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Polar Codes for Quantum Reading
Francisco Revson F. Pereira and Stefano Mancini

Abstract— Quantum readout provides a general framework
for formulating statistical discrimination of quantum channels.
Several paths have been taken for such this problem. However,
there is much to be done in the avenue of optimizing channel
discrimination using classical codes. At least two open questions
can be pointed out: how to construct low complexity encoding
schemes that are interesting for channel discrimination and,
more importantly, how to develop capacity-achieving protocols.
This paper aims at presenting a solution to these questions
using polar codes. Firstly, we characterize the information rate
and reliability parameter of the channels under polar encoding.
We also show that the error probability of the scheme proposed
decays exponentially with the square root of the code length.
Secondly, an analysis of the optimal quantum states to be used
as probes is given.

Index Terms— Quantum reading, polar codes, capacity-
achieving protocols.

I. INTRODUCTION

QUANTUM hypothesis testing aims to identify strategies
to statistically discriminate quantum states or processes.

The former is called quantum state discrimination and has
been largely analyzed in the literature (starting from Refs.
[15], [18]). The latter, under the name of quantum channel
discrimination, has been recently addressed [1], [7], [9], [11],
[13], [14], [31], [32], [38]. In its basic formulation, one has
to identify a quantum channel selected from a set according
to a probability measure. This should be done by using a
suitable input state and output measurement. As such, it is a
double-optimization problem and hence results in a daunting
task. The performance is usually quantified in terms of the
minimum error probability, and recently bounds on it were
found for general strategies [21], [26]. Although theoretically
subtle, quantum channel discrimination is interesting for prac-
tical applications. For instance, it is at the basis of the decoding
procedure of two-way quantum cryptography [28], where the
secret information is encoded in a Gaussian ensemble of
phase-space displacements. It also appears in the quantum
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illumination of targets [22], [37], where the sensing of a
remote low-reflective object in a bright thermal environment
corresponds to the binary discrimination between a lossy chan-
nel (presence of target) and a depolarizing channel (absence
of target). Following this line, quantum channel discrimination
can be reformulated in the framework of quantum reading [25].
There, the data storage corresponds to a process of chan-
nel encoding, where information is recorded into a cell, a
quantum-mechanical version of the classical memory cell,
by storing a quantum channel picked from a given ensem-
ble [25]. Then readout corresponds to the process of channel
decoding, which is equivalent to discriminating between the
various channels in the ensemble. In such a setting, using a
quantum resource, such as entanglement, was shown to surpass
any classical strategy based on mixtures of coherent states,
hence the name of “quantum” reading.

Efficient paths to quantum reading can also be envisaged
by the use of coding techniques [8], [27]. There are at least
two possible approaches: classical coding on the quantum
memory cell labels and quantum coding on the probe states
used in the readout. This paper takes the former one. Similar
to channel coding, where redundancy is added to protect the
information to be transmitted, we use classical codes to encode
the information to be recorded in the memory cell. To decrease
the error probability in discriminating the channels in the
ensemble, we can use encoding and decoding schemes in the
following manner. The classical information to be stored in
cells is processed by the classical encoder to shield it from
noise and measurement errors. The ratio between information
bits and code length is denoted by the code rate in the paper.
The output of the classical encoder, a codeword of the classical
code used in the process, corresponds to the actual string of
information to be stored in the cells. Suppose now that a
measurement has been implemented in the cells and one has a
string, with possible errors. Then, a classical decoder is used to
retrieve the initially noiseless classical information. There are
several classical codes that one could use for quantum reading,
depending on the goal in mind. Denote by information rate
the information-theoretical quantity describing a coding rate
under which there exists a code with length going to infinity
but attaining low error probability. Then, we are interested in
information-theoretically provable codes that could be used to
attain high information rates and error probability decreasing
exponentially with respect to some power of the code length.
So, suitable codes can be derived from the family of polar
codes.

Creating capacity-achieving codes has been a challenge
since the development of classical information theory. Even
more difficult was to theoretically prove the existence of such
codes. Fortunately, by developing the idea of information
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combining, Arikan was able to show that for binary memo-
ryless symmetric (BMS) channels, such codes exist [2]. They
are called polar codes. The major achievement of Arikan’s
paper is to show a clever way to combine information, which
leads to new synthetic channels manifesting a polarization
phenomenon. They are commonly divided into two groups
named “good” and “bad” channels1. Furthermore, the fractions
of good and bad channels are related to the capacity of
the original channel in consideration. Encoding and decoding
schemes take advantage of these properties to attain low com-
plexity. It is worth mentioning that the polar code construction
highly depends on the channel in consideration.

The analysis of using polar codes for quantum memory cells
in this paper is twofold. In the first part, for fixed probe states,
polar coding is applied to the labels of the quantum memory
cell to decrease the error probability in distinguishing them.
In this direction, we show that the polarization phenomenon
can be characterized in quantum memory cells by studying
its composing parts; namely, channel combining and channel
splitting. The former constitutes a systematic approach to
combine source bits, so the polarization phenomenon emerges.
An encoding matrix, sometimes also called combining func-
tion, describing the process is given in this paper. The latter is
an information-theoretical analysis of the synthesized channels
created in the channel combining part. Initially, the first
level encoding process combining two quantum channels is
analyzed. We show that the information rate and reliability
parameter of the synthesized channels polarize, where the
reliability parameter quantifies the distinguishability of the
channel outputs. This is later used in the asymptotic analysis.
A connection between information rate and reliability para-
meter is also presented, showing that the information rate
is inversely proportional to the reliability parameter. Next,
our first major result is given. It characterizes the asymptotic
distribution of the synthesized channel with the code length.
This result is based on proving the existence, shown in this
paper, of a symmetric quantum channel that can be used
to obtain the statistics of the (asymmetric) quantum channel
of interest. Lastly, in this first part, we construct encoding
and decoding schemes. The strategy used for encoding the
frozen bits does not follow the scheme used in previous works
on polar codes for classical-quantum channels. Additionally,
examining the error probability obtained after the decoding
scheme, we see that it decays exponentially with respect to
the square root of the code length. The complexity of the
encoding scheme is O(N logN), where N is the code length.
However, we have not been able to compute the decoding
scheme complexity. Construction of low or reduced decoding
complexity schemes is the subject of current ongoing research
of (classical and quantum) polar codes.

