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Abstract

Introduction: The functional connectivity patterns in the brain are highly heritable;

however, it is unclear how genetic factors influence the directionality of such “infor-

mation flows.” Studying the “directionality” of the brain functional connectivity and

assessing how heritability modulates it can improve our understanding of the human

connectome.

Methods: Here, we investigated the heritability of “directed” functional connections

using a state-space formulation of Granger causality (GC), in conjunction with blind

deconvolution methods accounting for local variability in the hemodynamic response

function. Such GC implementation is ideal to explore the directionality of functional

interactions across a large number of networks. Resting-state functionalmagnetic res-

onance imaging data were drawn from the Human Connectome Project (total n= 898

participants). To add robustness to our findings, the dataset was randomly split into a

“discovery” anda “replication” sample (eachwithn=449participants). The twocohorts

were carefully matched in terms of demographic variables and other confounding

factors (e.g., education). The effect of shared environment was alsomodeled.

Results: The parieto- and prefronto-cerebellar, parieto-prefrontal, and posterior-

cingulate to hippocampus connections showed the highest and most replicable

heritability effects with little influence by shared environment. In contrast, shared

environmental factors significantly affected the visuo-parietal and sensory-motor

directed connectivity.

Conclusion: We suggest a robust role of heritability in influencing the directed con-

nectivity of some cortico-subcortical circuits implicated in cognition. Further studies,

for example using task-based fMRI and GC, are warranted to confirm the asymmetric

effects of genetic factors on the functional connectivity within cognitive networks and

their role in supporting executive functions and learning.
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1 INTRODUCTION

Heritability is defined as the degree of variance in a biological trait that

canbe explainedby shared genetic factors (Glahn et al., 2010). To quan-

tify heritability, classic twin studies and statistical approaches applied

to large groups of unrelated individuals have been used (Ge et al., 2015,

2016; Golan et al., 2014; Polderman et al., 2015; Wedel, 1962; Yang

et al., 2010, 2011) (Almasy & Blangero, 1998).

Recently, there has been a growing interest in studying the heri-

tability of brain functional connectivity “at rest” (Abbasi et al., 2020;

Adhikari et al., 2018; Elliott et al., 2018, 2019; Reineberg et al., 2020).

To this end, numerous methods have been developed, spanning from

bivariate correlational analyses to “connectotyping” methods based

on machine learning (Colclough et al., 2017; Elliott et al., 2019; Ge

et al., 2017; Glahn et al., 2010; Miranda-Dominguez et al., 2017a;

Sinclair et al., 2015a; Yang et al., 2016). The findings reported have

been mixed, although there is general consensus that the functional

connectivity patterns involving the default mode network (DMN) are

highly heritable (Colclough et al., 2017; Ge et al., 2017; Glahn et al.,

2010; Miranda-Dominguez et al., 2017b; Sinclair et al., 2015b; Yang

et al., 2016).

The directionality of these genetic effects remains, however, largely

uncharacterized. Assessing the direction of the “information flow” in

the brain and how this is influenced by hereditary factors can provide

mechanistic insights to understand the functional connectome. The

brain functional connectivity patterns typically derive from “bottom-

up” interactions (e.g., from lower sensory areas to progressively higher

order regions) and “top-down” communication patterns (vice versa).

These specific and “directed” connections support distinct aspects of

information processing, cognition, and behavior. One cannot simply

assume that the functional interactions in the human connectome

are symmetrical, despite most of the anatomical connections being

bi-directional. Several genes can also influence brain functioning in dif-

ferent ways, and some of these effects may be more pronounced in

certain “directed” pathways than others.

Past research has explored the directed connectivity patterns in the

human brain using different methods (Bajaj et al., 2016; Chén et al.,

2019; Duggento et al., 2018; Lund et al., 2020; Schwab et al., 2018;

Xu et al., 2020), although no one has studied how heritability influ-

ences the “information flow” froma functional network to another one.

The aim of the present study is to characterize the heritability of the

human “directed” functional connectome. To this end, we employed

high-quality resting-state functional magnetic resonance imaging (rs-

fMRI) data from the Human Connectome Project (HCP) (S1200 data

release).

