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Abstract The static limit analysis of axially sym-

metric masonry domes subject to pseudo-static seis-

mic forces is addressed. The stress state in the dome is

represented by the shell stress resultants (normal-force

tensor, bending-moment tensor, and shear-force vec-

tor) on the dome mid-surface. The classical differen-

tial equilibrium equations of shells are resorted to for

imposing the equilibrium of the dome. Heyman’s

assumptions of infinite compressive and vanishing

tensile strength, alongside with cohesive-frictional

shear response, are adopted for imposing the admis-

sibility of the stress state. A finite difference method is

proposed for the numerical discretization of the

problem, based on the use of two staggered rectangular

grids in the parameter space generating the dome mid-

surface. The resulting discrete static limit analysis

problem results to be a second-order cone program-

ming problem, to be effectively solved by available

convex optimization softwares. In addition to a

convergence analysis, numerical simulations are pre-

sented, dealing with the parametric analysis of the

collapse capacity under seismic forces of spherical and

ogival domes with parameterized geometry. In partic-

ular, the influence that the shear response of masonry

material and the distribution of horizontal forces along

the height of the dome have on the collapse capacity is

explored. The obtained results, that are new in the

literature, show the computational merit of the

proposed method, and quantitatively shed light on

the seismic resistance of masonry domes.
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1 Introduction

Masonry domes, especially used as coverings for

historical monumental buildings, represent invaluable

pieces of cultural heritage, whose conservation and

restoration often requires a seismic structural assess-

ment. Limit analysis appears as an effective structural

analysis strategy to that aim, because allowing a direct

estimate of the structural capacity under prescribed

loading conditions. Nevertheless, the limit analysis of

masonry domes under horizontal forces is at present

still an open problem [17].

The application of limit analysis theory to masonry

structures traces back to the work by Heyman, and his

observation that the assumptions of infinite compres-

sive strength, vanishing tensile strength, and no-

sliding condition are applicable to masonry material

for the computation of the structural bearing capacity

[29]. In the last decades, prompted by the development
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and availability of personal computers, the classical

limit analysis theorems have been progressively

translated into a variety of computational methods.

In the context of static limit analysis approaches,

computational methods addressing, or applicable to,

the analysis of masonry domes can be broadly

classified into three groups, referred to as lunar-slices,

thrust surface analysis and thrust network methods.

Lunar-slices methods are based on the centuries-old

idea that a masonry dome subjected to its self-weight

can be studied as a collection of independent meridian

slices (or lunes) [55]. In fact, because the typical

meridian slice is an arch of variable width, the

structural assessment of the dome is reduced to the

thrust line analysis of an arch (to be addressed by

classical graphic static tools or more advanced com-

putational methods, e.g. [44, 58]). An improvement of

that original idea requires to take into account the

beneficial effect of statically indeterminate hoop

stresses, by which the meridian slices of the dome

may interact with each other. In fact, the development

of compressive hoop stresses in the upper part of the

dome (or dome cap) proves in some cases essential for

a reliable, but not over-conservative, prediction on the

stability of the dome [30]. The introduction of hoop

stresses in lunar-slices methods has been extensively

explored, especially resorting to constructive tech-

niques (e.g., see [1, 34, 52, 61]). The possibility to

conceive a fully automatic procedure for taking into

account hoop stresses has also been recently proven,

based on their discretization and numerical optimiza-

tion through the solution of a simple linear program-

ming problem [46, 47].

Such as lunar-slices methods relate the statics of a

masonry dome under its self-weight to the statics of an

arch, thrust surface analysis and thrust network

methods emphasize the membrane behavior of general

masonry vaults. In fact, they postulate that a purely

membrane stress state, acting on a thrust membrane to

be determined within the thickness of the vault,

ensures the load transfer to its supporting structures.

In thrust surface analysis methods, a continuous

modeling of both the stress state and of the thrust

membrane is embraced (e.g., see [2, 3, 6, 22]). When

gravitational loads are applied to the vault, the

formulation takes advantage of an Airy stress potential

to characterize the membrane stresses identically

satisfying the horizontal equilibrium equations. Then,

basing on the parameterization of the thrust membrane

as the graph of an unknown function, the vertical

equilibrium equation is formulated as a nonlinear

differential equation, involving the product of the

stress potential and of the thrust membrane elevation.

The admissibility conditions on the stress state are

finally imposed, prescribing the stress potential to be

concave and the thrust membrane elevation to be

contained within the dome thickness.

In contrast, thrust network methods represent an

intrinsically discrete approach, inspired by the funic-

ular analysis of vaulted structures in [51] and later on

developed in [10]. Indeed, the existence of a 3D

network within the vault, comprising nodes connected

by branches (or edges), is conceived to describe the

vault equilibrium state. In detail, the external loads

acting on the vault are transformed into equivalent

nodal loads, and compressive forces (or thrusts) within

the branches are designated to guarantee nodal equi-

librium (e.g., see [8, 9, 11, 23, 24, 40]). Also in this

case, the nodal equilibrium equations result to be

nonlinear in the unknown nodal elevations and thrust

values. When only vertical loads are considered, that

nonlinearity is circumvented by addressing horizontal

and vertical nodal equilibrium equations the ones after

the others. Accordingly, the horizontal projection of

the thrusts in the branches of the network are first

characterized. The elevation of the network is subse-

quently determined, to be bounded within the thick-

ness of the dome for its admissibility to be ensured.

The extension of the above static limit analysis

approaches to include horizontal actions (such as

pseudo-static seismic forces) has received increasing

attention in the last decade. Despite lunar-slices

methods are mostly suited to the axially symmetric

framework, a simple formulation has been proposed in

[60], where experimental results have also been

obtained by testing small-scale models of block

masonry domes on a tilting table. In [16], horizontal

forces proportional to the dome’s self-weight have

been included in the thrust surface analysis method, by

analyzing a suitably rotated configuration of the dome,

in which the external loads are a system of vertical

forces. Applications of the thrust network method to

masonry arches and domes subject to horizontal forces

can be respectively found in [40, 41], based on an

iterative solution strategy for alleviating the nonlin-

earity of the equilibrium equations.

Concerning kinematic approaches to the limit

analysis of masonry domes, a description of potential
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collapse mechanisms requires to identify a series of

cracks, whose opening implies a mechanism of rigid

bodies. Dual formulations to the aforementioned

lunar-slices methods, to be applied for the assessment

of domes under gravitational loads, have been

e.g. discussed in [20, 54]. They exploit the classical

argument that masonry domes usually exhibit merid-

ional cracks, which are generally produced by slight

outward radial settlements of their supporting struc-

tures [15, 30]. Accordingly, the kinematic theorem of

limit analysis is applied to the typical lunar slice of the

dome.

Conversely, an adaptive approach for determining

the potential collapse mechanisms, and hence the

collapse capacity, of masonry domes under horizontal

forces has been proposed in [27]. Basic idea is that,

after generating a mesh on the dome, its elements and

edges respectively constitute a system of rigid bodies

and cracks, potentially implying a mechanism.

Accordingly, the actual collapse mechanism can be

determined by adaptively changing that mesh. As a

peculiarity of the method, the problem unknowns

practically coincide with the position and the geom-

etry of floating cracks on the dome, parameterized as

NURBS curves (for the concept of free discontinuities

in masonry structures, see also [21]). As a conse-

quence, a nonlinear optimization problem is formu-

lated for computing the actual collapse mechanism of

the dome. Provided such a mechanism only involves

few rigid bodies, the size of that optimization problem

is limited. Meta-heuristic algorithms are adopted for

its numerical solution [28].