It is important to notice that the analysis using polar
codes is elaborated with fixed probe states. This allows us to
use the model of classical-quantum channels in the quantum
reading framework. Indeed, quantum memory cells can be seen
as a set of classical-quantum channels for fixed probe states.

1The reason for such names is due to the capacity of these new channels
being close to their maximum value and close to zero, respectively.

However, the choice of the probe state can drastically change
the conclusion one can get. For example, the polarization
phenomenon may not happen for a poor choice of probe
states. Thus, to avoid any misunderstanding, we do not merely
consider classical-quantum channels, but rather our formula-
tion explicitly considers quantum memory cells and shows the
probe state dependence.

The second part of this paper addresses the optimization
problem of probe states. As a first-order approximation of
classical digital memories, we consider amplitude damping
channels as our channel model. The fundamental result of
this part is showing that the optimal probe states are pure.
Moreover, even though we have considered just the first level
polar encoding, it seems satisfactory supposing this claim can
be extended to any N -level polar encoding.

A. Relation With Previous Works

Several papers extend or apply the idea of polarization in a
diversity of channels and areas [3], [10], [12], [17], [20], [23],
[29], [33], [34], [39], [40]. In particular, polar codes have also
been constructed for classical-quantum channels [23], [39],
and quantum channels [17], [29], [40]. These papers aim at
achieving the capacity of classical-quantum or quantum chan-
nels using polar coding. For classical-quantum channels, the
ones relevant for this paper, Ref. [39] extends the fundamental
ideas of Arikan’s landmark paper. The main technical contri-
butions of them are a characterization of information rate and
reliability parameter for the paradigm in consideration, and the
generalization of Arikan’s successive cancellation decoder to
the quantum case. In Ref. [23], the authors consider arbitrary2

classical-quantum channels and arbitrary classical-quantum
multiple access channels by using arbitrary Abelian group
operations on the input alphabets. The distribution of the input
alphabet is considered uniformly distributed.

The distribution of the channels to be discriminated can be
symmetric or asymmetric. Asymmetric quantum reading can
be seen as a generalization of the former quantum reading, and
this formulation can be justified by the measurement strategy
implemented in the decoding process, or by the energy con-
straint imposed over the channels. Since these two conditions
are plausible hypotheses to be considered in classical digital
memories, which are the main goal of the channel model used
in this paper, we will formulate our results for asymmetric
quantum reading and, where it makes necessary, an adaptation
for symmetric quantum reading is given. Therefore, our polar
code will be designed to, primarily, asymmetric classical-
quantum channels, differently from Refs.[23], [39]. In the
classical paradigm, this has been done by Sutter et al. [35],
and Honda and Yamamoto [20]. Some of the ideas used in
Ref. [20] are applied in this paper. However, as we will
see, the transition from the classical to quantum paradigm
is subtle and major changes are needed. This is particularly
true for the measurement process implemented in the decoding
part. Adequate definitions for information rate and reliability
parameter are also needed. Thus, we are not only extending

2Not necessarily binary.
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the results of Ref. [20], as Ref. [39] does in comparison to
Arikan’s work, but also applying them in a different paradigm.

The use and analysis of classical codes in the quantum read-
ing paradigm have not been addressed until now. There was a
persistent aim at showing that entanglement-assisted probing
outperforms classical strategies, culminating with recent work
on barcodes data decoding [5]. On the other hand, Refs.
[8], [27] introduced the capacity of the quantum reading
paradigm by just resorting to random coding arguments. Thus,
our paper has taken the novelty path of proposing an explicit
encoding and decoding scheme that exploits redundancy in
the quantum reading framework. Both schemes have been
analyzed in terms of coding and probing strategies, with an
error probability decaying asymptotically with the square root
of the code length.

B. Structure of the Work

This paper is organized as follows. In Section II we present
the notation used through this paper, some definitions that are
relevant to characterize quantum memory cells, and previous
results on polar codes for classical-quantum channels. Next,
the main results are shown in Section III. Encoding and decod-
ing schemes are described and analyzed in detail, showing
that the use of polar coding is also interesting for quantum
memory cells. The following subject treated in this work is
the optimization of states used to probe the channels. This
is drawn in Section IV. Lastly, we draw our conclusions and
some final remarks in Section V.

II. PRELIMINARIES

This section is devoted to introducing the main concepts of
quantum reading and polar codes. We begin with the notation
used in the paper. Afterward, a brief overview of binary
polar codes and their desirable attributes is presented. They
can be used to achieve the capacity of discrete memoryless
channels (DMC); there are efficient encoding and decoding
schemes; and it is possible to reach error probabilities that
decay exponentially in the square root of the code length.
In the following, the quantum reading paradigm is introduced.
The general concept is given, followed by the channel model
adopted for analyzing probe states. In the end, we present
the quantities assumed as information rate and reliability
parameter.

