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Abstract: Background: CT perfusion (CTP) is used in patients with anterior circulation acute ischemic
stroke (AIS) for predicting the final infarct volume (FIV). Tandem occlusion (TO), involving both
intracranial large vessels and the ipsilateral cervical internal carotid artery could generate hemo-
dynamic changes altering perfusion parameters. Our aim is to evaluate the accuracy of CTP in
the prediction of the FIV in TOs. Methods: consecutive patients with AIS due to middle cerebral
artery occlusion, referred to a tertiary stroke center between March 2019 and January 2021, with
an automated CTP and successful recanalization (mTICI = 2b − 3) after endovascular treatment
were retrospectively included in the tandem group (TG) or in the control group (CG). Patients with
parenchymal hematoma type 2, according to ECASS II classification of hemorrhagic transformations,
were excluded in a secondary analysis. Demographic, clinical, radiological, time intervals, safety,
and outcome measures were collected. Results: among 319 patients analyzed, a comparison between
the TG (N = 22) and CG (n = 37) revealed similar cerebral blood flow (CBF) > 30% (29.50 ± 32.33
vs. 15.76 ± 20.93 p = 0.18) and FIV (54.67 ± 65.73 vs. 55.14 ± 64.64 p = 0.875). Predicted ischemic
core (PIC) and FIV correlated in both TG (tau = 0.761, p < 0.001) and CG (tau = 0.315, p = 0.029).
The Bland–Altmann plot showed agreement between PIC and FIV for both groups, mainly in the
secondary analysis. Conclusion: automated CTP could represent a good predictor of FIV in patients
with AIS due to TO.

Keywords: stroke; CT perfusion; tandem occlusion; mechanical thrombectomy

1. Introduction

In acute ischemic stroke (AIS) due to large vessel occlusion (LVO) of the anterior
brain circulation, endovascular treatment (EVT) is considered effective both alone or in
combination with intravenous rTPA administration in the first 6 h [1–6]. After 6 h, the
combined use of CT perfusion (CTP) and multiphasic CT angiography (mCTA) enables the
selection of patients with LVO who may still benefit from EVT by discriminating among
definitive ischemic core volume and still salvageable brain tissue (penumbra) [7–14], finally
predicting functional outcome [15].

The CTP technique is essentially based on the dynamic detection of time–density
curves (TDC) for a selected brain area generated after bolus injection of contrast medium.
In the post-processing of CTP images, it is necessary to select an input artery as a reference
to determine the start time of the first circulation and then analyze the cerebral parenchyma
blood perfusion. Then, different mathematical models are applied to calculate the perfusion
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parameters including cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit
time (MTT), time to peak, and time to maximum (Tmax). Each parameter is displayed as a
parametric map of the brain with a color scale representing the values [16–18].

The automated CTP system RAPID (iSchemaView, Inc., Menlo Park, CA, USA) was
implemented in clinical trials in order to provide an accurate prediction of ischemic core
volumes by estimating CBF reduction < 30% with respect to the contralateral hemisphere,
and the surrounding penumbra, detected by prolonged time-to-maximum peak (Tmax > 6 s).
Nowadays it is an essential tool for treatment decision making outside the 6 h time win-
dow [7,8,16–18].

Tandem occlusions (TOs), consisting of a simultaneous extracranial internal carotid
artery (ICA) and intracranial LVO, represent about 15% of all LVO strokes [19–21]. There
are relatively few patients with TOs included in the major randomized controlled tri-
als of EVT and a lack of robust data prevents the delineation of definitive treatment
recommendations [22–25].

From a CT perfusion perspective, it is not completely clear if the concomitant occlusion
of the extracranial ICA can influence the pharmacokinetic deconvolution model needed to
create the density–time curve and the colorimetric maps [26–29].

Just a few works, with conflicting results, explore the accuracy of perfusion parameters
according to different arterial input function (AIF) locations, such as when a stenosis is
present before the intracranial occlusion, increasing the uncertainty in CTP accuracy in
discriminating ischemic core [30–32].

