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Abstract

We introduce a new convergence concept “Q-convergence” which defines
convergence in national incomes as a shrinking interquartile range (IQR) of the
national income distribution. Compared with the other convergence definitions
in the literature, Q-convergence has advantages of taking into account cluster-
ing as well as dispersion of the income distribution; also, IQR is insensitive
to outliers and equivariant to log-transformation, leading to robust statistical
inference and easier reconciliation of the empirical findings using level and log
data. A panel data is analyzed to find that the absolute income gap between
the poor and rich countries has increased in terms of IQR, but the widening
gap is rather small and insignificant when compared with the income increase
of the poor countries.
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1 Introduction.

Convergence, poor countries catching up with rich countries in national income or
GDP per worker, has been one of the controversial issues in economic growth. There
are & number of formal definitions for the verbal description. One is “B-convergence”:
with yo and y, denoting the base and comparison period income or GDP per worker
respectively, the growth rate (1 — yo)/0 is a decreasing function of 3. Despite the
popularity, this definition has the critical weakness of involving only one country over
time whereas the verbal description of convergence involves many countries in two
groups (rich and poor) over time.

Another definition is “o-convergence”: with SD denoting standard deviation, the
* SD of the comparison period is smaller than the SD of the base period, i.e., SD(y;) <
SD(w). By looking at SD at each period, this definition does involve many countries
over time, differently from S-convergence. A shortcoming of o-convergence is however
that dispersion does not capture the dichotomy of rich and poor countries. It is known
that S-convergence does not necessarily imply o-convergence, while g-divergence does
imply o-divergence. See Barro and Sala-i-Martin (1995), Durlauf and Quah (1999),
and the references therein for more on $- and o-convergence.

Yet another strand of convergence definition is based upon “classification” or
“clustering”, motivated by the dichotomy of the poor and the rich: there is only
one cluster at period 1 while there were two at period 0 (e.g. “twin-peaks” in Quah
(1996a, 1996b)). This approach also involves many countries over time, but has
a shortcoming that the notion of dispersion is not necessarily reflected in clusters.
Bianchi (1997) compares the number of modes of the GDP distribution at period 0 and
1 to conclude convergence if the number of modes has declined (“modal convergence”),
which however does not necessarily imply a declining SD.

o-convergence and clustering approaches share the two disadvantages. One is
lack of invariance (or equivariance) to monotonic transformations; here, we have log-

transformation in mind which is popular in practice. The other is that there are many



ways to measure/define dispersion and clusters.

Facing these problems in defining convergence, we propose a new definition “Q-
convergence”: in a nutshell, our proposal is examine the interquartile range (IQR)
in the base and comparison period to conclude convergence if IQR has decreased.
Compared with the other convergence concepts in the literature, this approach has
the following three advantages, among which the first is trivial and the last two will
be examined closely in the next section:

First, IQR is a well-known measure of dispersion as SD is, but differently from

SD, IQR is not sensitive to outliers.

Second, the lower quartile (i.e., 25% quantile) and the upper quartile (i.e., 75%
quantile) reflect the centers of two clusters (under one condition), much as two modes
do in a bimodal distribution.

Third, the quartiles are equivariant to non-decreasing transformations, and thus
inference based on IQR is more easily interpretable when y is subject to the popular
log-transformation.

Thus, using IQR avoids the aforementioned problems in the convergence literature.

All convergence definitions have the “marginal convergence” version when only
Yy is used, and a “conditional convergence” version when y is used with some vari-
ables, say r, controlled for which are relevant for the steady state of the economy.
Controlling for x can be done by estimating the conditional distributions of g}z and
|z nonparametrically, or by using parametric regression residuals instead of y. In
the literature, the term “absolute convergence” has been used instead of marginal
convergence. But marginal convergence seems more fitting vis-4-vis conditional con-
vergence, and we will use the term “absolute convergence” for a different purpose
later in this paper.

