�d; P 0))= max0�j�J ������j(X ; �;�d; PR)� �j(X; �;�d; P 0)�j(X ; �;�d; P 0) ����� = op(1): (38)for any � and �d 2 �.Assumption A4 (a) The demand side instrumental variables are su
h that the matrix Z 0dZd=Jis sto
hasti
ally bounded, i.e., for all � > 0 there exists anM� su
h that Pr[jjZ 0dZd=J jj > M�℄ < �.Moreover, we suppose jjZ 0dZd=J jj is uniformly integrable in J , i.e.,lim�!1 supJ Z jjZ 0dZd=J jjfjjZ 0dZd=J jj > �gdPx1(X1) = 0where Px1(�) is the joint distribution of X1.(b) The supply side instrumental variables are su
h that the matrix Z 0
Z
=J is sto
hasti
allybounded and uniformly integrable in J .Assumption A5 For all Æ > 0, there exists C(Æ) su
h thatlimJ!1Pr " inf� 62N�0 (Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)# = 1: (39)Assumption A6 For all Æ > 0, there exists C(Æ) su
h thatlimJ!1Pr" inf�d2�d inf� 62N�0 (�d;Æ) J� 12 jj� J(�(X ; �;�d; P 0))�� J(�(X ; �(�d; s0; P 0);�d; P 0))jj > C(Æ)# = 1: (40)Assumption A7 For all Æ > 0 and for any �d 2 �d,limJ!1Pr " sup(�;P )2N�0 (�d;Æ)�NP0 (Æ) J� 12 jjmg(�;�d; P )�mg(�(�d; s0; P 0);�d; P 0)jj > Æ# = 0: (41)Theorem 1 (Consisten
y of �̂) Suppose that A1{A7 hold for some n(J); R(J)!1. Then,�̂ p! �0: 13



3.2 Asymptoti
 NormalityWe next establish the asymptoti
 normality of �̂. Throughout we assume that �̂ is 
onsistentwith respe
t to �0, or assumptions A1{A7 to hold. To derive the asymptoti
 distribution, we �rstde
ompose the unobserved quality �(�d; sn; PR) into three random terms|the unobserved qual-ity �(�d; s0; P 0), the term generated from the sampling error �n, and the term generated fromthe simulation error �R(�d) and substitute this relationship for �(�d; sn; PR) in GdJ(�d; sn; PR).We de
ompose the unobserved 
ost shifter !(�; sn; PR) into three terms likewise and substitutethis relationship for !(�; sn; PR) in G
J(�; sn; PR).Demand Side DerivationWrite �(�d; sn; PR) = �(�d; s0; P 0) + n�(�d; sn; PR)� �(�d; s0; PR)o+n�(�d; s0; PR)� �(�d; s0; P 0)o : (42)For �xed �d, we use Taylor series approximation to the se
ond and the third terms in (42).Spe
i�
ally, by the mean value theorem0 = �(X ; �(�d; sn; PR);�d; PR)� sn= �(X ; �(�d; s0; PR);�d; PR)� sn+��(X ; ��;�d; PR)��0 n�(�d; sn; PR)� �(�d; s0; PR)o= s0 � sn + ��(X; ��;�d; PR)��0 n�(�d; sn; PR)� �(�d; s0; PR)o= ��n + ��(X ; ��;�d; PR)��0 n�(�d; sn; PR)� �(�d; s0; PR)owhere �� is J � 1 ve
tor of the values between �(�d; sn; PR) and �(�d; s0; PR). Noti
e that wewrite ��(X; ��;�d; PR)��0 = 0BBBB� ��1��1 �����1 � � � ��1��J �����1... . . . ...��J��1 �����J � � � ��J��J �����J 1CCCCA :In other words, the matrix ��(X ; ��;�d; PR)=��0 
ontains ��1; : : : ; ��J in its 1st to the Jth row,all of whi
h 
an be distin
t. For notational 
onvenien
e however, we suppress the indi
es in ��jand simply write ��. From assumption A2(a) the matrix H(�;�d; PR) = ��(X ; �;�d; PR)=��0is invertible for ea
h � 2 N�0(�d; �) with probability tending to one, we 
an write�(�d; sn; PR)� �(�d; s0; PR) = (��(X; ��;�d; PR)��0 )�1 �n (43)with probability tending to one. Likewise,0 = �(X ; �(�d; s0; PR);�d; PR)� s0= �(X ; �(�d; s0; P 0);�d; PR)� s0+��(X ; �;�d; PR)��0 n�(�d; s0; PR)� �(�d; s0; P 0)o14



= �(X ; �(�d; s0; P 0);�d; PR)� �(X ; �(�d; s0; P 0);�d; P 0)+��(X ; �;�d; PR)��0 n�(�d; s0; PR)� �(�d; s0; P 0)o= �R(�d) + ��(X ; �;�d; PR)��0 n�(�d; s0; PR)� �(�d; s0; P 0)owhere � is J � 1 ve
tor of values between �(�d; s0; PR) and �(�d; s0; P 0). By assumption A2(a),�(�d; s0; PR)� �(�d; s0; P 0) = �(��(X; �;�d; PR)��0 )�1 �R(�d) (44)with probability tending to one. Therefore, by substituting (43) and (44) for (42) and using thenotation in (36) we obtain�(�d; sn; PR)= �(�d; s0; P 0) +(��(X ; ��;�d; PR)��0 )�1 �n �(��(X; �;�d; PR)��0 )�1 �R(�d)= �(�d; s0; P 0) +H�1(��;�d; PR)�n �H�1(�;�d; PR)�R(�d): (45)Substituting (45) for GdJ(�d; sn; PR) in (22) givesGdJ(�d; sn; PR)= J�1Z 0d�(�d; sn; PR)= J�1Z 0d�(�d; s0; P 0) + J�1Z 0d nH�1(��;�d; PR)�n �H�1(�;�d; PR)�R(�d)o= GdJ(�d; s0; P 0) + J�1Z 0d nH�1(��;�d; PR)�n �H�1(�;�d; PR)�R(�d)o : (46)Now we approximate GdJ(�d; sn; PR) within the neighborhood of �0d by the following fun
tionGdJ(�d). GdJ(�d) = GdJ(�d; s0; P 0)+J�1Z 0dH�1(�(�0d; s0; P 0);�0d; P 0)n�n � �R(�0d)o : (47)Cost Side DerivationWrite !(�; sn; PR) = !(�; s0; P 0) + f!(�; sn; PR)� !(�; s0; PR)g+f!(�; s0; PR)� !(�; s0; P 0)g: (48)Sin
e g(�) is assumed to be 
ontinuously di�erentiable, the j-th element of the se
ond term in(48) 
an be rewritten by the mean value theorem as!j(�; sn; PR)� !j(�; s0; PR)= g(pj �mgj(�(�d; sn; PR);�d; PR))� g(pj �mgj(�(�d; s0; PR);�d; PR))= g(pj �mgj(�(�d; s0; PR);�d; PR))� g(pj �mgj(�(�d; s0; PR);�d; PR))15



+�g(pj �mgj(���;�d; PR))��0 f�(�d; sn; PR)� �(�d; s0; PR)g= � _g(pj �mgj(���;�d; PR))�mgj(���;�d; PR)��0 f�(�d; sn; PR)� �(�d; s0; PR)g (49)where ��� is between �(�d; sn; PR) and �(�d; s0; PR). By substituting (43) for (49) and using thenotation in (36), we obtain!j(�; sn; PR)� !j(�; s0; PR)= � _g(pj �mgj(���;�d; PR))�mgj(���;�d; PR)��0 H�1(��;�d; PR)�n:In ve
tor form, this 
an be expressed as!(�; sn; PR)� !(�; s0; PR)= �L(���;�d; PR)M(���;�d; PR)H�1(��;�d; PR)�n (50)where M(�;�d; P ) = �mg(�;�d; P )��0 (51)and L(�;�d; P )= 0B� _g(p1 �mg1(�;�d; P )) 0. . .0 _g(pJ �mgJ(�;�d; P )) 1CA : (52)A
tually, J � J matri
es L(���;�d; PR) and M(���;�d; PR) 
ontain ���1; : : : ; ���J in its 1st to theJth rows, all of whi
h 
an be distin
t, but we here suppress this fa
t for notational simpli
ity.Similarly, we rewrite the third term in (48) by the mean value theorem,!(�; s0; PR)�!(�; s0; P 0)= g(p�mg(�(�d; s0; PR);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))= g(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))�L(�;�d; PR)M (�;�d; PR)f�(�d; s0; PR)� �(�d; s0; P 0)g (53)where � is between �(�d; s0; PR) and �(�d; s0; P 0). Substituting (44) for (53) gives!(�; s0; PR)� !(�; s0; P 0)= g(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))+L(�;�d; PR)M (�;�d; PR)H�1(�;�d; PR)�R(�d): (54)By substituting (50) and (54) for (48), we have!(�; sn; PR)= !(�; s0; P 0)+g(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))�L(���;�d; PR)M (���;�d; PR)H�1(��;�d; PR)�n+L(�;�d; PR)M (�;�d; PR)H�1(�;�d; PR)�R(�d): (55)16



Thus, the supply side moments G
J(�; sn; PR) = J�1Z 0
!(�; sn; PR) are rewritten by (55) asG
J(�; sn; PR)= J�1Z 0
!(�; sn; PR)= G
J(�; s0; P 0)+J�1Z 0
 ng(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))o�J�1Z 0
L(���;�d; PR)M(���;�d; PR)H�1(��;�d; PR)�n+J�1Z 0
L(�;�d; PR)M(�;�d; PR)H�1(�;�d; PR)�R(�d): (56)We approximate the supply side moments G
J(�; sn; PR) within the neighborhood of �0 by thefollowing fun
tion G
J(�).G
J(�) = G
J(�; s0; P 0)� J�1Z 0
L0M 0H�10 n�n � �R(�0d)o (57)where H0 =H(�(�0d; s0; P 0);�0d; P 0), L0 = L(�(�0d; s0; P 0);�0d; P 0), andM0 =M(�(�0d; s0; P 0);�0d; P 0). LetGJ(�) =  GdJ(�d)G
J(�) ! : (58)The �rst term in GJ(�) is the sample moment evaluated at (s; P ) = (s0; P 0) and thus 
on-tains neither the sampling nor simulation errors, while the se
ond term is an approximationfor the di�eren
e between GJ(�; sn; PR) and GJ(�; s0; P 0). Note that the three 
omponentsin GdJ(�d)|GdJ(�d; s0; P 0), J�1Z 0dH�10 �n, and J�1Z 0dH�10 �R(�0d)|are not mutually indepen-dent be
ause they all in
lude the produ
t 
hara
teristi
s X as well as the unobserved produ
tquality �(�d; s0; P 0), both of whi
h are random. However they are un
orrelated if evaluated at�d = �0d as shown below due to (31) and (33) in assumption A1. For the 
ovarian
e betweenGdJ(�0d; s0; P 0) and J�1Z 0dH�10 �n, we haveCov[GdJ(�0d; s0; P 0); J�1Z 0dH�10 �n℄= E[GdJ(�0d; s0; P 0) � J�1Z 0dH�10 �n℄�E[GdJ(�0d; s0; P 0)℄ E[J�1Z 0dH�10 �n℄= Ex;�[E�jx;�[GdJ(�0d; s0; P 0) � J�1Z 0dH�10 �njX; �(�0d; s0; P 0)℄℄�Ex1;�[GdJ(�0d; s0; P 0)℄ Ex;�[E�jx;�[J�1Z 0dH�10 �njX; �(�0d; s0; P 0)℄℄= Ex;�[GdJ(�0d; s0; P 0) � J�1Z 0dH�10 E�jx;�[�njX; �(�0d; s0; P 0)℄℄�Ex1;�[GdJ(�0d; s0; P 0)℄ Ex;�[J�1Z 0dH�10 E�jx;�[�njX; �(�0d; s0; P 0)℄℄= Ex;�[GdJ(�0d; s0; P 0) � J�1Z 0dH�10 � 0℄�Ex1;�[GdJ(�0d; s0; P 0)℄ Ex;�[J�1Z 0dH�10 � 0℄= 0:Similarly, we obtain Cov[GdJ(�0d; s0; P 0); J�1Z 0dH�10 �R(�0d)℄ = 0. Sin
e �n and �R(�0d) are gen-erated by the distin
t sampling pro
ess given (X ; �(�0d; s0; P 0)), they are 
onditionally indepen-dent. Thus, for the 
ovarian
e between J�1Z 0dH�10 �n and J�1Z 0dH�10 �R(�0d), we also obtainCov[J�1Z 0dH�10 �n; J�1Z 0dH�10 �R(�0d)℄ = 0.On the supply side, we 
an similarly show that the three 
omponents in G
J(�0)|G
J(�0; s0; P 0),J�1Z 0
L0M0H�10 �n, and J�1Z 0
L0M 0H�10 �R(�0d)|are mutually un
orrelated by using A1.These fa
ts enable us to 
al
ulate the asymptoti
 varian
e-
ovarian
e matrix of J 12GJ(�0) as a17



sum of the three varian
e-
ovarian
e matri
es, ea
h derived from the three separate 
omponentsin GJ(�0).We prove that (1) the di�eren
e between J 12GJ(�; sn; PR) and J 12GJ(�) to be op(1) withinany shrinking neighborhood of �0, and thus the estimator �� whi
h minimizes jjGJ(�)jj hasthe same asymptoti
 distribution as �̂ whi
h minimizes jjGJ(�; sn; PR)jj. Then we prove that(2) �� is asymptoti
ally normally distributed with varian
e-
ovarian
e matrix 
onsisting of thethree 
omponents 
orresponding to the term GJ(�; s0; P 0), the term involving �n and the term
onsisting of �R(�0d) by applying a version of Theorem 3.3 in Pakes and Pollard (1989).Assumptions B5(a){(e) are 
onditions that enable us to 
ontrol the di�eren
es betweenJ 12GJ(�; sn; PR) and J 12GJ(�) within the shrinking neighborhood of (�(�0d; s0; P 0);�0d; P 0). Es-pe
ially, in B5(a)-(d), we assume those di�eren
es have sto
hasti
 equi
ontinuity-like 
hara
ter-isti
s at (�;�d; P ) = (�(�0d; s0; P 0);�0d; P 0). The assumptions B5(a) and B5(b) are respe
tivelyon the sampling and the simulation errors for the demand side moments, while B5(
) and B5(d)are on those for the supply side moments. Assumption B5(e) is on the pro�t margin.Assumptions B1, B2 and B3 have essentially the same roles as the 
onditions (v), (ii) and (iii)respe
tively in Theorem 3.3 of Pakes and Pollard (1989). Assumption B1 is on the true parameter�0. Assumption B2 is the di�erentiability 
ondition (di�erentiable in �) for the expe
tation ofGJ(�; s0; P 0). Given assumption B2, B3 implies that GJ(�; s0; P 0) 
an be approximated by�J(� � �0) +GJ(�0; s0; P 0) near �0. Assumptions B4(a){(
) determine the magnitude of thethree 
omponents in J 12GJ(�0), where ea
h 
omponent is shown to follow asymptoti
ally normal,while assumptions B4(d){(f) are the Lyapunov 
onditions used in the 
entral limit theorem.Assumption B6 is the regularity 
ondition for the pro�t margin mg(�;�d; P ) whi
h guaranteesits smoothness in terms of � and �d.Assumption B1 �0 is an interior point of �.Assumption B2 For all � in some Æ > 0 neighborhood of �0,E[GJ(�; s0; P 0)℄ =  Ex1;�[GdJ(�d; s0; P 0)℄Ew1;![G
J(�; s0; P 0)℄ != �J(� � �0) + o(jj� � �0jj) (59)uniformly in J . The matrix �J = (�dJ 0;�
J 0)0 ! � = (�d0;�
0)0 as J ! 1, where �J has full
olumn rank.Assumption B3 For all sequen
es of positive numbers ÆJ su
h that ÆJ ! 0,(a) supjj�d��0djj�ÆJ ������J 12 nGdJ(�d; s0; P 0)� Ex1;�[GdJ(�d; s0; P 0)℄o�J 12 nGdJ(�0d; s0; P 0)� Ex1;�[GdJ(�0d; s0; P 0)℄o������ = op(1) (60)and (b) supjj���0jj�ÆJ ������J 12 nG
J(�; s0; P 0)� Ew1;![G
J(�; s0; P 0)℄o�J 12 nG
J(�0; s0; P 0)� Ew1;![G
J(�0; s0; P 0)℄o������ = op(1): (61)18



Assumption B4 Let Z 0dH�1(�;�; P ) � (ad1(�;�d; P ); : : : ;adJ(�;�d; P ));�Z 0
L(�;�d; P )M (�;�d; P )H�1(�;�d; P ) � (a
1(�;�d; P ); : : : ;a
J(�;�d; P )):Set Y Ji(�;�d; P ) � 1nJ 12 JXj=1 adj (�;�d; P )�ji;a
j(�;�d; P )�ji ! ;Y �Jr(�;�d; P ) � 1RJ 12 JXj=1 adj (�;�d; P )��jr(X ; �;�d)a
j(�;�d; P )��jr(X ; �;�d) ! :Suppose that (a) limJ!1Vx1;�;w1;! " Z 0d�(�0d; s0; P 0)=J 12Z 0
!(�0; s0; P 0)=J 12 !# = �1; (62)(b) limn;J!1nV�;x;�[Y Ji(�(�0d; s0; P 0);�0d; P 0)℄ = �2; (63)(
) limR;J!1RV��;x;�[Y �Jr(�(�0d; s0; P 0);�0d; P 0)℄ = �3 (64)for �nite positive de�nite matri
es �1;�2 and �3. Suppose that the following Lyapunov 
ondi-tions hold. (d) JXj=1Ex1;�;w1;! 24���������� zdj�j(�0d; s0; P 0)=J 12z
j!j(�0; s0; P 0)=J 12 !����������2+Æ35 = o(1); (65)(e) nE�;x;�[jjY Ji(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄ = o(1); (66)(f) RE��;x;�[jjY �Jr(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄ = o(1) (67)for some Æ > 0.Assumption B5 For all sequen
es of positive numbers ÆJ with ÆJ ! 0, we assume(a) supjj�d��0djj�ÆJ sup(�1;P )2fN�0 (�0d;ÆJ)gJ�NP0(ÆJ ) ������J� 12Z 0d nH�1(�1;�d; P )�H�10 o �n������= op(1); (68)(b) supjj�d��0djj�ÆJ sup(�1;P )2fN�0 (�0d;ÆJ)gJ�NP0(ÆJ ) ������J� 12Z 0d nH�1(�1;�d; P )�R(�d)�H�10 �R(�0d)o������ = op(1); (69)(
) supjj�d��0djj�ÆJ sup(�1;�2;P )2fN�0 (�0d;ÆJ )g2J�NP0(ÆJ ) ������J� 12Z 0
�nL(�1;�d; P )M (�1;�d; P )H�1(�2;�d; P )�L0M0H�10 o �n������= op(1); (70)(d) supjj�d��0djj�ÆJ sup(�1;�2;P )2fN�0 (�0d;ÆJ )g2J�NP0(ÆJ ) ������J� 12Z 0
�nL(�1;�d; P )M (�1;�d; P )H�1(�2;�d; P )�R(�d)�L0M0H�10 �R(�0d)o ������= op(1); (71)(e) supjj�d��0djj�ÆJ supP2NP0(ÆJ ) ������J� 12Z 0
fg(p�mg(�(�d; s0; P 0);�d; P )�g(p�mg(�(�d; s0; P 0);�d; P 0)g������ = op(1) (72)19



where �1 = (�11; : : : ; �1J) and �2 = (�21; : : : ; �2J) are respe
tively a set of distin
t J ve
tors, ea
hve
tor 
orresponds to ea
h row of J � J matri
es L(�;�d; P ), M(�;�d; P ) and H�1(�;�d; P ).Assumption B6 For every �nite J , for all �d 2 �d, and for all P in a neighborhood of P 0,M(�;�d; P ) = �mg(�;�d; P )=��0 (73)exists and 
ontinuous both in � and �d.Theorem 2 (Asymptoti
 Normality of �̂) Suppose that A1{A7 and B1{B6 hold for somen(J); R(J) ! 1. Then, the estimator �̂ that minimizes jjGJ(�; sn; PR)jj is asymptoti
allynormal at the rate of J 12 :J 12 (�̂ � �0) w; N [0; (�0�)�1�0��(�0�)�1℄ (74)with � = �1 +�2 +�3.4 Estimating Demand and Supply Systems with Pur
hasing In-formation on the Consumer's Demographi
s4.1 Additional Moments with Pur
hasing InformationThe framework in BLP(1995) uses the orthogonal 
onditions between the unobserved produ
t
hara
teristi
s (�j ; !j) and the exogenous instrumental variables (zdj ;z
j) to obtain the GMMestimate of the parameter �. For some markets, however, market summaries su
h as averageddemographi
s of 
onsumers who pur
hased spe
i�
 type of produ
ts are publi
ly available, evenif their detailed individual-level data su
h as pur
hasing history are not. In the U.S. automo-bile market, for instan
e, we know the median in
ome of 
onsumers who pur
hased domesti
,European, or Japanese vehi
les from publi
ations su
h as the Ward's Motor Vehi
le Fa
ts &Figures. In this se
tion, we �rst generalize the idea given by Petrin (2002), who extends theBLP framework by additional moment 
onditions 
onstru
ted from the market summary datato the GMM. We then give the asymptoti
 theorem to this GMM estimator and un
over the
onditions under whi
h the use of the additional moment 
onditions allows us to estimate of thedemand side parameters more pre
isely.First we de�ne some words and notations. Dis
riminating attributes is the produ
t 
hara
-teristi
 or attribute that enables 
onsumers to dis
riminate some produ
ts from others. When wesay 
onsumer i takes a dis
riminating attribute q, this means that 
onsumer 
hooses a produ
tfrom a group of produ
ts whose 
hara
teristi
 or attribute have dis
rimating attribute q. An au-tomobile attribute \imports" is one of su
h dis
riminating attributes. When we say a 
onsumer
hooses this attribute, what we mean is that the 
onsumer pur
hases an imports. Similarly,\minivan" and \
osting less than $10,000" are examples of the dis
riminating attribute as wede�ne here. We 
onsider a �nite number of dis
riminating attributes (q = 1; : : : ; Np) and de-note all the produ
ts involved in attribute q as Qq. By de�nition, dis
riminating attributes foroutside good is unde�ned.We next 
onsider expe
tation of 
onsumer's demographi
s 
onditional on a spe
i�
 dis
rimi-nating attribute. Suppose that some information on demographi
s for 
onsumer t are available.Demographi
 variables su
h as age, family size, or, in
ome, is already numeri
al, but for otherdemographi
s su
h as having 
hildren, belonging to 
ertain age group, 
hoi
e of residentialarea, 
an be numeri
ally expressd using indi
ators. We denote this numeri
ally represented Ddimensional demographi
s as �ot = (�ot1; : : : ; �otD)0. We assume that the joint distribution of de-mographi
s �ot has a bounded support. The 
onsumer t's observed demographi
 �otd; d = 1; : : : ;D20