In clinical settings, both Haussen et al. and Albers et al. [9,24] found CTP reliable
enough in predicting ischemic core volume in ipsilateral extracranial steno-occlusive dis-
ease, when appropriate delay correction was applied to CTP analysis, in spite of the
coexistence of delay and dispersion effects due to an extracranial occlusion.

However, we noticed that in both studies the Bland–Altmann plot, employed for
evaluating the degree of agreement between predicted infarct core (PIC) and final infarct
volume (FIV), showed a positional bias. Namely, PIC and FIV mean differences directly
correlated with PIC and FIV means, as if the accuracy in predicting FIV was dependent on
final ischemic core volumes [9,24,32,33].

In this study, we aimed to evaluate the possible differences between the PIC, estimated
with automated CTP, and the FIV, in patients with AIS due to TO that underwent successful
recanalization with EVT. Then, we tried to disentangle if biological factors which could
finally interfere with FIV estimation, such as parenchymal hemorrhages with mass effect
(PH2) and successful but partial recanalization (i.e., modified thrombolysis in cerebral
infarction [mTICI] 2b-2c), could influence the prediction accuracy.

2. Methods
2.1. Clinical Data and Procedural Times

A single center and prospectively collected database of patients with AIS treated with
EVT from a tertiary care academic institution was retrospectively reviewed. Between March
2019 and January 2021, all consecutive patients with AIS due to middle cerebral artery
(MCA) occlusion with a pretreatment CTP with automated RAPID software post-processing
and who underwent EVT and achieved a successful recanalization were collected. Accord-
ing to the presence of a concomitant extracranial ICA occlusion, patients were classified
into two groups: the tandem group (extracranial ICA + MCA) (TG) and the control group
(MCA occlusion only) (CG). The MCA occlusion patients were furtherly divided into the
proximal M1, distal M1 (beyond perforating artery emergency), and M2 segments. T oc-
clusion were excluded from the analysis in order to avoid further uncertainty in perfusion
patterns. Successful recanalization was defined as a final mTICI grade of 2b, 2c, or 3 [34].
Full recanalization was defined as an mTICI of 3. Baseline demographic data, medical
history, pre-stroke modified Rankin scale (mRS) score, and baseline National Institute of
Health Stroke Scale (NIHSS) were collected by a neurologist from the neurovascular unit
at admission. All patients in the proper time window who received rTPA according to
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the most recent stroke guidelines were recorded, too. Due to the influence of time on the
dynamic ischemic core development, onset to CTP, CTP to recanalization, and onset to
recanalization times were also recorded. Due to the uncertain onset time, both “wake up
stroke” and “unknown time of onset stroke” were excluded from the analysis regarding
the “onset to recanalization” and the “onset to reperfusion” analysis.