In Section 2, the advantages of IQR, are examined closely and our test statistics are
presented formally along with their asymptotic distributions. In Section 3, we present
our empirical analysis. Here, first, 8-, 0- and modal convergence in the literature are



applied, and then Q-convergence; these four convergence concepts are then compared.
Finally, in Section 4, conclusions are drawn.

2 Interquartile Range for Convergence.

In this section, we examine the last two advantages of Q-convergence in detail. Since
the third - more easily interpretable results under log-transformation - is simpler,
we discuss it first in Subsection 2.1, and then turn to the second - lower and upper
quartiles reflecting clusters - in Subsection 2.2. In Subsection 2.3, the asymptotic
distributions of our test statistics are presented.

2.1 Level vs. log.

Let Lye, Myt and Uy, denote the sample lower quartile, median, and upper quartile of

Yi respectively, i = 1,..., N, and ¢ = 0, 1; define the population versions, respectively,

as Ly, M; and U;. The subscript i will be often omitted in the remainder of this paper.
The hypothesis of convergence is

Uy — Ly — (Up— Lo) < 0. (1)

Suppose now we use In(y;) instead of ;. Then the population lower and upper
quartiles of In(y) are, respectively In(U;) and In(L,); in general, for a non-decreasing
transformation T(y), the a-th quantile of T(y) is T(the a-th quantile of y). The same
form of hypothesis, but in log, is

In(U1) — In(Ly) — (In(Us) — In(Le)) < 0 (2)
& (Uh/11)/(Uo/Lo) <1 4 (Ur — L1)/ L, < (Us — Lo)/Lo.

With log transformation, we are defining convergence as a declining IQR relative
to the lower guartile. In view of this, it is fitting to call (1) “absolute convergence”
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and (2) “relative convergence”. Hence, within Q-convergence, we get 2 x 2 = 4
convergence concepts: conditional or marginal depending on whether z is used or
not, and absolute or relative depending on whether y or In(y) is used.

What we just showed is that, although the IQR-based inference is not invariant
to log-transformation, IQR difference between the two periods renders clear interpre-
tations whether 3 or In(y;) is used. This is in sharp contrast to using mode. To see
this, suppose y has a differentiable bimodal density f{y) with the two modes m; and
ms. Then

z =In(y) has density g(z) = f(e*)e”.

Differentiating g(z), the first-order condition is

() + f(e) =0.

Since f'(m;) = f'(m2) = 0, we get f'(e®(™)} = f!(e(™2)) = 0: the first order
condition is positive at In(m,) and In(m,). That is, In(m;) and In(m,) are not the
modes for the In(y) distribution differently from the quantile case; they are now
located on upward sloping sections of the In(y) density. Furthermore, g(z) is not
necessarily bimodal. It is far from clear how to reconcile and interpret inferential
results on modes obtained under y and In(y).

2.2 Quartiles as cluster representatives.

There are many ways to find clusters in a given sample (see Kaufman and Rousseecuw
(1990) e.g.). We will show that using “k-median”, the lower and upper quartiles
represent the two clusters under one condition. Before this, however, we introduce a
couple of facts to motivate the k-median.

Consider a location model y; = 8+ u; where u; is a continuously distributed error
term, and § is the parameter of interest. Define the indicator function 1[4] = 1
if A holds and 0 otherwise. Observe the following: with b ranging over a compact
parameter set B,



Ely)=8= arg max (1/N) Z(yi — b)? is consistent for g;
Median{y) = 8 = arg max (1/N) Z |y: — b] is consistent for S3;

Mode(y) =5 = argmax (l/N)Zlﬂy,- — b| < 6] is consistent for 3 as § — 0;

see Koenker and Bassett (1978) for the median, and Lee (1989) for the mode.