A. Notation

We denote classical random variables as X , Y , U , whose
realizations are elements of the finite sets X , Y , U , respec-
tively. The probability distributions are respectively repre-
sented by pX(x), pY (y), and pU (u) for the random variables
X , Y , U . In particular, X is always assumed to be discrete
and, in some parts of the text, to be a Bernoulli random
variable with X = Z2 and PX(0) = p by using the notation
X ∼ Ber(p). For such random variables, its binary Shannon
entropy is defined as H(X) = h(p) := −p log(p) − (1 −
p) log(1 − p). The use of subscript and superscript on a
letter indicates a sequence starting with the element denoted

by the subscript and ending with the element denoted by
the superscript, e.g. Xj

i (with j ≥ i) is the sequence of
random variablesXi, Xi+1, . . . , Xj . XN simply stands for the
sequence X1, X2, . . . , XN . A classical memoryless channel is
written as W : X → Y from the input alphabet X to the output
alphabet Y . We write WN to denote N uses of the channel W ;
i.e., WN : XN → YN with transition matrix WN (yN |xN ) =∏N
i=1W (yi|xi), since W is memoryless. Quantum systems

A, B, and C correspond to Hilbert spaces HA, HB , and HC .
The notation AN := A1A2 · · ·AN denotes a joint system con-
sisting of N subsystems, each of which is isomorphic to HA.
Let L(HA) denote the algebra of bounded linear operators
acting on a Hilbert space HA. The subset L+(HA) of L(HA)
denotes the set of all positive semi-definite operators. A special
and important class of operators in L+(HA) is the one
containing density operators D(HA). A density operator ρA ∈
D(HA) is a positive semi-definite operator with unit trace,
Tr{ρA} = 1, and represents the state of a quantum system A.
The von Neumann entropy H(ρ) of the density operator ρ
is defined as H(ρ) := −Tr{ρ log ρ}. The quantum mutual
information of a bipartite density operator ρAB ∈ D(HAB)
is defined as I(A;B) := H(TrA{ρ}) +H(TrB{ρ}) −H(ρ).
The fidelity between two operators ρ, σ ∈ D(HA) is given by
F (ρ, σ) := ||√ρ√σ||1, where ||E||1 is the Schatten 1-norm
of an operator E ∈ L(HA). Lastly, a quantum channel W is a
linear completely positive trace-preserving map from L(HA)
to L(HB).

B. Quantum Memory Cell

We now formulate the general description of a quantum
memory cell used in this paper. A quantum memory cell is
defined as the set {Wx}x∈X of quantum channels. For a fixed
x, we have

Wx : D(HB′) → D(HB) (1)

ρ �→ Wx(ρ), (2)

where D(HB′),D(HB) are the sets of input and output density
states of the quantum channel Wx. We call x ∈ X the
quantum memory cell index. Sometimes we denote Wx as
Wx
B′→B to highlight the input and output systems of Wx.

An important hypothesis is given here. We are supposing
that the distribution of the random variable X describing
the label of the quantum channels is non-uniform. This can
be justified by the measurement strategy implemented in the
decoding process, or by the energy constraint imposing this
distribution. Since these two reasonings are plausible in this
paper, we are going to adopt, in most parts of this paper,
that we are dealing with asymmetric quantum reading. The
definition of asymmetric quantum reading goes similarly to
the definition of asymmetric cq channels. A quantum memory
cell {Wx}x∈X is called asymmetric if the possible outcomes
are non-uniformly distributed over all possible labels x ∈ X .
Lastly, notice that minor changes over our results lead to the
applicability of them to symmetric quantum reading.

The quantum reading framework can be explained by a
two-part process. The first process consists of encoding the
information bits. Suppose Alice has a string of information bits
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Fig. 1. Quantum reading scheme.

that Bob is planning to read in a future moment using quantum
tools. Additionally, we are considering she has access to a
quantum channel array that composes a memory. Then Alice
stores the information bits by choosing an appropriate quantum
channel according to the information bits. In the end, she will
have an array of quantum channels labeled by the information
bits. Finished this process, we go to the decoding part. Bob
decodes the information stored in the memory by probing
each of the quantum channels and making a measurement on
the output state. Therefore, Bob’s task is two-fold. He has to
choose an optimal state to probe a quantum channel, which is
unknown beforehand, and also choose a decoding strategy that
minimizes the error probability in determining the information
bit stored by Alice. We have schematized the process in Fig. 1.

Remark 1: Before introducing the channel model used for
numerical analysis in this paper, an important point-of-view
over quantum memory cells needs to be given. A common
approach to quantum memory cells is to study how to discrim-
inate their elements using different probe states but having the
labels fixed. However, in this paper, we are also interested in
improving quantum memory cell discrimination by working on
the channel labels. This optimization is performed by fixing
the probe states used. Along these lines, a quantum memory
cell can be seen as a set of classical-quantum channels.
Thus, a capacity-achieving approach using polar codes is
possible when dealing with quantum memory cell elements
with indexes obeying some rule. The rule used in this paper
is given by the composition function of polar codes.

For this paper, we will adopt the amplitude damping (AD)
channel as our channel model. This is because AD channel is
the finite-dimensional first-order approximation of the bosonic
attenuator channel, which is the standard model for digital
memory cells. They can be described in the following manner.
Let ρ ∈ D(H) be a single-qubit density state, then the AD
channel can be described by the following Kraus expression:

Wx(ρ) = A0(x)ρA0(x)† +A1(x)ρA1(x)†, (3)

with

A0(x) =
(

1 0
0

√
1 − γ(x)

)
, A1(x) =

(
0

√
γ(x)

0 0

)
,

(4)

where γ(x) is the decay probability with respect to x. Observe
that the same notation for the general quantum memory cell
and AD channel has been used. However, through the paper
will be clear when we are talking about one or the other.