is averaged over 
onsumers who 
hoose dis
riminating attribute q in the population to obtainthe 
onditional expe
tation �0dq = E[�otdjCt 2 Qq;X ; �(�0d; s0; P 0)℄. An example of this 
ondi-tional expe
tation would be the expe
ted value of in
ome of 
onsumers in the population P 0who pur
hased imported vehi
les.Sin
e the 
onditional expe
tation 
an be written asE[�otdjCt 2 Qq;X ; �(�d; s0; P 0)℄= Z �otd Pr[d�otdjCt 2 Qq;X ; �(�d; s0; P 0)℄= R �otd Pr[Ci 2 QqjX; �(�d; s0; P 0); �otd℄P 0(d�otd)Pr[Ci 2 QqjX; �(�d; s0; P 0)℄= R �otd Pr[Ct 2 QqjX ; �(�d; s0; P 0);�t℄P 0(d�t)Pr[Ct 2 QqjX; �(�d; s0; P 0)℄= Z �otdPj2Qq �tj(X ; �(�d; s0; P 0);�t;�d)Pj2Qq �j(X; �(�d; s0; P 0);�d; P 0)P 0(d�t); (75)we 
an form an identity�0dq � Z �otdPj2Qq �tj(X ; �(�d; s0; P 0);� t;�d)Pj2Qq �j(X; �(�d; s0; P 0);�d; P 0)P 0(d�t) = 0 (76)at �d = �0d for q = 1; : : : ; Np; d = 1; : : : ;D. Although P 0 is so far assumed known, we typi
allywill not be able to 
al
ulate the se
ond term on the left-hand side of (76) analyti
ally and willhave to approximate it by the i.i.d. sample �t; t = 1; : : : ; T from the underlying distribution P 0.The sample moments GaJ;T (�d; s0; P 0;�0) 
orresponding to (76) areGaJ;T (�d; s0; P 0;�0) = �0 � 1T TXt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0) (77)where
�0 =0BBBBBBBBBBBBB�

�011...�01Np...�0D1...�0DNp
1CCCCCCCCCCCCCA ;  t(�;�d; P ) =0BBBBBB� Pj2Q1 �tj(X ;�;�t;�d)Pj2Q1 �j(X;�;�d;P )...Pj2QNp �tj(X;�;�t;�d)Pj2QNp �j(X;�;�d;P )

1CCCCCCA : (78)
The symbol 
 denotes the Krone
ker produ
t. The quantity  t(�;�d; P ) is the 
onsumer t'smodel-
al
ulated pur
hasing probability of produ
ts with dis
riminating attribute q relative tothe model-
al
ulated market share of the same produ
ts. This random sample �t; t = 1; : : : ; Tof 
onsumers is taken independent of the sample �r; r = 1; : : : ; R in (20) for 
al
ulating thesimulated market shares �j(X ; �;�d; PR). Note that these additional moment 
onditions are
onditional on produ
t 
hara
teristi
s (X; �(�0d; s0; P 0)), and thus depend on the indi
es J andT . Suppose that we do not know the 
onditional expe
tation of demographi
s �0dq, instead, wehave its estimate �Ndq from independent sour
es su
h as CEX automobile supplement in the 
aseof Petrin (2002). We assume N independent 
onsumer draws with their pur
hasing histories21



are used to 
onstru
t �N = (�N11; : : : ; �N1Np ; : : : ; �ND1; : : : ; �NDNp)0 and de�ne the sampling error �N
ontained in �N as follows. �N = �N � �0 = 1N NXi0=1 �#i0 : (79)In short, we assume here that �N is the sum of N 
onditionally independent random variablesgiven the set of produ
t 
hara
teristi
s (X; �) of all produ
ts. Note that quantities n and Nare respe
tively the number of samples taken to 
al
ulate the observed market share and theobserved demographi
 average of 
onsumers pur
hasing produ
t with dis
riminating attribute.As su
h they are beyond the 
ontrol of resear
hers. On the other hand quantities R and Tare respe
tively the number of samples taken to simulate the model-
al
ulated market shareas well as the model-
al
ulated demographi
 average of 
onsumers pur
hasing produ
t withdis
riminating attribute from the population P 0 of 
onsumers. They are both 
hosen by theresear
hers and these two samples must be independent.Sin
e we evaluate the unobserved quality �(�d; s; P ) at (s; P ) = (sn; PR) in (77), the samplemoments we 
an 
al
ulate areGaJ;T (�d; sn; PR;�N ) = �N � 1T TXt=1 �ot 
 t(�(�d; sn; PR);�d; PR) (80)for �d 2 �d. As an extension to BLP(1995), we use GaJ;T (�d; sn; PR;�N ) to estimate �, inaddition to the two sample moments GdJ(�d; sn; PR) in (22) and G
J(�; sn; PR) in (23). Theobje
tive fun
tion we minimize in the GMM estimation is the sum of norm of GdJ(�d; sn; PR),G
J(�; sn; PR), and GaJ;T (�d; sn; PR;�N ), that is, the norm ofGJ;T (�; sn; PR;�N ) = 0B� GdJ(�d; sn; PR)G
J(�; sn; PR)GaJ;T (�d; sn; PR;�N ) 1CA : (81)In the following, we derive the CAN properties for the GMM estimator �� whi
h minimizesjjGJ;T (�; sn; PR;�N )jj. Noti
e that the �rst two moments GdJ and G
J in GJ;T are samplemoments averaged over produ
ts j = 1; : : : ; J , while the third moment GaJ;T is averaged over
onsumers t = 1; : : : ; T . To derive asymptoti
s for ��, we have to in
rease two distin
t samplesize indi
es J and T simultaneously. We assume the sample size T of 
onsumers is always greaterthan the number of produ
ts J , and then T grows faster than J , that is, J=T ! 0 as J !1.4.2 Consisten
yFor any Æ > 0, we show that limJ;T!1Pr[jj�� � �0jj > Æ℄ ! 0. The proof is a straightforwardextension to the 
onsisten
y proof for �̂ in Theorem 1.Assumption A8 bounds jjGaJ;T (�d; s0; P 0;�0)jj away from jjGaJ;T (�0d; s0; P 0;�0)jj over �d out-side of a neighborhood of �0d. This 
ondition parallels assumption A5, whi
h boundsGJ(�; s0; P 0)away from GJ(�0; s0; P 0).In assumption A9, we assume an asymptoti
 property the dis
riminating attributes q; q =1; : : : ; Np must obey. We guarantee non-zero aggregate market shares for produ
ts with dis-
riminating attribute q when the number of produ
ts J grows large. With this assumption andthe following assumption A10(b), the additional moment de�ned in (77) has �nite varian
e at�d = �0d. 22



Assumption A10(a) spe
i�es properties for error 
ontained in the additional information �Ndq.We assume �Ndq is unbiased for the true value �0dq and 
onsistent at a rate of N1=2 given theprodu
t 
hara
teristi
s (X ; �(�0d; s0; P 0)). Assumption A10(b) guarantees a �niteness for �0dq.Assumption A11 is on the proportion of the probabilities taking dis
riminating attributesbetween individual t and population P ,  t(�;�d; P ). We assume that the average absolute dis-tan
e between  t(�;�d; P ) and  t(�(�d; s0; P 0);�d; P 0) 
onverges to zero in probability withinthe Æ neighborhood of �(�d; s0; P 0) for any �d 2 �d. This assumption will be used to guaranteethat we 
an bring the sample analogue of the additional moments, GaJ;T (�d; sn; PR;�N ), 
loseenough to GaJ;T (�d; s0; P 0;�N ) for any �d.Assumption A8 For all Æ > 0, there exists C(Æ) su
h thatlimJ;T!1Pr24 inf�d 62N�0d(Æ) jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj � C(Æ)35 = 1: (82)Assumption A9 For all dis
riminating attributes q = 1; : : : ; Np,8<:Xj2Qq �j(X; �(�0d; s0; P 0);�0d; P 0)9=;�2has a �nite mean and varian
e for every J .Assumption A10 (a) For all observed 
onsumer's demographi
s d = 1; : : : ;D and for all dis-
riminating attributes q = 1; : : : ; Np, the sampling error �Ndq � �0dq has zero mean and varian
eof order 1=N 
onditional on produ
t 
hara
teristi
s (X ; �(�0d; s0; P 0)) of all produ
ts, i.e.,E�#jx;� h�Ndq � �0dqjX; �(�0d; s0; P 0)i = 0; (83)V�#jx;� h�Ndq � �0dqjX; �(�0d; s0; P 0)i = Op(1=N): (84)(b) For all observed 
onsumer's demographi
s d = 1; : : : ;D and for all dis
riminating attributesq = 1; : : : ; Np, �0dq has a �nite mean and varian
e for all J , i.e., Ex;�[�0dq℄ <1 and Vx;�[�0dq℄ <1.Assumption A11 For any �d 2 �d, and for all Æ > 0,limJ;T!1Pr � sup(�;P )2N�0 (�d;Æ)�NP0 (Æ) T�1=2jj	(�;�d; P )�	(�(�d; s0; P 0);�d; P 0)jj > Æ� = 0; (85)where 	(�;�d; P ) = ( 1(�;�d; P ); : : : ; T (�;�d; P ))0.Theorem 3 (Consisten
y of ��) Suppose that A1{A11 hold for some n(J; T ); R(J; T ), and N ,all of whi
h grow in�nitely as J and T grow in�nitely. Then, �� p! �0:4.3 Asymptoti
 NormalityTo derive the asymptoti
 normality of �̂ in Theorem 2, we approximated the demand sidemoments GdJ(�d; sn; PR) and the supply side moments G
J(�; sn; PR) respe
tively by GdJ(�d)
23



and G
J(�) within the shrinking neighborhood of �0. Similarly, we will use an approxima-tion to the additional moments GaJ;T (�d; sn; PR;�N ). De
ompose the additional momentsGaJ;T (�d; sn; PR;�N ) into four terms.GaJ;T (�d; sn; PR;�N )= GaJ;T (�d; s0; P 0;�0) + fGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; PR;�N )g+fGaJ;T (�d; s0; PR;�N )�GaJ;T (�d; s0; P 0;�N )g+fGaJ;T (�d; s0; P 0;�N )�GaJ;T (�d; s0; P 0;�0)g: (86)The se
ond term in (86) 
an be written asGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; PR;�N )= �N � 1T TXt=1 �ot 
 t(�(�d; sn; PR);�d; PR)�(�N � 1T TXt=1 �ot 
 t(�(�d; s0; PR);�d; PR))= � 1T TXt=1 �ot 
 f t(�(�d; sn; PR);�d; PR)� t(�(�d; s0; PR);�d; PR)g= � 1T TXt=1 �ot 
 � t(�(�d; s0; PR);�d; PR)� t(�(�d; s0; PR);�d; PR)+� t(�y;�d; PR)�0 (�(�d; sn; PR)� �(�d; s0; PR))�= � 1T TXt=1 �ot 
�t(�y;�d; PR)(�(�d; sn; PR)� �(�d; s0; PR)) (87)where �t(�;�d; P ) = � t(�;�d; P )=��0 and �y = (�y1; : : : ; �yJ) is the set of intermediate ve
torsbetween �(�d; sn; PR) and �(�d; s0; PR). Substituting (43) for (87) givesGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; PR;�N )= � 1T TXt=1 �ot 
�t(�y;�d; P )H�1(��;�d; PR)�n: (88)The third term in (86) isGaJ;T (�d; s0; PR;�N )�GaJ;T (�d; s0; P 0;�N )= �N � 1T TXt=1 �ot 
 t(�(�d; s0; PR);�d; PR)�(�N � 1T TXt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0))= � 1T TXt=1 �ot 
 f t(�(�d; s0; PR);�d; PR)� t(�(�d; s0; P 0);�d; P 0)g= � 1T TXt=1 �ot 
 � t(�(�d; s0; P 0);�d; PR)� t(�(�d; s0; P 0);�d; P 0)24



+� t(�z;�d; PR)�0 (�(�d; s0; PR)� �(�d; s0; P 0))�= � 1T TXt=1 �ot 
 � t(�(�d; s0; P 0);�d; PR)� t(�(�d; s0; P 0);�d; P 0)+�t(�z;�d; PR)(�(�d; s0; PR)� �(�d; s0; P 0))� (89)where �z = (�z1; : : : ; �zJ) is the set of intermediate ve
tors between �(�d; s0; PR) and �(�d; s0; P 0).Substituting (44) for (89) givesGaJ;T (�d; s0; PR;�N )�GaJ;T (�d; s0; P 0;�N )= � 1T TXt=1 �ot 
 � t(�(�d; s0; P 0);�d; PR)� t(�(�d; s0; P 0);�d; P 0)��t(�z;�d; PR)H�1(�;�d; PR)�R(�d)�: (90)The fourth term in (86) isGaJ;T (�d; s0; P 0;�N )�GaJ;T (�d; s0; P 0;�0)= �N � 1T TXt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0)�(�0 � 1T TXt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0))= �N � �0: (91)Consequently, by substituting (88), (90) and (91) for (86), we 
an rewrite the additional momentsGaJ;T (�d; sn; PR;�N ) as follows.GaJ;T (�d; sn; PR;�N )= GaJ;T (�d; s0; P 0;�0)� 1T TXt=1 �ot 
 � t(�(�d; s0; P 0);�d; PR)� t(�(�d; s0; P 0);�d; P 0)+�t(�y;�d; PR)H�1(��;�d; PR)�n ��t(�z;�d; PR)H�1(�;�d; PR)�R(�d)�+�N � �0: (92)We use the following approximation GaJ;T (�d) to GaJ;T (�d; sn; PR;�N ).GaJ;T (�d) = GaJ;T (�d; s0; P 0;�0)� 1T TXt=1 �ot 
�0tH�10 f�n � �R(�0d)g+�N � �0: (93)where �0t � �t(�(�0d; s0; P 0);�0d; P 0).In order to obtain the asymptoti
 normality of ��, we will take the same path as the proof ofTheorem 2, that is, we �rst show that the sample moments GJ;T (�; sn; PR;�N ) in (81) are wellapproximated by GJ;T (�) = 0B� GdJ(�d)G
J(�)GaJ;T (�d) 1CA (94)25



within the ÆJ;T neighborhood of �0 where ÆJ;T is 
onverges to 0 as J; T ! 1, and then showthat the estimator whi
h minimizes the norm of GJ;T (�) is asymptoti
ally normal.Assumption B7 plays the same role on the additional moments GaJ;T (�d; sn; PR;�N ) asassumption B5 does on the GJ(�; sn; PR), or it guarantees that the di�eren
e between GaJ;T (�d)and GaJ;T (�d; sn; PR;�N ) is sto
hasti
ally small enough within the neighborhood of �0d.Assumption B8 and B9 are used in a same way as assumption B2 and B3. Assumption B8is just a di�erentiability 
ondition for the expe
tation of GaJ;T (�d; s0; P 0;�0) at �0d. Given B8,assumption B9 approximates GaJ;T (�d; s0; P 0;�0) by �aJ;T (�d � �0d) +GJ;T (�0d; s0; P 0;�0) near�0d. In assumptions B10(a){(d), we spe
ify the asymptoti
 
ovarian
e for the four terms inT 12GaJ;T (�0d), or T 12GaJ;T (�0d; s0; P 0;�0), T� 12 PTt=1 �ot
�0tH�10 �n, T� 12 PTt=1 �ot
�0tH�10 �R(�0d),and T 12 (�N ��0). These terms are mutually independent 
onditional on the produ
t 
hara
ter-isti
s (X ; �(�0d; s0; P 0)), and thus the asymptoti
 
ovarian
e of T 12GaJ;T (�0d) is the sum of the four
ovarian
e matri
es. Assumptions B10(e){(h) are respe
tively Lyapunov 
onditions ne
essaryto ensure the four terms 
onverge to the normal distribution.Assumption B7 For all dis
riminating attributes q(q = 1; : : : ; Np), and for any ÆJ; T su
h thatÆJ; T ! 0 as J; T !1,(a) supjj�d��0djj<ÆJ; T sup(�1;�2;P )2fN�0 (�0d;ÆJ; T )g2J�NP0 (ÆJ; T ) ��������T� 12 TXt=1 h�t(�1;�d; P )H�1(�2;�d; P )�n��t(�(�0d; s0; P 0);�0d; P 0)H�1(�(�0d; s0; P 0);�0d; P 0)�ni�������� = op(1); (95)(b) supjj�d��0djj<ÆJ; T sup(�1;�2;P )2fN�0 (�0d;ÆJ; T )g2J�NP0 (ÆJ; T ) ��������T� 12 TXt=1 h�t(�1;�d; P )H�1(�2;�d; P )�R(�d)��t(�(�0d; s0; P 0);�0d; P 0)H�1(�(�0d; s0; P 0);�0d; P 0)�R(�0d)i�������� = op(1); (96)(
) supjj�d��0djj<ÆJ; T T 12 Xj2Qq �Rj (�d) = op(1): (97)Assumption B8 For all �d in some Æ > 0 neighborhood of �0d,E[GaJ;T (�d; s0; P 0;�0)℄ = �aJ;T (�d � �0d) + o(jj�d � �0djj) (98)uniformly in J and T . The Matrix �aJ;T ! �a as J; T !1, where �aJ;T has full 
olumn rank.Assumption B9 For all sequen
e of positive numbers ÆJ;T su
h that ÆJ;T ! 0 as J; T !1,supjj�d��0djj�ÆJ; T ������T 12 fGaJ;T (�d; s0; P 0;�0)� E[GaJ;T (�d; s0; P 0;�0)℄g�T 12 fGaJ;T (�0d; s0; P 0;�0)� E[GaJ;T (�0d; s0; P 0;�0)℄g������ = op(1): (99)Assumption B10 Let� TXt=1 �ot 
�t(�;�d; P )H�1(�;�d; P ) � (aa1(�;�d; P ); : : : ;aaJ(�;�d; P ))
26



and set Y aJ;T;i(�;�d; P ) � 1npT JXj=1aaj (�;�d; P )�ji;Y �aJ;T;r(�;�d; P ) � 1RpT JXj=1aaj (�;�d; P )��jr(X ; �;�d):Suppose that (a) limJ;T!1 1T TXt=1V�;x;� ��0 � �ot 
 t(�(�0d; s0; P 0);�0d; P 0)� = �a1; (100)(b) limJ;T;n!1nV�;�;x;�[Y aJ;T;i(�(�0d; s0; P 0);�0d; P 0)℄ = �a2; (101)(
) limJ;T;R!1RV��;�;x;�[Y �aJ;T;r(�(�0d; s0; P 0);�0d; P 0)℄ = �a3 (102)(d) limJ;T;N!1N V�#;x;�[T 12N�1�#i0 ℄ = �a4 (103)for �nite positive de�nite matri
es �a1;�a2, �a3 and �a4. Suppose that for some Æ > 0,(e) TXt=1E�;x;�[jjf�0 � �ot 
 t(�(�0d; s0; P 0);�0d; P 0)g=pT jj2+Æ℄ = o(1); (104)(f) nE�;�;x;�[jjY aJ;T;i(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄ = o(1); (105)(g) RE��;�;x;�[jjY �aJ;T;r(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄ = o(1); (106)(h) N E�#;x;�[jjT 12N�1�#i0 jj2+Æ ℄ = o(1): (107)Theorem 4 (Asymptoti
 Normality of ��) Suppose that A1{A11 and B1{B10 hold for somein
reasing n(J; T ); R(J; T ); N , su
h that T=J !1 as J !1 and N !1. Then, the estimator�� that minimizes jjGJ;T (�; sn; PR;�N )jj is asymptoti
ally normal at the rate of J 12 :J 12 (�� � �0) w; N(0;V ):The varian
e-
ovarian
e matrix V is written asV = (�0�+ �a0�a)�1�0��(�0�+ �a0�a)�1where � = �1 +�2 +�3.Remark 1 The varian
e redu
tion of the estimates through the use of additional moments isdue to the 
omponent �a0�a in the asymptoti
 
ovarian
e matrix in Theorem 4. Noti
e alsothat this asymptoti
 
ovarian
e matrix assumes the ratio of the two size indi
es, J=T , 
onvergesto 0 as J goes to in�nity. For the �nite sample where T does not dominate J , the 
ovarian
ematrix will be V = (�0�+ �a0�a)�1 ��0��+ JT �a0�a�a� (�0�+ �a0�a)�1 (108)where �a = �a1 +�a2 +�a3 +�a4. The term (J=T )�a0�a�a in
reases varian
e of the estimatedparameters. Consequently, the use of the additional moments does not ne
essarily improve thea