Now suppose we want to estimate two, not one, location measures in the Y-
distribution, perhaps thinking that there are two clusters in the data. One well-known
way to do that is using one of the following that generalizes the above three cases:
with b, and by ranging over B,

arg max (1/N) Zmin{(ye ~ b1)?, (3 — b)*);
argmax (1/N) Z:m{lyi = by, [y — ba| };

argmax (1/N) Zmin{llly; —bi| < 8], 1w — bef < 8}

The minimizers can be called 2-means, 2-medians and 2-modes, respectively, and
they reflect the central tendency of the two clusters. Generalizing this to k clusters
leads to the names k-means, k-medians and k-modes; see Pollard (1981,1982) and the
references therein for the mean and median case.

Differently from the one cluster case, however, the parameters to which the
estimators converge in the two cluster cases are not necessarily easily characterized.
For the 2-means, the parameters 8, and §, are defined by the first-order conditions
of the minimization:

By = E(yly < (B, + B,)/2), | By = E(yly > (B, + B;)/2);
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here, 8, and B, are hard to interpret. For the 2-median, however, the first-order
conditions become

Ply < p1) = P(By <y < (By+ B2)/2), P((B1+B2)/2<y<B,) = P(B, <),

which are satisfied if 3, and 3, are the lower and upper quartile, respectively, and
if the median is (B, + ,)/2. For the 2-modes, if y is bimodal, then the two modes
satisfy the first order conditions; otherwise, the estimation becomes degenerate for
only one mode can be estimated.

The exact computational details and requisite second order minimization con-
ditions for the k-means and its variations are not needed for us; what the above
discussion shows is that the two quartiles represent the central tendencies of the two
clusters if My = (L; + Q:)/2 as much as the two modes possibly do. The condition
M, = (L.+Q:)/2 is testable with the given data; even if the condition is not met, still
Q-convergence retains the two advantages: IQR represents dispersion as SD does, and
IQR is more easily interpretable for the level data as well as for the log-transformed
data.

The mode-based convergence tests as done in Bianchi (1997) need nonparamet-
ric estimators converging very slowly at the rate NV/5, which is problematic given
the limited number of countries in the world; two other shortcomings of the test are
spurious modes at the tails of the estimated y density and sensitivity of the non-
parametric estimator to the “bandwidth”. These problems may be attributed to the
non-smoothness inherent to the minimand for the 2-modes. In contrast, quartiles can
be estimated N'/2.consistently without any bandwidth, although their asymptotic
distributions involve the y density which in turn requires a bandwidth for estimating
the asymptotic distribution.



2.3 Asymptotic distributions for test statistics.

As for the asymptotic inference in marginal convergence, observe the following
asymptotic expansion:

VN(Lye— L) = —(1/VN) Z:ft(L:)'l{l[y.-t < Ly} ~ 0.25} + a,(1);
\/ﬁ(MNt - Mt) = _(l/m) z ft(Mt)—l{l[yiz < Mt] - 0-50} + Op(1)§ (3)
VNUn=U) = —(/VN) Y LU H{1lge < U] - 0.75) + 0,(1)

where f; denotes density of y,.
Subtracting the first from the last, with Ry¢ = Upny— Ly, and R, = U, — L, (“R”
from interquartile-Range), we get

VN(Ry: - R) =
—(l/m) Z[ft(Ut)"l{l[y‘-t < U] —0.75} — fo(Ly) {1y < L] — 0.25}] + 0,(1).

This implies
\/N(R}\u - Rt) = N(O, Cg)

where C; = E[f,(Us) " {Llyse < T3] — 0.75} — fo(Le)~* {1fgee < L] - 0.25)]2.
Hence, we can use the following for the Q-convergence hypothesis (1) or (2):

VN{Rw1 — Rno — (R, — Ro)} = N(0, Cio)

where Cio = E[fi(Uh) {1[ya < Uh] — 0.75} — fi(L1) {1ya < L] — 0.25) —
{fo(Uo) ™ {1[zso < Uo] — 0.75} — fo(Lo)~*{1[tso < Lo] — 0.25}}]2.