To estimate the directed connectome, we used Granger causality

(GC), in its most recent state-space formulation. GC is a commonly

employed analytical technique which is based on the concept of pre-

dictability (Figure 1) (Seth et al., 2015). To control for non-uniform

delays when estimating the neuronal activity from the BOLD signal

(Handwerker et al., 2012), we applied a “blind” deconvolution tech-

nique, which infers both the shape of the hemodynamic response

function (HRF) and its underlying neural activity (Wu et al., 2013).

To study the heritability ofGCmeasures,we calculated the extent to

which inter-subject GC becamemore similar as a function of the relat-

edness between individuals. We approached this through a maximum

likelihood variance decomposition method of family-based quantita-

tive data (Amos, 1994). This method decomposes the “phenotypic”

variance of GC into a genetic and an environmental component, as well

as their interaction.

To strengthen our findings, we randomly split the HCP dataset into

two cohorts (herein called the “discovery” and “replication” sample)

and carefully matched them in terms of age, gender, education, and

handedness (Adhikari et al., 2018; Fairchild et al., 2016). We aimed

to investigate inter-subject variability with two independent samples

to verify whether the findings in one cohort were replicated in a sec-

ond cohort. Kinshipwas taken into accountwhile splitting the datasets,

to prevent that twin couples were divided between the discovery and

replication dataset. We also assessed the impact of the shared envi-

ronment on our findings. For completeness, we report the findings in

both cohorts, althoughwe focusourdiscussionon the results that repli-

cated between them (i.e., 38% of the total heritable connections and

14% taking in account the shared environment).

To the best of our knowledge, this study is the first to character-

ize the heritability of the “directed” functional connectome. Due to the

exploratorynatureof ourwork,wehadnoapriori hypothesis regarding

the directionality of the effects. Nevertheless, the existing literature

suggested a high level of heritability in the connections originating

from and/or “directed” towards the DMN (Ge et al., 2017; Glahn et al.,

2010; Sinclair et al., 2015a; Yang et al., 2016).

2 MATERIALS AND METHODS

2.1 Participants

We employed data drawn from the HCP (http://www.

humanconnectome.org/, n = 1206 individuals). The rs-fMRI scans

were released in March, 2017 (humanconnectome.org) after passing

the quality control and assurance standards set up by the HCP con-

sortium (Marcus et al., 2013). N = 203 individuals were removed from

our analyses due to the lack of rs-fMRI data. We randomly divided

the remaining sample (n = 1003) into a discovery and a replication

cohort thatwere carefullymatched for sex distribution, age, education,
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F IGURE 1 Effective connectivity estimation. Granger causality (GC) methods infer causal influences between the estimated activity in a
specific brain region or network (“Target”) on the basis of the information contained in the “past” of the estimated activity in another region or
network (“Source”). The estimated activity in the “Target” and “Source” is inferred from the BOLD signal via “blind” deconvolutionmethods (see
Section 2.4).

TABLE 1 Demographic variables in the discovery and replication set

Demographic variables

Discovery set

Gender (males/females) Age (years)

Handedness

(right/left/both) Education (years)

MZ 52/72 29.0± 3.3 118/6/0 15.1± 1.8

DZ 22/28 29.5± 3.5 45/5/0 15.2± 1.7

Siblings 103/94 28.4± 3.8 183/14/0 15.0± 1.7

Singletons 37/41 29.1± 4.1 67/11/0 14.7± 1.8

Replication set

Gender (males/females) Age (years) Handedness

(right/left/both)

Education (years)

MZ 52/72 29.3± 3.4 110/14/0 14.8± 1.9

DZ 22/28 29.5± 3.5 48/2/0 15.1± 1.7

Siblings 103/94 28.1± 3.8 178/16/3 15.0± 1.7

Singletons 37/41 29.0± 3.8 71/7/0 14.8± 1.8

handedness, and kinship (i.e., number ofmonozygotic [MZ] or dizygotic

[DZ] twins, non-twin siblings, and singletons). The years of education

were used as a proxy index of education level and indirect measure of

potential differences in familiar socioeconomic status. See Table 1 for

general demographic characteristics of the samples and Table S1 for

further details. The matching was performed usingMedCalc statistical

software and resulted in the exclusion of n = 107 participants to

achieve sufficient matching quality (https://www.medcalc.org/). The

final population included n = 898 people divided into a discovery and

replication sample of n = 449 individuals each, composed as follows:

n = 124 MZ twins, n = 50 DZ twins, n = 197 non-twin siblings, and

n= 78 singletons.

