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A major pathophysiological component of
cardiac remodeling during heart failure (HF),
cardiac fibrosis has become a target for thera-

peutic intervention. Additionally, compelling evi-
dence indicates a key role of cardiac fibrosis in
myocardial malfunctioning during aging. Cardiac
fibrosis is a complex phenomenon resulting from aber-
rant activation of various cell types and signaling path-
ways as a consequence of injury or damage to tissue.
It develops over a time course that also depends
upon the type of noxa activation of tissue-specific
repair programs, resulting in the subsequent activa-
tion of proliferation and migration of fibroblasts from
different myocardial locations to the injury site, where
they synthesize extracellular matrix (ECM) (1,2).

Tissue repair through the synthesis of new ECM by
fibroblasts is beneficial, particularly after myocardial
infarction. However, prolonged activation of this
process results in excess scar tissue formation,
increased ECM deposition, and therefore, “bad
fibrosis” with consequent alterations of inotropic
and lusitropic characteristics of the myocardial tis-
sue. Functionally, myocardial fibrosis within the
infarct scar favors the initiation and perpetuation
of arrhythmias by uncontrolled overproduction of
collagenous septa, which separate bundles of
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cardiomyocytes, producing structural discontinuities
of the impulse propagation (zig-zag conduction) (3).
The understanding of myocardial fibrosis at cellular
and molecular levels has greatly benefited from the
use of genetic tools over the last decade. Several
studies have identified the origin of resident cardiac
fibroblasts (4) and the complex network of signaling
pathways contributing to the control of gene expres-
sion of these cell types, ultimately determining the
fibrotic phenotype. The definition of these signaling
events is a prerequisite for potential targets of phar-
macological intervention.
In this issue of the Journal, the study by Meyer
et al. (5) adds knowledge to this field by describing a
link between cell senescence and myocardial fibrosis
and then providing evidence of an essential role of
premature senescence in abrogating cardiac fibrosis.
Through the use of animal models of cardiac disease
and confirmation on human heart biopsies, the au-
thors present data suggesting that cardiac fibroblasts
undergo premature senescence during the course of
fibrogenesis. Similar to other examples, such as liver
fibrosis (6), genetic inactivation of the fibroblast
cellular senescence program resulted in aggravated
fibrosis and cardiac dysfunction. Conversely, induc-
tion of senescence limited fibrosis and promoted
cardioprotection.

More specifically, the authors started from the
observation that under pressure overload induced by
transverse aortic constriction in mice, the senescent
markers p21CIP/WAF1, senescent-associated b-galacto-
sidase, and p16INK4a were significantly increased in
the perivascular fibrotic areas of the myocardium,
particularly in cells positive for markers typical of
myocardial fibroblasts (vimentin, platelet-derived
growth factor receptor-a). Similar results were found
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in human biopsies of patients with heart disease.
The authors then proved the causality of fibroblast
senescence and myocardial fibrosis by performing
experiments using knockout mice for both the tumor
suppressor gene p53—a gene that regulates cell cycle
progression and is inactivated in a large percentage of
tumors, genotoxic stress, and senescence, particu-
larly in cycling cells—and the p16INK4a inhibitor of
cyclin-dependent kinases, which blocks cell cycle
progression (7). In the Trp53�/� p16INK4a�/� double
knockout mouse, pressure overload was found to
aggravate fibrosis. To further prove their point, Meyer
et al. (5) used a cardiotropic vector (adeno-associated
vector 9) to overexpress cysteine-rich angiogenic
inducer 61 (Cyr61) in vivo. Cyr61, a protein secreted at
sites of wound healing, induces fibroblast senescence
through the activation of p53 and p16INK4a pathways.
Data strongly suggested a role for premature senes-
cence as an essential antifibrotic mechanism, with
consequent therapeutic implications for HF.

Naturally, there are aspects that need further
clarification. The authors have used constitutive
knockout models, and thus it may well be that cell
types other than fibroblasts are affected, although not
to the same degree, by the lack of p53 or p16INK4a. In
particular, p53 is a regulator of transcription that is
virtually active in all cell types, including growth-
arrested ones. Also, a major issue in the field of myo-
cardial fibrosis relates to the source of fibroblasts:
from which cells do they originate? Are they derived
from resident myocardial cells? Although there is
consensus on the epicardial and endocardial origin of
myocardial fibroblasts during development (8–12),
the origin of adult fibroblasts, particularly in patho-
logical states, is much more debated. Barring resident
fibroblasts activated by specific proliferating signals,
it has been proposed that they could come from
circulating hematopoietic progenitor cells, the tran-
sition of endothelium to mesenchymal cells, or
the epicardial epithelial-to-mesenchymal transition
(13–15). However, a recent report, in which multiple
independent murine Cre lines and a collagen1a1-GFP
fusion reporter were used for specifically labeling
fibroblasts, proved that pressure overload promoted
comparable proliferation and activation of 2 resident
fibroblast lineages, including a previously described
epicardial population and a population of endothelial
origin (16). Although the contribution of different cell
types to the ECM-producing fibroblasts goes beyond
the scope of this paper, it would be of interest to
understand whether the genetic manipulation of p53
or p16INK4a affects 1 specific fibroblast progenitor or
another.

A third aspect relates to the definition of “fibro-
blasts” and “myofibroblasts.” Fibroblasts have a
spindle-shaped formation, reside in the majority of
tissues and organs of the body, and produce ECM
molecules. They are typically characterized by
expression of vimentin and absence of desmin and
smooth muscle alpha actin (SMa-actin). Fibroblasts
originate from themesenchyme; they portray a diverse
phenotypic variability and can be observed as non-
contractile fibroblasts, protomyofibroblasts, or con-
tractile myofibroblasts (17). Indeed, myofibroblasts are
associated with synthesis and secretion of ECM mole-
cules, such as collagens, proteoglycans, and fibro-
nectin, and can be distinguished from fibroblasts by
their expression of de novo SMa-actin in stress fibers
and various ECM proteins. Although myofibroblasts
express SMa-actin, they can be distinguished from
actual smooth muscle cells by their lack of desmin and
smooth muscle myosin expression. The origin of
myofibroblasts is debated, and may be precursors as a
result of transdifferentiation of resident fibroblasts,
circulating bone-marrow-derived progenitor cells,
circulating adventitial or interstitial fibroblasts un-
dergoing a phenotype switch, or smooth muscle cells.
How and to what extent myofibroblasts contribute to
fibrosis is a matter of investigation (18,19).

As of today, aldosterone antagonists are the only
consolidated therapeutic approach for limiting the
consequences of an uncontrolled fibrosis during HF-
induced remodeling. The clarification of the molecu-
lar mechanisms of myocardial fibroblast homeostasis
will further enhance our knowledge in this field of
investigation, possibly leading to the discovery of
more powerful and specific modulators of fibrosis,
hopefully beyond spironolactone.
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