As opposed to adaptive limit analysis approaches

[27, 28], which trade the increased nonlinearity of the

governing optimization problem for its reduced size, it

is worth to mention block-based methods. In fact, the

latter regard masonry structures as being constituted

by rigid and infinite strength blocks, which interact

with each other through their shared interfaces.

Because cracks can only open at the interfaces

between the blocks, the limit analysis problem can

be formulated as a linear programming problem. On

the other hand, whether the blocks are considered as

physical units or as the result of a numerical

discretization, a large number of blocks is expected,

resulting in a large-size optimization problem. Fol-

lowing the initial idea proposed in [35, 36], block-

based methods have been broadly used for the limit

analysis of both 2D and 3D masonry structures in the

last twenty years (e.g., see [32, 39, 56, 57]), also

assuming non-associative friction flow law (e.g., see

[5, 12, 19, 25, 49, 53]). An extension to masonry

domes under horizontal forces has been discussed in

[4, 13], taking advantage of a point contact model

which simplifies the imposition of the failure condi-

tions at block interfaces and results in a cone

programming problem.

In a recent work [48], the authors have proposed an

innovative formulation for the static limit analysis of

masonry domes, which overcomes several of the

difficulties mentioned above. Key point is to resort to

the classical statics of shells for characterizing the

stress state and formulating the equilibrium equations

of the dome. The latter are linear in the unknown shell

stress resultants (normal-force and bending-moment

tensors, and shear-force vector) defined on the dome

mid-surface. In addition to the implicit merit of a static

formulation to provide results on the safe side, such a

novel, theoretically sound shell-based paradigm is

preparatory to conceive effective computational

strategies, that naturally and effectively address the

limit analysis of masonry domes, also subject to

horizontal forces. In particular, a finite-volume dis-

cretization approach has been proposed in [48],

exploiting an integral formulation of the shell equi-

librium equations.

From a modeling viewpoint, the shell-based static

limit analysis approach allows to characterize the

admissible stress states in the dome through the

introduction of a strength domain in the space of the

shell stress resultants. Classical Heyman’s assump-

tions solely imply the imposition of unilateral condi-

tions (e.g., see [37]). However, the no-sliding

hypothesis, which is commonly acceptable for

masonry domes with usual material properties subject

to self-weight (e.g., see [59]), might require further

considerations in presence of horizontal forces.

Accordingly, for a safe estimation of the structural

collapse capacity, suitable shear admissibility condi-

tions might be taken into account (e.g., see

[7, 18, 38, 59]).

Set in the framework of such a shell-based formu-

lation, the present work investigates a finite difference

computational strategy for the static limit analysis of

masonry domes under pseudo-static seismic loads. It is

based on a differential formulation of the shell

equilibrium equations. Their finite difference dis-

cretization is accomplished by the introduction of two
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staggered rectangular grids, defined in the parameter

space generating the dome mid-surface. The unknown

shell stress resultants are located at the nodes of one

grid (main grid). The equilibrium equations are then

imposed, in the finite difference sense, at the nodes of

the other grid (auxiliary grid). The formulation is

complemented by the admissibility conditions on the

shell stress resultants, to be enforced at the nodes of

the main grid. As a particular choice of the strength

domain in the space of shell stress resultants, Hey-

man’s assumptions of infinite compressive and van-

ishing tensile strengths are here adopted, alongside

with a cohesive-frictional shear response. Accord-

ingly, a cohesion term and friction coefficient are the

only constitutive parameters needed in the formula-

tion. Though more general strength domains might be

considered, e.g. accounting for non-vanishing tensile

strength due to combined effect of friction and

masonry texture [7, 14], such a choice conservatively

covers the pseudo-static seismic assessment of both

dry-masonry structures and masonry structures with

mortar. As a consequence, a discrete static limit

analysis problem is derived, in the form of a second-

order conic programming problem, which is addressed

by available high-performance convex optimization

softwares. Simplicity of implementation and compu-

tational efficiency are among the advantages of the

proposed methodology, alongside with the capability

to equally address gravitational forces and horizontal

loads with arbitrary distribution.

For those advantages to be highlighted, numerical

results are presented. After investigating the conver-

gence performances of the formulation, parametric

analyses dealing with the collapse capacity of spher-

ical and ogival domes, with parameterized geometry

and subject to horizontal forces, are addressed. In view

of seismic applications, the influence exerted by the

shear response of masonry material and by the

distribution of horizontal forces along the height of

the dome is explored. In the former respect, results

pertaining to different shear models, namely Hey-

man’s no-sliding behavior, cohesionless frictional

behavior, and cohesive-frictional behavior, are pre-

sented. In the latter respect, uniform and linear

distributions of horizontal forces are considered.

Besides proving the computational merit of the

method, the obtained numerical results, that seem to

be novel in the literature, have an intrinsic engineering

significance, enabling a pseudo-static seismic assess-

ment of masonry domes.

The remaining part of the present paper is orga-

nized as follows. In Sect. 2 the problem formulation is

discussed. That is preparatory for the finite difference

solution scheme proposed in Sect. 3. Numerical

simulations are presented in Sect. 4, and conclusions

are outlined in Sect. 5. Finally, some closed-form

formulas for the implementation of the proposed

finite-difference scheme are discussed in Appendix A.

2 Problem formulation

A masonry dome of revolution is considered. Its mid-

surface, shown in Fig. 1a, is parameterized in terms of

an arbitrary meridional parameter t and of a longitude

angle # by the position vector:

x ¼ rer þ zk; er ¼ cos# iþ sin# j: ð1Þ

Here, for i, j and k unit vectors lying along the axes of

a Cartesian reference frame, rðtÞ and zðtÞ denote the

distance from the revolution axis (in the radial

direction er) and the elevation of point x, respectively.

Parallel and meridian curves on the dome mid-surface

respectively correspond to coordinate curves with

constant t and #. In particular, meridian curves are

characterized by a tangential angle u and by a radius

of curvature q given by:

tanu ¼ �
z=t

r=t
; q ¼ �

ðr2
=t þ z2=tÞ

3=2

z=ttr=t � z=tr=tt
; ð2Þ

the slash symbol standing for differentiation with

respect to the indicated variable. As customary in the

statics of shells, by using relationship (2)1, the

tangential angle u is henceforth used as meridional

parameter in place of t. The following physical basis

vectors are introduced on the dome mid-surface:

eu ¼ cosu er � sinu k;

e# ¼ � sin# iþ cos # j;

n ¼ sinu er þ cosu k;

ð3Þ

such that eu and e# are unit vectors respectively

tangent to meridian and parallel curves, whereas n is

the exterior normal unit vector to the mid-surface. The

dome thickness, measured along the normal direc-

tion n, is denoted as h.
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External loads acting on the dome are reduced to

statically equivalent surface distributions of external

forces q and couples m applied to its mid-surface

[45, 48]. For mimicking pseudo-static seismic loads,

those distributions are assumed of the form:

q ¼ qd þ kql; m ¼ md þ kml; ð4Þ

i.e. as the sum of dead and live contributions, with k as

a scalar multiplier of basic live loads. Postponing

further details on the treatment of dead and live loads

to Sect. 4, it is here explicitly noticed that surface

couples m do not involve drilling couples.