2.2 MRI scanning protocol and preprocessing

In each participant, four rs-fMRI scans were acquired via a customized

67 Siemens Skyra 3T scanner (Van Essen et al., 2013) with 1200

timepoints/scan, TR/TE = 720/33.1 ms, FA = 52◦, FOV = 208 × 180;

72 slices; 2.0 mm isotropic voxel size, multiband factor 8, Echo

spacing = .58 ms, BW = 2290 Hz/Px, and 14 min of acquisition

time/scan. The pre-processing pipeline included artifact correc-

tion through an automatic classifier trained on the HCP dataset

(ICA+FIX) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014),

which has >99% specificity and sensitivity in recognizing and remov-

ing artifacts, including physiological noise. Further information
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about preprocessing of rs-fMRI data is available at (https://www.

humanconnectome.org/storage/app/media/documentation/s1200/

HCP_S1200_Release76_Reference_Manual.pdf). After pre-processing,

a group-principal component analysis was run across all subjects

and fed into group-wise spatial independent component analysis

(ICA) using FSL MELODIC tool to obtain 100 distinct spatio-temporal

components (Jenkinson et al., 2012). Henceforth, these compo-

nents will be termed “ICA networks.” For each subject, we analyzed

400 signals (100 ICA-networks x 4 sessions) with a length of 1200

time-points each. The above described MRI scanning protocol and

preprocessing were performed by the HCP consortium prior to

data release (https://www.humanconnectome.org/study/hcp-young-

adult/article/release-s1200-extensively-processed-rfmri-data).

2.3 “Blind” deconvolution and effective
connectivity estimation

To remove the temporal and spatial confound related to locally vary-

ing HRF, each signal underwent blind deconvolution via an algorithm

specifically designed for rs-fMRI data (Wu et al., 2013). Next, each

BOLD signal was deconvolved using the corresponding HRF estimate

which produced a more accurate proxy of the underlying neuronal

activity. This procedure augments the accuracyof resting-state derived

connectivity measures in a variety of contexts (Rangaprakash et al.,

2018;Wu et al., 2019) (See Figure 1 for a pictorial representation).

After deconvolution, multivariate between-network effective con-

nectivity was estimated via themost recent formulation of state-space

GC (Barnett & Seth, 2015). State-space GC enables a reliable GC eval-

uation because it relies on few mathematical assumptions about the

nature of the data. In detail, it allows to relax assumptions of linear-

ity, stationarity, and homoscedasticity of the signals. To this end, we

employed a publicly available Matlab tool (http://www.lucafaes.net/

msGC.html) detailed in Faes et al. (2017), which wasmodified in-house

to employ, for each subject, all four sessions-specific timeseries within

the same model. This way, we pooled within-subject measures into a

single model estimation, yielding higher robustness (Figure 1). From

the evaluation of state-space GC, in each subject, we obtained the

connection strengths between any two ICA-networks—which resulted

in 1003, 100 × 100 non-symmetric matrices. To evaluate the global

directed connectome, for each connection, themedian strength among

all subjects was calculated.

2.4 Quantitative genetic analyses

The heritability of GC connectivity was investigated using the Sequen-

tial Oligogenic Linkage Analysis Routines (SOLAR)-Eclipse software

(http://www.nitrc.org/projects/se_linux). SOLAR implements variance

component models on family-based quantitative data and fits such

models using the maximum likelihood estimation (Amos, 1994).