ura
y of the estimates. 27



5 Con
rete ExamplesIn this se
tion, we dis
uss the 
onditions that guarantee the assumptions in the previous se
tions.When the number J of produ
ts in the market grows large, the dimension of the market shareve
tor in
reases. This implies that almost all elements of the market share ve
tor de
rease tozero. The rate at whi
h the market share 
onverges to zero and the response of market share tothe 
hange of the unobserved produ
t quality, both of whi
h determine the appropriateness ofthe assumptions, depend on the underlying distribution of the produ
t 
hara
teristi
s and the
onsumer heterogeneity as well as the stru
ture of 
ompetition in the market.In the following, we 
onsider two primal examples to examine the assumptions. The �rst isthe simple logit model in whi
h we 
an analyti
ally solve the equation (4) in terms of � and thusdo not in
ur the simulation error in the model. Without the simulation error, it is fairly easyto verify the assumptions for the logit model. The se
ond is the random 
oeÆ
ient logit model.As dis
ussed in BLP (1995), this model has useful properties when produ
t 
hara
teristi
s and
onsumers' taste are multi-dimensionally distributed and then nature of 
ompetition amongprodu
ts is 
omplex. Our main 
on
ern in the previous se
tion is also in the eÆ
ient estimationfor the random 
oeÆ
ient logit model. However, the random 
oeÆ
ient logit model has no
losed-form solution for (4) and for the inverse of H(�;�d; P ). Thus, our examination has torely on its sto
hasti
 approximation.Logit ModelThe utility fun
tion of 
onsumer i for produ
t j in one of the simplest logit model is given byuij = Æj + �ij ; Æj = �ppj + �xxj + �j (109)where pj and xj are respe
tively the pri
e and the 
hara
teristi
 of produ
t j, and (�p; �x) isthe set of demand parameters �d. The assumption that the 
onsumer heterogeneity �ij beingextreme-value distributed derives the probability of 
onsumer i 
hoosing produ
t j as�j(�;�; P ) = exp(Æj)1 +PJk=1 exp(Æk) : (110)If we assume that the distribution of Æj has a bounded support, the sto
hasti
 magnitude of�j is Op(1=J). This implies that when the number of produ
ts grows large, the market sharefor ea
h produ
t, in
luding outside good, de
reases to zero at the same rate. Therefore we 
anreasonably assume the following 
ondition on the rate at whi
h the market share approa
heszero when we use the logit model for demand.Condition S1(a) There exists positive �nite 
onstants 
 and 
 su
h that with probability one
J � s0j � 
J ; j = 0; 1; : : : ; J: (111)(b) The 
onstant �
 further satis�es the relationship �
Jm < J for ea
h �rm m = 1; : : : ; F , whereJm is the number of produ
ts �rm m produ
es in the markets.Condition S1(a) leads us to s0j = Op(1=J). In addition, this 
ondition bounds the marketshare for ea
h produ
t away from zero for any �xed J , and then the inverse of the market shareis sto
hasti
ally of order of J , i.e., 1=s0j = Op(J). By 
ondition S1(b), we ex
lude the eventthat the aggregate market share for any of �rms dominates in the market, i.e. Pj2Jm s0j �Pj2Jm �
=J = �
Jm=J < 1 at any given J . This guarantees that the inverse of the aggregate28



market share for the other �rms' produ
ts and the outside good, is �nite and thus its sto
hasti
magnitude is of order one, i.e., 1=(1 �Pj2Jm s0j) = Op(1).The limiting behavior of the market shares, both observed and model-
al
ulated, are assumedin assumption A3. Assumptions A3(a) and (b) 
ontrol the way in whi
h sn and �(�;�d; PR)approa
h to the true market share s0 and �(�;�d; P 0) respe
tively. To guarantee assumption A3to hold, we require 
onditions on the growth rates of n and R as J grows large as well as onthe limiting behavior of the true market share s0. We below derive the growth rates of n and Rne
essary to ensure A3 when 
ondition S1 is satis�ed.First, we derive the rate for assumption A3(a). For any Æ > 0,Pr h�s0(sn; s0) > Æi= Pr " max0�j�J �����snj � s0js0j ����� > Æ#� JXj=0Pr"�����snj � s0js0j ����� > Æ#= JXj=0Pr"snj � s0js0j > Æ#+ JXj=0Pr"snj � s0js0j < �Æ#= JXj=0Ex;� "Pr"snj � s0js0j > Æ�����X; �(�0d; s0; P 0)##+ JXj=0Ex;� "Pr"snj � s0js0j < �Æ�����X; �(�0d; s0; P 0)##= JXj=0Ex;� "Pr" nXi=1 �ji > nÆs0j �����X; �(�0d; s0; P 0)##+ JXj=0Ex;� "Pr" nXi=1 �ji < �nÆs0j �����X; �(�0d; s0; P 0)## : (112)Sin
e j�jij < 1 and �ji are independently distributed a
ross i 
onditional on (X ; �(�0d; s0; P 0))with 
onditional mean zero and 
onditional varian
e s0j(1 � s0j) by assumption A1(a), under
ondition S1(a), we 
an rewrite the �rst term in (112) by the Bernstein inequality asJXj=0Ex;� "Pr " nXi=1 �ji > nÆs0j �����X; �(�0d; s0; P 0)##� JXj=0Ex;� 24exp0�� (nÆs0j )22V�jx;� hPni=1 �jijX; �(�0d; s0; P 0)i+ 2nÆs0j1A35= JXj=0Ex;� "exp � (nÆs0j )22ns0j(1� s0j) + 2nÆs0j !#= JXj=0Ex;� "exp � Æ22(1� s0j)=(ns0j ) + 2Æ=(ns0j )!#= J Ex;�[exp(�Æ2Op(n=J))℄: (113)The upper bound for the se
ond term on the right hand side of (112) is obtained similarly. Ifthe term exp(�Æ2Op(n=J)) is individually uniformly integrable, the left-hand side of (113) is29



bounded by J exp(�Æ2O(n=J)). By Cau
hy's 
onvergen
e test (ratio test), we have a suÆ
ient
ondition to ensure J exp(�Æ2O(n=J)) to de
rease to zero: J1+�=n ! 0 for any � > 0. Thisguarantees assumption A3(a). Noti
e that sin
e the logit model in
urs no simulation error inthe evaluation of �, we do not need to take a

ount of assumption A3(b) for the 
ase of the logitmodel.3In assumption A4, we simply assume that the instrumental matri
es Zd and Z
 are respe
-tively sto
hasti
ally bounded.To guarantee assumption A5, it is suÆ
ient that the �rst order derivative matrix ofGJ(�; s0; P 0)in terms of � 2 � is of full 
olumn rank, sin
e then for all Æ > 0, there exist C su
h thatinf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj = inf� 62N�0(Æ) �����������GJ(��; s0; P 0)��0 (� � �0)����������� inf� 62N�0(Æ)Cjj� � �0jj = CÆin probability tending to one as J ! 1. In the following, we examine what it means to have�GJ(�; s0; P 0)=��0 being of full-
olumn rank. We should note that the demand side moment
ontains only the ve
tor of demand parameters, �d, while that for 
ost side 
ontains both ofdemand and 
ost side parameter ve
tors, �d and �
, as noted on page 6. This means that thematrix �GJ(�; s0; P 0)=��0 takes the following form�GJ(�; s0; P 0)��0 =  �GdJ(�d; s0; P 0)=��0d 0�G
J(�; s0; P 0)=��0d �G
J(�; s0; P 0)=��0
 ! : (114)This matrix is full-
olumn rank if the 
omponents �GdJ(�d; s0; P 0)=��0d and �G
J(�; s0; P 0)=��0
are respe
tively of full-
olumn rank, regardless of the value of �G
J(�; s0; P 0)=��0d. Moreover,we know that �G
J(�; s0; P 0)=��0
 = �J�1Z 0
W by the de�nition of the 
ost side moment in(18) and the assumed linear dependen
e of ! onW in (14). By properly 
hoosing the 
ost sideinstruments Z
 and 
ost shifter W , we 
an 
onstru
t �G
J(�; s0; P 0)=��0
 to be of full-
olumnrank for all J . Therefore we only need to 
he
k �GdJ(�d; s0; P 0)=��0d below. The �rst orderderivative of GdJ(�d; s0; P 0) in terms of �d 
an be rewritten as�GJ(�d; s0; P 0)��0d= J�1Z 0d ��(�d; s0; P 0)��0d= �J�1Z 0dH�1(�(�d; s0; P 0);�d; P 0)��(�(�d; s0; P 0);�d; P 0)��0d (115)sin
e ��(�)=��0 � ��=��0d + ��(�)=��0d = 0 from the impli
it fun
tion theorem.For the 
ase of the logit model, we haveH(�(�d; s; P );�d; P ) = S � ss0; and H�1(�(�d; s; P );�d; P ) = S�1 + ii0=s0; (116)where S = diag[s℄ and i = (1; : : : ; 1)0. Furthermore,��(�(�d; s; P );�d; P )��0d = 0B� s1(p1 �P pjsj) s1(x1 �Pxjsj)... ...sJ(pJ �P pjsj) sJ(xJ �Pxjsj) 1CA : (117)3A suÆ
ient 
ondition for assumption A3(b) 
ould have been shown to be J1+�=R! 0 under 
ondition S1(a)by the similarly way, but this 
ondition would have to hold uniformly over �d.30



Substituting (116) and (117) for (115) gives us �GdJ(�d; s0; P 0)=��0d = �J�1(Pzdjpj ;Pzdjxj).Therefore, unless the pri
e pj is a linear fun
tion of the produ
t 
hara
teristi
s xj, �GdJ(�d; s0; P 0)=��0dwith the logit model will be automati
ally of full 
olumn rank.Assumption A6 
an be veri�ed by the similar way as A5, that is, to see whether the �rstorder derivative of � J(�(�;�d; P )) with respe
t to � is of full-rank, whereas the dimension of�� J(�(�;�d; P ))=��0 in
reases as J grows large. In the logit model 
ase, this matrix is offull-rank sin
e �� J(�(�;�d; P ))=��0 = I .In assumption A7, we guarantee that the pro�t marginmg(�(�d; sn; PR);�d; PR) shows thesame distributional 
hara
teristi
s asmg(�(�d; s0; P 0);�d; P 0) as �(�d; sn; PR) and PR 
onvergeto �(�d; s0; P 0) and P 0 respe
tively. Using the logit model for demand determines the stru
tureof the pro�t margin of produ
t j via the response of market share to the pri
e 
hange��j(�;�d; P )�pl = ( �p�j(1� �j) (l = j)��p�j�l (l 6= j) : (118)The pro�t margin of produ
t j with the logit model is 
al
ulated asmgj(�(�d; s; P );�d; P ) = �f��1�(�(�d; s; P );�d; P )gj= � 1�p(1�Pl2J jm sl) (119)where J jm denotes the set of all produ
ts of the �rm that produ
es produ
t j, i.e., J jm = Jm ifj 2 Jm, and �p in (109) is expe
ted to be negative. The (119) implies that when we employ thelogit model for demand, the pro�t margin is the same a
ross the produ
ts one �rm produ
esand is in
reasing in the �rm's aggregate market share. Hen
e, we obtain the fa
t that J=n! 0guarantees assumption A7 under 
ondition S1 as follows.J�1jjmg(�(�d; sn; PR);�d; PR)�mg(�(�d; s0; P 0);�d; P 0)jj2= J�1 FXm=1 Xj2Jm hmgj(�(�d; sn; PR);�d; PR)�mgj(�(�d; s0; P 0);�d; P 0)i2= J�1 FXm=1 Xj2Jm "� 1�p(1�Pl2J jm snl ) + 1�p(1�Pl2J jm s00)#2= J�1��2p FXm=1Jm " Pl2Jm(snl � s0l )(1�Pl2Jm snl )(1�Pl2Jm s0l )#2= J�1��2p FXm=1Jm " bm1� bm � 11�Pl2Jm s0l #2 ;where bm =Pl2Jm(snl �s0l )=(1�Pl2Jm s0l ). We know that 1=(1�Pl2Jm s0l ) = Op(1) by 
onditionS1, and that snl � s0l = Op(1=pnJ) by assumption A1(a). Therefore, bm = JmOp(1=pnJ) �Op(1) � (J=�
)Op(1=pnJ) = Op(pJ=n) by 
ondition S1(b). This givesJ�1jjmg(�(�d; sn; PR);�d; PR)�mg(�(�d; s0; P 0);�d; P 0)jj2� ��2p F�
 " Op(pJ=n)1�Op(pJ=n) � Op(1)#2= Op(J=n); (120)assuming the parameter asso
iated with the pri
e is negative and away from zero.31



We next examine the asymptoti
 normality in Theorem 2. In Theorem 2, the varian
e ofthe GMM estimator 
onsists of the three 
omponents, �1;�2, and �3, ea
h of whi
h is dueto the randomness of the produ
t 
hara
teristi
s, the sampling error, and the simulation errorrespe
tively. Assumption B4(a), (b), and (
) bound these varian
e 
omponents as J goes toin�nity. In the logit model 
ase, �3 = 0 be
ause there is no need for simulation, and thus nosimulation error. We fo
us on B4(b) here. Without loss of generality, we assume below thatthe instrument matri
es, Zd and Z
, are respe
tively J � 1 ve
tors. Then, sin
e the 
onditionalvarian
e of �ji is given as s0j(1� s0j) in assumption A1, �2 generally takes the form of�2 � " �dd2 �d
2�d
2 �

2 #= limJ;n!1 1nJ �Ex;� " Pj(adj )2s0j � (Pj adjs0j)2 Pj adja
js0j � (Pj adjs0j)(Pj a
js0j)Pj adja
js0j � (Pj adjs0j)(Pj a
js0j) Pj(a
j)2s0j � (Pj a
js0j)2 # (121)where adj and a
j are respe
tively jth elements of Z 0dH�10 and �Z 0
L0M 0H�10 . If we simply useg(x) = x as the 
ost fun
tion in (14), the logit model derivesadj = zdjs0j + Pl zdls00 ; a
j = Pl2J jm z
l�0p(1�Pl2J jm s0l )2 ; j = 1; : : : ; J: (122)Let �(J) = J �zd=s00; �j = zdj s00=(J �zds0j) and thus adj = �(J)(1 + �j), thenPj(adj )2s0j � (Pj adjs0j)2= Pj �(J)2(1 + �j)2s0j � (Pj �(J)(1 + �j)s0j)2= �(J)2 hPj s0j � (Pj s0j)2 + 2(1 �Pj s0j)(Pj �js0j) +Pj �2j s0j � (Pj �js0j)2i= �(J)2 hs00(1� s00) + 2s00Pj �js0j � (Pj �js0j)2 +Pj �2j s0ji� �(J)2 hs00(1� s00) + 2s00maxj j�j j �Pj s0j +maxj j�j j2 �Pj s0ji= �(J)2(1� s00) �s00 + 2s00maxj j�j j+maxj j�j j2� :Assuming zdj =�zd = Op(1), we have �(J) = Op(J2) and �j = Op(1=J) under 
ondition S1 andassumption A4. Then, the (1; 1) element of �2 is�dd2 = limJ;n!1 1nJ Ex;� hPj(adj )2s0j � (Pj adjs0j)2i = O(J2=n): (123)By the similar 
al
ulation, we obtain �

2 = Op(J=n) and �d
2 = Op(J2=n). Therefore, we needto in
rease n at least as fast as J2 in order to bound �2 �nite.Assumptions B4(d), (e), and (f) are the Lyapunov 
ondition ne
essary to guarantee that thethree terms in J1=2GJ(�0) follows asymptoti
ally normal respe
tively. We just 
he
k assump-tion B4(e). Hen
e,nE�;x;�[jjY Ji(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄= (n1+ÆJ (2+Æ)=2)�1 E�;x;� �n(Pj adj �ji)2 + (Pj a
j�ji)2o(2+Æ)=2� :We obtainjPj adj �jij � Pj jadj�jij � max1�j�J jadj j �Pj j�jij = max1�j�J jadj j �Pj j1(Ci = j) � s0j j� max1�j�J jadj j �Pjf1(Ci = j) + s0jg� 2max1�j�J jadj j: 32



Similarly, we have jPj a
j�jij � 2max1�j�J ja
j j. Under 
ondition S1, adj and a
j for the logitmodel given in (122) are respe
tively Op(J2) and Op(J). Therefore,nE�;x;�[jjY Ji(�(�0d; s0; P 0);�0d; P 0)jj2+Æ ℄� (n1+ÆJ (2+Æ)=2)�1 E�;x;� h�Op(J2)2 +Op(J)2	(2+Æ)=2i= E�;x;� "Op J3+3Æ=2n1+Æ !# : (124)If we impose that n in
reases as fast as J2, i.e., n = O(J2), the Lyapunov 
ondition B4(e)follows for Æ > 2 by (3 + 3Æ=2) � 2(1 + Æ) = 1� Æ=2 < 0.4Finally, we examine assumption B5. The equi
ontinuity-like 
onditions in B5 guarantee thatGJ(�; sn; PR) is well approximated by GJ(�) near the neighborhood of (�0; �(�0d; s0; P 0); P 0)and then the �rst order residual terms in Taylor approximation 
an be negligible as J goes large.B5(b) and B5(d) are assumptions respe
tively on the demand and 
ost side residuals 
aused bythe simulation error, and B5(d) is on the properties of the 
ost fun
tion g(�) and of the pro�tmargin mg(�) near P 0, they are all unne
essary to 
he
k in the logit model 
ase. Then theremained to 
he
k are B5(a) and B5(
). Sin
e the jth element of Z 0dH�1 is zdj =sj + J �zd=s0 forthe logit model, the residual for the demand side moment in B5(a) evaluated at the observedmarket share sn 
an be bounded as follows.jJ�1=2Z 0dfH�1(�(�d; sn; P 0);�d; P 0)�H�10 g�nj= jJ�1=2PJj=1fzdj =snj + J �zd=sn0 � zdj =s0j � J �zd=s00g�nj j= jJ�1=2PJj=1fzdj (1=snj � 1=s0j )(snj � s0j) + J �zd(1=sn0 � 1=s00)(snj � s0j)gj= jJ�1=2PJj=1fzdj (snj � s0j)2=(snj s0j) + J �zd(snj � s0j)(sn0 � s00)=(sn0 s00)gj� J�1=2PJj=1 jzdj b2j=(1 + bj)j+ J1=2j�zdj � jb0=(1 + b0)j � (1=s00) �PJj=1 jsnj � s0j j� J�1=2max1�j�J jzdj j �PJj=1 jb2j=(1 + bj)j+ J1=2j�zdj � jb0=(1 + b0)j � (s0j=s00) �PJj=1 jbj j;(125)where bj = (snj � s0j )=s0j . From 
ondition S1, assumptions A1(a), and A3(a), we have bj =Op(pJ=n) = op(1). Thus b2j=(1 + bj) = Op(J=n)=(1 +Op(1)) = Op(J=n). Assuming maxj jzdj j =Op(1), both of the �rst and se
ond terms of the right hand side in the above inequality areOp(J3=2=n). Therefore, we need n to grow faster than J3=2. For B5(
), let us abbreviatesnJm =Pj2Jm snj and s0Jm =Pj2Jm s0j and assume �z
Jm = J�1m Pj2Jm z
j = Op(1), thenjJ�1=2Z 0
fL(�(�d; sn; P 0);�d; P 0)M(�(�d; sn; P 0);�d; P 0)H�1(�(�d; sn; P 0);�d; P 0)�L0M0H�10 g�nj= jJ�1=2PJj=1fa
j(�(�d; sn; P 0);�d; P 0)� a
j(�(�d; s0; P 0);�d; P 0)g(snj � s0j)j= ������J�1=2 FXm=1 Xj2Jm( Pl2J jm z
l�p(1�Pl2J jm snl )2 � Pl2J jm z
l�p(1�Pl2J jm s0l )2) (snj � s0j)������= �����J�1=2 FXm=1 ��1p Jm�z
Jm ( 1(1� snJm)2 � 1(1� s0Jm)2) (snJm � s0Jm)�����= ���������J�1=2 FXm=1 ��1p Jm�z
Jm 8>>><>>>: 11� 2 snJm�s0Jm1�s0Jm + � snJm�s0Jm1�s0Jm �2 � 19>>>=>>>; snJm � s0Jm(1� s0Jm)2 ���������4Obviously, if we allow n to grow at the order of J3, this requirement of Æ > 2 
an be relaxed to Æ > 0 as BLP(1995) 
laimed. 33