2.2. Radiological Measures

The imaging protocol included in order: non-contrast CT (NCCT), CT angiography
(CTA), and CT perfusion (CTP); these were performed using a 128-slice CT scanner (Revo-
lution; General Electric Healthcare, Waukesha, WI, USA). NCCT parameters were: scan
type: axial; gantry tilt: orbitomeatal plane; slice thickness: 2.5 mm/5 mm base/cerebrum;
interval: 20 mm; kV: 120; mA: 120–300; rotation time: 1 s; and matrix: 512 × 512. To define
the presence of TO occlusion (extracranial ICA stenosis > 90%) a bolus of 70 mL iodinated
contrast agent was administered at a flow rate of 3.5–4 mL/s. The CTA was acquired in a
volumetric way including the epiaortic vessels. The vessel occlusion was defined first on
the mCTA and then confirmed on conventional angiography. The CTP protocol was the
subsequent 50 mL of iodinated contrast agent (370 mgI/mL) that was power-injected at a
rate of 5 mL/s followed by 50 mL saline bolus at 5 mL/s. The large detector array (8 cm)
allowed evaluation of all the MCA territory. The protocol included 2 phases (scan type:
axial-shuttle; slice thickness: 5 mm; kV: 80; mA: 200; rotation time: 0.5 s): The first phase
started with a 5-second delay from contrast injection, and 22 acquisitions were repeated on
the same 8 cm section (total scan duration: 60.6 s); the second phase was delayed 15 s and
consisted of one acquisition on the same section (total scan duration: 15 s). Images were
processed using a commercially available software tool (RAPID version 4.5.0). The total
hypoperfused volume was defined by a >6 s delay for the maximum of the tissue residue
function (Tmax > 6 s). The ischemic core lesion was defined by a cerebral blood flow (CBF)
reduction to <30% of the corresponding contralateral territory. The target mismatch profile
was defined as a core ≤ 50 cm3, absolute mismatch ≥ 15 cm3, Tmax > 10 s ≤ 100 cm3, and
the mismatch ratio > 1.8, with processed parametric maps overlaid upon the source CTP
data for review purposes. Furthermore, 2 neuroradiologists with at least 5 years of expe-
rience performed a case-by-case check of the AIF and VOF curves parameters necessary
to create the density/time curves and the colorimetric maps through the deconvolution
algorithm [26–28]. After EVT, an MRI within 24–36 h of symptom onset was performed in a
subgroup of patients with a 1.5 T scanner system (Intera, Philips Medical System, Best, The
Netherlands) using an 8-channel head coil; the MRI protocol included an axial T2-weighted
fluid-attenuated inversion recovery (FLAIR) sequence (repetition time (TR) 6000 ms, echo
time (TE) 120 ms, at 5 mm) and diffusion-weighted imaging (DWI) (TR 3023 ms, TE 89 ms,
at 5 mm) acquired using a single-shot echo-planar sequence with fat suppression in the
axial plane with 3 b values (0, 500 and 1000 s/mm2). In case of contraindications to perform
the MRI (metallic implants, claustrophobia, pacemakers (although new protocols allow
imaging in selected cases), MR-incompatible prosthetic heart valves, body weight (MRI
tables have specific weight limitations)), a non-contrast CT was performed. The final infarct
volume was measured using a dedicated computing platform (3D Slicer software) [35] by
2 neuroradiologists with 5 years of experience who outlined the ischemic core on ADC
images (DWI images with b = 1000 s/mm2).

2.3. Procedural Details and Measures

In patients with airway impairment, general anesthesia was administered. The sta-
bility on common carotid artery was reached with a 6 cm diameter long sheath. After
diagnostic arteriograms and the identification of target lesions, the operator decided be-
tween a proximal–distal or distal–proximal approach. The ICA and intracranial vessels
were navigated with a guiding catheter and the EVT was performed using either direct
aspiration thrombectomy or the “Solumbra” technique (combination of stent retriever and
direct aspiration thrombectomy).
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The clot burden score (CBS) and the collateral score (CS) were evaluated on the basis
of the Tan et al. [36] study. CS was further subdivided in a dichotomous way (CS > 1
(Tan CS > 1) = good; CS < 1 (Tan CS < 1) = poor).

2.4. Outcome Measures

Functional outcome was recorded by means of mRS at 3 months both in an ordinal
and dichotomous way. Namely, mRS scores between 0 and 2 were considered a good
functional outcome (functional independence), scores of 3 and 4 were considered a poor
functional outcome, and mRS scores of 5 and 6 were considered an unfavorable outcome.
As per safety measures, hemorrhagic transformation (HT) was graded based on the ECASS
II classification [37]. Symptomatic HT was defined as an intracerebral hemorrhage (ICH)
with an increase in the NIHSS Score of ≥4 points. Since PH2 presumably altered the
accuracy of the final infarct volume determination, all subjects who suffered a massive
parenchymal hemorrhage in the 24–48 h after EVT were excluded from the secondary
analysis. Since according to ECASS II classification, smaller hemorrhagic transformations
should not significantly influence FIV evaluation, we retained such cases in the analysis.
Reocclusion, vasospasm, and arterial embolism in another vascular territory were also
recorded. Patients who experienced any of these procedural complications were excluded
from the analysis.