The goal of the following sections is to show that using
polar codes is possible to attain optimal rate with low reliabil-
ity parameter. This is obtained by using synthesized channels
formulation and connecting its properties with the original
channel under analysis. A method for approaching this is
firstly introducing the joint input-output density state and
characterizing the channel via this density state. Thus, let X
be a random variable with probability law pX . We can write
the joint density state describing the systems X and B as

ρXB=pX(0) (0) 0X ⊗W0(ρ) + pX(1) (1) 1X ⊗W1(ρ). (5)

As outlined previously, there are two parameters at the center
of the polarization phenomenon: information rate and reliabil-
ity parameter. Information rate is defined in this work as the
quantum mutual information between the source X and the
output system B:

Definition 2: Let X ∼ Ber(p), Wx
B′→B(ρ) be a quantum

memory cell, where x ∈ X , and I(X ;B)ρ be the quantum
mutual information of the state ρXB . The information rate of
W is defined as I(W)ρ := I(X ;B)ρ. A direct computation
of this quantum mutual information shows that

I(W)ρ = H
(
pW0(ρ) + (1 − p)W1(ρ)

)
− pH(W0(ρ)) − (1 − p)H(W0(ρ)), (6)

whereH(σ) is the von Neumann entropy for a density operator
σ ∈ D(H).

For the reliability parameter of the quantum memory cell
W , it is used the fidelity between the possible output states:

Definition 3: Let X ∼ Ber(p) and Wx
B′→B(ρ) be a quan-

tum memory cell, where x ∈ X . The reliability parameter of
the quantum memory cell W is defined as

Z(W)ρ := 2
√
p(1 − p)F (W0(ρ),W1(ρ))

= 2
√
p(1 − p)||

√
W0(ρ)

√
W1(ρ)||1. (7)

The following section describes the polar coding scheme
proposed in this paper and applies the information rate and
reliability parameter defined above to quantify the goodness
of the codes created.

C. Classical-Quantum Polar Codes

Let W : X → D(HB) be a binary-input memoryless
classical-quantum channel (cq channel) with input and output
alphabets given by X and D(HB), respectively. Suppose
the random variable X is Ber(1

2 ). Then the conditional
input-output probabilities can be derived from the joint input-
output state

ρXB =
1
2

(0) 0X ⊗ ρB0 +
1
2

(1) 1X ⊗ ρB1 , (8)

where ρBx = W (x), for x = 0, 1. Notice that we are using
superscripts to emphasize the system to which each part
belongs. Whenever this is clear from context, they will be
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Fig. 2. General polar encoding scheme for a classical-quantum channel.
The matrix GN represents the composition function applied on the input uN

and resulting in the vector xN = uNGN . The density operator ρxN =
ρx1 ⊗ · · · ⊗ ρxN is the output W N (xN ).

omitted. One important characterization can be given to this
cq channel: consider a binary random variable R on the sample
space {ρ0, ρ1}. The probabilities of R are obtained from ρXB .
Furthermore, from the density operator ρXB , we can also see
that PR|X(0|0) = PR|X(1|1) and PR|X(0|1) = PR|X(1|0).
From the above relation, we say that the cq channel W is
symmetric. Similarly, a cq channel is called asymmetric when
this does not happen. Though in this subsection we are going
to deal with a symmetric channel, the rest of the text adopts
asymmetric channels to provide a more general formulation.
As the last comment to be made, we adopt as input alphabet
X = Z2, and arbitrary finite-dimensional output alphabet
D(HB) and transition probability. This choice of input alpha-
bet allows us to operate with their elements; in particular, we
can use XOR operations, or sum mod 2 operations, with the
elements of the input alphabet. An appropriate combination of
these operations leads to channel polarization.

Channel polarization consists mainly of two parts. The first
one is named channel combining, which describes a method
of combining inputs of N cq channels. The second is channel
splitting. This part is an information-theoretical analysis of
new inputs and outputs that the channel combining produces.
These new inputs and outputs generate synthesized channels.
With a careful examination of the synthesized channels, it is
possible to show that, for an arbitrarily large number of them,
they fit into two sets called good and bad channels. The sta-
tistical behavior of them gives the desirable attributes of polar
codes [2], [4], [20], [29], [39], [40]: they achieve the capacity
when used for transmitting information over a cq channel; they
can be encoded efficiently (with a complexity that is essentially
linear in the code length); the error probability of the decoder
decays exponentially in the square root of the code length.
A descriptive explanation of channel polarization, synthesized
channels, and some attributes of polar codes is given below.

Suppose there are N copies of a cq channel W , which
we denote by WN , and N realizations uN of a random
variable U representing the source. The general formulation
of polar codes consists of applying a composition function
to the input uN , traditionally represented by a matrix GN ,
and using the output of the composition function, defined as
xN , as the actual inputs for the channels WN . This general
procedure is called channel combining, and a scheme is shown
in Fig. 2. Observe that this is the same scheme used in any

Fig. 3. Polar encoding scheme for N = 2. The choice of the composition
function characterizes the encoding scheme to be polar.

linear channel coding; the type of the composition function is
what determines the coding scheme to generate a polar code.
For a particular example of coding scheme and composition
function, with N = 2, see Fig. 3.

Now, we can introduce channel splitting and the polarization
phenomenon that emerge from it. For i ∈ {1, . . . , N}, we
define the i-th synthesized channel W (i)

N with input alphabet
U and output D(HUi−1

1
HBN ) as

W
(i)
N (ui) =

∑
ui−1
1

1
2i−1

(
ui−1

1

)
ui−1

1

Ui−1
1 ⊗ ρB

N

ui
1
, (9)

ρB
N

ui
1

=
∑
uN

i+1

1
2N−i ρ

BN

uNGN
, (10)

where N is a power of two and GN is the composition
function. This formulation comes from analyzing a successive
decoder acting on the output channel with the help of a genie.
For more details, have a look at the original formulation by
Arikan [2] or its extension to classical-quantum channels in
Ref. [39].