= ���������J�1=2 FXm=1 ��1p Jm�z
Jm 8>>><>>>: 2 snJm�s0Jm1�s0Jm � � snJm�s0Jm1�s0Jm �21� 2 snJm�s0Jm1�s0Jm + � snJm�s0Jm1�s0Jm �29>>>=>>>; snJm � s0Jm(1� s0Jm)2 ���������� j�pj�1J�1=2 FXm=1Jmj�z
Jm j ��������� 2 snJm�s0Jm1�s0Jm � � snJm�s0Jm1�s0Jm �21� 2 snJm�s0Jm1�s0Jm + � snJm�s0Jm1�s0Jm �2 ��������� � ����� snJm � s0Jm(1� s0Jm)2 �����= j�pj�1J�1=2 � F � O(J) �Op(1)0� 2 �Op �pJ=n��Op(J=n)1� 2 � Op �pJ=n�+Op(J=n)1A �Op �qJ=n�= Op(J3=2=n) (126)where, by 
ondition S1 and assumption A1(a), we use (1 � s0Jm)�1 = Op(1) and snJm � s0Jm =PJm(snl � s0l ) = JmOp(1=pnJ) = Op(pJ=n), and thus (snJm � s0Jm)=(1 � s0Jm) = Op(pJ=n).To summarize, when we use the logit model for demand, the rate of in
rease for n relativeto J required to guarantee the 
onsisten
y of the GMM estimator is of order of J1+� by theargument following (113) and (120), while the rate for the asymptoti
 normality is of order ofJ2 based on the argument following (123){(126).We should note that, to guarantee the CAN property of the estimator in Theorems 1 and 2for the use of the logit model, we have assumed that the number Jm of the produ
ts produ
ed by�rm m in
reases as the number J of produ
ts in the market grows. Instead, the CAN propertyis equally obtained if we �x the number of produ
ts a �rm produ
es to be one and in
rease thenumber F of �rms in the market, i.e, Jm = 1 and F = J ! 1. As seen in (119), the logitmodel 
annot have di�erent pro�t margins a
ross the produ
ts produ
ed by the same �rm, anda

ordingly, a number of empiri
al studies that use the logit model have assumed that ea
h�rm produ
es a produ
t or a 
omposite produ
t in the market. This empiri
al use of the logitmodel impli
itly assumes that the number of �rms in the market grows. Nevertheless the CANproperty of the logit estimates 
an be similarly obtained with the slight modi�
ation on thesetup of Theorems 1 and 2.As for Theorems 3 and 4, it should be noted that additional demographi
ally-
ategorizedpur
hasing information does not lend itself to �ner and more a

urate estimates for logit model.This is be
ause, for logit model, 
onsumers' demographi
 information are all summarized in theerror term and is integrated out. As a result, individual pur
hasing probability for a produ
t isthe same a

ross 
onsumers and agree with the market share.Therefore we defer to the next subse
tion of the random 
oeÆ
ient logit model on the exam-ination of how fast the number T of 
onsumers drawn to mat
h the observed demographi
ally-
ategorized pur
hasing information must in
rease relative to the number J of produ
ts on themarket and the number R of 
onsumers used to simulation in order for us to have Theorems 3and 4. We also see that the numberN of the sample size to 
al
ulate su
h pur
hasing informationmust in
rease in�nitely relative to T .Random CoeÆ
ient Logit ModelIn what follows, we assume a random 
oeÆ
ient logit model with one random 
oeÆ
ient:uij = Æj + �ux�xi xj + �ij with Æj = �ppj + �xxj + �j (127)where �xi represents 
onsumer i's random preferen
e on the 
hara
teristi
 xj relative to thepri
e. The parameter �ux shows the magnitude of the preferen
e, and when �ux = 0, the model is34



simple logit model. Provided that �ij's are i.i.d. extreme value, the probability �ij of 
onsumeri 
hoosing produ
t j is given by�ij(�; �i;�d) = exp(Æj + �ux�xi xj)1 +PJk=1 exp(Æk + �ux�xi xk) : (128)The market share of produ
t j is obtained by integrating (128) in terms of �xi over the populationP 0. We simulate it with a random sample of R individuals as�j(�;�; PR) � 1R RXr=1�rj(�;�r;�d) = 1R RXr=1 exp(Æj + �ux�xr xj)1 +PJk=1 exp(Æk + �ux�xr xk) (129)In the following, we put forward Condition S2 on the magnitude of the individual 
hoi
e prob-ability stronger than Condition S1(a). Although the 
ondition makes individual's behaviorrestri
tive, this treatment allows us to 
al
ulate the rate of n, R, N , and T relative to J , atwhi
h the random 
oeÆ
ient logit model follows our limiting theorems.Condition S2 For all 
onsumer r with the demographi
s �r, and for all possible value ofthe produ
t 
hara
teristi
s (X; �), there exists positive �nite 
onstants 
 and 
 su
h that withprobability one 
J � inf�d2�d �rj(�;�r;�d)� sup�d2�d �rj(�;�r;�d) � 
J ; j = 0; 1; : : : ; J: (130)Obviously, Condition S2 is a suÆ
ient 
ondion of Condition S1(a) be
ause substituting � =�(�d; s0; P 0) and integrating both sides of the inequality over the population P 0 immediatelyleads to Condition S1(a). With Condition S2, the individual 
hoi
e probability �rj(�;�r;�d)and its inverse are respe
tively Op(1=J) and Op(J). We assume that our two sets of simulationdraws of individuals �r; r = 1; : : : ; R and of the individuals �t; t = 1; : : : ; T satisfy 
ondition S2.As stated above, the random 
oeÆ
ient logit model has no 
losed-form solution to the inverseof H. However, under 
ondition S2, we 
an approximate it byH�1(�;�d; PR)= ��1(�;�d; PR) + 1�0(�;�d; PR) (1 +Op(1=J)) ii0; (131)where �(�;�d; P ) = diag(�1(�;�d; P ); : : : ; �J (�;�d; P )). In the appendix of Berry, Linton, andPakes (2004, pp.651-652), an approximation essentially same as this was used to show that, evenwhen we use the random 
oeÆ
ient logit model, the limiting behavior of the residual term onthe sampling error in the demand side moment (46) is fundamentally similar to that for the logitmodel. As a result, the random 
oeÆ
ient logit model requires the same rate J2 for n relativeto J as the logit model to guarantee the GMM estimator to follow asymptoti
ally normal. Asfor the number R of simulation draws, they presumed that symmetri
 arguments hold for R.Furthermore, in the appendix of this paper, we show that the arguments above apply to oursupply side spe
i�
ation too. Therefore, for Theorem 2 to hold for the random 
oeÆ
ient logitmodel, the number n of the sample size for 
alu
ulating the observed market share must in
reaseat the rate of J2 and the number R of the simulation draws must in
rease at the rate of J2 aswell.Appli
ability of assumptions A5 and A6 in Theorem 1 to the random 
oeÆ
ient logit modelwould have to be 
he
ked via numeri
al 
omputations on a 
ase-by-
ase basis be
ause these35



assumptions require us to examine full-rankness of the matri
es that 
ontain the inverse of H .Assumption A7, on the other hand, 
an be veri�ed relatively easily using (131).Now we turn our attention to 
ases where we have at our disposal additional moment 
on-ditions on demographi
ally-
ategorized pur
hasing information. We suppose that we are nowinterested in estimating the parameter �ux in (127) more a

urately by using the information on
onsumers who 
hoose spe
i�
 sets of attributes in produ
ts. Denote the set of produ
ts havingthis attribute by Q. Hereinafter, assume that we have a 
onsistent estimate �N , whi
h was
onstru
ted from N independent 
onsumer draws from the population P 0, separate from the nindependent draws from P 0 for 
al
ulating the observed market share, with the expe
tation �0of �xi 
onditional on the individual 
hoosing a produ
t in Q. We further assume that �N satis�esassumption A10, that is, �N has the 
onditional expe
tation, 
orresponding to (83) but writtenin the spirit of (75), �0 = E[�xt jCt 2 Q;X ; �(�0d; s0; P 0)℄ (132)and the 
onditional varian
e of order Op(1=N) for (84). Given �N , we will draw T individualsfrom the population P 0 to 
onstru
t an additional moment,GaJ;T (�d; sn; PR;�N ) = �N � 1T TXt=1 �xt  t(�(�d; sn; PR);�d; PR) (133)where  t(�;�d; P ) =Pj2Q �tj(�;�t;�d)=Pj2Q �j(�;�d; P ). In the following, we will derive the
ondition to guarantee that the spe
i�
ation above satis�es the assumptions in Theorems 3 and4 under Condition S2.On assumption A8, we require that the 1 � 3 matrix �GaJ;T (�d; s0; P 0;�0)=��0d is of full
olmun rank. We 
an rewrite this matrix as�GaJ;T (�d; s0; P 0;�0)��0d= 1T TXt=1 �xt "� t(�;�d; P 0)��0 H�1(�;�d; P 0)��(�;�d; P 0)��0d +  t(�;�d; P 0)��0d # ������=�(�d;s0;P 0):Here, the 
omponent H�1 has no 
losed form expression, while we 
an approximate it withinOp(1=J)=�0 error by taking R ! 1 in (131). As a result, to verify assumption A8, we wouldhave to have the representative utility Æj , 
onsumer's random preferen
e �xi , and its asso
iatedparameter value �ux �xed. We will 
he
k the singularity of �GaJ;T =��0d in our 
omputationalexample in the next se
tion.For assumption A9, we assume the number of produ
ts in Q in
reases as fast as the numberof produ
ts in the market, whi
h guarantees both ofPj2Q �j and 1=Pj2Q �j to be Op(1) underCondition S2.To 
he
k assumption A11, we de
omposeT�1=2jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj� T�1=2jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; PR)jj+T�1=2jj	(�(�d; s0; P 0);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj (134)where 	 = ( 1; : : : ;  T )0 is a T � 1 matrix. The square of the �rst term in (134) is bounded byT�1jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; PR)jj2= T�1 �����������	(��;�d; PR)��0 (�(�d; sn; PR)� �(�d; s0; P 0))����������236



� �JT � �����������	(��;�d; PR)��0 ����������2 � J�1jj�(�d; sn; PR)� �(�d; s0; P 0)jj2where �� is between �(�d; sn; PR) and �(�d; s0; P 0). In the proof of Theorem 1 (equation (A.6)),we have shown that J�1jj�(�d; sn; PR)� �(�d; s0; P 0)jj2 = op(1). Thus, it remains to show thatjj�	(��;�d; PR)=��0jj2 = Op(T=J) to guarantee this whole term to be op(1). For the random
oeÆ
ient logit model, we obtain the jth element of �t asf�t(�;�d; P )gj � � t(�;�d; P )��j= �tj(1fj 2 Qg �Pk2Q �tk)Pk2Q �k�Pk2Q �tkPk2Q �k � 1fj 2 Qg R �rjdP �Pk2Q R �rj�rkdPPk2Q �k (135)where �rj = �rj(�;�r;�d), �tj = �tj(�;�t;�d) and �j = �j(�;�d; P ). Under Condition S2,both of �rj and �j are Op(1=J), while Pj2Q �j and 1=Pj2Q �j are both Op(1). Thus, we have� t(�;�d; P )=��j = Op(1=J), and so���������	(��;�d; P )��0 ��������2 = JXj=1 TXt=1 � t(��;�d; P )��j !2 = J � T � Op(1=J)2= Op(T=J):The square of the se
ond term of (134) isT�1jj	(�(�d; s0; P 0);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj2= T�1 TXt=1f t(�(�d; s0; P 0);�d; PR)�  t(�(�d; s0; P 0);�d; P 0)g2= T�1 TXt=1(Pj2Q �tj(�(�d; s0; P 0);� t;�d)Pj2Q �j(�(�d; s0; P 0);�d; PR) � Pj2Q �tj(�(�d; s0; P 0);�t;�d)Pj2Q �j(�(�d; s0; P 0);�d; P 0))2= ( Pj2Qf�j(�(�d; s0; P 0);�d; PR)� �j(�(�d; s0; P 0);�d; P 0)gPj2Q �j(�(�d; s0; P 0);�d; PR) �Pj2Q �j(�(�d; s0; P 0);�d; P 0))2�T�1 TXt=18<:Xj2Q�tj(�(�d; s0; P 0);�t;�d)9=;2= ( Pj2QOp(1=pRJ)Pj2QOp(1=J) �Pj2QOp(1=J))2 � T�1 TXt=18<:Xj2QOp(1=J)9=;2= Op(J=R)under assumption A1(b) and Condition S2. As a result, R is required to grow slightly fasterthan J .We next move on to assumptions in Theorem 4. For assumption B7(a), it is suÆ
ient toshow that two 
omponents in the norm of (95) is respe
tively op(1). Write �Rj = �j(�;�d; PR)and �Tj = �j(�;�d; P T ) for notational simpli
y, and then we approximate the jth element ofT�1PTt=1�t(�;�d; PR)H�1(�;�d; PR) by using H�1 in (131) and � t=��j in (135) as follows.(T�1 TXt=1�t(�;�d; PR)H�1(�;�d; PR))j 37



= T�1 TXt=1 JXl=1 � t(�;�d; PR)��l H�1lj (�;�d; PR)= "T�1PTt=1(Pl2Q �tl)�t0Pl2Q �Rl � (Pl2Q �Tl )R�1PRr=1(Pl2Q �rl)�r0(Pl2Q �Rl )2 # � 1�R0 (1 +Op(1=J))+"�Tj � 1fj 2 Qg � T�1PTt=1(Pl2Q �tl)�tjPl2Q �Rl�(Pl2Q �Tl )f�Rj � 1fj 2 Qg �R�1PRr=1(Pl2Q �rl)�rjg(Pl2Q �Rl )2 # � 1�Rj : (136)As for the �rst 
omponent of (95), under Condition S2, we obtain from (136),����������T�1 TXt=1�t(�;�d; PR)H�1�n����������= ������ JXj=1(T�1 TXt=1�t(�;�d; PR)H�1)j �nj ������= �����(T�1PTt=1(Pl2Q �tl)�t0Pl2Q �Rl � (Pl2Q �Tl )R�1PRr=1(Pl2Q �rl)�r0(Pl2Q �Rl )2 )�PJj=1(snj � s0j)�R0 (1 +Op(1=J))+ JXj=1(�Tj � 1fj 2 Qg � T�1PTt=1(Pl2Q �tl)�tjPl2Q �Rl�(Pl2Q �Tl )f�Rj � 1fj 2 Qg �R�1PRr=1(Pl2Q �rl)�rjg(Pl2Q �Rl )2 ) � snj � s0j�Rj �����= �����(T�1PTt=1Op(1) �Op(1=J)Op(1) � Op(1)R�1PRr=1Op(1) � Op(1=J)Op(1)2 )�PJj=1Op(1=pnJ)Op(1=J) (1 +Op(1=J))+ JXj=1(Op(1=J)Op(1)� T�1PTt=1Op(1) � Op(1=J)Op(1)�Op(1)fOp(1=J)Op(1)�R�1PRr=1Op(1) �Op(1=J)gOp(1)2 ) � Op(1=pnJ)Op(1=J) �����= Op �qJ=n� :We 
an also obtain for the se
ond 
omponent, jjT�1PTt=1�0tH�10 �njj = Op(pJ=n) using (131)and (135) with (�;�d; P ) = (�(�0d; s0; P 0);�0d; P 0). As a whole, we have����������T�1=2 TXt=1f�t(�;�d; PR)H�1(�;�d; PR)��0tH�10 )g�n����������� T 1=2 ����������T�1 TXt=1f�t(�;�d; PR)H�1(�;�d; PR)�n����������+ T 1=2 ����������T�1 TXt=1�0tH�10 )g�n����������= T 1=2Op �qJ=n�+ T 1=2Op �qJ=n�38



= Op �qT � J=n� :Therefore, we have to in
rease n faster than TJ . We noti
e that the requirement above forassumption B7(a) is stronger than what is required for theorem 2, that is, n grows faster thanJ2, be
ause we assume the number T of 
onsumers used in evaluating the additional moment isgreater than the number J of the produ
ts in the market.As for assumption B7(b), through a quite similar 
al
ulation as for assumption B7(a), we
an show that the number R of simulation draws is needed to grow faster than TJ .We 
an easily see that assumption B7(
) requires R grows faster than TJ as follows.pT Xj2Q �Rj (�d) = pT Xj2Q(�j(�(�d; s0; P 0);�d; PR)� s0j)= pT Xj2QOp �1=pJR�= Op �qTJ=R� :In assumption B10(a), we need to keep the varian
e of Pni=1 Y a0J;T;i, whi
h is the residual
omponent in the additional moment T 1=2GaJ;T (�0d) in terms of the sampling error, bounded.Write �0tj = �tj(�(�0d; s0; P 0);�t;�0d) and �0j = �j(�(�0d; s0; P 0);�0d; P 0), thenaa0j � aaj (�(�0d; s0; P 0);�0d; P 0)= f�PTt=1 �xt �0tH�10 gj= �PTt=1 �xt �0tj(1fj 2 Qg �Pl2Q �0tl)Pl2Q s0l � 1s0j � PTt=1 �xt �0t0Pl2Q �0tlPl2Q s0l � 1s00 (1 +Op(1=J))= �(1 + �j +Op(1=J)) (137)where� = �PTt=1 �xt �0t0Pl2Q �0tlPl2Q s0l � 1s00 ; �j = �PTt=1 �xt �0tj(1fj 2 Qg �Pl2Q �0tl)PTt=1 �xt �0t0Pl2Q �0tl � s00s0j :The � and � are respe
tively Op(T ) and Op(1) under Condition S2. Using aa0j 
al
ulatedabove, the expe
tation of the prin
ipal 
omponent of Y a0J;T;i with respe
t to �ji 
onditional on(X ; �(�0d; s0; P 0)) is 
al
ulated as follows.PJj=1(aa0j )2s0j � (PJj=1 aa0j s0j)2= PJj=1 �2(1 + �j +Op(1=J))2s0j � fPJj=1 �(1 + �j +Op(1=J))s0jg2= �2 hs00(1� s00)(1 +Op(1=J))2 + 2(PJj=1 �js0j)s00(1 +Op(1=J)) +PJj=1 �2j s0j � (PJj=1 �js0j)2i� �2 hs00(1� s00)(1 +Op(1=J))2 + 2maxj j�j j � (PJj=1 s0j)s00(1 +Op(1=J)) + maxj j�j j2 �PJj=1 s0ji= �2(1� s0) �s00(1 +Op(1=J))2 + 2maxj j�j js00(1 +Op(1=J)) + maxj j�j j2� :Substituting � = Op(T ) and �j = Op(1), we further obtainPJj=1(aa0j )2s0j � (PJj=1 aa0j s0j)2= Op(T )2(1�Op(1=J)) hOp(1=J)(1 +Op(1=J))2 + 2Op(1)Op(1=J)(1 +Op(1=J)) +Op(1)2i= Op(T 2): 39



Therefore the varian
e of Pni=1 Y a0J;T;i isV�;�;x;�[Pni=1 Y a0J;T;i℄= Pni=1 E�;�;x;�[(1=n2T )(PJj=1 aa0j �ji)2℄= (1=nT ) E�;x;� hPJj=1(aa0j )2 E�jx;�[�2jijX; �(�0d; s0; P 0)℄+Pj 6=k aa0j aa0k E�jx;�[�ji�kijX ; �(�0d; s0; P 0)℄i= (1=nT ) E�;x;� hPJj=1(aa0j )2s0j(1� s0j)�Pj 6=k aa0j aa0k s0js0ki= (1=nT ) E�;x;� hPJj=1(aa0j )2s0j � (PJj=1 aa0j s0j)2i= (1=nT ) E�;x;�[Op(T 2)℄= E�;x;�[Op(J=n)℄:To keep this varian
e bounded, n is needed to grow as fast as J .Similar 
al
ulation holds for assumption B10(
) and derives that R is required to grow asfast as J .We assume in A10(a) that the additional information �N is pN 
onsistent with �0. Inassumption B10(d), we bound the varian
e of the residual term in the additional momentT 1=2GaJ;T (�0d) 
orresponding to the sampling error 
ontained in the additional information. Wesee N V�#;x;�[T 1=2N�1�#i0 ℄ = Ex;�[V�#jx;�[T 1=2(�N � �0)jX ; �(�0d; s0; P 0)℄℄= Ex;�[Op(T=N)℄:To hold B10(d), we require that the sample size N for additional information grows as fast asthe sample size T of our 
onsumer draws in 
onstru
ting the additional moment does.Assumption B10(f) gives the Lyapunov 
ondition the residual term Pni=1 Y a0J;T;i in the addi-tional moment follows. Sin
e aa0j in (137) is Op(T ) under Condition S2, we obtainnE�;�;x;�[jjY a0J;T;ijj2+Æ ℄= 1n1+ÆT (2+Æ)=2 E�;�;x;�[jPJj=1 aa0j �jij2+Æ ℄� 1n1+ÆT (2+Æ)=2 E�;x;�[22+Æmaxj jaa0j j2+Æ℄= E�;x;�[Op(n�(1+Æ)T (2+Æ)=2)℄:Substituting n = O(T k) and solving (2 + Æ)=2 � k(1 + Æ) < 0 gives k > 1 for any Æ > 0, whi
hmeans that n is ne
essary to grow faster than T .By similar argument for assumption B10(g) and B10(h), we obtain the fa
t that R and Nare required to grow faster than T respe
tively.In summary, for the random 
oeÆ
ient logit model, the estimator with the additional momenthas 
onsisten
y in Theorem 3 when n and R grow faster than J . The asymptoti
 normality inTheorem 4, on the other hand, requires that n and R to grow faster than TJ . Moreover, N hasto grow faster than T .6 Computational ResultsIn this se
tion, we run Monte Carlo experiments to evaluate the theorems derived in the previousse
tions. By repeatedly estimating a demand and supply system with randomly generated datasets, we verify the asymptoti
 normality of the GMM estimator. Through experiments, we40



examine how the sampling and simulation errors in the observed data and the simulated marketshare a�e
t the results. Furthemore, we show that the use of additional 
onsumer pur
hasinginformation well 
ontributes the a

ura
y of the resulting random 
oeÆ
ient estimate.The 
onsumer's utility fun
tion we spe
ify here is the following random 
oeÆ
ient logitmodel. uij = ��pj + �xj�oi + �j + �ij (138)where the unobserved quality �j and the exogenous produ
t 
hara
teristi
s xj are respe
tivelyrandom draws from N(0; 1) and N(1; 1). Unless otherwise stated, the random draws in thedata set are i.i.d. The pri
e of produ
t pj is, on the other hand, treated as endogenous and thendetermined in the market. The �oi is a 
onsumer's taste for xj and distributed from N(0; 1). The�ij's are i.i.d. extreme value draws. We set the demand side parameters � = 1:0 and � = 1:0.The market share �j is 
al
ulated by�j = Z exp(��pj + �xj�oi + �j)1 +PJl=1 exp(��pl + �xl�oi + �l)P (d�oi ): (139)The true market share s0j is obtained by evaluating (139) with the underlying distribution P 0of �oi . We draw 10,000 
onsumers from N(0,1) as the underlying population.For the supply side, we assume there exist �ve oligopolisti
 suppliers in the market andthey produ
e the same number of produ
ts. These suppliers are assumed to have the same 
ostfun
tion 
j = xj
 + !j (140)where the unobserved 
ost shifter !j is a random draw from N(0; 1). For 
ost side parameter,we set 
 = 1:5. At the Bertrand-Nash equilibrium, the suppliers determine the pri
e of theirprodu
ts to satisfy f(p) = 
� p���1� = 0 (141)under the population P 0. The (j; k) element of the J � J gradient matrix � is given by�jk = 8><>: ��k=�pj ; if the produ
ts j and k areprodu
ed by the same �rm;0; otherwise. (142)The true market share s0j and the pri
e pj are determined at the equilibrium, and thus the valuesof pj are obtained by solving (141), that is, J dimensional nonlinear simultaneous equations. Inpra
ti
e, an iteration algorithm is required to solve (141), and we adopt the Newton-Raphsonmethod.We �rst estimate the system of demand and supply given in (139) and (140) by the BLPframework. To estimate the models, we 
onstru
t the three instrumental variables from xj , oneis xj itself, one is the 
ompany average of xj, and one is the average of xj over other 
ompanies.Table 2 gives the result for the mean estimated values a
ross 100 Monte Carlo experiments whenn =1 �xed, i.e., the observed market shares have no sampling error. Ea
h 
olumn 
orrespondsto the di�erent number J of produ
ts, while ea
h row 
orresponds to the di�erent number R of
onsumer draws used in the simulation pro
ess. The values in parenthesis show the simulatedstandard error|the standard error of the estimated parameters a
ross the simulation. In thetable, we 
an observe the simulated standard errors of parameters de
rease as J in
reases. For J�xed, the in
reasing R also 
ontributes the redu
tion of the standard errors. The standard error41