SOLAR handles pedigrees (i.e., dataset containing genetic relation-

ships between family members) of arbitrary size and complexity and it

calculates heritability values, genetic correlations, linkage. SOLAR also

performs genome-wide association analyses with asymptotically pre-

cise estimates (Almasy & Blangero, 1998; Blangero et al., 2001). In

this framework, the phenotypic trait variability that exists in a popu-

lation, or phenotypic variance (σP2), is decomposed to estimate how

much a variation between individuals results from genetic (σ2g) or
environmental differences (σ2e):

𝜎2p = 𝜎2g + 𝜎2e . (1)

This model treats each functional connection between ICA net-

works as a trait and the phenotypic covariance matrix for a pedigree

among family members is modeled as a function of genetic kinship as:

Ω = 2Φ𝜎2g + I𝜎2e , (2)

where Ω is a matrix of size n x m, n is the number of individuals in the

pedigree for whom trait measurement is available, m is the number of

functional connections. σ2g is the total additive genetic variance, σ2e is
the variance due to environmental influences, Φ is the kinship matrix

(i.e., the pair-wise kinship coefficients that identify related individuals),

and I is an identitymatrix (which assumes that all environmental effects

are uncorrelated among family members) (Almasy & Blangero, 1998).

The heritability measures how much a trait variation is due to

genetic effects. It ranges from zero (when a trait is fully driven by

environmental factors) to one, when genetics fully explains trait’s

variability.

Narrow sense heritability (h2), that is, a measure of the strength of

genetic effects on a specific trait, is defined as the ratio between the

additive genetic effects (σg2) and total phenotypic variance (σP2):

h2 = 𝜎2g ∕𝜎
2
p . (3)

h2 reflects the shared genotypic variation of traits and is higher when

more individuals have stronger genetic heritage.

In twin designs, a third variance parameter can be modelled (σc ) to
account for the shared environment of individuals growing up in the

same family. This three-parameter model is known as the ACE model,

while the two-parameter model (2) is called AEmodel.

The heritability due to genetic causes (A) is the ratio of 𝜎2g and 𝜎2p
with:

𝜎2p ≈ 𝜎2g + 𝜎2c + 𝜎2e . (4)

Under these assumptions, C is the ratio of the variance con-

tributed by common environmental variance to total variance and E

is the ratio of the variance due to unique environmental effects and

measurement error to total variance, following the ACE model of

heritability.

We evaluated the heritability of GC functional connectivity con-

sidering each connection as an independent brain “endophenotypic”

trait. In the discovery and replication group, age, sex, handedness, and

education were included as covariates of no interest hence adjusting
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connectivity-values for each individual before evaluating heritability.

Moreover, inverse Gaussian transformation was applied to functional

connectivity values to ensure normality of measurements.

We estimated a three-parameter model for each traits, heritabil-

ity, and sample size combination using the “polygenic” command. The

effect of shared environment for people with a first-degree kinship

was also modeled. As the HCP consortium does not provide house-

hold information, we assumed that two individuals shared the same

household if they had the same family id, using the SOLAR option

“-keephouse.”

An h2 value was considered statistically significant when p < .05,

using a false discovery rate (FDR) correction for multiple comparisons

among functional connectivity ICA. The image analysis pipeline is sum-

marized in Figure 2. The heritability of functional connections was

evaluated separately for discovery and replication set.

3 RESULTS

3.1 Participants

The demographic characteristics of the participants in the discovery

and replication sample are summarized in Table 1. Our matching pro-

cedures ensured that no significant differences were found between

the discovery and replication set in terms of sex distribution, age,

education, handedness, and kinship (Table S1 for the statistical details).

3.2 Neuroimaging findings

3.2.1 ICA of networks “nodes”

Each ICA network (i.e., “node”) was characterized by a set of brain

regions that are consistentwith previous studies and different levels of

“granularity” in resting-state networks (Toschi et al., 2017) (Figure 3).