There are two important quantities used to quantify the
polarization phenomenon and error probability decay in polar
coding. These quantities are called information rate and relia-
bility parameter. Their definition depends on the channel under
consideration. For a classical-quantum channel W , informa-
tion rate is defined as the mutual information I(X ;B) and
we denote it as I(W ). Reliability parameter is adopted as the
fidelity between the possible channel outputs, i.e., reliability
parameter is given by F (ρ0, ρ1) = ||√ρ0

√
ρ1||1, where

||A||1 is the Schatten 1-norm of an operator A ∈ L(HB).
It is possible to show that these quantities are inversely
proportional to each other in the sense that when one has
a value close to its maximum, the other has a value close
to zero [39]. Some interesting results are obtained studying
the information rate and reliability parameter over channels
produced in the channel splitting part. In particular, for N
sufficiently large, it is shown that the channels W

(i)
N are

divided in two sets: one set with I(W (i)
N ) close to the unit,

these channels are called “good”; and a set with I(W (i)
N ) close

to zero, called “bad” channels. We denote by A the set with
indexes labeling good channels. Analyzing how the fraction
of good and bad channels grow when N goes to infinity, one
can demonstrate the polarization phenomenon and construct
a capacity-achieving coding strategy for polar codes. See the
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Fig. 4. Encoding and decoding protocols of polar coding applied to quantum
reading paradigm.

following proposition for a formal formulation of the exposed
ideas.

Proposition 4 ([39, Thm. 2, Prop. 4]): Let W be a classical-
quantum channel. Then the following is true:

1) The channels {W (i)
N } polarize in the sense that, for any

δ ∈ (0, 1), as N goes to infinity through powers of
two, the fraction of indexes i ∈ {1, 2, . . . , N} for which
I(W (i)

N ) ∈ (1 − δ, 1] goes to I(W ) and the fraction for
which I(W (i)

N ) ∈ [0, δ) goes to 1 − I(W );
2) For any choice of parameters (N,K,A) for a

classical-quantum polar code, the probability of error
is bounded above by

Pe(N,K,A) ≤ 2
∑
i∈A

√
F (W (i)(0),W (i)(1)). (11)

In particular, for any fixed R = K/N < I(W ) and
β < 1/2, block error probability for polar coding under
sequential decoding satisfies

Pe(N,K) = o(2−N
β

), (12)

where o(·) is the little-O notation from complexity
theory.

We make use of Proposition 4 in the following section to
show that polar codes can be applied in the task of quantum
memory cell discrimination.

III. POLAR CODING SCHEME

This section considers the polarization phenomenon induced
by a combining function acting on the quantum memory cells
indexes. This approach is similar to the classical-quantum
polarization explained in the previous section. However, sig-
nificant refinements in the arguments and proofs are needed
for the results to be valid in our situation.

Before presenting the results produced in this section,
we need to explain the protocol in consideration. See the
schematic of the protocol in Fig. 4. Polar codes are applied in
the quantum reading framework by making the encoding and
decoding processes corresponding to Alice and Bob’s parts
described in the previous section, respectively. First of all,
Alice encodes the information bits by using a polar encoding
scheme. The output of the encoding scheme, a codeword,

Fig. 5. Classical polar coding scheme.

is stored in the memory, and the first part ends. Suppose
Bob probed each memory cell with a particular probing state,
and he has access to the output states. Now, we proceed
to the polar decoding process. A measurement strategy is
constructed with low error probability. In particular, we will
show a measurement strategy with error probability decaying
exponentially in the square root of the code length. As a
product of the measurements, an array of bits is obtained.
We use this array of bits as noisy codeword to be fed in the
polar decoder. After the polar decoder, the information bits
are recovered with a low error probability. Our analysis using
polar code in the quantum reading framework is given in the
current section and the dependence of the probing state in
Section IV.

A. Channel Polarization

1) Channel Combining: As mentioned before, for a fixed
quantum probe state and X = Z2, the elements Wx, for
x ∈ X , of a quantum memory cell can be seen as a classical-
quantum channel. Then, without loss of generality, we will
treat them in this form through this section. For an illustrative
description of our coding scheme in conjunction with our
hypothesis, see Fig. 5. Let W be a classical-quantum channel
from which we derive an N -fold classical-quantum channel
WN recursively, where N = 2n with n ∈ N0. The zeroth
level of recursion gives solely the channel W1(u) = Wu(ρ),
for all u ∈ X . The first level is a composition of two zeroth
level channels; i.e., the classical-quantum channel W2 is given
by

W2(u1, u2) = W1(u1 ⊕ u2) ⊗W1(u2) (13)

= Wu1⊕u2(ρ) ⊗Wu2(ρ). (14)

This is shown in Fig. 6.
The second level follows from two copies of first level

channels. The rule is

W4(u1, u2, u3, u4)=W2(u1 ⊕ u2, u3 ⊕ u4) ⊗W2(u2, u4).
(15)

We depict this scheme in Fig. 7.
Following the same procedure, we can derive the n-level

channels. As described in [2], the matrix GN , which con-
nects the source output uN to the channel input xN by
xN = uNGN , can be expressed as

GN = RNF
⊗n, (16)
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Fig. 6. Fundamental polar encoding block.

Fig. 7. Second level of polar coding scheme.

with F⊗n being the n-fold Kronecker product of the matrix

F =
(

1 0
1 1

)
, (17)

and RN is the permutation matrix known as bit-reversal [2].
In particular, the second level combining function is

G4 =

⎛
⎜⎜⎝

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

⎞
⎟⎟⎠ . (18)

The next step is to characterize the synthesized channels
produced by the action of GN . This is the goal of the next
subsection.