Table 2: Monte Carlo Results for the BLP Framework, 100 repetitions, n =1�(1:0) �(1:0) 
(1:5)# of Consumer # of produ
ts (J) # of Consumer # of produ
ts (J) # of Consumer # of produ
ts (J)Draws (R) 10 25 50 100 Draws (R) 10 25 50 100 Draws (R) 10 25 50 10010 0.974 0.953 0.952 0.934 10 1.303 1.385 1.223 1.177 10 1.558 1.543 1.546 1.518(0.266) (0.174) (0.138) (0.134) (1.207) (1.172) (0.909) (0.760) (0.388) (0.265) (0.191) (0.176)50 0.974 0.990 0.989 0.971 50 0.957 0.983 0.958 0.936 50 1.595 1.609 1.602 1.574(0.166) (0.110) (0.079) (0.060) (0.702) (0.539) (0.406) (0.306) (0.316) (0.164) (0.121) (0.089)100 0.982 0.997 0.989 0.979 100 0.909 0.981 0.912 0.935 100 1.583 1.613 1.605 1.582(0.156) (0.123) (0.058) (0.045) (0.749) (0.692) (0.363) (0.274) (0.246) (0.164) (0.101) (0.071)10J 0.982 0.993 0.994 0.982 10J 0.909 0.919 0.887 0.900 10J 1.583 1.614 1.610 1.586(0.156) (0.099) (0.056) (0.036) (0.749) (0.543) (0.347) (0.238) (0.246) (0.158) (0.097) (0.073)J2 0.982 0.988 0.992 0.982 J2 0.909 0.930 0.886 0.896 J2 1.583 1.610 1.608 1.587(0.156) (0.093) (0.055) (0.035) (0.749) (0.605) (0.325) (0.240) (0.246) (0.156) (0.098) (0.073)Standard error a
ross repetitions stands in the parenthesis.
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for � is mu
h larger than those for � and 
. This is be
ause � is the 
oeÆ
ient for the randomterm depending on the 
onsumer taste �oi as well as the produ
t 
hara
teristi
s xj and thusthe un
orrelated relationship between the unobserved quality �j and the instrumental variablesinvolves less information on �. In parti
ular, when the number of simulation draws is small(R = 10), the estimated value of � is upwardly biased.Table 3 gives the result for the 
ase where the observed market share snj 
ontains the samplingerror. Here, we �xed the number R = 100 for the simulation draws of 
onsumer. We 
onstru
tthe observed market share snj from a multinomial sample of size n with the response probability(s00; : : : ; s0J). When n is not large enough, there are zero-share produ
ts. We remove theseprodu
ts in estimating parameters. In the table, we observe the larger n be
omes, the smallerthe simulated standard error be
omes for any �xed J .We next implement the Monte Carlo simulation for the extended framework with the ad-ditional moments. As the additional moment, we suppose to have the information on (1) theexpe
ted value of �oi over 
onsumers who 
hoose produ
ts pri
ed higher than the average pri
e;and (2) the expe
ted value of �oi over 
onsumers who 
hoose produ
ts with xj greater than theaverage of xj. That is, the additional moments are�01 = E[�oi jCi 2 Qfpj � �pg; x; �℄; (143)�02 = E[�oi jCi 2 Qfxj � �xg; x; �℄ (144)where Qfpj � �pg and Qfxj � �xg represent respe
tively the set of produ
ts pri
ed higher thanthe average �p, and the set of produ
ts with x greater than the average �x.Table 4 is the result for the 
ase where we know the expe
ted values in (143) and (144) exa
tlyand no sampling error in the additional information (N =1). To 
al
ulate the additional samplemoments, we draws T 
onsumers from the population and then 
al
ulate the 
onditional averageof �oi by using their pur
hasing probabilities. To make the e�e
t of the additional moments 
lear,we use the true market share s0j as the observed market share (n = 1) and �x R = 100. Theresult indi
ates if the number of 
onsumer draws T is large enough, the additional information
onsiderably redu
e the standard error of �. For the 
ase of J = 50; T = 1000, the standard errorof � with the additional moments de
reases to 0.137 in table 4 from 0.363, whi
h is the valuewithout the additional moments in table 2 (R = 100 row, J = 50 
olumn). On the other hand,if T is small, the standard error of � in
reases rather than de
reases by using the additionalmoments. The standard error of � at T = 50 and J = 50 in
rease to 0.392 in table 4 from 0.363in table 2. Moreover, the additional moments have slight in
uen
e on the standard errors of �and 
 in any value of T . This is be
ause the additional information is on the 
onsumer's taste�oi and 
ontains less information on � and 
.5We next 
onsider the 
ase where the additional information 
ontain the sampling error.Drawing N 
onsumers from the population, we use the following estimate �N instead of �0 asthe additional information, �N1 = NXi0=1 �oi0 � 1fCi0 2 Qfpj � �pggNp (145)�N2 = NXi0=1 �oi0 � 1fCi0 2 Qfxj � �xggNx : (146)where Np = PNi0=1 1fCi0 2 Qfpj � �pgg and Nx = PNi0=1 1fCi0 2 Qfxj � �xgg are respe
tivelythe number of 
onsumers who 
hoose produ
ts pri
ed higher than the average and the numberof 
onsumers who 
hoose the produ
t with x greater than the average. This estimators are5The �rst order derivatives of the additional moments in terms of � are almost zero, while that for 
 is justzero. 43



Table 3: Monte Carlo Results for the BLP Framework, 100 repetitions, R = 100�(1:0) �(1:0) 
(1:5)# of Consumer # of produ
ts (J) # of Consumer # of produ
ts (J) # of Consumer # of produ
ts (J)Draws (n) 10 25 50 100 Draws (n) 10 25 50 100 Draws (n) 10 25 50 100500 0.978 0.978 0.891 0.857 500 1.004 1.206 1.029 1.209 500 1.495 1.471 1.362 1.276(0.180) (0.235) (0.107) (0.082) (0.824) (1.348) (0.476) (0.457) (0.274) (0.189) (0.178) (0.134)1000 0.987 0.988 0.935 0.918 1000 0.972 1.108 1.000 1.115 1000 1.528 1.529 1.458 1.396(0.160) (0.186) (0.088) (0.072) (0.829) (1.066) (0.505) (0.398) (0.241) (0.174) (0.134) (0.105)2000 0.980 0.991 0.961 0.959 2000 0.938 1.005 0.977 1.055 2000 1.536 1.554 1.520 1.484(0.164) (0.134) (0.078) (0.058) (0.787) (0.698) (0.454) (0.328) (0.241) (0.161) (0.110) (0.084)10J 0.917 0.925 0.891 0.918 10J 1.054 1.290 1.029 1.115 10J 1.329 1.377 1.362 1.396(0.194) (0.155) (0.107) (0.072) (0.913) (1.483) (0.476) (0.398) (0.365) (0.228) (0.178) (0.105)J2 0.917 0.974 0.963 0.984 J2 1.054 1.127 0.978 0.945 J2 1.329 1.493 1.520 1.570(0.194) (0.134) (0.086) (0.046) (0.913) (1.206) (0.557) (0.267) (0.365) (0.186) (0.124) (0.067)1 0.982 0.997 0.989 0.979 1 0.909 0.981 0.912 0.935 1 1.583 1.613 1.605 1.582(0.156) (0.123) (0.058) (0.045) (0.749) (0.692) (0.363) (0.274) (0.246) (0.164) (0.101) (0.071)Standard error a
ross repetitions stands in the parenthesis.
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Table 4: Monte Carlo Results for the Extended BLP framework, 100 repetitions, n =1; N =1; R = 100�(1:0) �(1:0) 
(1:5)# of Consumer # of produ
ts (J) # of Consumer # of produ
ts (J) # of Consumer # of produ
ts (J)T 10 25 50 100 T 10 25 50 100 T 10 25 50 10010 0.985 0.978 0.989 0.993 10 0.930 1.039 0.954 0.999 10 1.630 1.594 1.620 1.607(0.139) (0.100) (0.071) (0.061) (0.568) (0.683) (0.469) (0.530) (0.229) (0.168) (0.110) (0.085)50 1.007 0.985 0.989 0.993 50 0.978 0.999 0.978 0.958 50 1.648 1.605 1.621 1.608(0.126) (0.089) (0.067) (0.055) (0.411) (0.356) (0.392) (0.316) (0.236) (0.163) (0.115) (0.080)100 1.019 0.988 0.997 0.996 100 0.974 0.991 0.953 0.933 100 1.677 1.610 1.629 1.610(0.135) (0.084) (0.066) (0.057) (0.336) (0.284) (0.317) (0.249) (0.250) (0.159) (0.107) (0.083)500 1.017 0.988 0.996 1.008 500 0.991 0.961 0.981 0.958 500 1.676 1.617 1.620 1.615(0.122) (0.075) (0.062) (0.057) (0.271) (0.227) (0.169) (0.148) (0.241) (0.134) (0.089) (0.083)1000 1.025 0.982 0.992 1.002 1000 0.989 0.929 0.956 0.967 1000 1.682 1.614 1.617 1.610(0.133) (0.072) (0.062) (0.054) (0.234) (0.134) (0.137) (0.134) (0.238) (0.139) (0.097) (0.087)10J 1.019 0.983 0.996 1.002 10J 0.974 0.967 0.981 0.967 10J 1.677 1.612 1.620 1.610(0.135) (0.078) (0.062) (0.054) (0.336) (0.233) (0.169) (0.134) (0.250) (0.143) (0.089) (0.087)J2 1.019 0.992 0.996 0.999 J2 0.974 0.959 0.954 0.955 J2 1.677 1.620 1.621 1.606(0.135) (0.079) (0.056) (0.062) (0.336) (0.184) (0.125) (0.087) (0.250) (0.142) (0.092) (0.087)Standard error a
ross repetitions stands in the parenthesis.
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unbiased for �0 
onditional on x and �.6 Table 5 shows the result for this 
ase. In the table, we
an observe the standard error of � is de
reasing in N .Next, we evaluate the asymptoti
 theorem in the previous se
tions that gives the asymptoti
distribution and the asymptoti
 varian
e of the parameter estimates. For J = 25; R = 2000; n =2000 �xed, we implement 1,000 Monte Carlo simulation using the BLP framework, and thenwe 
al
ulate the average and standard error of the estimate a
ross these di�erent simulationdata-set. We also obtain the asymptoti
 varian
es of the GMM estimates given in (74). Forea
h data-set, we 
al
ulate the moment 
onditions and their derivatives in terms of parameters(the parameters are �xed at true values). By averaging resulting values over data-sets, we obtainthe estimate for the expe
ted values �J;T and � respe
tively. For the extended framework, weimplement the same simulation with J = 25; R = 2000; n = 2000; N = 2000; T = 500 �xed. Thevarian
es of the estimates are obtained using (108). Table 6 shows the result. In the table, thesimulated standard errors of estimates are relatively 
onsistent with the asymptoti
 standarderrors.Finally, we make density tra
e plots for the estimated parameters from the 1,000 estimatesused in table 6. (To make these plots, we use the 
ommand in the S-plus pa
kage with de-fault options.) The solid lines in Figure 1 and Figure 2 show the densities of the estimatedparameters, while the dotted lines show their asymptoti
 distributions using the true values ofparameters and the asymptoti
 varian
e in Table 6 as mean and varian
e. In the �gures, thesimulated distributions of the estimates for the demand parameters � and � look �tting well inthe asymptoti
 distributions, while that for the 
ost side parameter 
 does not seem so mu
h.However, the shape of the simulated distribution is relatively 
lose to that for the normal. We
onsider our asymptoti
 distribution in the theory is a relatively good approximation for theasymptoti
 distribution of the parameter estimates.Appendix ProofsProof of Theorem 1The 
onsisten
y argument is established by showing that6All random variables in
luded in �N1 are x, �, �oi0 , and 1fCi0 2 Qfpj � �pg. Abbreviate Cpi0 � 1fCi0 2 Qfpj ��pgg and then E�oi0 ;Cpi0 jx;�[�N1 � �01 jx; �℄ = ECpi0 jx;� hE�oi0 jx;�;Cpi0 [�N � �01��x; �; Cpi0 ℄���x; �i= ECpi0 jx;� "E�oi0 jx;�;Cpi0 " NXi0=1 �oi0Cpi0Np � �01�����x; �; Cpi0# �����x; �#= ECpi0 jx;� " NXi0=1E�oi0 jx;�;Cpi0 [�oi0 jx; �; Cpi0 ℄Cpi0Np � �01�����x; �#= ECpi0 jx;� "E�oi0 jx;�;Cpi0 [�oi0 jx; �; Cpi0 ℄PNi0=1 Cpi0Np � �01�����x; �#= ECpi0 jx;� "E�oi0 jx;�;Cpi0 [�oi0 jx; �; Cpi0 ℄� �01�����x; �#= ECpi0 jx;�[0jx; �℄= 0: 46



Table 5: Monte Carlo Results for the Extended BLP framework, 100 repetitions, n =1; R = 100; T = 1000�(1:0) �(1:0) 
(1:5)# of Consumer # of produ
ts (J) # of Consumer # of produ
ts (J) # of Consumer # of produ
ts (J)N 10 25 50 100 N 10 25 50 100 N 10 25 50 100500 1.023 0.995 0.991 1.004 500 0.980 0.970 0.950 0.998 500 1.679 1.624 1.617 1.611(0.138) (0.079) (0.061) (0.054) (0.274) (0.241) (0.195) (0.216) (0.241) (0.138) (0.096) (0.080)1000 1.011 0.991 0.998 0.999 1000 0.974 0.949 0.953 0.956 1000 1.673 1.619 1.624 1.608(0.125) (0.075) (0.061) (0.054) (0.240) (0.185) (0.171) (0.169) (0.246) (0.135) (0.093) (0.084)2000 1.023 0.989 0.995 1.002 2000 0.994 0.967 0.946 0.967 2000 1.681 1.619 1.621 1.609(0.136) (0.075) (0.060) (0.052) (0.254) (0.199) (0.145) (0.167) (0.238) (0.141) (0.096) (0.081)10J 1.023 0.985 0.991 0.999 10J 1.022 0.953 0.950 0.956 10J 1.675 1.613 1.617 1.608(0.140) (0.081) (0.061) (0.054) (0.435) (0.283) (0.195) (0.169) (0.253) (0.141) (0.096) (0.084)J2 1.023 0.987 0.986 0.994 J2 1.022 0.926 0.944 0.955 J2 1.675 1.619 1.613 1.603(0.140) (0.065) (0.058) (0.051) (0.435) (0.210) (0.145) (0.127) (0.253) (0.136) (0.092) (0.086)1 1.025 0.982 0.992 1.002 1 0.989 0.929 0.956 0.967 1 1.682 1.614 1.617 1.610(0.133) (0.072) (0.062) (0.054) (0.234) (0.134) (0.137) (0.134) (0.238) (0.139) (0.097) (0.087)Standard error a
ross repetitions stands in the parenthesis.
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Figure 1: Kernel Density Estimate of Parameters, BLP Framework, J=25, n=2000, R=2000
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Figure 2: Kernel Density Estimate of Parameters, Additional Moment Framework, J=25,n=2000, R=2000, T=500, N=2000
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Table 6: Simulated and Estimated Standard Errors (J = 25; n = 2000; R = 2000; N = 2000; T =500) � � 
BLP framework Mean 0.976 0.900 1.552Monte Carlo Std. Error 0.090 0.533 0.157Asymptoti
 Std. Error 0.088 0.393 0.186Additional Moment Mean 0.996 1.022 1.570Method Monte Carlo Std. Error 0.077 0.254 0.149Asymptoti
 Std. Error 0.074 0.221 0.184(1-i) the estimator ~� de�ned as any sequen
e that satis�esjjGJ(~�; s0; P 0)jj = inf�2� jjGJ(�; s0; P 0)jj+ op(1) (A.1)is 
onsistent for �0, and(1-ii) sup�2� jjGJ(�; sn; PR)�GJ(�; s0; P 0)jj 
onverges to zero in probability.A 
onsequen
e of (1-ii) is that jjGJ(�; sn; PR)jj and jjGJ(�; s0; P 0)jj have a same asymptoti
distribution uniformly in �, and thus the estimator �̂ whi
h minimizes the former is very 
loseto the ~� that minimizes the latter. Therefore �̂ is to be 
onsistent for �0 from (1-i).We �rst show (1-i) by using Theorem 3.1 of Pakes and Pollard (1989) whi
h gives a suÆ
ient
ondition under whi
h an optimization estimator 
an be 
onsistent for the true parameter value.Their theorem guarantees that an estimator ~� that satis�es (A.1) is 
onsistent for �0 if(i-a) GJ(�0; s0; P 0) = op(1), and(i-b) sup� 62N�0 (Æ)jjGJ(�; s0; P 0)jj�1 = Op(1) for ea
h Æ > 0.Proof of (i-a)We show (i-a) by applying Bernoulli's weak law of large numbers to ea
h row ofGJ(�0; s0; P 0) =(GdJ(�0d; s0; P 0)0;G
J(�0; s0; P 0)0)0. We illustrate how this 
an be done using the demand-sidesample moments. The supply-side sample moments 
an be approa
hed similarly. The m-thelement of the demand side sample moments GdJ(�0; s0; P 0) is the average of zdjm�j(�0d; s0; P 0)over j where zdjm�j(�0d; s0; P 0) are not independent a
ross j due to the interdependen
e of zdjm|zdjm�j(�0d; s0; P 0) are just 
onditionally independent givenX1. Bernoulli's weak law of large num-bers does not require independen
e nor identi
al distributedness among the zdjm�j(�0d; s0; P 0),but requires the varian
e of J�1PJj=1 zdjm�j(�0d; s0; P 0) to 
onverge to zero as J goes to in�nity.Sin
e zdjm are fun
tions of X1 and the 
onditional expe
tation of �j(�0d; s0; P 0) given X1 is zeroin (1), the expe
tation and varian
e of J�1PJj=1 zdjm�j(�0d; s0; P 0) are respe
tivelyEx1;� hJ�1PJj=1 zdjm�j(�0d; s0; P 0)i= Ex1 hE�jx1 hJ�1PJj=1 zdjm�j(�0d; s0; P 0)���X1ii= Ex1 hJ�1PJj=1 zdjm E�jx1 h�j(�0d; s0; P 0)���X1ii= 0; 50