3.2.2 Global directed functional connectome
regardless heritability

Figure 4 shows the upper quartile (across connections) of median

(across subjects) GC measures. The highest GC strengths were

observed in cortical-to-cortical connections: most notably within sub-

networks of the sensory-motor network, parietal circuits, and occipital

cortices. The direction of the “information flow” evaluated through

GC showed bi-directional cortico-cortical influences. However, a few

asymmetric influences were observed, for example, from parietal to

cerebellar areas, from parietal to occipital cortex, and from parietal to

prefrontal networks (Bajaj et al., 2016; Chén et al., 2019; Duggento

et al., 2018; Lund et al., 2020; Schwab et al., 2018; Xu et al., 2020).

Upper quartiles of median GC strengths are provided in Table S5.

3.2.3 Heritability of the directed functional
connectome

The heritability scores (h2) in the discovery sample ranged from .28 to

.55 (mean h2 = .36) with n = 152 directed connections showing sig-

nificant effects (p’s < .05, FDR corrected). In the replication set, h2

values spanned from .27 to .57 (mean h2 = .35) with n = 241 network

connections showing significant heritability (p’s < .05, FDR corrected).

Fifty-eight connectionswith ameanh2 ranging from .30 to .50were sig-

nificant both in the discovery and replication cohorts (Figure 5a; Table

S2).

When the shared environment was modeled, the directed con-

nections showing significant heritability effects were n = 56 in the

discovery set (.33 to .57, mean h2 = .38, CI = .015, p’s < .05, FDR cor-

rected) and n = 79 in the replication set (.31 to .51, mean h2 = .38,

CI= .009, p’s < .05, FDR corrected) (Table S3). Eight connections were

significant both in the discovery and replication cohorts with a mean

heritability ranging from .34 to .40, with a mean h2 = .37, CI = .015,

p’s < .05, FDR corrected.(Figure 5b; Table S4). For completeness, we

have also carried out an exploratory analysis using the entire data-set

with heritability scores ranging from .18 to .49 (mean h2 = .27) with

n=313directed connections showing significant effects (p’s< .05, FDR

corrected) (Table S6).

4 DISCUSSION

We discuss three sets of findings: (1) the strength of the GC con-

nections irrespective of their heritability (Figure 4); (2) the effect of

heritability on the directed connections (Figure 5a); (3) the impact of

the shared environment on the heritability of directed connectome

(Figure 5b). Importantly, each set of findings was replicated between

the discovery and replication samples, which were derived from ran-

domly splitting the HCP dataset while carefully matching for a series

of potentially confounding variables (age, sex, education, handedness,

and kinship).

The fMRI timeseries used to calculate the ICA decomposition were

denoised by the HCP consortium using the ICA-FIX algorithm (Salimi-

Khorshidi et al., 2014). This algorithm carefully examines the data in

ICA space via a specific classifier that has been manually trained by

experts to remove common sources of fMRI noise includingmovement,

physiological pulsation, andmany other artifacts.

We employed State Space GC, a measure that is particularly robust

against filtering, downsampling, noise corruption during observation,

or any subprocess of a higher dimensional process. Crucially, numerical

simulations have demonstrated that SS GC has greater statistical

power and smaller bias than the more widely used autoregressive AR

estimators. Relative to other methods, SS GC also allows the relax-

ation of the assumptions of linearity, stationarity, and homoscedas-

ticity. These assumptions are common amongst other methods but

are likely not applicable to fMRI data, which have a moving average
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F IGURE 2 Image analysis workflow. Resting-state functional magnetic imaging (fMRI) data were pre-processed by the HCP consortium,
including the extraction of n= 100 brain networks and corresponding time-series via independent components analysis (ICA). A “blind”
deconvolution approach eliminated confounds related to local HRF variations while the subject-specific and directed functional connectivity
matrices were calculated using state-space Granger causality. For each family, kinship information was organized into a pedigree and phenotypic
matrix that was derived considering the functional connectivity ICA as traits. Finally, the variance components method, as implemented in the
Sequential Oligogenic Linkage Analysis Routines (SOLAR) software, was used to estimate the heritability of directed functional connectivity
between brain networks.

component (Barnett & Seth, 2015). We also mitigated the well-known

shortcomings ofGCmethods applied to fMRI datasets via a deconvolu-

tion strategy that limited the lag-inducing effects of HRF and its spatial

variations.