2) Channel Splitting: First of all, consider two realizations
of the channel W . A new input-output relation can be gen-
erated through the channel combining procedure described
before. These channels are called synthesized since they are
not real channels but new point-of-views obtained from the
relations created. We denote this transformation by (W ,W) →
(W−,W+), where W− and W+ are the synthesized channels.
Fixing each input and examining the corresponding outputs,
we come to the definition of the synthesized channels below

W− : u1 ∈ X �→ W−,u1(ρ) ∈ D(HB1 ⊗HB2), (19a)

W+ : u2 ∈ X �→ W+,u2(ρ) ∈ D(HU1 ⊗HB1 ⊗HB2), (19b)

with

W−,u1(ρ) =
∑
u2∈X

pU (u2)Wu1⊕u2(ρ) ⊗Wu2(ρ) (19c)

and

W+,u2(ρ)=
∑
u1∈X

pU (u1) (u1)u1 ⊗Wu1⊕u2(ρ) ⊗Wu2(ρ).

(19d)

Before presenting channel splitting description for N copies
of the channel W , some properties of the 2-fold case need to
be given.

Proposition 5: Consider the transformation (W ,W) →
(W−,W+) for some channels satisfying Eq. (19). Then the
following rule holds for information rates:

I(W−)ρ + I(W+)ρ ≤ 2I(W)ρ (20)

I(W+)ρ ≥ I(W)ρ. (21)

Proof: For the first statement, it is easy to see that

I(W−)ρ + I(W+)ρ = I(U1;B1B2) + I(U2;B1B2U1)
(22a)

(i)
= I(U1;B1B2) + I(U2;B1B2|U1)

(22b)
(ii)
= I(X1X2;B1B2) (22c)

(iii)
= I(X1;B1) + I(X2;B2) (22d)

= I(X1;B1) + I(W). (22e)

The equality in (i) follows from U1 and U2 being independent.
(ii) is derived from the chain rule for mutual information and
the existence of a bijective function from U1, U2 to X1, X2.
Lastly, the independence between X1 and X2 is applied
in (iii). Now, notice that we are dealing with a (possibly
non-uniform) Bernoulli random variable X1, which implies
I(X1;B1) �= I(W) in general. From X1 = U1 + U2 and
X2 = U2, we have that X1 is Ber(p2 + (1 − p)2) and X2 is
Ber(p). Then, it is possible to bound I(X2;B2) − I(X1;B1)
by the following inequality, (23) shown at the bottom of the
page.

We have used the bounds

I(X2;B2) ≥−log Tr{(pX2(0)
√

W0(ρ)+pX2(1)
√
W1(ρ))2},

(24)

from [19, Prop. 1], (25a) and (25b) shown at the bottom of
the next page, where (26), shown at the bottom of the next
page, from [30, Thm. 3]. Calling the RHS of Eq. (23) by f(p)
and analyzing its first and second derivatives, we can conclude
that f(p) ≥ 0 and, thus, I(W−)ρ + I(W+)ρ ≤ 2I(W)ρ.

The second statement is derived from I(W+)ρ =
I(U2;B1B2U1) ≥ I(U2;B2) = I(X2;B2) = I(W). �

I(X2;B2) − I(X1;B1) ≥ − log{p2 + (1 − p)2} − log{p(1 − p)} − log Tr{
√
W0(ρ)

√
W1(ρ)}

−2
√

(1 − F (W0(ρ),W1(ρ))2)2p(1 − p)(p2 + (1 − p)2) (23)
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Remark 6: Proposition 5 shows that the polarization phe-
nomenon can also be derived in quantum reading paradigm.
However, it is worth mention the importance of the probe state
used during the process. As explicitly shown in Section IV,
there are probe states that can polarize “faster” than other,
in the sense that I(W+)ρ − I(W−)ρ > I(W+)σ − I(W−)σ
for some probe states ρ and σ. Therefore, even though any
probe state generates the polarization phenomenon and, thus,
can be used to achieve a nonzero communication rate with
arbitrarily low error probability, it may not be optimal. There
may exist another probe state that produces the same results
but demanding a polar code with lower length.

The following proposition shown in Ref. [29] relates the
reliability parameter of the synthesized channels to the relia-
bility parameter of the original channels.

Proposition 7 ([29, Prop. 4]): Consider the transformation
(W ,W) → (W−,W+) for some channels satisfying Eq. (19).
Then the following rule holds for the reliability parameter:

Z(W+)ρ = Z(W)2ρ (27)

Z(W−)ρ ≤ 2Z(W)ρ − Z(W)2ρ. (28)

Now, we can extend the splitting analysis to an N -fold
combining of W . Wilde and Guha have shown how to extend
the previous characterization of synthesized channels [39].
We are going to follow a similar path but using a proper
description for quantum memory cells. Let N = 2n, where
n ∈ N0. First of all, in this general case is preferable to
label the synthesized channels by natural numbers instead of
{+,−}n. Let i ∈ {1, 2, . . . , N}. The i-th synthesized channel
is given by the map

W(i)
N : ui �→ W(i),ui(ρ⊗N ), (29)

where (30) and (31), shown at the bottom of the page.

From Eq. (30), we see that the description of W(i)
N sup-

poses the knowledge of previous inputs ui−1
1 . For a finite-

length analysis, this hypothesis may hold with the use of a
“genie-aided” successive cancellation decoder similar to Refs.
[2], [39]. In the asymptotic analysis, this is not needed.

Having described channel combining and splitting, and
given important definitions like the meaning of synthesized

channels, our next step is to characterize the behavior of
information rate, reliability parameter, and error probability
in the asymptotic scenario. See the next subsection.

3) Information Rate, Reliability Parameter, and Error Prob-
ability: The first result present in this section describes the
connection between information rate and reliability parameter.
It shows, as expected, that the information rate I(W)ρ → 0
(or I(W)ρ → h(p)) when the reliability parameter Z(W)ρ →
2
√
p(1 − p) (or Z(W)ρ → 0).