2.5. Statistical Analysis

Continuous variables are expressed as means (±SD) or medians (IQR). Categorical
variables are expressed as the sample absolute number (N) and proportions (%). Between-
groups comparisons of continuous or ordinal variables were made with Student’s t-test
or the Mann–Whitney U test, as appropriate. Categorical variables were compared by the
χ2 or Fisher exact test, as appropriate. Correlation coefficients were calculated with non-
parametric Kendall’s Tau-b statistic. The Bland–Altman plot was performed to evaluate the
degree of agreement of measurements between predicted core infarct by CTP CBF < 30%
volume and final infarct volume in patients with TO and those without [33]. Significance
was set at p < 0.05. Statistical analyses were performed using SPSS® Statistics 21 (IBM®,
Armonk, NY, USA). The study was approved by the local ethical committee.

3. Results

Between March 2019 and January 2021, among 319 patients with AIS who under-
went EVT, 59 patients met the inclusion criteria. A total of 22 (37%) were treated for
concomitant extracranial ICA and MCA occlusion (TG) while 37 (63%) experienced an
AIS exclusively due to a MCA occlusion (CG) (detailed description of patient selection in
Supplementary Materials, Figure S1). Groups’ baseline, clinical, interventional, and out-
come measures are reported in Tables 1 and 2. TG showed significantly higher median
NIHSS (U = 544.000; p = 0.031) and lower CBS (U = 60.5; p < 0.001). In the TG a large
artery occlusion etiology prevailed, while in the CG a cardioembolic one prevailed. In
the CG, two patients with ICA dissection and one patient with aortic complicated plaque
were included. The TG showed significant longer times from CTP to recanalization (mean
135.74 ± 48.51 vs. 107.49 ± 37.93; U = 534.00; p = 0.46) due to longer procedural times
(67.68 ± 47.09 vs. 40.14 ± 26.95; U = 566.00; p = 0.013), and needed a higher median number
of passages (2 vs. 1, U = 576.500; p = 0.004) to achieve successful recanalization. The
“Solumbra” technique was significantly more employed in the TG than CG (χ2 = 9.394;
p = 0.02). No significant differences were detected between groups for outcome variables
(outcome data are reported in Figure S2 for the whole sample and in Figure S3 according to
the hemorrhagic subtype in the Supplementary Materials). PH2 in the 24–48 h after EVT
was found in 4 patients (18.2%) in the TG and in 9 patients (24.3%) in the CG and they were
omitted from a secondary analysis (data are shown in Table 2).
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Table 1. Comparison between groups for baseline characteristics.

Tandem Group (22) Control Group (37) p

Gender, n (%)

Male 10 (45.5) 13 (34.5) 0.268

Female 12 (54.5) 24 (65.5) 0.268

Age, median (IQR a) 69.5 (15) 76 (16) 0.242

Pre-stroke mRS b, median (IQR) 0 (0) 0 (0) >0.05

Arterial hypertension, n (%) * 18 (81.8) 25 (69.4) 1.00

Atrial fibrillation, n (%) * 9 (37.8) 14 (40.9) 0.852

Hypercholesterolemia (%) * 4 (18.2) 13 (36.1) 0.234

Diabetes, n (%) * 2 (9.1) 7 (19.4) 0.459

Smoking, n (%) * 3 (13.6) 4 (11.1) 0.775

Alcohol (%) * 2 (9.1%) 0 0.066

Etiology-TOAST (%) 0.055◦

Undetermined 3 (13.6) 13 (35.1)

Large artery 11 (45.5) 7 (18.9)

Cardioembolic 7 (31.8) 16 (43.2)

Other 2 (9.1) 1 (2.7)