The first group of results regards the strength of the GC con-

nections irrespective of their heritability. The strongest directed

connections were found within posterior cortical networks while a

weaker strength was found across posterior-anterior cortical net-

works and cortico-subcortical networks. More specifically, high GC

strength was observed within the sensory-motor, parietal, and occip-

ital networks, while intermediate-to low GC strengths were present

across posterior-anterior cortical networks or within sub-cortical

networks. The strongest connections within the sensory-motor,

parietal, and occipital networks were reciprocated. For example, a

sensory-motor network sending a strong direct connection toward a

nearby sensory-motor component was also the recipient of a strong

“backward” connection from such sensory-motor component. Such

“tight” and strong functional interplay between visuo-parieto and

sensory-motor components is not surprising and is in line with the

well-known anatomical connectivity in these circuits. The feed-

forward and backward patterns of GC connectivity that we found

across these networks is also in keepingwith the visuo-spatial process-

ing functions and sensory-motor transformation that these circuits

support.
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F IGURE 3 Brain functional networks (i.e., independent components). These networks were identified by group independent component
analysis in n= 1003 subjects drawn from the Human Connectome Project database.

We now discuss together the second and third set of findings (her-

itability with or without modeling the shared environment) as these

results are conceptually linked. It is also worth noting that the GC

strength and GC heritability measures are not dependent on each

other in anyway. Thismeans that it is possible to have low-strengthGC

connections which are highly heritable and/or vice versa.

While no a priori hypothesis on directionality and its heritabilitywas

formulated, several previous fMRI studies showed that most herita-

ble connections were in the DMN (Ge et al., 2017; Glahn et al., 2010;

Sinclair et al., 2015a), which is in keeping with our results.

In Glahn et al., the heritability estimates involving the DMN (i.e.,

posterior cingulate/precuneus, medial prefrontal, and cerebellum)

ranged from .27 to .42. Colclough et al. (2017) showed an average

heritability of 15−18%, while Sinclair et al. showed that graph theoret-

icalmetrics derived from resting fMRI activity are under strong genetic

influence (.47–.50 heritability). Yang et al., 2016 found that intrinsic

functional network properties are heritable (.23−.65) in five of seven

networks (i.e., DAN-dorsal attention network, VN-visual network,

PCN-posterior default network, DMN-default mode network, FPN

fronto-parietal network) while 11 of the 21 internetwork coherences

were influenced by common environmental factors (.18−.47), similar

to our results.

In this study, the heritability scores in the GC connections remained

comparable when the shared environment was factored in, ranging

from .28–.55 when the shared environment was not modeled, to .34–

.40 when shared environment was included in the analyses. However,
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F IGURE 4 Upper quartile (across connections) of median CG strength across subjects

the number of direct connections showing high heritability and replica-

bility was significantly reduced when the effect of shared environment

was modeled (from 58 to 8 connections). This almost depended on

the fact that the heritability of the connections within posterior cor-

tical networks (parieto-parietal, occipito-occipital, sensory-motor) did

not remain significant when the shared environment was modelled.

This suggests a strong influence of shared environmental factors on

the cortico-cortical directed connectivity patterns that involve visuo-

parietal and sensory-motor circuits, the same networks showing a

high GC connectivity strength. Although the heritability of GC con-

nections and their strength are completely different measures, it is

interesting that similar posterior cortical connections are not only the

strongest but also the most influenced by shared environmental fac-

tors. We speculate that this might depend on an intrinsic plasticity

of such networks which are constantly engaged by upcoming sensory

stimuli.

In contrast, theheritability of thedirected connections fromparietal

to cerebellar components, from parieto to prefrontal cortex (PFC) net-

works, or from midline to PFC circuits were less influenced by shared

environmental factors and showed the highest and most replicable

heritability effects. The PFC networks comprised the anterior PFC

and dorsolateral/ventrolateral PFC, while the midline cortical struc-

tures included the medial PFC (the most anterior part of the DMN),

and posterior cingulate cortex/cuneus (a posterior part of the DMN).