The asymptotic variance of the test statistic Cjp can be estimated consistently by
replacing U and L, with their sample versions, and f;(z) with a kernel nonparametric
estimator, say fne(z):



fril(2) = (1/(Nh)) Z K((ys — 2)/h)

where h — 0 as N — o0, and K{(-) is a kernel function (e.g., the N(0,1) density); h
is the “bandwidth”. The bandwidth can be chosen in many ways, but a reasonable
thing to do in one-dimensional case is to draw f:(z) over z and choose h such that
fni(z) is not too jagged (if h is too small) nor too smooth (if h is too big). To be
specific, a consistent estimator for Cyq is

(1/N) Z[ fnUn)™{1lya < U] - 0.75} — fwa(Lna) {1fyi < Lva] - 0.25)

—{fnoUno) M{1lzo < Uwo] —0.75} ~ fwvo(Lwo) *{1ltho < Lyo] — 0.25}} 2

For the quartiles to represent two clusters, we also need to test for

Ge=M, — (Li+Q)/2=0. (4)
Defining Gyt = My: — (Lye + Qne)/2, from (3),

VN{Gn: -G} = —(1/VN) > LM {1 < Mi] — 0.50}
—fulLe) (U < L] —0.25}/2 — fu(Ue) (1w < Us] — 0.75}/2] + o,(1).

Thus,

VN{Gn: — G:} = N(0,C,) (5)

where C, = E| fg(Mt)'l{l[y,-t < M — 050} — ft(Lg)'l{l[ya < Lij - 0.25}/2 —
Fe(Ue) " {1y < Uy] - 0.75}/2 2.
A consistent estimate for C, can be obtained, doing analogously to Cj,.
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3 Empirical Analysis.

In the preceding section, we introduced Q-convergence and provided our test statistics.
This section applies Q-convergence as well as other convergence concepts to a panel
data with N = 125 and T = 5 (1970, 1975, 1980, 1985, and 1989) drawn from the
Penn World Tables 5.6 of Summers and Heston. The response variable is the real
GDP per worker (GDP from now on) and In(GDP) (LGDP from now on). The
selection of the five periods, which are five year apart except the last year, is due
to missing values for some variables; including years earlier than 1970 or later than
1989 decreases N nontrivially. In Subsection 3.1, the existing approaches in the
literature {3-convergence, o-convergence, and modal convergence) are applied to the
data. In Subsection 3.2, Q-convergence is applied to the data; both the marginal and
conditional versions will be examined. In Subsection 3.3, the findings in Subsection
3.1 and 3.2 are put together to ease comparison.

3.1 p—, 0—, and modal convergence.

As shown in Barro and Sala-i-Martin (1992, 1995), B—convergence occurs when
economies that start out poor tend to display high growth rates, which means a
negative correlation between the growth rate of GDP and the GDP at the base pe-
riod. More specifically, for the simple least squares estimation (LSE) of GDP growth
rate on GDP at the base period, a negative slope coefficient is taken as the evidence
for f—convergence. From o-convergence viewpoint, however, this way of inference is
subject to the “Dalton’s fallacy”, which is in essence that, although a positive slope
is sufficient for o—divergence, a negative slope is not sufficient for o—convergence.
This criticism notwithstanding, B—convergence is widely used in practice. Doing the
simple LSE for our data with GDP (LGDP) as the response variable, the t-value for
the slope estimate is -0.53 (-0.19): there is an evidence for B-convergence, but it is
not statistically significant.

As for o—convergence, as already mentioned, there are various dispersion measures
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for a given distribution; here, we use the most popular one in the o-convergence
literature: SD. Two upper lines in Figure 1 show the SD of GDP and LGDP divided
by the base year SD. While SD{GDP) shows a clear c—divergence, SD{LGDP) shows
hardly any change although it indicates o-divergence. To test this formally, let V.
denote the sample variance for year t: Vi, = (1/N) YN (% — %:)* where § =
(1/N) 2?;1 Y. Then, under o—convergence,

N
VN(Vw1 - Vo) = (1/VN) Z{(yu = 51)* — (30 — )}
=1
= N(O, C,,.) where Cu = E{(yﬂ - E(yil))z e (‘y,o - E(yw))z}z.