ASPECTS c, median (IQR) 9 (2) 9 (3) 0.704

Good Collateral Score, n (%) 13 (72.2) 26 (59.1) 0.301

NIHSS d, median (IQR) 19 (6) 15 (8) 0.031

Clot Burden Score, median (IQR) 3 (3) 6 (2) 0.000

Occlusion site, n (%) 0.247

M1 e proximal 18 (81.8) 24 (64.9)

M1 distal 0 3 (8.1)

M2 f 4 (18.2) 10 (27)

Occlusion side, n (%) 0.712

left 10 (45.5) 15 (40.5)

right 12 (54.5) 22 (59.5)

Systolic blood pressure ** 139.4 (28.38) 134.71 (22.43) 0.591

Diastolic blood pressure ** 86.35 (22.91) 76.34 (12.9) 0.024

Glycaemia * 138. 14 (44.15) 130.36 (62.63) 0.265
a IQR: interquartile range; b mRS: modified Rankin Scale; c ASPECTS: Alberta Stroke Program Early CT Score;
d NIHSS: National Institute of Health Stroke Scale; e M1: middle cerebral artery M1 tract; f M2: middle cerebral
artery M2 tract; * Missing N = 1; ** Missing N = 2 for control group and N = 2 for tandem group.

Table 2. Comparisons between groups for interventional and outcome measures.

Tandem Group (22) Control Group (37) p

Onset to groin (SD a) ** 269.56 (185.56) 277.04 (119.03) 0.228

Onset to CTP b (SD) ** 212.38 (196.72) 214.19 (112.71) 0.157

CTP to recanalization (SD) 135.74 (48.51) 107.49 (37.93) 0.046

Onset to reperfusion, mean *** (SD) 337.31 (195.41) 321.13 (117.12) 0.662

Procedural time, mean (SD) 67.68 (47.09) 40.14 (26.95) 0.013

rTPA c, n (%) 7 (31.8) 7 (18.9) 0.345

General anesthesia 0 2 (5.4) 0.267

Passages:

Median (IQR d) 2 (2) 1 (1) 0.004
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Table 2. Cont.

Tandem Group (22) Control Group (37) p

Technique: 0.02

Direct aspiration (%) 14 (63.6) 35 (94.6) X2 = 9.394

Stent retriever (%) 0 0

Solumbra (%) 8 (36.4) * 2 (5.4)

Successful recanalization
(mTICI e 2b − 3) 14 (63.6) 25 (67.6) 0.758

Functional independence, n (%) * 9 (47.4) 16 (45.7) 0.907

Hemorrhages (%) 0.924
Total 11 (50) 20 (54.9)
HI1 f 2 (9.1) 2 (5.4)
HI2 3 (13.1) 4 (10.8)
PH1 g 2 (9.1) 5 (13.5)
PH2 4 (18.2) 9 (24.3)

sICH h (%) 3 (13.6) 4 (10.8) 0.746

Unfavorable outcome, n (%) 8 (40) 15 (42.9) 0.836
a SD: standard deviation; b CTP: computed tomography perfusion; c rTPA: recombinant tissue plasminogen
activator d IQR: interquartile range; e mTICI: modified thrombolysis in cerebral infarction; f HI: hemorrhagic
infarction; g PH: parenchymal hemorrhage; h sICH: symptomatic intracranial hemorrhage; * missing n = 3 in
tandem group, n = 2 in control group; ** missing n = 6 in tandem group and 14 in control group; *** missing n = 5
in tandem group and n = 13 in control group.

The comparison between the tandem and the control group revealed similar baseline
PIC (29.50 ± 32.33 vs. 15.76 ± 20.93 p = 0.18), Tmax > 6 s (131.45 ± 44.66 vs. 121.70 ± 73.40
p = 0.1), Tmax > 10 s (69.27 ± 40.91 vs. 57.57 ± 44.47 p = 0.252), and FIV (54.67 ± 65.73 vs.
55.14 ± 64.64 p = 0.875). The presence of a target mismatch profile (and each subcomponent)
was similar between the groups (data are shown in Table 3a). All patients had an absolute
mismatch >15 cm3. Notably, mean differences between predicted and final infarct volume
were not significantly different between groups (25.27 ± 46.23 vs. 39.38 ± 60.29 p = 0.615).