Resorting to the classical statics of shells (e.g., see

[26, 33]), also the stress state in the dome is described

on its mid-surface, by the introduction of a normal-

force tensor N, a shear-force vector Q, and a bending-

moment tensor M. They are tangent fields on the dome

mid-surface, which admit the following matrix repre-

sentation in the basis eu; e#
� �

:

N ¼
Nu Nu#

N#u N#

� �
; Q ¼

Qu

Q#

� �
; M ¼

Mu Mu#

M#u M#

� �
:

ð5Þ

A mechanical interpretation of their components is

offered in Fig. 1b, where they are recognized as the

stress resultants per unit length emerging on the

boundary of a mid-surface area element having its

edges parallel to the coordinate curves.

Exploiting Eqs. (4)–(5), the equilibrium conditions

of the dome, formulated in differential form referring

to its mid-surface, read (e.g., see [26, 33], with a slight

change of notation due to switching the indices of the

off-diagonal components of the stress tensors):

0 ¼ rNu
� �

=u þ qNu#=# � q cosuN# þ rQu þ rqqu;

0 ¼ rN#u
� �

=u þ qN#=# þ q cosuNu# þ q sinuQ# þ rqq#;

0 ¼ rQu
� �

=u þ qQ#=# � rNu � q sinuN# þ rqqn;

0 ¼ rMu

� �
=u þ qMu#=# � q cosuM# � rqQu þ rqmu;

0 ¼ rM#u
� �

=u þ qM#=# þ q cosuMu# � rqQ# þ rqm#;

0 ¼ rq N#u � Nu#

� �
þ rM#u � q sinuMu#:

ð6Þ

In detail, the first [resp., last] three equations imply

translational [resp., rotational] equilibrium along the

physical basis vectors eu; e#; n
� �

. Accordingly, the

components in the physical basis of the surface

forces q and of the surface couples m are involved.

The differential equilibrium equations (6) are possibly

complemented by the imposition of boundary condi-

tions on the free edges of the dome mid-surface. For

the sake of simplicity, it is here assumed that the

supporting structures of the dome are sufficiently

resistant to withstand the transmitted actions. Hence,

no boundary conditions is enforced on the supported

edges.

In the classical statics of shells, non-symmetric

normal-force and bending-moment tensors are com-

monly employed, as introduced in equations (5)1;3.

However, a consistent derivation of the shell stress

resultants from a 3D stress state, i.e. via a thickness

integration involving the Cauchy stress tensor, shows

that the bending-moment tensor can be assumed

symmetric:

M#u ¼ Mu#: ð7Þ

O
x

y
z

ϑ

x

eϕ

n
eϑ

er

r

ρ
ϕ

x

eϕ

eϑ

n

Nϕ

Nϑϕ

Qϕ

Mt

Mϑϕ

Nϑ

Nϕϑ

Qϑ

Mϑ

Mϕϑ

(a) (b)Fig. 1 Formulation:

a three-dimensional view of

the mid-surface of an axially

symmetric masonry dome,

and b shell stress resultants

acting on the mid-surface of

the dome
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Such a conclusion is e.g. arrived at in [43] in the

context of Cosserat surfaces. A simple and self-

contained proof is presented in [48].

For the characterization of the admissible stress

states in the dome, the classical Heyman’s assump-

tions of infinite compressive and vanishing tensile

strengths are adopted [31]. Hence, the shell stress

resultants are required to obey the following unilateral

conditions (e.g., see [37, 48]):

symN � 0;

sym M � Nh=2ð Þ � 0;

sym M þ Nh=2ð Þ � 0;

ð8Þ

where sym denotes the symmetric part operator and

the notation S � 0 [resp., S � 0] is adopted for the

symmetric tensor S to be positive [resp., negative]

semidefinite. Such conditions imply the normal forces

to be compressive and the center of pressure to lie

inside the thickness of the dome, consistently with the

assumed infinite compressive strength and vanishing

tensile strength of the material. In passing, it is noticed

that the first of those conditions is linearly dependent

on the remaining two, whence it is dropped off.

Concerning the shear strength, a cohesive-frictional

behavior is assumed. Denoting by c and l respec-

tively a cohesion term and the friction coefficient, the

following shear condition is enforced on the shell

stress resultants (e.g., see [7, 18, 38, 59]):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm � sð Þ2þ Q � mð Þ2

q
� c� lNm � m; ð9Þ

to hold for any pair m; sð Þ of orthonormal vectors

tangent to the dome mid-surface. Accordingly, the

resultant of in-plane and out-of-plane shear stress

resultants is contained within the Coulomb friction

cone. In passing, it is observed that the introduction of

such cohesive-frictional model within the present

lower-bound limit analysis approach carries an under-

lying assumption of associative friction flow law.

Conditions (8) and (9) describe the adopted

masonry strength domain in the space of shell stress

resultants. More general strength domains might be

considered within the present approach, e.g. account-

ing for non-vanishing tensile strength due to friction

and masonry texture (e.g., see [7, 14]). However, the

reliability of such strength contributions might be

questionable in presence of seismic loadings.

Finally, the static theorem of limit analysis (e.g.,

see [15, 31]), characterizes the collapse value of the

load multiplier k of the basic live loads as the solution

of the following optimization problem:

max
k;N;Q;Mf g

k;

s.t. conditions ð6Þ; ð7Þ; ð8Þ2;3; and ð9Þ hold.

ð10Þ

In the next section, a finite difference discretization

method will be proposed for achieving an efficient

computational solution strategy.

3 Finite difference discretization method

In this section, a finite difference method is proposed for

a discretization and a computational solution strategy of

the static limit analysis problem (10), which involves

the shell stress resultants as unknown functions, in

addition to the collapse multiplier of the basic live loads.

To do so, two rectangular grids are introduced in the

parameter space u; #ð Þ, with grid spacing Du and D#
along the two directions, respectively, as shown in

Fig. 2. One grid, referred to as the main one, has nodes

labeled by indices i; jð Þ, with i and j running along u-

and #-direction, respectively. The other grid, referred

to as the auxiliary one, is staggered by half the grid

spacing, in both directions, with respect to the main

grid. Accordingly, its nodes, labeled by

indices iþ 1=2; jþ 1=2ð Þ, are the centers of the finite

ϕ

ϑ

i i + 1

i + 1
2

j

j + 1
j + 1

2

Δϕ

Δϑ

main grid

auxiliary grid

Fig. 2 Finite difference discretization method: main and

auxiliary staggered rectangular grids in the parameter

space u; #ð Þ. The nodes of the auxiliary grids (blue squares)

are the centers of the finite difference cells of the main grid,

i.e. of the cells having the nodes of the main grid (red bullets) as

their vertices
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difference cells of the main grid, i.e. of the rectangles

having the nodes of the main grid as their vertices.

The shell stress resultants are located at the nodes of

the main grid. For convenience, the relevant nodal

values are collected in the following 10 � 1 vector:

X i; jð Þ ¼ Nu
i; jð Þ;N#u

i; jð Þ;Nu#
i; jð Þ;N#

i; jð Þ; Qu
i; jð Þ;Q#

i; jð Þ;
	

Mu
i; jð Þ;M#u

i; jð Þ;Mu#
i; jð Þ;M#

i; jð Þ


:

ð11Þ

A finite difference approximation of the typical stress

component T, and of its partial derivatives T=u
and T=#, is also derived at the nodes of the auxiliary

grid:

T iþ1=2; jþ1=2ð Þ ¼ 1

4
T i; jð Þ þ T iþ1; jð Þ
h

þ T iþ1; jþ1ð Þ þ T i; jþ1ð Þ
i
;

½1ex�T iþ1=2; jþ1=2ð Þ
=u ¼ 1

2Du
�T i; jð Þ þ T iþ1; jð Þ
h

þ T iþ1; jþ1ð Þ � T i; jþ1ð Þ
i
;

½1ex�T iþ1=2; jþ1=2ð Þ
=# ¼ 1

2D#
�T i; jð Þ � T iþ1; jð Þ
h

þ T iþ1; jþ1ð Þ þ T i; jþ1ð Þ
i
:

ð12Þ

In light of such approximation, the differential equi-

librium equations (6), the boundary conditions on the

free edges, the symmetry requirement on the bending-

moment tensor (7), the unilateral conditions (8)2;3,

and the frictional conditions (9), whose imposition is

required by the static limit analysis problem (10), are

addressed under a computational standpoint.