Proposition 8: Let X ∼ Ber(p) and Wx(ρ) be a quantum
memory cell, where x ∈ X . Then the following holds

I(W)ρ ≥ h(p) − log(1 + Z(W)ρ), (32)

I(W)ρ ≤
√

4p(1 − p) − Z(W)2ρ. (33)

Proof: The first inequality follows from [16, Thm. C.1].
For the second one, we need to use the following inequality
derived from Theorem 3 in Ref. [30]:

I(W)ρ ≤ H(σ), (34)

where

σ =

(
p

Z(W)ρ

2
Z(W)ρ

2 1 − p

)
. (35)

Thus

I(W)ρ ≤ h
(1

2
(1 −

√
1 − 4p(1 − p) + Z(W)2ρ)

)
(36)

≤
√

4p(1 − p) − Z(W)2ρ. (37)

�
Computing the reliability parameter for asymmetric chan-

nels can be a demanding task. A method to solve this problem
is to show a relation between the asymmetric channel of
interest and a particular symmetric channel. Indeed, we are
going to use this approach to show that there is a bigger
symmetric channel that is equal to the asymmetric channel
of interest by tracing over a particular subsystem. Since these
two channels are connected, we can use some properties of
symmetric channels in order to derive conclusions over the

I(X1;B1) ≤ H(σ) = h
(1

2
(1 −

√
1 − 4(1 − F (W0(ρ),W1(ρ))2)2p(1 − p)(p2 + (1 − p)2))

)
(25a)

≤ 2
√

(1 − F (W0(ρ),W1(ρ))2)2p(1 − p)(p2 + (1 − p)2) (25b)

σ =
(

pX2(0)
√
pX2(0)pX2(1)F (W0(ρ),W1(ρ))√

pX2(0)pX2(1)F (W0(ρ),W1(ρ)) pX2(1)

)
(26)

W(i),ui(ρ⊗N ) =
∑

ui−1
1 ∈X i−1

pUi−1(ui−1
1 )

(
ui−1

1

)
ui−1

1 ⊗Wui
1(ρ⊗N ), (30)

Wui
1(ρ⊗N ) =

∑
uN

i+1∈XN−i

pUN
i+1

(uNi+1)WuNGN (ρ⊗N ) (31)

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 21,2022 at 13:47:20 UTC from IEEE Xplore.  Restrictions apply. 



PEREIRA AND MANCINI: POLAR CODES FOR QUANTUM READING 4539

asymmetric channel. A similar approach has been followed
for classical polar codes in Ref. [20]. Let Ũi ∼ Ber(1

2 ), Uj ∼
Ber(p) for all i, j = 1, . . . , N . Assume that the output system
of the classical-quantum channel W̃ is given by D(HX̃⊗HB),
where σ ∈ D(HX̃ ⊗HB) can be written as

σ =
∑
x̃∈X

(x̃) x̃X̃ ⊗ ρBx̃ . (38)

Notice that X̃ represents the classical input system in the
same way as the system X associated with the quantum
channel W . Therefore, the associated quantum systems are
the same. We keep different notations here to emphasize that
one is associated with a symmetric channel and the other with
an asymmetric channel. Now, we can properly describe the
classical-quantum channel W̃. Fix ρ ∈ D(HA) and let u ∈ U .
Then W̃ is the map given by

W̃ : Ũ → D(HX̃ ⊗HB)

ũ �→ W̃ ũ(ρ) :=
∑
u∈U

pU (u) (ũ⊕ u) ũ⊕ uX̃ ⊗Wu(ρ)B .

(39)

It is easy to see that W̃ is a symmetric classical-quantum
channel. Indeed, this follows from the uniform distribution of
Ũ and the construction of the HX̃ part. The next step is to
describe the synthesized channels generated in polar coding

over W̃. Following the characterization given in Eq. (29),
we have that (40), shown at the bottom of the page.

With these tools, we show in the next proposition that any
asymmetric classical-quantum channel can be described via a
symmetric one. Moreover, in the following, a relation between
the reliabilities of these channels is provided.

Proposition 9: Let W̃(i)
N : Ũi → D(HŨi−1

1
⊗ HBN ⊗

HX̃N ), where Ũi ∼ Ber(1
2 ) for all i = 1, . . . , N . Then,

W(i),ui

N (ρN ) = TrX̃N{W̃(i),ui

N (ρN ) (0) 0X
N}.

Proof: Let ρ̃(i) be the joint input-output density operator

of W̃(i),ũi

N . Thus, (41a)–(41c) shown at the bottom of the page.
Defining x̃N = (ũN ⊕ uN )GN , it is possible to rearrange

the sums as (42), shown at the bottom of the page.
Now, we can see that TrX̃N{ρ̃(i) (0) 0X

N} =∑
ui
1
pUi

1
(ui1)

(
ui1
)
ui1 ⊗

(∑
uN

i+1
pUN

i+1
(uNi+1)WuNGN (ρN )

)
,

which is the joint input-output state of W(i),ui

N (ρN ). �
Proposition 10: Let W(i)

N and W̃(i)
N be the synthesized

quantum channels described in Eq. (29) and Proposition 9,
respectively. Then Z(W̃(i)

N )ρ = Z(W(i)
N )ρ.

Proof: From the definition of reliability parameter
for symmetric classical-quantum channels in Ref. [39] and
Eq (42), we have that, (43) and (44) shown at the bottom
of the page, where, (45) and (46) shown at the bottom of the
next page.