Table 3. Comparisons between groups for perfusional parameters.

(a)

Tandem Group (n = 22) Control Group (n = 37) p

PIC a (SD b) 29.50 (32.33) 15.76 (20.93) 0.180

FIV c * (SD) 54.67 (65.73) 55.14 (64.64) 0.875

Mean difference
PIC-FIV (SD) 25.27 (46.23) 39.38 (60.29) 0.615

Core> 50 cm3 (%) 5 (22.7) 3 (8.1) 0.234

Tmax d 6 sec (SD) 131.45 (44.66) 121.70 (73.40) 0.100

Tmax 10 sec (SD) 69.27 (40.91) 57.57 (44.47) 0.252

Tmax > 10 > 100 cm3 (%) 6 (16.2) 6 (27.3) 0.308

Hypoperfusion Index 0.48 (0.22) 0.44 (0.22) 0.359

(b)

mTICI e 2b (n = 20) mTICI 3 (n = 39) p

Mean absolute core difference
FIV—PIC 32.30 (41.11) 35.50 (30.67) 0.328

a PIC: predicted ischemic core volume by CBF reduction < 30%; b SD: standard deviation; c FIV: final infarct
volume; d Tmax: time to maximum; e mTICI: modified thrombolysis in cerebral infarction; * determined by
MRI ≤ 48 h hours in n = 55 cases (96%).
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In patients who achieved a full recanalization, no significant correlation was found
between mean core difference PIC to FIV and, respectively, CTP to recanalization time
(tau-b = −0.15 p = 0.865) and procedural length (tau-b = 0.78 p = 0.394).

A tau-B Kendall correlation analysis showed a significant correlation between PIC and
FIV both in tandem (tau = 0.743 p < 0.001) and in the control group (tau = 0.358 p = 0.003)
(Figure 1).
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The Bland–Altman plot showed how 95% of the differences between PIC and FIV fall
in the ±2SD range with respect to the mean difference, pointing to a general agreement
with the symmetric distribution of bias between the 2 groups studied (Figure 2). A linear
regression analysis showed a significant relationship between PIC and FIV means and PIC
and FIV differences (β = 0.761 p < 0.0001), stressing the presence of a positional bias in
both groups.
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In the secondary analysis, performed excluding patients who suffered a PH2 infarction
(4 subjects in the TG and 9 subjects in the CG), there were no significant differences in
demographic, clinical, radiological, interventional, and outcome features among groups as
for the whole sample (data are shown in Tables S2 and S3 in the Supplementary Materials).
Patients achieving a full recanalization showed a significant lower mean in absolute core
difference between PIC and FIV, with a small to medium effect size (8.74 ± 17.42 vs.
23.22 ± 32.68 U = 147.00 p = 0.044 r = 0.3) with respect to patients achieving a partial
recanalization (data are shown in Table 4).
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Table 4. Comparisons between groups for perfusion parameters—secondary analysis.

(a)

Tandem Group (18) Control Group (28) p

PIC a (SD b) 20.39 (25.51) 12.79 (19.72) 0.383

FIV c * (SD) 29.72 (32.65) 28.89 (31.71) 0.973

Mean difference FIV-PIC (SD) 9.33 (16.06) 16.11 (27.84) 0.821

Core > 50 cm3 (%) 4 (11.1) 0 0.145

Tmax
d 6 s (SD) 126.67 (47.18) 127.00 (77.08) 0.380

Tmax 10 s (SD) 62.44 (41.73) 57.29 (46.01) 0.599

Tmax > 10 s > 100 cm3 (%) 4 (22.2) 4 (14.3) 0.693

Hypoperfusion Index 0.44 (0.21) 0.41 (0.22) 0.558

(b)

mTICI e 2b (n = 15) mTICI 3 (n = 31) p

Mean absolute core difference
FIV—PIC 23.22 (32.68) 8.74 (17.42) 0.044

a PIC: predicted ischemic core volume by CBF reduction < 30%; b SD: standard deviation; c FIV: final infarct
volume; d Tmax: time to maximum; e mTICI: modified thrombolysis in cerebral infarction; * determined by
MRI ≤ 48 h hours in n = 55 cases (96%).