The differential equilibrium equations (6) are

enforced in the finite difference sense at the nodes of

the auxiliary grid. After simple algebra, they can be

put in the form:

0 ¼
X

k;l¼0;1

E iþk; jþlð ÞX iþk; jþlð Þ

þ f
iþk; jþlð Þ

d þ kf iþk; jþlð Þ
l ;

ð13Þ

where E iþk; jþlð Þ is a 6 � 10 equilibrium matrix,

and f iþk; jþlð Þ
	 , with 	 ¼ d; lf g, are 6 � 1 vectors of

nodal forces, whose expressions are given in Appen-

dix A. It is remarked that equations (13) enjoy the

mechanical interpretation of equilibrium equations of

the portion of the dome mid-surface which is the

image, through the parameterization (1), of the typical

finite difference cell.

Due to their algebraic nature, the boundary condi-

tions on the free edges and the symmetry requirement

on the bending-moment tensor (7) are straightfor-

wardly enforced at the nodes of the main grid.

The admissibility requirements on the shell stress

resultants are also enforced at the nodes of the main

grid. In detail, the unilateral conditions (8)2;3 are

recast in the following second-order conic constraint:

U
X
i; jð Þ 2 Kr; ð14Þ

where Kr � R3 is the rotated quadratic cone in R3

[42], and U
 are two 3 � 10 admissibility matrices,

whose expressions are given in Appendix A. On the

other hand, by checking the frictional condition (9) for

a discrete set of S pairs ms; ssð Þ of orthonormal vectors

tangent to the dome mid-surface, a set of S second-

order conic constraints is obtained:

FsX
i; jð Þ þ c 2 K; s ¼ 1; . . .; S; ð15Þ

in which K is the standard quadratic cone in R3 [42],

Fs are 3 � 10 friction admissibility matrices, and c is

a 3 � 1 cohesion vector. They are detailed in

Appendix A.

Finally, the discretized version of the static limit

analysis problem (10) is obtained through an assem-

bling procedure which is similar to that customarily

implemented in finite element computer programs. It

reads:

max
k;X

k;

s.t. EX þ f d þ kf l ¼ 0; BX ¼ 0;

XX ¼ 0;

U
i;jð Þ

 X 2 Kr; for all i; jð Þ;

F i;jð Þ
s X þ c 2 K; s ¼ 1; . . .; S; for all i; jð Þ;

ð16Þ

in which X is a vector collecting all the nodal

unknowns of the main grid; E and f 	 respectively

are the structural equilibrium matrix and the vectors of

nodal forces; B and X are suitable matrices respec-

tively enforcing the boundary conditions on the free

edges and the symmetry requirement on the bending-

moment tensor; U
i;jð Þ

 and F i;jð Þ

s respectively are the

structural unilateral and frictional admissibility
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operators relevant to node i; jð Þ of the main grid. That

in equation (16) is a convex optimization problem,

known in mathematical programming as a second-

order cone programming problem. For its solution

standard and effective optimization softwares are

available.

Remark 1 Problem (16) admits the following dual

version, to be interpreted as the discrete upper-bound

formulation of the limit analysis problem:

min
fg; gb;x; z

i;jð Þ

 ;w

i;jð Þ
s g

�gT f d þ
P

i;j

P
s w i;jð Þ

s

� �T
c;

s.t. ETgþ BTgb þXTx

þ
P

i;j U
i;jð Þ



	 
T
z
i;jð Þ



þ
P

i;j

P
s F i;jð Þ

s

� �T
w i;jð Þ
s ¼ 0;

1 � gT f l ¼ 0;

z
i;jð Þ

 2 K�

r ; for all i; jð Þ;
w i;jð Þ
s 2 K�; s ¼ 1; . . .; S; for all i; jð Þ:

ð17Þ

Here g is the vector of displacements/rotations dual to

the element equilibrium equations (13), gb is the

vector of displacements/rotations dual to the boundary

conditions on the free edges, and x is the vector of

drilling distortions dual to the symmetry condition (7)

on the bending-moment tensor. In addition, z
i;jð Þ

 [resp.,

w i;jð Þ
s ] are the vectors collecting the flow multipliers

dual to the nodal unilateral [resp., friction] admissi-

bility conditions (14) [resp., (15)]. Those parameters

describe a mechanism of the dome, possibly involving

detachments or opening of hinges [resp., slidings] at

the nodes of the main grid where the unilateral [resp.,

friction] admissibility conditions are activated. A

compatibility equation and dual admissibility condi-

tions on the flow multipliers ensure the mechanism to

be kinematically admissible. In fact, K�
r [resp., K�] is

the dual cone of Kr [resp., K]. Hence, problem (17)

searches for the mechanism that minimizes the sum of

the resisting work of dead loads, �gT f d, and of the

cohesive dissipation,
P

i;j

P
s w i;jð Þ

s

� �T
c, in the class of

kinematically admissible mechanisms, which also

obey the normalization condition 1 � gT f l ¼ 0.

It is pointed out that, when solving problem (16) by

a standard convex optimization tool, in addition to the

static unknowns X, and at no further computational

cost, the displacements/rotations g and gb, the drilling

distortions x, and the unilateral and friction flow

multipliers, z
i;jð Þ

 and w i;jð Þ

s respectively, are supplied as

well. Accordingly, the resulting collapse mechanism

can be computed as a by-product of the static limit

analysis, as shown in the numerical simulations. h

4 Numerical results

This section is devoted to numerical simulations,

which are aimed to assess the merit of the proposed

finite difference method for the static limit analysis of

masonry domes subjected to pseudo-static seismic

loads. In detail, the seismic capacity of spherical and

ogival domes with parameterized geometry (Fig. 3) is

investigated in Sects. 4.1 and 4.2, respectively.

Attention is especially focused on the influence that

the shear response of masonry material and the

distribution of seismic loads along the height of the

dome exert on the structural collapse capacity.

In the former respect, the sets of shear models

investigated in the numerical simulations are listed in

Table 1. Classical Heyman’s no-sliding assumption

(H) is adopted as first model, consisting in not

enforcing the shear admissibility conditions (9). A

second model is represented by a cohesionless

frictional behavior (F), which might be indicated for

dry masonry. In such a case, the influence of the

friction coefficient l, representing the only constitu-

tive parameter, is evaluated by comparing numerical

results for l ¼ 0:7; 1; 1:5f g (respectively labeled as

(F1), (F2) and (F3)). It is remarked that a cohesionless

frictional material (with finite friction coefficient) is

unable to withstand uniaxial compression. In partic-

ular, such a model is unable to predict the well-known

experimental evidence that domes under self-weight

present meridional cracks developing from their base

up to a certain meridian angle (e.g., see [15, 31]).