Vx1;�[J�1PJj=1 zdjm�j(�0d; s0; P 0)℄= Ex1 hV�jx1 hJ�1PJj=1 zdjm�j(�0d; s0; P 0)���X1ii+Vx1 hE�jx1 hJ�1PJj=1 zdjm�j(�0d; s0; P 0)���X1ii= Ex1 hV�jx1 hJ�1PJj=1 zdjm�j(�0d; s0; P 0)���X1ii= Ex1 hJ�2PJj=1(zdjm)2V�jx1 h�j(�0d; s0; P 0)���X1ii= Ex1 hJ�2PJj=1(zdjm)2 E�jx1 h�2j (�0d; s0; P 0)���X1ii :Sin
e the 
onditional varian
e of �j in (1) is bounded by some 
onstant M > 0 orE�jx1 [�2j (�0; s0; P 0)jX1℄ < M with probability one, we haveJ�2PJj=1(zdjm)2 E�jx1 h�2j (�0d; s0; P 0)���X1i � (1=J)(PJj=1(zdjm)2=J)M:We know that PJj=1(zdjm)2=J is Op(1) and uniformly integrable by A4(a). Uniform integrabilityguarantees that the order of magnitude does not 
hange after taking expe
tation, and this enableus to 
laim Ex1 [PJj=1(zdjm)2=J ℄ = O(1). Hen
eVx1;�[J�1PJj=1 zdjm�j(�0d; s0; P 0)℄= Ex1 hJ�2PJj=1(zdjm)2 E�jx1 [�2j (�0d; s0; P 0)jX1℄i� MJ Ex1 [PJj=1(zdjm)2=J ℄= MJ �O(1)! 0 as J !1:Bernoulli's weak law of large numbers ensures that the m-th element of GdJ(�0d; s0; P 0) 
onvergesto the 
orresponding element of Ex1;�[GdJ(�0d; s0; P 0)℄ = 0 in probability, i.e.,limJ!1Pr[jfGdJ(�0d; s0; P 0)gmj > �℄ = limJ!1Pr24������ JXj=1 zdjm�j(�0d; s0; P 0)=J ������ > �35� limJ!1 1�2 Vx1;� 24 JXj=1 zdjm�j(�0d; s0; P 0)=J35� 1�2 limJ!1MJ �O(1)= 0:Thus jjGdJ(�0d; s0; P 0)jj = op(1). Similarly, we 
an show that the supply side momentsG
J(�0; s0; P 0)
onverge to Ew1;![G
J(�0; s0; P 0)℄ = 0 in probability by (12) and A4(b). Hen
e jjGJ(�0; s0; P 0)jj =op(1).Proof of (i-b)Next we show (i-b). For every (�; Æ) > (0; 0) and any positive fun
tion of Æ, C(Æ), followingrelationship holds in general.( inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ))� ( inf� 62N�0 (Æ) jjGJ(�; s0; P 0)jj+ jjGJ(�0; s0; P 0)jj � C(Æ))51



� ( inf� 62N�0 (Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2) [ �jjGJ(�0; s0; P 0)jj � �2� : (A.2)Taking probability of both side of (A.2) givesPr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)#� Pr "( inf� 62N�0 (Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2) [ �jjGJ(�0; s0; P 0)jj � �2�#� Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2#+ Pr �jjGJ(�0; s0; P 0)jj � �2� :We thus obtain Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2#� Pr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)#�Pr �jjGJ(�0; s0; P 0)jj � �2� : (A.3)Sin
e jjGJ(�0; s0; P 0)jj = op(1), for any � there exists J1(�) su
h that if J � J1(�),Pr[jjGJ(�0; s0; P 0)jj � �=2℄ � �=2. By assumption A5, for any (�; Æ) > (0; 0), there existsC(Æ) > 0 and J2(�; Æ) su
h that when J � J2(�; Æ)Pr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)# � 1� �2 :Therefore, from (A.3), for any (�; Æ) > (0; 0) there exists C(Æ) > 0, J1(�) and J2(�; Æ) su
h thatwhen J � maxfJ1(�); J2(�; Æ)g,Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)jj � C(Æ)� �2#� Pr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj � C(Æ)#�Pr �jjGJ(�0; s0; P 0)jj � �2�� 1� �2 � �2 = 1� �:Thus we have limJ!1Pr" inf� 62N�0(Æ) jjGJ(�; s0; P 0)jj � C�(�; Æ)# � 1� �by setting C�(�; Æ) = C(Æ)� �=2. This is equivalent to (i-b), i.e.,limJ!1Pr " sup� 62N�0(Æ) jjGJ(�; s0; P 0)jj�1 > C#(�; Æ)# < �52



with C#(�; Æ) = 1=C�(�; Æ).We next turn to show (1-ii), orsup�2� jjGJ(�; sn; PR)�GJ(�; s0; P 0)jj = op(1): (A.4)From the de�nitions of GJ(�; sn; PR) and GJ(�; s0; P 0) in (17), (18), (22), and (23), we havesup�2� jjGJ(�; sn; PR)�GJ(�; s0; P 0)jj2� sup�d2�d jjJ�1Z 0df�(�d; sn; PR)� �(�d; s0; P 0)gjj2+sup�2� jjJ�1Z 0
f!(�; sn; PR)�!(�; s0; P 0)gjj2� J�1jjZ 0dZdjj � sup�d2�d J�1jj�(�d; sn; PR)� �(�d; s0; P 0)jj2+J�1jjZ 0
Z
jj � sup�2�J�1jj!(�; sn; PR)� !(�; s0; P 0)jj2 (A.5)where the terms jjZ 0dZdjj=J and jjZ 0
Z
jj=J are respe
tively Op(1) by assumptions A4(a) andA4(b). Thus it remains to show thatsup�d2�d J�1jj�(�d; sn; PR)� �(�d; s0; P 0)jj2 = op(1); (A.6)and sup�2�J�1jj!(�; sn; PR)� !(�; s0; P 0)jj2 = op(1): (A.7)In order to show (A.6), we �rst show thatsup�d2�d J� 12 jj� J(�(X ; �(�d; sn; PR);�d; P 0))� � J(�(X ; �(�d; s0; P 0);�d; P 0))jj= op(1) (A.8)and then show that (A.8) implies (A.6) by using assumption A6. The proof for (A.7) is dire
tlyderived from (A.6) and assumption A7.Proof of (A.6)Sin
e for any �d, sn = �(X ; �(�d; sn; PR);�d; PR) from (26) and s0 = �(X ; �(�d; s0; P 0);�d; P 0)from (27), the left-hand side of (A.8) is bounded bysup�d2�d J� 12 jj� J(�(X ; �(�d; sn; PR);�d; P 0))� � J(�(X; �(�d; s0; P 0);�d; P 0))jj= sup�d2�d J� 12 jj� J(�(X; �(�d; sn; PR);�d; P 0))� � J(s0)+f� J(sn)� � J(�(X ; �(�d; sn; PR);�d; PR))gjj� J� 12 jj� J(sn)� � J(s0)jj+ sup�d2�d J� 12 jj� J(�(X; �(�d; sn; PR);�d; PR))� � J(�(X; �(�d; sn; PR);�d; P 0))jj� J� 12 jj� J(sn)� � J(s0)jj+ sup�d2�d sup� J� 12 jj� J(�(X; �;�d; PR))� � J(�(X; �;�d; P 0))jj: (A.9)53



In the following we show that both the two terms in (A.9) are op(1) as J ! 1. By the meanvalue theorem, for some intermediate values �sj = s0j + qj(snj � s0j) (0 � qj � 1); j = 1; : : : ; J , thesquare of the �rst term isJ�1jj� J(sn)� � J(s0)jj2= J�1 JXj=1[log(snj =sn0 )� log(s0j=s00)℄2= J�1 JXj=1[log(snj )� log(s0j )� flog(sn0 )� log(s00)g℄2= J�1 JXj=124 ��sj log(sj)�����sj=�sj (snj � s0j)� ��s0 log(s0)����s0=�s0 (sn0 � s00)352= J�1 JXj=1 "snj � s0j�sj � sn0 � s00�s0 #2= J�1 JXj=1 snj � s0j�sj !2 � 2J�1 JXj=1 snj � s0j�sj ! sn0 � s00�s0 !+ J�1 JXj=1 sn0 � s00�s0 !2� J�1 JXj=1 s0j�sj!2 snj � s0js0j !2 + 2 s00�s0! �����sn0 � s00s00 ����� J�1 ������ JXj=1 s0j�sj! snj � s0js0j !������+ s00�s0!2  sn0 � s00s00 !2� max1�j�J  s0j�sj!2 � max1�j�J  snj � s0js0j !2 + 2 s00�s0! �����sn0 � s00s00 ����� max1�j�J  s0j�sj! max1�j�J �����snj � s0js0j �����+ s00�s0!2  sn0 � s00s00 !2= max1�j�J  s0j�sj! � max1�j�J  s0j�sj! � max1�j�J  snj � s0js0j ! � max1�j�J  snj � s0js0j !+2 s00�s0! �����sn0 � s00s00 ����� max1�j�J  s0j�sj! max1�j�J �����snj � s0js0j �����+ s00�s0! �  s00�s0! �  sn0 � s00s00 ! �  sn0 � s00s00 !� Op(1) � Op(1) � op(1) � op(1) +Op(1) � op(1) �Op(1) � op(1)+Op(1) �Op(1) � op(1) � op(1)= op(1) (A.10)where op(1) terms 
ome from A3(a), while Op(1) terms follow the next equation.max0�j�J  s0j�sj! = max0�j�J  s0js0j + qj(snj � s0j)! = max0�j�J  11 + qj(snj � s0j)=s0j != max0�j�J  11 + qj � op(1)! = Op(1):For the se
ond term of (A.9), by the mean value theorem, we obtain for given (X; �;�d),J�1jj� J(�(X; �;�d; PR))� � J(�(X ; �;�d; P 0))jj254



= J�1 JXj=1[log(�j(X; �;�d; PR)=�0(X; �;�d; PR))� log(�j(X; �;�d; P 0)=�0(X; �;�d; P 0))℄2= J�1 JXj=1[log(�j(X; �;�d; PR))� log(�j(X; �;�d; P 0))�flog(�0(X ; �;�d; PR))� log(�0(X ; �;�d; P 0))g℄2= J�1 JXj=1"�j(X ; �;�d; PR)� �j(X ; �;�d; P 0)��j��0(X; �;�d; PR)� �0(X ; �;�d; P 0)��0 #2= J�1 JXj=1 �j(X; �;�d; PR)� �j(X ; �;�d; P 0)��j !2�2J�1 JXj=1 �j(X; �;�d; PR)� �j(X ; �;�d; P 0)��j !� �0(X; �;�d; PR)� �0(X; �;�d; P 0)��0 !+J�1 JXj=1 �0(X ; �;�d; PR)� �0(X; �;�d; P 0)��0 !2� J�1 JXj=1 �j(X; �;�d; P 0)��j !2  �j(X; �;�d; PR)� �j(X; �;�d; P 0)�j(X ; �;�d; P 0) !2+2 �0(X ; �;�d; P 0)��0 ! ������0(X ; �;�d; PR)� �0(X; �;�d; P 0)�0(X ; �;�d; P 0) ������J�1 ������ JXj=1 �j(X; �;�d; P 0)��j ! �j(X; �;�d; PR)� �j(X; �;�d; P 0)�j(X ; �;�d; P 0) !������+ �0(X; �;�d; PR)� �0(X; �;�d; P 0)��0 !2� max0�j�J  �j(X; �;�d; P 0)��j !2 max0�j�J  �j(X ; �;�d; PR)� �j(X ; �;�d; P 0)�j(X; �;�d; P 0) !2+2 �0(X ; �;�d; P 0)��0 ! ������0(X ; �;�d; PR)� �0(X; �;�d; P 0)�0(X ; �;�d; P 0) ������ max0�j�J  �j(X ; �;�d; P 0)��j ! max0�j�J ������j(X; �;�d; PR)� �j(X ; �;�d; P 0)�j(X ; �;�d; P 0) �����+ �0(X; �;�d; PR)� �0(X; �;�d; P 0)��0 !2 (A.11)where ��j; j = 0; : : : ; J are values between �j(X; �;�d; PR) and �j(X; �;�d; P 0). We need toshow that (A.11) is op(1) uniformly over � and �d 2 �d. A straightforward appli
ation of A3(b)to the relative di�eren
e share terms in (A.11) yields that they are all of order op(1) uniformly55



over � and �d 2 �d. As for the relative share term,max0�j�J  �j(X ; �;�d; P 0)��j != max0�j�J  �j(X; �;�d; P 0)�j(X ; �;�d; P 0) + qj(�j(X ; �;�d; PR)� �j(X; �;�d; P 0))!= max0�j�J  11 + qj(�j(X ; �;�d; PR)� �j(X; �;�d; P 0))=�j(X ; �;�d; P 0)!= max0�j�J  11 + qj � op(1)! = Op(1) (A.12)where 0 � qj � 1. Again utilizing A3(b) yields that (A.12) holds uniformly over � and �d 2 �d.Thus sup�d2�d sup� J� 12 jj� J(�(X ; �;�d; PR))� � J(�(X ; �;�d; P 0))jj = op(1):Hen
e we obtain (A.8).By assumption A6, for all �d 2 �d, if J�1jj�(�d; sn; PR)��(�d; s0; P 0)jj2 � Æ for some Æ > 0,then there exists C(Æ) su
h thatinf�d2�d J� 12 jj� J(�(X; �(�d; sn; PR);�d; P 0))� � J(�(X; �(�d; s0; P 0);�d; P 0))jj � C(Æ)with probability tending to one as J !1. In other words, its 
ontrapositive statement is thatwheneversup�d2�d J� 12 jj� J(�(X; �(�d; sn; PR);�d; P 0))� � J(�(X; �(�d; s0; P 0);�d; P 0))jj = op(1)holds, A6 implies sup�d2�d J�1jj�(�d; sn; PR) � �(�d; s0; P 0)jj2 � Æ, or in the presen
e of A6,(A.8) implies (A.6), i.e., for any �d 2 �d and Æ > 0,Pr[�(�d; sn; PR) 62 N�0(�d; Æ)℄! 0: (A.13)Proof of (A.7)By the Glivenko-Cantelli theorem,Pr[PR 62 NP 0(Æ)℄! 0 (A.14)for Æ > 0 as R!1. From (A.13) and (A.14) as J;R!1, for given Æ > 0, Pr[�(�d; sn; PR)℄ 2N�0(�d; Æ); PR 2 NP 0(Æ)℄! 1 orPr[(�(�d; sn; PR); PR) 2 N�0(�d; Æ) �NP 0(Æ)℄! 1:Thus assumption A7 guarantees that the di�eren
es in the pro�t margin behave uniformly over�d 2 �d assup�d2�d J� 12 jjmg(�(�d; sn; PR);�d; PR)�mg(�(�d; s0; P 0);�d; P 0)jj = op(1): (A.15)56



Sin
e _g(�) is assumed �nite for all realizable values of 
ost, we 
an derive (A.7) by using (A.15)in the following inequality with the de�nition of !j(�; s; P ) in (13).sup�2�J�1jj!(�; sn; PR)� !(�; s0; P 0)jj2= sup�d2�d J�1 JXj=1ng(pj �mgj(�(�d; sn; PR);�d; PR))� g(pj �mgj(�(�d; s0; P 0);�d; P 0))o2= sup�d2�d J�1 JXj=1 � _g(pj �mgj)nmgj(�(�d; sn; PR);�d; PR)�mgj(�(�d; s0; P 0);�d; P 0)o�2� sup�d2�d sup1�j�J j _g(pj �mgj)j2� sup�d2�d J�1 JXj=1nmgj(�(�d; sn; PR);�d; PR)�mgj(�(�d; s0; P 0);�d; P 0)o2= sup�d2�d sup1�j�J j _g(pj �mgj)j2� sup�d2�d J�1jjmg(�(�d; sn; PR);�d; PR)�mg(�(�d; s0; P 0);�d; P 0)jj2= op(1)where mgj are between mgj(�(�d; sn; PR);�d; PR) and mgj(�(�d; s0; P 0);�d; P 0). Noti
e thatpj�mgj generally represents the marginal 
ost. We should also note that the di�eren
e between!(�; sn; PR) and !(�; s0; P 0) in
ludes only the demand side parameters �d be
ause of the lineardependen
e of !(�; s; P ) on the supply side parameters �
 as seen in (13). 2Proof of Theorem 2To establish Theorem 2, we show that for the approximation GJ(�) = (GdJ(�d)0;G
J(�)0)0 de�nedin (47) and (57) to GJ(�; sn; PR),(2-i) supjj���0jj�ÆJ ������J 12 [GJ(�)�GJ(�; sn; PR)℄������ p! 0 when ÆJ ! 0, and(2-ii) an estimator that minimizes jjGJ(�)jj over � 2 � would be; (1) asymptoti
ally normal atrate J 12 , and (2) have a varian
e-
ovarian
e matrix whi
h is the sum of three mutuallyun
orrelated terms (one resulting from randomness in the draws on exogenous variables(x1j; �j ;w1j ; !j), one from sampling error �nj , and one from simulation error �Rj (�d)).Given 
onsisten
y, a 
onsequen
e of (2-i) is that the estimator obtained fromminimizing jjGJ(�)jj,has the same limiting distribution as our estimator that minimizes jjGJ(�; sn; PR)jj. Sin
e theformer is easier to analyze, we work with it.proof of (2-i)We show (2-i) by establishing that for any ÆJ ! 0,supjj�d��0djj�ÆJ ������J 12 [GdJ(�d)�GdJ(�d; sn; PR)℄������ = op(1); (A.16)supjj���0jj�ÆJ ������J 12 [G
J(�)�G
J(�; sn; PR)℄������ = op(1): (A.17)
57



We �rst show (A.16). From (46) and (47), jjJ 12 [GdJ(�d)�GdJ(�d; sn; PR)℄jj 
an be rewritten as������J 12 [GdJ(�d)�GdJ(�d; sn; PR)℄������= ������J� 12Z 0d hH�10 f�n � �R(�0d)g�fH�1(��;�d; PR)�n �H�1(�;�d; PR)�R(�d)gi ������� ������J� 12Z 0dfH�10 �H�1(��;�d; PR)g�n������+������J� 12Z 0dfH�10 �R(�0d)�H�1(�;�d; PR)�R(�d)g������: (A.18)We show the two terms in the right-hand side of (A.18) are respe
tively op(1) uniformly in�d within the shrinking neighborhood of �0d. We know that for ea
h �d both �(�d; sn; PR) and�(�d; s0; PR) 
onverge to �(�d; s0; P 0) in probability in terms of averaged Eu
lidean distan
e as nand R grow. Sin
e �� is intermediate between �(�d; sn; PR) and �(�d; s0; PR), it also 
onverges to�(�d; s0; P 0). Thus, for any sequen
e ÆJ ! 0, Pr[(��1; : : : ; ��J) 62 fN�0(�0d; ÆJ )gJ ℄! 0. Moreover,for any ÆJ ! 0, we have Pr[�P (PR; P 0) � ÆJ ℄! 0 as R grows by the Glivenko-Cantelli theorem.Therefore, by using assumption B5(a), we havePr � supjj�d��0djj�ÆJ ������J� 12Z 0dfH�10 �H�1(��;�d; PR)g�n������ > 
�� Pr � supjj�d��0djj�ÆJ sup(�;P )2fN�0 (�0d;ÆJ)gJ�NP0(ÆJ ) ������J� 12Z 0dfH�10�H�1(�;�d; P )g�n������ > 
�+Pr[(��1; : : : ; ��J) 62 fN�0(�0d; ÆJ )gJ ℄ + Pr[PR 62 NP 0(ÆJ )℄! 0: (A.19)Noti
e that in the expression of H(��;�d; PR), as mentioned before, we have suppressed thefa
t there exist di�erent ��s for di�erent rows in H(��;�d; PR). Therefore, in (A.19), we have toevaluate H(�;�d; P ) row by row with distin
t ��j ; j = 1; : : : ; J .For the intermediate ve
tors �j ; j = 1; : : : ; J between �(�d; s0; PR) and �(�d; s0; P 0), wehave Pr[(�1; : : : ; �J) 62 fN�0(�0d; ÆJ )gJ ℄! 0 for any ÆJ ! 0. Thus for the se
ond term in (A.18),by assumption B5(b),Pr � supjj�d��0djj�ÆJ ������J� 12Z 0dfH�10 �R(�0d)�H�1(�;�d; PR)�R(�d)g������ > 
�� Pr � supjj�d��0djj�ÆJ sup(�;P )2fN�0 (�0d;ÆJ )gJ�NP0 (ÆJ ) ������J� 12Z 0dfH�10 �R(�0d)�H�1(�;�d; P )�R(�d)g������ > 
�+Pr[(�1; : : : ; �J) 62 fN�0(�0d; ÆJ)gJ ℄ + Pr[PR 62 NP 0(ÆJ )℄! 0: (A.20)We next show (A.17). From (56) and (57), we know thatjjJ 12 [G
J(�)�G
J(�; sn; PR)℄jj= ������� J� 12Z 0
L0M0H�10 f�n � �R(�0d)g�J� 12Z 0
hg(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))58