Cy can be estimated consistently by
Co = (1/N) Y {va — 1) ~ (%o — )2}

Applying this test, o-divergence for GDP is statistically significant, while that for
LGDP is not. The t-values for GDP are 4.10, 4.58, 5.22, and 5.57 for 70-75, 70-
80, 70-85, and 70-89, respectively. For LGDP, they are 0.65, 0.85, 1.03, and 2.23,
respectively.

Along with GDP and LGDP, the GDP normalized by the year's GDP sum has
been also used in the literature, and this yields significant o—convergence as shown
in the third line of Figure 1, which is opposite to that of SD(GDP); Dalgaard and
Vastrup (2001) explain analytically why this can happen. Within the &—convergence
framework, it is not clear how to reconcile these differences.

Turning to modal convergence, Bianchi (1997) estimated GDP density nonpara-
metrically, and tested for the number of modes in 1970, 1980, and 1989. For GDP,
unimodality hypothesis was not rejected at a 5% level of significance, whereas it was
rejected for 1980 and in 1989. For LGDP, unimodality was not rejected for all three

years. As in o—convergence, it is not clear how to interpret this difference across level

11



13
1
\

12
\

Values relative to 1970
11
1
N
\\
\
\

10

i
A
-" \

P

1570 1975 1880 1985 1989
Year 1970 to 1989

Figure 1: Standatd Deviations relative to 1970

and log data. Also, the test used by Bianchi is rather sensitive to the bandwidth in the
kernel estimation; too small a bandwidth can easily yield multiple modes particularly
in the tail areas of the density, whereas too big a bandwidth will render an unimodal
density even when the density has multiple modes. Bianchi employed a bootstrap to
avoid the arbitrariness, but the consistency of the bootstrap procedure is yet to be
proven. Since our data is basically the same as Bianchi’s data, we show this problem
in the following.

In Figure 2, four baxes of kernel density estimates with the N(0,1) kernel are
presented for year 1970 and 1989. The left two are for GDP whereas the right two
are for LGDP. In the top two baxes, the bandwidth was a “rule of thumb” bandwidth
h, = 0.90,NV/5 where 0, = SD(y) for the given year; h, has been used e.g. by
Jones (1997) and shown to be optimal under certain conditions by Silverman (1986).
In the bottom two baxes, the bandwidth was a “cross-validation (CV)” bandwidth
hey; there are several ways to do CV, and we used the one minimizing

12



CV(h) =/f(y:h)’dy— %Zf(yi th)_

where f(y : h) is the kernel density estimate evaluated at y, f(wi : h)_, is the “leave-
one-out” estimate (i.e., i-th observation is not used for f (% : h)), and CV(h) is
minimized over a range for h.

For GDP, the two density estimates for 1970 look unimodal while the two for
1989 look bimodal, but the second mode near the upper tail may be dismissed as
an artificial “blip”; for GDP, h, and h,, are close to each other, and thus both yield
similar results. For LGDP, h, turned out to be much smaller than hey; h, renders
single mode for 1970 and double modes for 1989, whereas h., renders only single mode
for both years.

3.2 (Q—convergence.

Although IQR itself does not depend on any bandwidth, our test statistics do, for
their asymptotic distributions include density components. But our tests are much
less sensitive to bandwidths than the modal convergence test is; for this, we will show
the values of the two bandwidths h, and A, along with the values of the test statistics
corresponding to them.

The values of the two bandwidths are in Table 1. For GDP, other than in 1970,
hey < h,; for1970 and 1980, h, ~ hey, while h, and h, are quite different for the other
three years. For LGDP, h,, is much bigger than h, for all years. It can be said that
one bandwidth is somewhat “under-smoothing” while the other is “over-smoothing”;
using two bandwidths, with one under-smoothing and the other over-smoothing, is a
reasonable thing to do when reporting nonparametric estimation results.