Accordingly, though its experimental determination

might generally be difficult and/or uncertain, one

might infer that some cohesion term c is available in a

masonry that is not perfectly dry, at least under

gravitational loads. For drawing the consequences of

this observation, a cohesive-frictional behavior (CF) is

considered as third shear model, which might be

appropriate for a masonry with mortar. In particular, a

friction coefficient l ¼ 0:7 is considered. Moreover,

aiming to conservative results, a special value of the
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cohesion term, denoted as cmin, is here adopted as

constitutive parameter. That is computed as the

minimum cohesion term that guarantees the uniaxial

compression at the base of a cracked dome under its

self-weight to be sustained. It is a simple matter to

check that:

cmin ¼ 1 � sin/
2 cos/

�Nu �
Q2

u

Nu

 !�����
base

; ð18Þ

where / ¼ arctan l denotes the friction angle, and the

stress resultants Nu and Qu are computed at the base

of the dome subject to its self-weight and in minimum

thrust configuration. Despite cmin depends on the

geometry, the unit weight and the size of the dome,

its value is in practice attained for a very small

material cohesion, i.e. in the order of 0:05 MPa.

Nevertheless, whether such a cohesion can be relied

on under seismic loading conditions should be eval-

uated by the analyst on the basis of the particular

masonry material under investigation.

Concerning the seismic loads distribution, follow-

ing [27], horizontal accelerations that are uniformly or

linearly distributed along the height of the dome are

considered, in accordance to the Italian norms for

constructions NTC 2018 [50]. To do so, the dome self-

weight is first reduced to statically equivalent surface

distributions of dead forces qd and couples md applied

to its mid-surface (for a detailed derivation of the

relevant reduction formulas, see [45, 48]):

qd ¼ �qk; q ¼ 1 þ h2

12q
sinu
r

� �
ch;

md ¼ m sinu eu; m ¼ 1

q
þ sinu

r

� �
ch3

12
;

ð19Þ

where c denotes the specific weight of masonry

material. Then, on considering seismic accelerations

along direction ı, with distribution ‘ along the height

of the dome, the basic live forces ql and couples ml

applied to the dome mid-surface are derived:

ql ¼
W

S
‘qı; ml ¼

W

S
‘m sı: ð20Þ

in which W , i.e. the weight of the dome, and S are

respectively computed as the integral of q and of ‘q

over the dome mid-surface, whereas sı denotes the

projection of the unit vector ı on the tangent plane to

R

h

β

R

hβ

δ

(a) (b)Fig. 3 Numerical

simulations: a spherical, and

b ogival domes. Three-

dimensional view of the

mid-surface (top row) and

meridian section with

highlighted geometric

parameters (bottom row)

Table 1 Sets of models and pertaining constitutive parameters

adopted for enforcing the shear admissibility conditions (9)

Shear admissibility

Model Parameters

c l

(H) no-sliding � �
(F1) frictional 0 0.7

(F2) frictional 0 1

(F3) frictional 0 1.5

(CF) cohesive-frictional cmin 0.7
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the dome mid-surface. Uniform or linear seismic

acceleration distributions correspond to the

choices ‘ ¼ 1 or ‘ ¼ z, respectively.

Taking advantage of the axially symmetric geom-

etry of the dome, in all simulations it is assumed,

without loss of generality, that the direction ı of the

seismic loads coincides with the direction i. Accord-

ingly, the problem under investigation results to be

symmetric with respect to the xz-plane, whence only

half of the dome is modeled, with suitable boundary

conditions imposed on the symmetry edges.

All numerical analyses have been performed by

means of an in-house MATLABr code, and the

computations have been done on a single machine

with dual Intelr Xeonr CPU Gold 6226R @ 2.89

GHz and 256 GB RAM. The optimization prob-

lem (16) has been solved by Mosekr optimization

software (version 9.2) [42].

4.1 Spherical domes

Spherical domes are considered, as shown in Fig. 3a.

Their geometry is described by the mid-surface

radius R, the normalized thickness h=R, and the

embrace angle b.

Initially, the convergence performances of the

proposed finite difference discretization method are

addressed with respect to (i) the mesh size and (ii) the

number S of discrete friction admissibility conditions

enforced at the nodes of the main grid. To that aim, a

hemispherical dome with normalized thick-

ness h=R ¼ 0:1 is considered subject to uniformly

distributed pseudo-static seismic loads along the

height of the dome. Concerning (i), a sequence of

progressively finer finite difference meshes is ana-

lyzed. The typical one involves two staggered rectan-

gular grids, subdividing u- and #-domains

respectively into m and 2m intervals, and is hence

labeled as m� 2m. Seven discretizations are investi-

gated, corresponding to m ¼ 4; 6; 8; 12; 16; 24; 32f g.

Concerning (ii), the friction admissibility condi-

tions (15) are checked at any node of the main grid

for a set of S ¼ 2; 4; 8; 16; 32; 64f g pairs of orthonor-

mal vectors tangent to the dome mid-surface.

In Table 2, the obtained collapse multiplier k are

reported under the assumption of shear models (H) or

(F1), as defined in Table 1. In the former case, friction

admissibility conditions are not enforced and only

convergence with respect to the finite difference mesh

is of interest. It is reasonably achieved for the 24 � 48

discretization. Conversely, in the latter case, the

double convergence has to be explored. For fixed

mesh size, the collapse multiplier is practically

converged with respect to the number of nodal friction

admissibility conditions for S ¼ 32. It is observed that

such a convergence is decreasing monotonic and

uniform with respect to the mesh size. On the other

hand, for prescribed number of nodal friction admis-

sibility conditions, it is confirmed that the convergence

with respect to the finite difference mesh is reached in

engineering terms adopting the 24 � 48 discretiza-

tion. Such a convergence is not increasing monotonic

because, despite the classes of equilibrated and

statically admissible stress states become larger and

larger under mesh refinement, they do not in general

constitute an increasing sequence. It is remarked that

the present formulation also enjoys computational

efficiency. In fact, computation times for a single

normalized thickness analysis range from 0:32 s

to 120 s for the discretizations ranging from 4 � 8

to 32 � 64. Numerical results relevant to the 24 � 48

finite difference mesh are henceforth discussed.

The case of a hemispherical dome with normalized

thickness h=R ¼ 0:1 is further investigated to explore

how its collapse capacity depends on the adopted shear

model and on the distribution of pseudo-static seismic

loads along its height. It recalled that under Heyman’s

no-sliding assumption, i.e. shear model (H) in

Table 1, the normalized minimum thickness of a

hemispherical dome is 0.04284 [46], whence the

geometric safety factor [31] for h=R ¼ 0:1 is 2.334.

The corresponding collapse load multiplier is esti-

mated to be k ¼ 0:411 [resp., k ¼ 0:325] for uni-

formly [resp., linearly] distributed pseudo-static

seismic loads. The relevant incipient collapse mech-

anisms are shown in Fig. 4(top row). From a qualita-

tive point of view, both mechanisms are produced by

the formation, in the half of the dome in the positive

direction of the seismic loads, of three curved flexural

hinges along likewise parallel curves. Two of them,

developing at the extrados of the dome, are located at

its base and in the vicinity of its apex. The remaining

one develops at the intrados of the dome in the haunch

region. In addition, diffused detachments take place in

the hoop direction for kinematic compatibility.

Despite the qualitative similarities of the two mech-

anisms, the distribution of seismic loads affects the
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position of the two uppermost curved hinges, which

shift upward when linearly distributed seismic loads

are concerned. In fact, that is responsible for a slight

reduction in the collapse multiplier, compared to the

case of uniformly distributed seismic loads.