�L(���;�d; PR)M(���;�d; PR)H�1(��;�d; PR)�n+L(�;�d; PR)M(�;�d; PR)H�1(�;�d; PR)�R(�d)i������� ������J� 12Z 0
 hg(p�mg(�(�d; s0; P 0);�d; PR))� g(p�mg(�(�d; s0; P 0);�d; P 0))i ������+������J� 12Z 0
fL0M0H�10 �L(���;�d; PR)M(���;�d; PR)H�1(��;�d; PR)g�n������+������J� 12Z 0
fL0M0H�10 �R(�0d)�L(�;�d; PR)M (�;�d; PR)H�1(�;�d; PR)�R(�d)g������:(A.21)We need to show that the three terms in the right-hand side of (A.21) are respe
tively op(1)within the ÆJ neighborhood of �0d, From assumption B5(e), we know thatsupjj�d��0djj�ÆJ ������J� 12Z 0
[g(p�mg(�(�d; s0; P 0);�d; PR))�g(p�mg(�(�d; s0; P 0);�d; P 0))℄������ = op(1): (A.22)With the argument similar to obtain (A.19), we 
an derive for the se
ond term on the right-handside of (A.21) by using B5(
),Pr � supjj�d��0djj�ÆJ ������J� 12Z 0
fL(���;�d; PR)M (���;�d; PR)H�1(��;�d; PR)�L0M0H�10 g�n������ > 
�� Pr � supjj�d��0djj�ÆJ sup(�1;�2;P )2fN�0 (�0d;ÆJ )g2J�NP0(ÆJ ) ������J� 12Z 0
�fL(�1;�d; P )M (�1;�d; P )H�1(�2;�d; P )�L0M 0H�10 g�n������ > 
�+Pr[(���1; : : : ; ���J) 62 fN�0(�0d; ÆJ )gJ ℄ + Pr[(��1; : : : ; ��J) 62 fN�0(�0d; ÆJ )gJ ℄+Pr[PR 62 NP 0(ÆJ )℄! 0:For the third term on the right-hand side of (A.21), we obtain by assumption B5(d)Pr � supjj�d��0djj�ÆJ ������J� 12Z 0
fL(�;�d; PR)M (�;�d; PR)H�1(�;�d; PR)�R(�d)�L0M0H�10 g�R(�0d)g������ > 
�� Pr � supjj�d��0djj�ÆJ sup(�1;�2;P )2fN�0 (�0d;ÆJ)g2J�NP0 (ÆJ ) ������J� 12Z 0
�fL(�1;�d; P )M (�1;�d; P )H�1(�2;�d; P )�R(�d)�L0M0H�10 �R(�0d)g������ > 
�+Pr[(�1; : : : ; �J) 62 fN�0(�0d; ÆJ)gJ ℄ + Pr[(�1; : : : ; �J) 62 fN�0(�0d; ÆJ)gJ ℄+Pr[PR 62 NP 0(ÆJ )℄! 0:proof of (2-ii)We now turn to show (2-ii). In order to show that the estimator that minimizes the normof GJ(�) is asymptoti
ally normally distributed we apply a version of Theorem 3.3 in Pakes59



and Pollard (1989). A di�eren
e here is that the expe
tation of GJ(�) 
ould vary with J .This is be
ause the derivative of (�(�d; s; P );!(�; s; P )) with respe
t to � and the instrumentalvariables (Zd;Z
) both depend on the number and 
hara
teristi
s of the all produ
ts marketed.The version of the theorem we use is:Let �� be a 
onsistent estimator of �0, the unique point of � for whi
h E[GJ(�0)℄ = 0. If:(i) jjGJ(��)jj � op(J� 12 ) + inf� jjGJ(�)jj;(ii) E[GJ(�)℄ is di�erentiable at �0 with a derivative matrix �J of full rank, and �J ! � asJ !1;(iii) for every sequen
e fÆJg of positive numbers that 
onverges to zero,supjj���0jj�ÆJ jjGJ(�)� E[GJ(�)℄� GJ(�0)jjJ� 12 + jjGJ(�)jj+ jjE[GJ(�)℄jj = op(1);(iv) J 12GJ(�0) w; N(0;�);(v) �0 is an interior point of �;then J 12 (�� � �0) w; N(0; (�0�)�1�0��(�0�)�1):The set of assumptions, E�jx1 [�j(�0d; s0; P 0)jx1j ℄ = 0 given in (1),E!jw1 [!j(�0d; s0; P 0)jw1j ℄ = 0 given in (12), E�jx;�[�njX ; �(�0d; s0; P 0)℄ = 0 given in A1(a), andE��jx;�[�R(�d)jX ; �(�d; s0; P 0)℄ = 0 for ea
h �d given in assumption A1(b) ensures that theun
onditional expe
tation E[GdJ(�0d)℄ = 0 and E[G
J(�0)℄ = 0. Noting the fa
t that under(�0; s0; P 0), E[GdJ(�0d; s0; P 0)℄ = 0 and E[G
J(�0; s0; P 0)℄ = 0.E[GdJ(�0d)℄= E hJ�1Z 0d�(�0d; s0; P 0) + J�1Z 0dH�10 �n � J�1Z 0dH�10 �R(�0d)i= Ex1;� hJ�1Z 0d�(�0d; s0; P 0)i+E�;x1;� hJ�1Z 0dH�10 �ni� E��;x1;� hJ�1Z 0dH�10 �R(�0d)i= Ex1;� hJ�1Z 0d�(�0d; s0; P 0)i+E�;x;� hJ�1Z 0dH�10 �ni� E��;x;� hJ�1Z 0dH�10 �R(�0d)i= Ex1 hE�jx1 hJ�1Z 0d�(�0d; s0; P 0)���X1ii+Ex;� hE�jx;� hJ�1Z 0dH�10 �n���X; �(�0d; s0; P 0)ii�Ex;� hE��jx;� hJ�1Z 0dH�10 �R(�0d)���X; �(�0d; s0; P 0)ii= Ex1 hJ�1Z 0d E�jx1 h�(�0d; s0; P 0)���X1ii+Ex;� hJ�1Z 0dH�10 E�jx;� h�n���X; �(�0d; s0; P 0)ii�Ex;� hJ�1Z 0dH�10 E��jx;� h�R(�0d)���X; �(�0d; s0; P 0)ii= 0;E[G
J(�0)℄= E[J�1Z 0
!(�0; s0; P 0)� J�1Z 0
L0M0H�10 f�n � �R(�0d)g℄= Ew1;![J�1Z 0
!(�0; s0; P 0)℄� E�;x1;�;w1 [J�1Z 0
L0M0H�10 �n℄+E��;x1;�;w1[J�1Z 0
L0M 0H�10 �R(�0d)℄= Ew1;![J�1Z 0
!(�0; s0; P 0)℄� E�;x;�;w1[J�1Z 0
L0M0H�10 �n℄60



+E��;x;�;w1 [J�1Z 0
L0M0H�10 �R(�0d)℄= Ew1 [E!jw1 [J�1Z 0
!(�0; s0; P 0)jW 1℄℄�Ex;�;w1 [E�jx;�;w1[J�1Z 0
L0M0H�10 �njX ; �(�0d; s0; P 0);W 1℄℄+Ex;�;w1 [E��jx;�;w1 [J�1Z 0
L0M0H�10 �R(�0d)jX ; �(�0d; s0; P 0);W 1℄℄= Ew1 [J�1Z 0
 E!jw1 [!(�0; s0; P 0)jW 1℄℄�Ex;�;w1 [J�1Z 0
L0M0H�10 E�jx;�;w1[�njX; �(�0d; s0; P 0);W 1℄℄+Ex;�;w1 [J�1Z 0
L0M0H�10 E��jx;�;w1[�R(�0d)jX ; �(�0d; s0; P 0);W 1℄℄= Ew1 [J�1Z 0
 E!jw1 [!(�0; s0; P 0)jW 1℄℄�Ex;�;w1 [J�1Z 0
L0M0H�10 E�jx;�[�njX ; �(�0d; s0; P 0)℄℄+Ex;�;w1 [J�1Z 0
L0M0H�10 E��jx;�[�R(�0d)jX ; �(�0d; s0; P 0)℄℄= 0:We 
on�rm that under the assumptions we give in the theorem ea
h of the 
onditions (i){(v) issatis�ed. Any estimator that minimizes jjGJ(�)jj satis�es (i). Sin
e E[J�1Z 0dH�10 f�n��R(�0d)℄ =0, we have from (47) E[GdJ(�d)℄ = E[GdJ(�d; s0; P 0)℄:Similarly, sin
e E[J�1Z 0
L0M0H�10 f�n � �R(�0d)g℄ = 0, we obtain from (57)E[G
J(�)℄ = E[G
J(�; s0; P 0)℄:Thus ���0 E[GJ(�)℄ = ���0 E[GJ(�; s0; P 0)℄ =  (� E[GdJ(�d)℄��0 )0 ;�� E[G
J(�)℄��0 �0!0= (�dJ 0;�
J 0)0 (A.23)by assumption B2 and 
ondition (ii) is satis�ed. We 
an show (iii) as follows.supjj���0jj�ÆJ jjGJ(�)� E[GJ(�)℄� GJ(�0)jjJ� 12 + jjGJ(�)jj+ jjE[GJ(�)℄jj� supjj���0jj�ÆJ J 12 jjGJ(�)� E[GJ(�)℄� GJ(�0)jj� supjj�d��0djj�ÆJ J 12 jjGdJ(�d)� E[GdJ(�d)℄� GdJ(�0d)jj+ supjj���0jj�ÆJ J 12 jjG
J(�)� E[G
J(�)℄� G
J(�0)jj= op(1) + op(1)= op(1)where the �rst op(1) term 
omes fromsupjj�d��0djj�ÆJ J 12 jjGdJ(�d)� E[GdJ(�d)℄� GdJ(�0d)jj= supjj�d��0djj�ÆJ J 12 ������GdJ(�d; s0; P 0) + J�1Z 0dH�10 n�n � �R(�0d)o�E�;��;x1;� hGdJ(�d; s0; P 0) + J�1Z 0dH�10 n�n � �R(�0d)oi61



�GdJ(�0d; s0; P 0)� J�1Z 0dH�10 n�n � �R(�0d)o������= supjj�d��0djj�ÆJ J 12 ������GdJ(�d; s0; P 0)� Ex1;� hGdJ(�d; s0; P 0)i�GdJ(�0d; s0; P 0)������= op(1)by assumption B3(a), and the se
ond op(1) term 
omes fromsupjj���0jj�ÆJ J 12 jjG
J(�)� E[G
J(�)℄� G
J(�0)jj� supjj�d��0djj�ÆJ J 12 ������G
J(�; s0; P 0)� J�1Z 0
L0M0H�10 f�n � �R(�0d)g�E�;��;x1;�;w1;![G
J(�; s0; P 0)� J�1Z 0
L0M0H�10 f�n � �R(�0d)g℄�G
J(�0; s0; P 0) + J�1Z 0
L0M0H�10 f�n � �R(�0d)g������= supjj�d��0djj�ÆJ J 12 ������G
J(�; s0; P 0)� Ew1;![G
J(�; s0; P 0)℄�G
J(�0; s0; P 0)������= op(1)by assumption B3(b). Assumption B1 ensures 
ondition (v). Let us turn to show (iv). We set(ad1(�;�d; P ); : : : ;adJ(�;�d; P )) � Z 0dH�1(�;�d; P ); (A.24)(a
1(�;�d; P ); : : : ;a
J(�;�d; P )) � �Z 0
L(�;�d; P )M (�;�d; P )H�1(�;�d; P ): (A.25)De
ompose J 12GJ(�0) into the tree terms:J 12GJ(�0)= J 12GJ(�0; s0; P 0) + J� 12  Z 0dH�10�Z 0
L0M0H�10 !n�n � �R(�0d)o= JXj=1 J� 12zdj�j(�0d; s0; P 0)J� 12z
j!j(�0; s0; P 0) !+ J� 12  Z 0dH�10�Z 0
L0M0H�10 !n�n � �R(�0d)o= JXj=1 J� 12zdj�j(�0d; s0; P 0)J� 12z
j!j(�0; s0; P 0) !+ nXi=1Y Ji(�(�0d; s0; P 0);�0d; P 0)� RXr=1Y �Jr(�(�0d; s0; P 0);�0d; P 0) (A.26)where Y Ji(�;�d; P ) = 1nJ 12 JXj=1 adj (�;�d; P )�jia
j(�;�d; P )�ji ! ;Y �Jr(�;�d; P ) = 1RJ 12 JXj=1 adj (�;�d; P )��jr(X ; �;�d)a
j(�;�d; P )��jr(X ; �;�d) ! :Note that the �rst term on the right-hand side of (A.26) is random be
ause of the produ
t
hara
teristi
s (X1; �) and the 
ost shifter (W 1;!). However, at (�0; s0; P 0), these �j's and!j's are independent as stated in page 5. This for
es us to 
ondition only on (X1;W 1) tomake the ea
h 
omponent on the term independent. On the other hand, the se
ond term on62



the right-hand side of (A.26), originating from the sampling error in 
al
ulating the observedmarket share, is dependent on (X; �;W ;!). Similarly for the third term 
orresponding to thesimulation error in 
al
ulating the market share. We show thatnV hb0J 12GJ(�0)io�1=2 b0J 12GJ(�0) (A.27)is asymptoti
ally normal with mean zero and varian
e one for any real 
onstant ve
tor b su
hthat b0b = 1. Then the Cram�er-Wold devi
e says that J 12GJ(�0) 
onverges to multivariate nor-mal. Sin
e the three terms in (A.26), denoted T J1;T J2;T J3, have mean zero and are mutuallyun
orrelated, it is suÆ
ient to show that ea
h of fV[b0T Jl℄g�1=2b0T Jl; l = 1; 2; 3 is asymptoti-
ally normal.7 Noti
e that ea
h element of T Jl is the sum of non-independent, but 
onditionallyindependent random sequen
e. Thus we have to use a version of 
entral limit theorem whi
his appli
able to 
onditionally independent random sequen
es. In appendix ??, we derive theversion for Lyapunov 
entral limit theorem.The �rst term b0T J1:Given (X1;W 1), (zdj�j(�0d; s0; P 0);z
j!j(�0; s0; P 0)) are 
onditionally independent a
ross j. Set�i = 8<:V 24b0J� 12 JXj=1 zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !359=;�1=2 b0J� 12  zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !and Z = (X1;W 1) for the 
entral limit theorem in the appendix. Then, by assumption B4(a)and B4(d), we 
an show that the Lyapunov 
ondition is satis�ed for the �rst term as follows.limJ!1 JXj=1E2664�������8<:V24b0J� 12 JXj=1 zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !359=;�1=2 b0J� 12  zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !�������2+Æ3775= limJ!1 JXj=18<:V 24b0J� 12 JXj=1 zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !359=;�(2+Æ)=2 E24�����b0J� 12  zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !�����2+Æ35� limJ!1 JXj=18<:b0V 24J� 12 JXj=1 zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !35 b9=;�(2+Æ)=2�jjb0jj2+Æ E24����������J� 12  zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !����������2+Æ35= fb0�1bg�(2+Æ)=2jjb0jj2+Æ limJ!1 JXj=1E24����������J� 12  zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !����������2+Æ35= 0for some Æ > 0. Thus we have8<:V 24b0J� 12 JXj=1 zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !359=;�1=2 JXj=1 b0J� 12  zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) !w; N(0; 1)whi
h is equivalent to saying thatb0 JXj=1J� 12  zdj�j(�0d; s0; P 0)z
j!j(�0; s0; P 0) ! w; N(0; b0�1b): (A.28)7These three terms are not mutually independent due to in
lusion of the 
ommon random variables X and �.63



The se
ond term b0T J2 = b0Pni=1 Y Ji(�(�0d; s0; P 0);�0d; P 0):Abbreviate Y 0Ji = Y Ji(�(�0d; s0; P 0);�0d; P 0). Given (X ; �(�0d; s0; P 0);W ;!(�0; s0; P 0)), Y 0Jiare 
onditionally independent a
ross i.Set �i = fV [b0Pni=1 Y 0Ji℄g� 12b0Y 0Ji and Z = (X; �(�0d; s0; P 0);W ;!(�0; s0; P 0)) for the 
entrallimit theorem in the appendix. The Lyapunov 
ondition for this term islimn!1 nXi=1E264������(V "b0 nXi=1Y 0Ji#)� 12 b0Y 0Ji������2+Æ375= limn!1(V "b0 nXi=1 Y 0Ji#)�(2+Æ)=2 nXi=1E[jb0Y 0Jij2+Æ ℄� limn!1(b0V " nXi=1 Y 0Ji# b)�(2+Æ)=2 jjb0jj3 nXi=1 E[jjY 0Jijj2+Æ℄= fb0�2bg�(2+Æ)=2jjb0jj2+Æ limn!1 nXi=1E[jjY 0Jijj2+Æ ℄= 0by assumption B4(b) and B4(e). Thus we haveb0 nXi=1Y 0Ji w; N(0; b0�2b): (A.29)The third term b0T J3 = b0PRr=1 Y �Jr(�(�0d; s0; P 0);�0d; P 0):The argument is 
ompletely same as that for the se
ond term.Abbreviate Y �0Jr = Y �Jr(�(�0d; s0; P 0);�0d; P 0). Then, by using the 
entral limit theorem withB4(
) and B4(f), we have b0 nXr=1Y �0Jr w; N(0; b0�3b): (A.30)Sin
e the three terms in b0J 12GJ(�0) 
onverges respe
tively to normal ea
h of them are un
or-related, so is b0J 12GJ(�0). b0J 12GJ(�0) w; N(0; b0�b) (A.31)where � = �1 +�2 +�3. This 
ompletes the proof for the theorem 2. 2Proof of Theorem 3We will show that(1-i)' the estimator ~� de�ned as any sequen
e that satis�esjjGJ;T (~�; s0; P 0;�0)jj = inf�2� jjGJ;T (�; s0; P 0;�0)jj+ op(1)is 
onsistent for �0, and(1-ii)' sup�2� jjGJ;T (�; sn; PR;�N )�GJ;T (�; s0; P 0;�0)jj = op(1).To show (1-i)', Theorem 3.1 of Pakes and Pollard (1989) requires(i-a)' GJ;T (�0; s0; P 0;�0) = op(1), and(i-b)' sup� 62N�0 (Æ)jjGJ;T (�; s0; P 0;�0)jj�1 = Op(1) for ea
h Æ > 0.64



Proof of (i-a)'Sin
e we have shown that GdJ(�0d; s0; P 0) = op(1) and G
J(�0; s0; P 0) = op(1), the remainingis to show that GaJ;T (�0d; s0; P 0;�0) = op(1). We apply Bernoulli's weak law of large numberto ea
h row of GaJ;T (�0d; s0; P 0;�0). We denote the element of GaJ;T (�d; s; P;�) 
orrespond-ing to 
onsumer's demographi
 d and dis
riminating attribute q as fGaJ;T (�d; s; P;�)gd;q; d =1; : : : ;D; q = 1; : : : ; Np. By the de�nition of �0dq given in (76), the expe
tation and the varian
eof fGaJ;T (�0d; s0; P 0;�0)gd;q are respe
tivelyE[fGaJ;T (�0d; s0; P 0;�0)gd;q℄= Ex;� hE�jx;� hfGaJ;T (�0d; s0; P 0;�0)gd;q���X ; �(�0d; s0; P 0)ii= Ex;� "�0dq � 1T TXt=1E�jx;� "�otdPj2Qq �tj(X; �(�d; s0; P 0);�t;�0d)Pj2Qq �j(X ; �(�d; s0; P 0);�0d; P 0) �����X; �(�0d; s0; P 0)##= Ex;� "�0dq � 1T TXt=1 �0dq#= 0;V[fGaJ;T (�0d; s0; P 0;�0)gd;q℄= Ex;� hV�jx;� hfGaJ;T (�0d; s0; P 0;�0)gd;q���X; �(�0d; s0; P 0)ii+Vx;� hE�jx;� hfGaJ;T (�0d; s0; P 0;�0)gd;q���X; �(�0d; s0; P 0)ii= Ex;� hV�jx;� hfGaJ;T (�0d; s0; P 0;�0)gd;q���X; �(�0d; s0; P 0)ii= Ex;� "V�jx;� "�0d;q � 1T TXt=1 �otdPj2Qq �tj(X; �(�0d; s0; P 0);� t;�0d)Pj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0) �����X ; �(�0d; s0; P 0)##= 1T Ex;� "V�jx;� "�otdPj2Qq �tj(X; �(�0d; s0; P 0);� t;�0d)Pj2Qq �j(X; �(�0d; s0; P 0);�0d; P 0) �����X; �(�0d; s0; P 0)##= 1T Ex;� 24E�jx;� 24(�otdPj2Qq �tj(X; �(�0d; s0; P 0);�t;�0d)Pj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0))2 �����X; �(�0d; s0; P 0)35� ��0dq�235= 1T Ex;� �1�nPj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0)o2� E�jx;� �n�otdPj2Qq �tj(X; �(�0d; s0; P 0);�t;�0d)o2 ����X ; �(�0d; s0; P 0)��� 1T Ex;� ���0dq�2�= 1T Ex;� �1�nPj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0)o2�E�jx;� �(�otd)2 ����X; �(�d0; s0; P 0)��� 1T Ex;� ���0dq�2�Sin
e the distributional support of 
onsumer's demographi
 is assumed bounded, its se
ondmoment is �nite, i.e., E�jx;�[(�otd)2jX; �(�0d; s0; P 0)℄ = E� [(�otd)2℄ �M for some 
onstantM <1.Assumption A9 guarantees thatEx;� �1.nPj2Qq �j(X ; �(�0d; s0; P 0);�0d; P 0)o2� = O(1):65



Moreover, we have Ex;� ���0dq�2� = O(1) from assumption A10(b). Thus the varian
e offGaJ;T (�0d; s0; P 0;�0)gd;q isV[fGaJ;T (�0d; s0; P 0;�0)gd;q℄� 1T Ex;� �M.nPj2Qq �j(X; �(�0d; s0; P 0);�0d; P 0)o2�� 1T Ex;� ���0dq�2�� Op(1=T ) +Op(1=T ) = op(1):Thus Bernoulli's weak law of large number ensures that fGaJ;T (�0d; s0; P 0;�0) = op(1)gd;q asT !1 (and hen
e J !1).Proof of (i-b)'From argument similar to deriving (A.3), for any (�; Æ) > (0; 0) and C(Æ), the relationshipPr " inf� 62N�0(Æ) jjGJ;T (�; s0; P 0;�0)jj � C(Æ)� �=2#� Pr " inf� 62N�0 (Æ) jjGJ;T (�; s0; P 0;�0)�GJ;T (�0; s0; P 0;�0)jj � C(Æ)#�Pr hjjGJ;T (�0; s0; P 0;�0)jj � �=2i (A.32)holds in general. Sin
e GJ;T (�0; s0; P 0;�0) = op(1), for any � > 0, there exist J1(�) and T1(�)su
h that when J > J1 and T > T1Pr hjjGJ;T (�0; s0; P 0;�0)jj � �=2i � �=2: (A.33)From assumption A5, for the � and for any Æ > 0, there exist C2(Æ) and J2(�; Æ) su
h that whenJ > J2 Pr h inf� 62N�0 (Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj2 < C2(Æ)i < �4 :From assumption A8, for the (�; Æ), there exists C3(Æ), J3(�; Æ) and T3(�; Æ) su
h that whenJ > J3 and T > T3Pr24 inf�d 62N�0d(Æ) jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj2 < C3(Æ)35 < �4 :Thus when J > min(J2; J3) and T > T3Pr " inf� 62N�0 (Æ) jjGJ;T (�; s0; P 0;�0)�GJ;T (�0; s0; P 0;�0)jj2 < C2(Æ) + C3(Æ)#= Pr � inf� 62N�0 (Æ) njjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj2+jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj2o < C2(Æ) + C3(Æ)�� Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj2+ inf� 62N�0(Æ) jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj2 < C2(Æ) + C3(Æ)#66