Recall that, among the three advantages listed for Q-convergence, the second—two
quartiles representing two clusters—requires G; = M; — (L + U;)/2 = 0. So, before
we test for Q-convergence, we need to test for this condition first. Table 2 reports
the test statistic value (“t-value”) and the two bandwidths h, and h.,. Despite the
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Table 1: Bandwidths for GDP and LGDP

GDP LGDP
h, he, ho he
1970 2578.75 2713.70 0.3434 0.9685
1975 2756.04 1669.75 0.3468 0.6593
1980 2987.75 2965.12 0.3501 0.7475
1985 3103.99 1880.55 0.3524 0.9261
1980 3389.48 2157.90 0.3656 1.0568

Table 2: Cluster Representation Tests

|GI/M__Test stat.(h,) Test stat.(hey)

GDP
1970 -0.216 -1.81 -1.84
1975 -0.088 -0.80 -0.68
1980 -0.182 -1.59 -1.58
1985 -0.211 -1.84 -1.74
1989 -0.219 -1.81 -1.83
LGDP
1970 0.008 0.76 0.62
1975 0.027 2.51 2.27
1980 0.017 1.52 1.37
1985 0.016 1.42 1.23
1989 0.022 1.86 1.53
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Table 3: DIQR and Q-convergence Tests

DIQR  Test stat.(h,) Test stat.(h,)

GDP
70-75 2050 1.63 1.62
70-80 3680 2.62 2.62
70-85 3935 2.60 2.68
70-89 5230 3.09 3.23
LGDP
70-75 0.1787 0.60 0.56
70-80 0.1518 0.49 0.47
70-85 0.2055 0.65 0.64
70-89 0.3601 1.14 1.08

big differences between h, and h,,, the test statistic values are quite close, and there
is no instance of the conclusion getting reversed due to the bandwidth variation at
the size 5%. The null hypothesis that the quartiles represent two clusters cannot be
rejected except for LGDP in 1975; even in this case, |G| is not big, being only a small
fraction (0.027) of M.

Turning to Q-convergence tests, Figure 3 presents two baxes with confidence in-
tervals attached to difference of IQR (DIQR) which are the dots in the middle. The
upper bax is for GDP while the lower bax is for LGDP; only h, is used for Figure
3. The test statistic values for both bandwidths A, and hey are provided in Table 3;
the test statistics are not sensitive to bandwidth choice. For GDP, other than 70-75,
Q-divergence is significant; even for 70-75, the t-value is not small. For LGDP, for all
years, Q-divergence is not significant, although the sign of the test statistic indicates
Q-divergence. These two different conclusions, however, can be easily interpreted
in stark contrast to the other convergence concepts: IQR has increased significantly
over the years, but the IQR relative to the lower quartile has increased little. That
1s, income disparity between two clusters has increased in the absolute term, but not
in the relative term, for the lower group’s income has increased as well.

16
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Turning now to the conditional Q-convergence, to control for variables relevant
for steady state, suppose now

Yit = ZiB,+uy, the first component of zy is 1,

u; is independent of x;;, uy is iid across i at a given t,

for a parameter vector 5, and error term u;;. Estimate 3, by, say, LSE by, to get the
residuals, U = ¥ — T,bn:. Now proceed as in marginal convergence, replacing y;
with ti;. There are however two differences from the marginal convergence. First, we
impose the independence of u;; from z; to assure that the location normalization of
4y does not matter (for the LSE, the normalization is F(u;) = 0); the normalization
constant, whatever it may be, is cancelled in IQR due to the differencing. Second,
more importantly, since we are using the residuals, not the true error terms, % — u;:
is likely to affect the asymptotic distribution. Accounting for this, although not
impossible, seems to go beyond the scope of this paper. For the conditional Q-
convergence, the asymptotic confidence intervals used should be deemed ad-hoc.