By contrast, if cohesionless frictional behavior is

assumed, the collapse load multiplier of the dome

significantly reduces. In fact, for shear model (F1) in

Table 1, it is estimated to be k ¼ 0:172 [resp.,

k ¼ 0:133] on considering uniformly [resp., linearly]

distributed pseudo-static seismic loads. Analogously,

numerical predictions for shear model (F2)

are k ¼ 0:268 [resp., k ¼ 0:207], whereas for shear

model (F3) they result to be k ¼ 0:342 [resp.,

k ¼ 0:266], consistently with the increased value of

the friction coefficient. The corresponding incipient

collapse mechanisms are similar to each other. In

Fig. 4(bottom row), the one pertaining to shear model

(F1) is shown. Though the formation of three curved

flexural hinges is still clearly recognizable, in-plane

[resp., out-of-plane] sliding failures occur in the lateral

[resp., back and front] portions of the dome. Also in

Table 2 Spherical domes: convergence analysis of the collapse

load multiplier k of a hemispherical dome with normalized

thickness h=R ¼ 0:1, with respect to the mesh size and to the

number S of nodal discrete friction admissibility conditions on

the shear stress resultants. Shear models (H) or (F1), as defined

in Table 1, and uniformly distributed pseudo-static seismic

loads along the height of the dome, are considered. For a single

normalized thickness, computation times range from 0:32 s

to 120 s for the meshes ranging from 4 � 8 to 32 � 64

Collapse load multiplier k

Mesh Shear model

(H) (F1)

Number S of nodal friction conditions

2 4 8 16 32 64

4 � 8 0.311 0.178 0.109 0.078 0.074 0.072 0.071

6 � 12 0.356 0.210 0.149 0.128 0.124 0.121 0.121

8 � 16 0.376 0.224 0.167 0.149 0.145 0.143 0.142

12 � 24 0.399 0.239 0.184 0.169 0.164 0.162 0.162

16 � 32 0.404 0.243 0.189 0.174 0.168 0.166 0.166

24 � 48 0.411 0.247 0.193 0.180 0.174 0.172 0.172

32 � 64 0.414 0.249 0.195 0.182 0.177 0.175 0.172

Spherical domes under seismic loads

shear collapse mechanism
uniform load linear load

(H)

(F1)

λ = 0.411 λ = 0.325

λ = 0.172 λ = 0.133

Fig. 4 Spherical domes:

incipient collapse

mechanism under uniformly

or linearly distributed

pseudo-static seismic loads

along the height of the

dome, considering shear

models (H) or (F1) in

Table 1. Hemispherical

dome with normalized

thickness h=R ¼ 0:1 is

considered. A 24 � 48 finite

difference mesh has been

adopted in the computations
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this case, switching from a uniform to a linear

distribution of pseudo-static seismic loads tends to

raise the position of the two uppermost curved hinges,

and induces a slight reduction in the collapse

multiplier.

The previous evidences are complemented by the

observation that, assuming the cohesive-frictional

shear model (CF) in Table 1, the collapse load

multiplier is predicted to be k ¼ 0:407 [resp.,

k ¼ 0:322] for uniformly [resp., linearly] distributed

pseudo-static seismic loads. Remarkably, despite the

value adopted for the cohesion term is very small

(equation (18)), such results are practically coincident

with those obtained under no-sliding assumption (H).

That finding is justified because a cohesive-frictional

material, contrarily to a cohesionless frictional one, is

able to withstand uniaxial compression. As a proof of

such a statement, the principal directions and the

contour plots of the minimum and maximum eigen-

values of the symmetric part of the normal-force

tensor N are shown in Fig. 5. Specifically, in panels

(a) and (b), shear models (H) and (F1) are respectively

assumed. Concerning the former, it is observed that

uniaxial compression is predominant, with the max-

imum eigenvalue that is vanishing in large regions of

the dome. Instead, in the case of cohesionless

frictional material, a small transverse compression is

forced to arise in those same regions to withstand the

main compression, accompanied by a reduction of the

latter. As a result, a significant drop of the structural

collapse capacity is observed. Though not reported

here, collapse mechanisms and principal directions for

shear model (CF) are qualitatively similar to those

pertaining to shear model (H).

The influence on the collapse capacity of spherical

domes exerted by shear response of masonry material

and seismic loads distribution is systematically

explored in a parametric analysis of the collapse

multiplier with respect to the dome geometry. Results

are shown in Fig. 6, with panels (a) and (b) respec-

tively referring to uniformly and linearly distributed

seismic loads along the height of the dome. Specifi-

cally, curves of the collapse multiplier k versus the

normalized thickness h=R are plotted, for embrace

angles b ¼ 70; 80; 90f g and assuming the shear

models listed in Table 1. Results in panel (a) are in

good agreement with benchmark ones, as presented in

[48]. In particular, they prove the collapse capacity of

spherical domes to increase with h=R and to decrease

with b. The same trends are confirmed in panel (b) for

linearly distributed seismic loads, up to a slight

reduction of the collapse multiplier. Irrespective of

the seismic load distribution, the collapse multiplier k
is revealed to be pronouncedly dependent on the shear

response of masonry material. In detail, the adoption

of Heyman’s no-sliding assumption, shear model (H),

provides the most optimistic estimate of the structural

capacity. Significantly reduced collapse multipliers

are obtained if a cohesionless frictional behavior is

assumed, shear models (F), in which case k increases

with the friction coefficient l. However, it suffices to

pass to a cohesive-frictional behavior with a minimal

cohesion term, shear model (CF), to practically

recover predictions pertaining to no-sliding

assumption.

As an experimental validation, a star-shaped

marker is reported in Fig. 6a, corresponding to the

experimental results obtained in [60]. Therein, small-

scale dome models, made of about a hundred dry

blocks, were tested on a tilting table in order to

reproduce a uniform distribution of pseudo-static

seismic loads. The friction coefficient was experimen-

tally measured as l ¼ 0:7. In particular, domes

with h=R ¼ 0:1 and b ¼ 90 were tested, resulting

in an experimentally estimated collapse multiplier

of 0.18 [60]. From a modeling perspective, because of

the dry joints between the blocks, a cohesionless

frictional behavior seems appropriate to describe the

shear response of the experimentally investigated

masonry material. Accordingly, within the present

notation, experimental tests match the shear model

(F1) in Table 1. The numerically predicted collapse

multiplier is then recalled to be k ¼ 0:172 (see also

Figs. 4 and 5). Additional experimental results con-

sidering domes with h=R ¼ 0:2 and b ¼ 90 are

available in [60]. Though the relevant normalized

thickness falls outside the range investigated in the

parametric analysis, the experimentally and numeri-

cally predicted collapse multipliers respectively

are 0.46 and 0.40.

As a concluding remark, the present results high-

light the computational merit of the proposed finite

difference method in the static limit analysis of

masonry domes. From an applicative viewpoint, the

importance of accurately modeling the shear response

of masonry material is pointed out. In particular, that

requires to ponder whether cohesion, even small, can

be relied on, and, if it is not the case, to confidently
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estimate the friction coefficient. When reasonable

material shear resistance is exhibited, masonry domes

are shown to be capable to withstand moderate seismic

loads, also in relationship to the loads distribution.

4.2 Ogival domes

In this section, the collapse capacity of ogival domes

under pseudo-static seismic loads is addressed. A

typical ogival dome is depicted in Fig. 3b, where R is

the mid-surface radius, h=R is the normalized thick-

ness, d is the ogival angle, b is the embrace angle.