The main parietal components showing directed functional connec-

tions to the PFC and cerebellum were localized in the inferior and

superior parietal lobule. Such PFC and DMN components have been

implicated in a wide range of high-order cognitive functions includ-

ing self-referential thoughts, theory of mind, and autobiographical

memory (Andrews-Hanna et al., 2014; Buckner et al., 2008).

The cerebellar areas that receive highly hereditable “top-down”

inputs from these cortical regions are the Crus I/II and, to a lesser
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F IGURE 5 Heritable directed connections in the functional
connectome that replicated between the discovery and replication
dataset when (a) not modeling the shared environment, and (b)
modeling the shared environment. The width of each connection is
proportional to the GC strength, while the color scale indicates the
heritability value (h2)

extent, Crus VIIB. Interestingly, a previous resting-state fMRI study

showed that theCrus I and II are strongly connectedwith the samePFC

andparietal regions identified here, althoughnor thedirectionality nei-

ther the heritability of these effects were determined (Buckner et al.,

2011).

A strong and directional effect of heritability was also found in the

connectivity from the posterior cingulate/cuneus component to the

medial temporal network including the hippocampus. Similarly, mod-

erate heritability was observed within the basal ganglia (BG), from

the ventral to dorsal BG circuits. These cortico-subcortical circuits

support episodic memory (cingulate-hippocampal network) or habit

formation and reward-driven action control (ventro-dorsal BG) (Natu

et al., 2019). Here, we show that the directed connections between

these critical circuits subserving memory or reward-driven behavior

are asymmetrically influenced by hereditary factors.

Together, our findings suggest a robust role of genetic factors in

controlling the direction of the “communication” flowwithin PFC, pari-

etal, hippocampal, BG, and cerebellar networks that mediate several

aspects of cognition, learning, and goal-directed behaviour. On the

other hand, our results emphasize that shared environmental factors

can have a strong influence on the directed connectivity patterns

within posterior occipital and parietal networks which are involved in

visuo-spatial processing and the transformation of sensory input into

motor outputs.

It is also worth reflecting on the asymmetric influence of heritabil-

ity over the abovementioned GC connections. Most of this asymmetry

regarded connections from “top-down” cortical regions such as the

PFC and the parietal components to subcortical circuits including the

cerebellum and hippocampus. Within the BG, heritability asymmetri-

cally influenced the interaction from the ventral to dorsal striatum.

The reason for such asymmetry and how this relates to the neuropsy-

chological functions mediated by these circuits remains an interesting

open question for future research. For example, studies using task-

based fMRI coupled with paradigms designed to explore the specific

functions of parieto-PFC, cortico-cerebellar, BG or parieto-temporal

networks (e.g., visuo-spatial memory, working memory, learning) are

warranted. In principle, these studies can use a similar analytical frame-

work to what employed here to estimate the directionality of the

effects within cortico-cortical or cortico-subcortical networks, their

heritability, and the relationships to behavioral performance.

4.1 Strengths and limitations

Our study has strengths and limitations. The split of the sample in a

discovery and replication cohort in conjunction with the use of state

of art analytical pipelines (i.e., state-space GC analyses with decon-

volution methods) is the first strength of this study. The fact that we

employed a highly controlled and publicly available dataset specifi-

cally acquired for connectivity studies is a second strength. A third

strength is represented by the explicit modeling of the shared envi-

ronmental factors, which helped disentangling the “pure” effects of

heritability.

In termsof shortcomingsof theGCanalyses applied to rs-fMRI time-

series, we discuss two main issues, alongside the approaches used to

mitigate them. First, the low sampling rate of fMRI data can introduce

aliasing effects (Seth et al., 2013). This aspect is partially alleviated

by the much shorter repetition time (TR = .72 s) of the HCP proto-

col, relative to the more conventional fMRI protocols (TR: 1.5–3 s).