Again, no significant correlation between mean core difference and CTP to recanal-
ization time (n = 31, tau-b = −0.03 p = 0.321) or procedural length (n = 31, tau-b = 0.09
p = 0.837) in patients with a full recanalization was detected (data are shown in Table 4).

A tau-B Kendall correlation analysis showed significant correlation between the base-
line PIV and FIV in both the tandem (tau = 0.761 p < 0.001) and the control group (tau = 0.315
p = 0.029) (Figure 3).
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the MCA-LVO control group (on the right).

The Bland–Altman plot showed how 95% of the differences between PIC and FIV fall
in the ±2 SD range with respect to the mean difference, pointing to a general agreement
with the symmetric distribution of bias between the 2 groups studied (Figure 4. A linear
regression analysis showed a borderline significant relationship between PIC and FIV
means and PIC and FIV differences (β = 0.457 p < 0.057) reducing the presence of the
positional bias in the tandem group reported in the whole sample analysis (Figure 4).
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4. Discussion

In AIS due to the LVO the accurate prediction of the FIV is crucial to guide the correct
treatment decision making and predict functional outcome [7–11]. However, in spite of the
availability of different techniques and progresses in mathematical models, ischemic core
detection and its spatiotemporal dynamic evolution still presents several challenges in the
neuroimaging field [38–44]. CTP is a widely accepted tool to predict FIV [9–14] in LVO by
estimating CBV, CBF, or different Tmax depending on the mathematical model used by
the software. Such parameters grossly rely upon the time–density curves generated by the
scanning contrast bolus passage in different arterial vessels [45–47]. AIF location is crucial to
allow the correct comparison between perfusion parameters of the two hemispheres [30,31]
in the RAPID software which utilizes an automated AIF algorithm optimized for detection
of candidate voxels and delay; it is corrected but uninformed about site occlusion [18,24].

In TO, the extracranial ICA occlusion is supposed to alter cerebral perfusion by bolus
delay and dispersion, finally affecting main dynamic perfusion parameters such as flow or
Tmax [26–29]. Collateral status and nonlinear time-dependent evolution of ischemic core
from stroke onset could generally contribute to anomalous perfusion patterns in TO [48,49].

In our study, both groups were homogenous for demographic features, clinical histo-
ries, treatment times, and outcomes (efficacy and safety of EVT) (data are shown in Table 1).
As expected for the occlusion site, TG showed a higher incidence of atherothrombotic
etiology, a higher median NIHSS, and a higher CBS, while from a procedural standpoint, it
showed a higher number of EVT passages, longer procedural times, and a longer interval
from CTP to recanalization. This last feature did not cause a disproportionate impact on
FIV for TG since no significant difference was detected among groups for FIV, maybe due
to the highly overlapping “onset to recanalization times” between the two groups (data
are shown Table 2). Furthermore, all perfusion parameters were homogenous between the
two groups (data are shown in Table 3).

The correlation analysis (Figure 1) and the Bland–Altman plot (Figure 2) showed a sig-
nificant correlation and a concordance between PIC and FIV for both groups. However, as
occurred in Haussen et al. and Albers et al. [9,24], a significative direct correlation between
mean PIC and FIV means and mean PIC and FIV differences, visually detected as a higher
dispersion of mean differences at higher core volumes (Figure 2), prevented generalization
of the validity of the Bland–Altman plot [32,33]. We suppose this phenomenon could be
due to an overestimation of the FIV due to the increased risk of hemorrhagic infarction
after EVT, mostly in the case of greater baseline ischemic cores.