� Pr " inf� 62N�0(Æ) jjGJ(�; s0; P 0)�GJ(�0; s0; P 0)jj2 < C2(Æ)#+Pr" inf� 62N�0(Æ) jjGaJ;T (�d; s0; P 0;�0)�GaJ;T (�0d; s0; P 0;�0)jj2 < C3(Æ)#� �4 + �4 = �2 :By setting C(Æ) = fC2(Æ) + C3(Æ)g 12 , we havePr " inf� 62N�0 (Æ) jjGJ;T (�; s0; P 0;�0)�GJ;T (�0; s0; P 0;�0)jj � C(Æ)# � 1� �2 : (A.34)By substituting (A.33) and (A.34) for (A.32), when J > max(J1; J2; J3) and T > max(T1; T2; T3),Pr " inf� 62N�0 (Æ) jjGJ;T (�; s0; P 0;�0)jj � C(Æ) � �=2# � 1� �2 � �2 = 1� �:Then we have lim supJ;T Pr " inf� 62N�0(Æ) jjGJ;T (�; s0; P 0;�0)jj > C�(�; Æ)# � 1� � (A.35)for C�(�; Æ) = C(Æ)� �=2 and hen
e (i-b)' is shown.Proof of (1-ii)'We show sup�2� jjGJ;T (�; sn; PR;�N )�GJ;T (�; s0; P 0;�0)jj = op(1):From (1-ii) in the proof of Theorem 1, we know that the �rst term of the right-hand side in thefollowing inequality 
onverges to zero in probability as J goes to in�nity.sup�2� jjGJ;T (�; sn; PR;�N )�GJ;T (�; s0; P 0;�0)jj� sup�2� jjGJ(�; sn; PR)�GJ(�; s0; P 0)jj+ sup�d2�d jjGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; P 0;�0)jj: (A.36)In the following, we see the se
ond term in (A.36) to be op(1).sup�d2�d jjGaJ;T (�d; sn; PR;�N )�GaJ;T (�d; s0; P 0;�0)jj= sup�d2�d jj�N � T�1PTt=1 �ot 
 t(�(�d; sn; PR);�d; PR);�d; PR)�f�0 � T�1PTt=1 �ot 
 t(�(�d; s0; P 0);�d; P 0);�d; P 0)gjj� jj�N � �0jj+ sup�d2�d ������T�1PTt=1 �ot 
 f t(�(�d; sn; PR);�d; PR)� t(�(�d; s0; P 0);�d; P 0)g������= jj�N � �0jj 67



+ sup�d2�d T�1jj(�o)0f	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; P 0)gjj� jj�N � �0jj+T�1=2jj�0jj � sup�d2�d T�1=2jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj;= Op(N�1=2) +Op(1) � op(1) = op(1)where 	(�;�d; P ) = ( 1(�;�d; P ); : : : ; T (�;�d; P ))0 and �o = (�o1; : : : ;�oT )0. In the last equal-ity above, jj�N � �0jj = Op(N�1=2) 
omes from A10(a), and T�1=2jj�ojj = Op(1) is be
ause theobserved 
onsumer demographi
s �ot are assumed bounded. The op(1) term follows the nextinequaility with assumption A11:Pr � sup�d2�d T�1=2jj	(�(�d; sn; PR);�d; PR)�	(�(�d; s0; P 0);�d; P 0)jj > Æ�� Pr � sup�d2�d sup(�;P )2N�0(�d;Æ)�NP0(Æ) T�1=2jj	(�;�d; P )�	(�(�d; s0; P 0);�d; P 0)jj > Æ�+Pr[�(�d; sn; PR) 62 N�0(�d;Æ)℄ + Pr[PR 62 NP 0(Æ)℄! 0;where Pr[�(�d; sn; PR) 62 N�0(�d;Æ)℄! 0 and Pr[PR 62 NP 0(Æ)℄! 0. 2Proof of Theorem 4In the proof of Theorem 2, we shown that the di�eren
e between GJ(�; sn; PR) and GJ(�) isop(J� 12 ) near �0, or supjj���0jj�ÆJ J 12 jjGJ(�; sn; PR) � GJ(�)jj = op(1). We show below thatGaJ;T (�d; sn; PR;�N ) in (92) and GaJ;T (�d) in (93) is op(T� 12 ) within the ÆJ;T neighborhood of�0. This makes the di�eren
e between GJ;T (�; sn; PR;�N ) in (81) and GJ;T (�d) in (94) issto
hasti
ally small enough near �0.For the element of GaJ;T (�d; sn; PR;�N ) 
orresponding to 
onsumer demographi
s d anddis
riminating attribute q, we havesupjj�d��0djj<ÆJ;T T 12 ����fGaJ;T (�d)�GaJ;T (�d; sn; PR;�N )gd;q����= supjj�d��0djj<ÆJ;T T 12 ���� 1T TXt=1 �otdf tq(�(�d; s0; P 0);�d; PR)�  tq(�(�d; s0; P 0);�d; P 0)g� 1T TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 f�n � �R(�0d)g��tq�(�y;�d; PR)H�1(��;�d; PR)�n +�tq�(�z;�d; PR)H�1(�;�d; PR)�R(�d)i����� supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdf tq(�(�d; s0; P 0);�d; PR)�  tq(�(�d; s0; P 0);�d; P 0)g����+ supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�y;�d; PR)H�1(��;�d; PR)�ni����+ supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �R(�0d)68



��tq�(�z;�d; PR)H�1(�;�d; PR)�R(�d)i���� (A.37)where �tq� is the qth row ve
tor of �t. Thus, it is suÆ
ient to show that the three terms in theright-hand side of (A.37) are respe
tively op(1) or,supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdf tq(�(�d; s0; P 0);�d; PR)�  tq(�(�d; s0; P 0);�d; P 0)g����= op(1); (A.38)supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�y;�d; PR)H�1(��;�d; PR)�ni���� = op(1); (A.39)supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �R(�0d)��tq�(�z;�d; PR)H�1(�;�d; PR)�R(�d)i���� = op(1): (A.40)We 
an obtain (A.38) as follows.supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdf tq(�(�d; s0; P 0);�d; PR)�  tq(�(�d; s0; P 0);�d; P 0)g����= supjj�d��0djj<ÆJ;T �����T�1=2 TXt=1 �otd�Pj2Qq �tj(�(�d; s0; P 0);� t;�d)Pj2Qq �j(�(�d; s0; P 0);�d; PR)�Pj2Qq �tj(�(�d; s0; P 0);�t;�d)Pj2Qq �j(�(�d; s0; P 0);�d; P 0))�����= supjj�d��0djj<ÆJ;T �����T�1=2 TXt=1 �otd�Pj2Qq �tj(�(�d; s0; P 0);�t;�d)Pj2Qq �j(�(�d; s0; P 0);�d; P 0)��Pj2Qq n�j(�(�d; s0; P 0);�d; P 0)� �j(�(�d; s0; P 0);�d; PR)oPj2Qq �j(�(�d; s0; P 0);�d; PR) �����= supjj�d��0djj<ÆJ;T �����T�1=2 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)� Pj2Qqf��Rj (�d)gPj2Qq �j(�(�d; s0; P 0);�d; PR) ������ supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� Pj2Qq T 1=2�Rj (�d)Pj2Qq �j(�(�d; s0; P 0);�d; PR) �����= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� Pj2Qq T 1=2�Rj (�d)Pj2Qq n�j(�(�d; s0; P 0);�d; P 0) + �Rj (�d)o�����69



= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� Pj2Qq T 1=2�Rj (�d)Pj2Qq s0j +Pj2Qq �Rj (�d) �����= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� �Pj2Qq s0j��1Pj2Qq T 1=2�Rj (�d)1 + �Pj2Qq s0j��1 T�1=2Pj2Qq T 1=2�Rj (�d) �����= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)������ supjj�d��0djj<ÆJ;T ����� Op(1) � op(1)1 +Op(1) � T�1=2op(1) �����= supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)����� � op(1)= op(1) (A.41)where we use assumption A9 for (Pj2Qq s0j)�1 = Op(1) and assumption B7(
) forPj2Qq T 1=2�Rj (�d) =op(1). For the last equality in (A.41), we use the law of large number as follows.supjj�d��0djj<ÆJ;T �����T�1 TXt=1 �otd tq(�(�d; s0; P 0);�d; P 0)����� p! j�0dqj = jOp(1)jwhere �0dq = Op(1) follows from assumption A10(b). For (A.39), we havePr " supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 �otdh�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�y;�d; PR)H�1(��;�d; PR)�ni���� > 
#� Pr "maxt j�otdj � supjj�d��0djj<ÆJ;T ����T�1=2 TXt=1 h�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�y;�d; PR)H�1(��;�d; PR)�ni���� > 
#� Pr "maxt j�otdj � supjj�d��0djj<ÆJ; T sup(�1;�2;P )2fN�0 (�0d;ÆJ; T )g2J�NP0(ÆJ; T ) ����T�1=2� TXt=1 h�tq�(�(�0d; s0; P 0);�0d; P 0)H�10 �n��tq�(�1;�d; PR)H�1(�2;�d; PR)�ni���� > 
#+Pr[�y 62 fN�0(�0d; ÆJ;T )gJ ℄ + Pr[�� 62 fN�0(�0d; ÆJ;T )gJ ℄+Pr[PR 62 NP 0(ÆJ;T )℄= o(1) 70



where we use assumption that maxt j�otdj < M(
onstant), B7(a) and the fa
tsPr[�y 62 fN�0(�0d; ÆJ;T )gJ ℄ ! 0, Pr[�� 62 fN�0(�0d; ÆJ;T )gJ ℄ ! 0, Pr[PR 62 NP 0(ÆJ;T )℄ ! 0. We 
analso obtain (A.40) by similar argument as for (A.39) by using assumption B7(b).What we next show is the asymptoti
 normality of the estimator �� that minimizes the normof GJ;T (�) in (94). To do this, we use a version of Theorem 3.3 in Pakes and Pollard (1989)des
ribed in appendix ??, whi
h gives asymptoti
 normality to the estimator indexed by twodistin
t indi
es. From the theorem, if we 
an show the following �ve 
onditions,(i)' jjGJ;T (��)jj = op(J� 12 ) + op(T� 12 ) + inf� jjGJ;T (�)jj;(ii)' E[GJ;T (�)℄ is di�erentiable at �0 with a derivative matrix �J;T = (�0J ;�aJ;T )0 of full rankwhere �J;T 
onverges to (�0;�a)0 as J; T !1;(iii)' for every sequen
e fÆJ;T g of positive numbers that 
onverges to zero as J; T goes to in�nity,(a) supjj���0jj�ÆJ;T jjGJ(�)� E[GJ(�)℄� GJ(�0)jjJ� 12 + jjGJ(�)jj+ jjE[GJ(�)℄jj = op(1);(b) supjj�d��0djj�ÆJ;T jjGaJ;T (�d)� E[GaJ;T (�d)℄� GaJ;T (�0d)jjT� 12 + jjGaJ;T (�d)jj+ jjE[GaJ;T (�d)℄jj = op(1);(iv)'  J 12GJ(�0)T 12GaJ;T (�0d) ! w; N  0; � 00 �a !! ;(v)' �0 is an interior point of �,(vi)' The size index T grows faster than J (T=J !1 as J !1),then, we have �� w; N(0;V ) whereV = (�0�+ �a0�a)�1�0��(�0�+ �a0�a)�1:We are 
onsidering the situation where the number T of 
onsumer draws used to evaluatethe additional moments is larger and grows faster than the number J of produ
ts, and thus (vi)'is satis�ed. Our estimator �� satis�es (i)'. Sin
e the three random variables �ji, ��jr and �#i0 inGJ;T (�) have respe
tively zero means given the set of produ
t 
hara
teristi
s (X; �(�0d; s0; P 0)),we have E[GJ;T (�; s0; P 0;�0)℄ = E[GJ;T (�)℄. Thus 
ondition (ii)' follows from assumptions B2and B8. We shown 
ondition (iii)'(a) in the proof of Theorem 2. For 
ondition (iii)'(b), we havesupjj�d��0djj�ÆJ;T jjGaJ;T (�d)� E[GaJ;T (�d)℄� GaJ;T (�0d)jjT� 12 + jjGaJ;T (�d)jj+ jjE[GaJ;T (�d)℄jj� supjj�d��0djj�ÆJ;T T 12 jjGaJ;T (�d)� E[GaJ;T (�d)℄� GaJ;T (�0d)jj= supjj�d��0djj�ÆJ;T T 12 ��������GaJ;T (�d; s0; P 0;�0)� 1T TXt=1 �ot 
�0tH�10 f�n � �R(�0d)g+ �N � �0�E[GaJ;T (�d; s0; P 0;�0)℄ + 1T TXt=1E h�ot 
�0tH�10 f�n � �R(�0d)gi� E[�N � �0℄�GaJ;T (�0d; s0; P 0;�0) + 1T TXt=1 �ot 
�0tH�10 f�n � �R(�0d)g � �N � �0��������71



= supjj�d��0djj�ÆJ;T T 12 ��������GaJ;T (�d; s0; P 0;�0)� E[GaJ;T (�d; s0; P 0;�0)℄�GaJ;T (�0d; s0; P 0;�0)��������= op(1)from assumption B9. Assumption B1 guarantees 
ondition (v)'. Let us show (iv)'. Theadditional moments GaJ;T (�d) in
ludes two random draws of 
onsumer �ot ; t = 1; : : : ; T and�#i0 ; i0 = 1; : : : ; N , whi
h are not in
luded in GJ(�). Thus GaJ;T (�d) and GJ(�) are 
onditionallyindependent, 
onditional on the set of produ
t 
hara
teristi
s (X ; �(�0d; s0; P 0)), and then un-
orrelated ea
h other. Sin
e we also know that J 12GJ(�0) w; N(0;�) as J !1, what we haveto show is T 12GaJ;T (�0d) w; N(0;�a) as J; T !1. Set(aa1(�;�d; P ); : : : ;aa1(�;�d; P )) � � TXt=1 �ot 
�t(�;�d; P )H�1(�;�d; P ): (A.42)De
ompose T 12GaJ;T (�0d) into the four terms:T 12GaJ;T (�0d)= T 12GaJ;T (�0d; s0; P 0;�0)� T� 12 TXt=1 �ot 
�0tH�10 f�n � �R(�0d)g+T 12 (�N � �0)= TXt=1 T� 12 (�0 � �ot 
 t(�(�0d; s0; P 0);�0d; P 0) + nXi=1Y aJ;T;i(�(�0d; s0; P 0);�0d; P 0)� RXr=1Y �aJ;T;r(�(�0d; s0; P 0);�0d; P 0) + NXi0=1 T 12N�1�#i0 (A.43)where Y aJ;T;i(�;�d; P ) = 1nT 12 JXj=1aaj (�;�d; P )�ji;Y �aJ;T;r(�;�d; P ) = 1RT 12 JXj=1aaj (�;�d; P )��jr:Sin
e the four terms of T 12GaJ;T (�0d) in (A.43) are 
onditionally independent given (X ; �(�0d; s0; P 0))and thus mutually un
orrelated, we will show that ea
h of them, denoted by T aJ;T;1, T aJ;T;2, T aJ;T;3and T aJ;T;4, are respe
tively asymptoti
ally multivariate normal by using the Cram�er-Wold de-vi
e. We show that for any 
onstant ve
tor b su
h that b0b = 1, fV[b0T aJ;T;l℄g�1=2b0T aJ;T;l forl = 1; 2; 3; 4 is respe
tively asymptoti
ally standard normal.The �rst term b0T aJ;T;1 = b0PTt=1 T� 12 (�0 � �ot 
 t(�(�0d; s0; P 0);�0d; P 0):Given (X ; �(�0d; s0; P 0)), b0T� 12 (�0 � �ot 
  t(�(�0d; s0; P 0);�0d; P 0)) have zero mean and are
onditionally independent a
ross t. Write  0t �  t(�(�0d; s0; P 0);�0d; P 0) and set�i = fV[b0T� 12 PTt=1(�0 � �ot 
  0t )℄g�1=2b0T� 12 (�0 � �ot 
  0t ) and Z = (X ; �(�0d; s0; P 0))) inthe 
entral limit theorem given in appendix ??. Then, the Lyapunov 
ondition for this term islimT!1 TXt=1E264������(V "b0T� 12 TXt=1(�0 � �ot 
 0t )#)�1=2 b0T� 12 (�0 � �ot 
 0t )������2+Æ37572



= limT!1(V "b0T� 12 TXt=1(�0 � �ot 
 0t )#)�(2+Æ)=2 TXt=1E ����b0T� 12 (�0 � �ot 
 0t )���2+Æ�� limT!1(b0V "T� 12 TXt=1(�0 � �ot 
 0t )# b)�(2+Æ)=2 TXt=1 jjb0jj2+Æ E �������T� 12 (�0 � �ot 
 0t )������2+Æ�= �b0�a1b	�(2+Æ)=2 jjb0jj2+Æ limT!1 TXt=1E �������T� 12 (�0 � �ot 
 0t )������2+Æ�= 0for some Æ > 0 by assumption B10(a) and B10(e). Thus we obtain(V "b0T� 12 TXt=1(�0 � �ot 
 0t )#)�1=2 TXt=1 b0T� 12 (�0 � �ot 
 0t ) w; N(0; 1);whi
h is equivalent to TXt=1 b0T� 12 (�0 � �ot 
 0t ) w; N(0; b0�a1b): (A.44)The se
ond term b0T aJ;T;2 = b0Pni=1 Y aJ;T;i(�(�0d; s0; P 0);�0d; P 0):Abbreviate Y a0J;T;i � Y aJ;T;i(�(�0d; s0; P 0);�0d; P 0). Given (X; �(�0d; s0; P 0); f�otgTt=1), Y a0J;T;i havezero mean and 
onditionally independent a
ross i. Suppose �i = fV[b0Pni=1 Y a0J;T;i℄g�1=2b0Y a0J;T;iand Z = (X ; �(�0d; s0; P 0)) in the 
entral limit theorem in appendix ??. Then the Lyapunov
ondition for this term islimn!1 nXi=1 E264������(V "b0 nXi=1Y a0J;T;i#)�1=2 b0Y a0J;T;i������2+Æ375= limn!1(b0V " nXi=1Y a0J;T;i# b)�(2+Æ)=2 nXi=1E ����b0Y a0J;T;i���2+Æ�� fb0�a2bg�(2+Æ)=2jjb0jj2+Æ limn!1 nXi=1 E �������Y a0J;T;i������2+Æ�= 0by assumption B10(b) and B10(f). Thus we obtainnXi=1 b0Y a0J;T;i w; N(0; b0�a2b): (A.45)The third term b0T aJ;T;3 = b0PRr=1 Y a�J;T;r(�(�0d; s0; P 0);�0d; P 0):For this term, we 
an obtain the asymptoti
 normality from a similar argument as for these
ond term. Abbreviate Y a�0J;T;r � Y a�J;T;r(�(�0d; s0; P 0);�0d; P 0). By using assumption B10(
)and B10(g), we obtain RXr=1 b0Y a�0J;T;r w; N(0; b0�a3b): (A.46)The forth term b0PNi0=1 T 12N�1�#i0 :Given (X; �(�0d; s0; P 0)), �#i0 have zero mean and 
onditionally independent a
ross i0. Suppose73



�i = nV hb0PNi0=1 T 1=2N�1�#i0 io�1=2 b0T 1=2N�1�#i0 and Z = (X; �(�0d; s0; P 0)) in the 
entrallimit theorem in appendix ??. The Lyapunov 
ondition for this term islimN!1 NXi0=1E264������(V "b0 NXi0=1T 12N�1�#i0 #)�1=2 b0T 12N�1�#i0 ������2+Æ375= limN!1(V "b0 NXi0=1T 12N�1�#i0 #)�(2+Æ)=2 NXi0=1E ����b0T 12N�1�#i0 ���2+Æ�� limN!1(V "b0 NXi0=1T 12N�1�#i0 #)�(2+Æ)=2 jjb0jj2+Æ NXi0=1E �������T 12N�1�#i0 ������2+Æ�= fb0�a4bg�(2+Æ)=2jjb0jj2+Æ limN!1 NXi0=1E �������T 12N�1�#i0 ������2+Æ�= 0by assumption B10(d) and B10(h). Thus we obtainNXi0=1 b0T 12N�1�#i0 w; N(0; b0�a4b): (A.47)The four terms in b0T 12GaJ;T (�0d) respe
tively 
onverge to the normal. A

ordingly, b0T 12GaJ;T (�0d)
onverges to the normal. Then the Cram�er-Wold devi
e leads us to obtainT 12GaJ;T (�0d) w; N(0;�a) (A.48)where �a = �a1 +�a2 +�a3 +�a4. Therefore 
ondition (iv)' is satis�ed and thus this ends theproof of Theorem 4.2
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