To begin with, an ogival dome characterized

by h=R ¼ 0:07, b ¼ 90 and d¼ 2 arctanð3=2Þ � b¼

22:6 (corresponding to rise-to-half-span ratio 3/2) is

considered.

In view of the results, not presented here, of a

convergence analysis similar to that carried out for

spherical shells, it is checked that a 24 � 48 finite

difference mesh with S ¼ 32 nodal friction admissi-

bility conditions provides converged results, which are

henceforth discussed.

Basing on the normalized minimum thickness

estimation of 0.02228 [47] holding under Heyman’s

no-sliding assumption, i.e. adopting shear model (H)

in Table 1, the geometric safety factor of the dome

[31] is 3.142. The corresponding collapse load mul-

tiplier for uniformly distributed seismic loads along

principal directions of symN principal directions of symN

Nmin

Nmax

Nmin/γRh Nmin/γRh

Nmin

Nmax

Nmax/γRh Nmax/γRh

(a) (b)

Fig. 5 Spherical domes: principal directions (with length

proportional to relevant eigenvalue), and minimum and

maximum eigenvalues of the symmetric part of the normal-

force tensor N, under uniformly distributed pseudo-static

seismic loads along the height of the dome (acting from left to

right), considering (a) shear model (H) or (b) shear model (F1),

Table 1. Hemispherical dome with normalized thick-

ness h=R ¼ 0:1 is considered. A 24 � 48 finite difference mesh

has been adopted in the computations
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the height of the dome results to be k ¼ 0:394, which

reduces to k ¼ 0:294 for linearly distributed seismic

loads. The incipient collapse mechanisms relevant to

both seismic load distributions are shown in Fig. 7(top

row). As for spherical domes, both mechanisms are

qualitatively caused by the opening of three parallel

hinges, two at the extrados and one at the intrados, in

the half of the dome in the positive direction of the

horizontal forces. However, due to the increased

complexity in the dome geometry, those hinges are not

as much clearly identified, and expected relative

rotations concentrated in a single parallel curve appear

to be diffused between several consecutive parallel

curves. On the other hand, it is confirmed that the

collapse capacity reduction observed for linearly,

instead of uniformly, distributed seismic loads, reflects

the higher position of the two uppermost parallel

hinges.

Significantly smaller collapse load multipliers are

predicted when considering cohesionless frictional

behavior. For shear model (F1) in Table 1, the

estimate 0.130 [resp., 0.097] for uniformly [resp.,

linearly] distributed seismic loads along the height of

the dome is obtained, which becomes 0.233 [resp.,

0.173] for shear model (F2), and 0.313 [resp., 0.232]

for shear model (F3). As the corresponding incipient

collapse mechanisms are qualitatively quite similar,

only the one pertaining to shear model (F1) is

examined, as shown in Fig. 7(bottom row).

Analogously to the case of spherical domes, though

the formation of parallel hinges is still observed, the

notable drop in the collapse capacity of the dome is

caused by in-plane [resp., out of plane] slidings in its

lateral [resp., back and front] regions. Those effects

are even more pronounced for ogival domes, because

of their more slender shape.

However, as already highlighted for spherical

domes, it suffices to introduce a small cohesion term

in the material shear response, as comprised in shear

model (CF) in Table 1, to recover the collapse

capacity prediction obtained under no-sliding assump-

tion. In fact, the collapse multiplier is estimated to

be 0.391 [resp., 0.293], and the incipient collapse

mechanism becomes practically indistinguishable

from that in Fig. 7(top row). It is also confirmed that

such an increase in the structural capacity is explained

by the retrieved capability of masonry material to

withstand uniaxial compression stress states, thus

enabling the attainment of more effective equilibrated

and admissible static regimes within the dome.

A parametric analysis on the collapse load multi-

plier is then performed for ogival domes with param-

eterized geometry. Results are shown in Fig. 8, where

the collapse load multiplier k is plotted as a function of

the normalized thickness h=R for the val-

ues b ¼ 70; 80; 90f g of the embrace angle b. In

panels (a, b) and (c, d) the ogival angle is respectively

set as d ¼ 10; 30f g, whereas in panels (a, c) and (b,
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Fig. 6 Spherical domes: collapse load multiplier k versus

normalized thickness h=R, for selected values of the embrace

angle b. Shear models listed in Table 1, and seismic loads that

are (a) uniformly or (b) linearly distributed along the height of

the dome, are considered. A 24 � 48 finite difference mesh has

been adopted in the computations. In (a), the star-shaped marker

refers to the experimental results obtained for small-scale dry-

masonry dome models with b ¼ 90 and l ¼ 0:7 in [60]
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d) uniform and linear seismic loads along the height of

the dome are respectively considered. For comparison,

results relevant to shear models listed in Table 1 are

reported.

Concerning uniform seismic loads, panels (a, c), the

collapse capacity of ogival domes increases with h=R

and decreases with b. Under no-sliding assumption or

cohesive-frictional behavior, shear models (H) and

(CF), very similar estimates of the collapse multiplier

are obtained. Significantly smaller values follow from

cohesionless frictional behavior, shear models (F),

though remarkably increasing with the friction coef-

ficient l. Similar trends are also partially found in the

case of linear seismic loads, panels (b, d), though with

a slightly reduced structural resistance. As a differ-

ence, it can be here recognized that, for sufficiently

large normalized thicknesses h=R compared to the

minimum one, the beneficial effect of increasing the

ogival angle d progressively reduces, and even

becomes detrimental (e.g., for b ¼ 90, the curves

corresponding to d ¼ 30 lay below those correspond-

ing to d ¼ 10 for h=R approximately larger

than 0.09).

In closing, the obtained results on the seismic

capacity of masonry ogival domes are, to the best of

the authors’ knowledge, novel to the literature. In

addition to their intrinsic interest, which primarily

recalls the role played by the shear response of

masonry material and secondarily quantifies the

influence of the seismic loads distribution, they

confirm the capabilities of the proposed finite differ-

ence method for the static limit analysis of masonry

domes.

4.3 Dome on mausoleum of Faraj Ibn Barquq

As an application to a real structure, the dome on

mausoleum of sultan Faraj Ibn Barquq in Cairo, Egypt,

is considered (Fig. 9a). Figure 9b reproduces the

meridian section of the dome and of the supporting

drum, as reported in [34]. An ogival dome idealization

is therein proposed, assuming mid-surface

radius R ¼ 8:23 m (27 ft), normalized thick-

ness h=R ¼ 0:045, ogival angle d ¼ 10:4, and

embrace angle b ¼ 83:1 [34]. Such an idealization,

highlighted in Fig. 9b, is here adopted in the analysis.

A pseudo-static seismic assessment of the dome is

carried out by the present finite difference static limit

analysis method. A stability assessment of the dome

subject to its self-weight, performed under Heyman’s

no-sliding assumption by the method in [46, 47],

predicts a normalized minimum thickness for the

dome of 0.01355, corresponding to a geometric safety

factor [31] of 3.321. In Table 3, the collapse multi-

plier k of uniformly or linearly distributed seismic

loads along the height of the dome is reported for the

shear models in Table 1. Those results are exemplary

of the considerations developed in the previous

Ogival domes under seismic loads

shear collapse mechanism
daolraenildaolmrofinu

(H)

(F1)

λ = 0.394 λ = 0.294

λ = 0.130 λ = 0.097

Fig. 7 Ogival domes: incipient collapse mechanism under

uniformly or linearly distributed pseudo-static seismic loads

along the height of the dome, considering shear models (H) or

(F1) in Table 1. Ogival dome with embrace angle b ¼ 90,

ogival angle d ¼ 2 arctanð3=2Þ � b ¼ 22:6 (corresponding to

rise-to-half-span ratio 3/2), and normalized thick-

ness h=R ¼ 0:07 is considered. A 24 � 48 finite difference

mesh has been adopted in the computations
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Fig. 8 Ogival domes: collapse load multiplier k versus

normalized thickness h=R, for selected values of the ogival

and embrace angles, d and b respectively. Shear models listed in

Table 1, and seismic loads that are a, c uniformly or b, d linearly

distributed along the height of the dome, are considered.