With the conditioning variables in Barro (1991) except literacy rate, Table 4 shows
the two bandwidths h, and A, and Tables 5 reports DIQRs with the residuals and
the t-values for the two bandwidths. To be specific, the independent variables are
enrollment rate in primary, secondary and tertiary schools, student-teacher ratio in
secondary and tertiary schools, and dummy variables for OECD and sub-Saharan
Africa and Latin America. The variables are from the online data of UNESCO. For
GDP, except for 70-85 and 70-83 with h,, the conditional Q-divergence is not sig-
nificant. For LGDP, no significant results are obtained for all periods and for both
bandwidths. The evidence of Q-divergence for GDP has been weakened by condition-
ing on the regressors, and the tests have become sensitive to bandwidth choice with
this weakening. Due to this problem that also holds for other convergence concepts
(controlling for z; almost always dilutes convergence), in the following subsection,
we will compare the convergence concepts only for their marginal versions.

18



Table 4: Bandwidth for Conditional Q-convergence

GDP.resid LGDP.resid

hﬂ hCU ho hﬂ’
1970 1.5577 4.2912 0.1993 1.0072
1975 1.5292 3.4951 0.1812 0.9157
1980 1.7545 1.4015 0.2101 1.0642
1985 2.1832 1.7214 0.1873 0.9271
1989 2.4388 6.7459 0.1813 0.9180

Table 5: DIQR and Conditional Q-convergence Tests

DIQRresid Test stat.(h,) Test stat. (o)

GDP
70-75 0.4220 0.67 0.46
70-80 0.56257 0.77 0.64
70-85 1.3598 2.01 1.67
70-89 1.6762 2.15 1.42
LGDP
70-75  -0.0231 -0.25 -0.14
70-80 0.0358 0.38 0.22
70-85 0.0369 0.43 0.24
70-89  -0.0754 -0.90 -0.49
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Table 6: Various Marginal Concepts

sign/direction test

B-convergence: GDP  convergence  insignificant
LGDP convergence  insignificant
g-convergence GDP  divergence significant

LGDP divergence insignificant
modal convergence GDP  divergence significant

LGDP divergence insignificant
Q-convergence GDP  divergence significant

LGDP divergence insignificant

3.3 Comparison of findings.

Table 6 summarizes the conclusions from the various marginal convergence concepts.
Since we did not conduct any modal test for modal convergence, the entries for modal
convergence in Table 6 are based upon Bianch (1997)’s tests.

This summary makes a good sense for Q-convergence. Since IQR represents both
dispersion and two clusters of the income distribution, as o-convergence and modal
convergence indicate divergence of GDP, it is natural that Q-convergence does so as
well; here, (-convergence is an “odd man out”. Once log is taken on GDP, still
divergence seems to hold other than for S-convergence, but this is not significant
anywhere,

4 Conclusions.

In this paper, we introduced a new convergence concept “Q-convergence” which
is based upon whether interquartile range (IQR) shrinks (convergence) or expands
(divergence). Compared with the other convergence definitions, Q-convergence has
advantages of reflecting both dispersion and two clusters of the income distribution;
also IQR is insensitive to outliers and equivariant to log-transformation, leading to
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robust inference and easier interpretation of different results using level and log data.
A panel data drawn from the Penn World Tables was analyzed and we found signifi-
cant divergence using the level GDP and insignificant divergence using the log GDP:
the income gap between the poor and rich countries has increased, but in relative
terms as reflected in the log GDP, the widening gap was rather small and insignifi-
cant; this is because the poor countries income has also increased as the gap widened.
Convergence or divergence is a matter of definition because one aspect of an economy
may converge while another may diverge. The point is then using a definition that is
appealing in some senses. We showed that the new concept Q-convergence has this
appeal, while reaching conclusions not deviating far from the existing findings in the
literature under ¢— and modal-convergence.
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