This particularly short TR guarantees a positive predictive value of

almost 100%, especially for the strongest connections (Duggento et al.,

2018). Furthermore, the modern state-space formulation of GC used
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guarantees better robustness (relative to classic autoregressive

approaches) to the down-sampled, noisy, and filtered rs-fMRI data

(Barnett & Seth, 2015).

Second, the locally varying HRF can introduce non-uniform delays

when estimating the neuronal activity from the BOLD signal (Handw-

erker et al., 2012). To control for this aspect, we employed a “blind”

deconvolution technique, which infers both the shape of the HRF and

its underlying neural activity (Wu et al., 2013). This technique has been

specifically optimized for rs-fMRIdatasets,where the calculationof the

HRF ismore difficult than in the presence of a task or stimuli (Wu et al.,

2013). The estimated neural activity, deconvolved by the HRF filter,

was employed for all connectivity-related processing.

Other methods, most notably dynamic causal modeling (DCM), are

available to assess causality in fMRI data (Stephan et al., 2010). How-

ever, DCMwas not readily applicable for exploring the directionality of

the effects in such large number of networks as those reported here.

The intrinsic exploratory nature of our study therefore called for the

use of GCmethods, althoughDCMremains a powerful tool to estimate

thedirectionality of the effects inmore targeted andhypothesis-driven

networks.

It should also be noted that fMRI connectivity metrics exhibit a high

degree of intersubject variability (Conti et al., 2019), which may have

limited the accuracy of our findings.

In terms of potential confounds related to participants’ behaviour

during fMRI scanning, we acknowledge that the HCP consortium

did not monitor with eye tracking people’s ability to maintain fixa-

tion throughout rs-fMRI scanning. However, eye movements are not

known to affect the low-frequency rs-fMRI fluctuations, although they

can bias magneto-encephalo-graphic measures (Muthukumaraswamy,

2013; Orekhova et al., 2015), which we did not study here. It could

also be argued that participants’ level of motion during rs-fMRI scan-

ning is heritable (Couvy-Duchesne et al., 2014). Movement artifacts

are always a concern in fMRI studies, but the HCP pipeline and pre-

processing algorithms are highly robust and reliable in controlling for

this caveat (i.e., the HCP-specific ICA-FIX automated algorithm has

∼99% sensitivity and specificity in de-noising the HCP data) (Griffanti

et al., 2014; Salimi-Khorshidi et al., 2014; Smith et al., 2013). Never-

theless, it might be possible that future machine-learning strategies

further improve de-noising via using deep neural networks with sur-

rogate models (Brescia et al., 2021) or physically informed statistical

models (Brescia et al., 2020; Loncarski et al., 2020).

Finally, the statistical model to assess heritability is not without lim-

itations. As per classic twin studies, the heritability estimate (h2) only

takes into account the additive genetic variance, assuming minimal

genetic-environmental interactions and relatively similar environmen-

tal influences in MZ and DZ twins (Boomsma et al., 2002; Mayhew &

Meyre, 2017). This is a debatable issue, as two studies supported the

equal environment assumption inMZandDZ twins (Conley et al., 2013;

Felson, 2014) while an earlier one did not (Joseph, 1998). Twin designs

are also limited in their capacity to reveal the intimate genetic mech-

anisms underlying heritability. A notable recent work has explored

the more nuanced associations between the genetic co-expression

profile and rs-fMRI functional connectivity patterns, although the

directionality of theeffectswasnot ascertained (Bertoleroet al., 2019).

Future research is warranted to explore how the directed functional

connectomemaps onto distinct patterns of genetic co-expression.

5 CONCLUSION

Using a discovery and replication sample, alongside with a twin design,

we foundhighheritability in the functional connections fromprefrontal

and parietal regions to cerebellar areas known to mediate cognitive

control and learning. We also observed a strong asymmetric effect of

heritability in the connection from the posterior cingulate to the hip-

pocampal components and from ventral to dorsal BG. Together with

past literature highlighting the high heritability of the human connec-

tome, our data providenewmechanistic insights to understand the role

of genetic factors in controlling the functional connectome.
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