In our sample, the overall rate of post-procedural hemorrhagic transformations is 52%
(50% in TG and 54% in CG), with parenchymal hematoma type 2 (PH2) representing 42%
of the total (18.2% in TG and 24.3% in the CG) (data are shown in Table S2 and Figure S3 in
the Supplementary Materials). This is a high incidence with respect to data coming from
large registries and metanalyses [50,51]. This could be a reflection of a selection bias due
to inclusion criteria. In fact, high onset to treatment times (clinical indication for CTP is
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beyond 6 h from stroke onset or unknown time of onset), high baseline ischemic cores
(8 patients were treated with ischemic core > 50 cm3), and a relatively high proportion
of patients with TO (37%), which showed higher median NIHSS and are at relatively
higher risk of post-procedural hemorrhagic transformation [52], are reported in our study.
A hemorrhagic infarction, as occurs in PH2, should alter the correct evaluation of the
FIV, as per the PH2 definition itself [37]. Moreover, a significant difference was found
between the FIV and FIV-PIC differences between PH2 and other subtypes of hemorrhagic
transformation (data and statistical analysis are reported in the Supplementary Materials,
Table S1). Overestimating FIV by including PH2 cases in the analysis could justify the
higher difference between PIC and FIV in the primary analysis for both groups (data are
shown in Table 3a) and the unexpected similarity of the mean difference between PIC and
FIV both in partial and full recanalization (data are shown in Table 3b).

In the secondary analysis, performed by excluding PH2 cases, we observed an im-
portant reduction in the mean difference between PIC and FIV: 9.33 mL ± 16.06 vs.
25.27 ± 46.23 for the tandem group and 16.11 mL ± 27.84 vs. 39.38 ± 60.29 for the control
group. In the Bland–Altman plot, the differences between PIC and FIV were more equally
distributed across the mean differences irrespective of PIC and FIVs means for both groups
(Figure 4); moreover, considering only fully recanalized patients (mTICI 3), the whole
sample mean difference between PIC and FIV lowered to 8.74 mL ± 16.06, which was very
close to the median difference of 11.0 cm3 as recorded in the SWIFT-PRIME trial and 8 cm3

in Haussen et al. [24].
This study presents several limits; first of all, the retrospective observational design

and the small sample size that prevented conducting a reliable analysis for the main
determinants of clinical outcomes. Patients were selected for CTP perfusion not only
according to the DEFUSE and DAWN criteria (>6 h from stroke onset) and the sample
included some wake-up and unknown onset strokes. Accordingly, some PIC determination
could be influenced by the early time window [44]. Intracranial occlusions such as T
occlusion or concomitant anterior cerebral artery + MCA occlusion were not represented in
the sample so as to minimize errors in FIV and PIC calculation, reducing the generalizability
of the results. Despite the non-significant differences detected among TG and CG in our
study, perfusion parameters such as Tmax, MTT, and CBV, whose threshold values could be
affected by delay and dispersion phenomena in TO, remain somewhat elusive; this could
be clinically relevant since the actual treatment criteria are based on the mismatch between
the ischemic core and the penumbra tissue. Further investigations are needed to implement
the reliability of CTP in predicting the pathophysiological evolution of ischemic tissue in
more complicated intracranial LVOs.

5. Conclusions

In the case of a full recanalization and in the absence of procedural complications
such as large hemorrhagic transformations, an automated CTP with rigorous normal-
ization, thresholding, and voxel-wise analysis does not seem to be affected by concomi-
tant extracranial ICA occlusion in predicting ischemic core in AIS due to the LVO of the
anterior circulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13020342/s1, Figure S1: recruitment flow chart; Figure S2:
Distribution of mRS outcome; Figure S3: Oucome distributions between different subtypes of postpro-
cedural hemorrhagic transformation; Table S1: Means and standard deviations of FIV and differences
between PIC and FIV among hemorrhage subtypes; Table S2: Comparisons between groups for
baseline features.; Table S3: Procedural times and strategies.
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