A 24 � 48 finite difference mesh has been adopted in the

computations

(a) (b)Fig. 9 Dome on

mausoleum of Faraj Ibn

Barquq: a picture of the

dome and of the supporting

drum, and b meridian

section with highlighted

ogival dome idealization

[34]
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section, descending from the parametric analysis of

ogival domes. In particular, the dome exhibits a

seismic resistance, which is markedly affected by the

shear response of masonry material and slightly

reduces passing from uniform to linear distribution

of seismic loads.

5 Conclusions

A computational method has been presented for the

seismic assessment of masonry domes, exploiting an

application of the static theorem of limit analysis. The

shell stress resultants defined on the dome mid-

surface, namely normal-force tensor, bending-mo-

ment tensor and shear-force vector, have been intro-

duced as representative of the stress state in the dome.

Accordingly, the classical differential equilibrium

equations of shells have been used for the equilibrium

formulation. The admissible stress states in the dome

have been characterized by adopting Heyman’s

assumptions of infinite compressive and vanishing

tensile strengths, and by considering a cohesive-

frictional shear behavior. An original finite difference

method has been proposed for numerically solving the

limit analysis problem, taking advantage from the

introduction of two staggered finite difference grids in

the parameter space generating the dome mid-surface.

The shell stress resultants have been located at the

nodes of the main grid, where the admissibility

conditions have been also naturally enforced. Con-

versely, the differential equilibrium equations have

been imposed, in the finite difference sense, at the

nodes of the auxiliary grid. A discrete limit analysis

problem has been thus obtained, consisting in a

second-order cone programming problem. From a

computational standpoint, the proposed method

enjoys simplicity of implementation, with equilibrium

and admissibility operators provided in closed form,

and effectiveness of solution, as ensured by standard

optimization tools. From a modeling point of view,

axially symmetric domes with arbitrary meridian

section can be analyzed, under both gravitational

forces and horizontal actions with user-defined distri-

bution. Those merits have been especially demon-

strated by numerical simulations. As an engineering

conclusion, the collapse capacity of masonry domes

under pseudo-static seismic forces has been high-

lighted, and the influence of dome geometry, shear

response and horizontal forces distribution has been

quantitatively evidenced.
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Implementation details

Some implementation details are here discussed on the

finite difference method proposed in Sect. 3. In

particular, the derivation of the discrete equilibrium

Eqs (13) and Heyman’s admissibility conditions (14)

is addressed, as a preparatory step for arriving at the

discrete static limit analysis problem (16).

Table 3 Dome on mausoleum of Faraj Ibn Barquq: collapse

load multiplier k for uniformly or linearly distributed pseudo-

static seismic loads along the height of the dome, considering

shear models listed in Table 1. A 24 � 48 finite difference

mesh has been adopted in the computations

Collapse load multiplier k

Load Shear model

(H) (F1) (F2) (F3) (CF)

Uniform 0.350 0.100 0.200 0.276 0.346

Linear 0.290 0.081 0.162 0.224 0.287
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Referring to Sect. 3 for the notation, it is recalled

that the shell stress resultants are located at the

nodes i; jð Þ of the main grid, equation (11). Then, the

discrete equilibrium equations descend from imposing

the differential equilibrium equations (6) in the finite

difference sense at the nodes iþ 1=2; jþ 1=2ð Þ of the

auxiliary grid. In fact, taking advantage of the finite

difference approximation formulas (12), and provided

the following positions are introduced,

with k; l ¼ 0; 1f g:

d iþk;jþlð Þ
u ¼ �1ð Þkþ1

2Du
r iþk; jþlð Þ;

d
iþk;jþlð Þ
# ¼ �1ð Þlþ1

2D#
q iþk; jþlð Þ;

a iþk;jþlð Þ ¼ 1

4
rqð Þ iþk; jþlð Þ;

b iþk;jþlð Þ ¼ 1

4
r iþk; jþlð Þ;

c iþk;jþlð Þ ¼ 1

4
q cosuð Þ iþk; jþlð Þ;

s iþk;jþlð Þ ¼ 1

4
q sinuð Þ iþk; jþlð Þ;

ðA:1Þ

it is a simple matter to check that the equilibrium

matrices E iþk; jþlð Þ and the vector of nodal for-

ces f iþk; jþlð Þ
	 , with 	 ¼ d; lf g, in equation (13) result

to be:

E iþk; jþlð Þ ¼

du � d# � c b � � � � �
� du c d# � s � � � �
�b � � � s du d# � � � �
� � � � a � du � d# � c

� � � � � � a � du c d#

� a � a � � � � b � s �

2

666
66666
4

3

777
77777
5

;

f iþk; jþlð Þ
	 ¼ a

q	

m	

� �
:

ðA:2Þ

Here, for improving readability, super-

scripts iþ k; jþ lð Þ have been omitted in the right

hand-side of the equations.

On the other hand, the discrete unilateral admissi-

bility conditions are obtained by checking the coun-

terpart semidefinite matrix constraints (8)2;3 at the

nodes i; jð Þ of the main grid. In particular, those

semidefinite matrix constraints can be expressed as the

second-order cone constraints (14), provided Kr is the

rotated quadratic cone in R3 [42]:

Kr ¼ n1; n2; n3ð Þ 2 R3 : 2n1n2 � n2
3; n1 � 0; n2 � 0

� 
;

ðA:3Þ

and the admissibility matrices U
 are given by:

U
 ¼

� h

2
� � � � � 
 1 � � �

� � � � h

2
� � � � � 
 1

� �
ffiffiffi
2

p

4
h �

ffiffiffi
2

p

4
h � � � � 


ffiffiffi
2

p

2



ffiffiffi
2

p

2
�

2

6666664

3

7777775

:

ðA:4Þ

Analogously, the discrete frictional admissibility

conditions follow from enforcing requirement (9) at

the nodes i; jð Þ of the main grid. At each node, the

fulfillment of that condition is checked for a set of S

pairs ms; ssð Þ of orthonormal vectors tangent to the

dome mid-surface, selected as:

ms ¼ cos as eu þ sin as e#;

ss ¼ � sin as eu þ cos as e#;
ðA:5Þ

where a1; . . .; aSf g are uniformly-spaced angles

within the interval 0; p½ �. Each of the resulting condi-

tions can be then recast as in equation (15), pro-

vided K is the standard quadratic cone in R3 [42]:

K ¼ n1; n2; n3ð Þ 2 R3 : n1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 þ n2
3

q� �
; ðA:6Þ

the following definition holds for the 3 � 10 friction

admissibility matrices Fs:

Fs ¼
�l cos2as � l sin as cos as � l sin as cos as � l sin2as 0 0 0 0 0 0

� sin as cos as cos2as � sin2as sin as cos as 0 0 0 0 0 0

0 0 0 0 cos as sin as 0 0 0 0

2

64

3

75;

ðA:7Þ
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and the 3 � 1 cohesion vector is taken

as c ¼ c; 0; 0ð Þ. In particular, it is noticed that Fs is

independent of the node of the main grid.
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