W̃(i),ũi

N (ρN ) =
∑
ũi−1
1

1
2i−1

(
ũi−1

1

)
ũi−1

1 ⊗
(∑
uN

pUN (uN )WuNGN (ρN ) ⊗
(∑
ũN

i+1

1
2N−i

(
(ũN ⊕ uN )GN

)
(ũN ⊕ uN )GN

))
.

(40)

ρ̃(i) =
1
2

∑
ũi∈X

(ũi) ũi ⊗ W̃(i),ũi

N (ρN ) (41a)

=
∑
ũN

1
2N
(
ũi1
)
ũi1 ⊗

(∑
uN

pUN (uN)WuNGN (ρN ) ⊗ ((ũN ⊕ uN)GN
)
(ũN ⊕ uN)GN

)
(41b)

=
∑
uN

pUN (uN )WuNGN (ρN ) ⊗
(∑
ũN

1
2N
(
ũi1
)
ũi1 ⊗

(
(ũN ⊕ uN)GN

)
(ũN ⊕ uN)GN

)
(41c)

ρ̃(i) =
∑
uN

pUN (uN )WuNGN (ρN ) ⊗
( ∑

x̃N

[uN⊕x̃NGN ]i1=ũ
i
1

1
2N
(
[uN ⊕ x̃NGN ]i1

)
[uN ⊕ x̃NGN ]i1 ⊗

(
x̃N
)
x̃N
)

=
∑
x̃N

1
2N
(
x̃N
)
x̃N ⊗

(∑
ũi
1

pUi
1
(ũi1 ⊕ [x̃NGN ]i1)

(
ũi1
)
ũi1 ⊗W [(ũi

1,0
N
i+1)GN ]i1⊕x̃i

1(ρi)

⊗
(∑
uN

i+1

pUN
i+1

(uNi+1)W [(0i
1,u

N
i+1)GN ]Ni+1(ρN−i)

))
. (42)

Z(W̃(i)
N )ρ = F (W̃(i),0

N (ρN ), W̃(i),1
N (ρN )) (43)

=
∑
x̃N

∑
ũi−1
1

pUi−1
1

(ũi−1
1 ⊕ [x̃NGN ]i−1

1 )
√
pU (0 ⊕ [x̃NGN ]i)pU (1 ⊕ [x̃NGN ]i)

2N−1
F (w(i)

0 , w
(i)
1 ) (44)
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Let xN = x̃NGN and ui−1
1 = ũi−1

1 ⊕ [x̃NGN ]i−1
1 = ũi−1

1 ⊕
xi−1

1 . Since the map (x̃N1 , ũ
i−1
1 ) �→ (xN1 , u

i−1
1 ) is a bijection,

we see that (47), shown at the bottom of the page, where

Wui
1(ρ⊗N ) is defined in Eq. (30). �

The next theorem shows that the asymptotically fraction of
good channels is equals to the mutual information between the
classical system X and the quantum system B.

Theorem 11: Let W(i)
N be the synthesized quantum chan-

nels described in Eq. (29) and Z(X |Y ) be the reliability
parameter of two Bernoulli random variables X and Y ; i.e.,
Z(X |Y ) = 2

∑
y

√
pX,Y (0, y)pX,Y (1, y). For every β < 1/2,

we have (48) and (49), shown at the bottom of the page.
Proof: Firstly, notice that

I(W̃) = I(X̃; X̃ ⊕X,B)
= H(X̃ ⊕X,B) −H(X̃ ⊕X,B|X̃)
= 1 +H(B) −H(X,B) = 1 −H(X |B). (50)

Applying Eq. (50) to Proposition 4, we can deduce that

lim
n→∞

1
2n

|{i ∈ Xn : Z(W(i)
N )ρ ≤ 2−2nβ}|

= 1 −H(X |B)ρ, (51a)

lim
n→∞

1
2n

|{i ∈ Xn : Z(W(i)
N )ρ ≥ 1 − 2−2nβ}|

= H(X |B)ρ. (51b)

Additionally, it is possible to derive Z(W(i)
N )ρ = Z(Ui|U i−1

1 )
and H(X |B) = H(X) if the output probe state of W is

independent of X . Thus, a similar result to Eq. (51) is derived

lim
n→∞

1
2n

|{i ∈ Xn : Z(Ui|U i−1
1 ) ≤ 2−2nβ}|

= 1 −H(X), (52a)

lim
n→∞

1
2n

|{i ∈ Xn : Z(Ui|U i−1
1 ) ≥ 1 − 2−2nβ}|

= H(X). (52b)

Now, define A,B,C, and D as the sets

A = {i : Z(W(i)
N )ρ ≤ 2−2nβ}, (53a)

B = {i : Z(W(i)
N )ρ ≥ 1 − 2−2nβ}, (53b)

C = {i : Z(Ui|U i−1
1 ) ≤ 2−2nβ}, (53c)

D = {i : Z(Ui|U i−1
1 ) ≥ 1 − 2−2nβ}. (53d)

From Proposition 8 andH(Ui|U i−1
1 , BN ) ≤ H(Ui|U i−1

1 ), it is
possible to see that B ∩ C is empty for sufficiently large n.
Furthermore,

lim
n→∞

|A| + |B|
2n

= lim
n→∞

|C| + |D|
2n

= 1. (54)

Therefore, the claim is derived from

lim
n→∞

|B ∪ C|
2n

= lim
n→∞

|B| + |C|
2n

= 1 − I(X ;B)ρ. (55)

and

lim
n→∞

|A ∩D|
2n

= 1 − lim
n→∞

|B ∪ C|
2n

= I(X ;B)ρ. (56)

�
As can be seen in the theorem statement and elaborated

in the proof, we had to impose an additional constraint
on the reliability parameter of Ui given the previous U i−1

1

w
(i)
0 = W [(ũi−1

1 ,0N
i )GN ]i1⊕x̃i

1(ρi)
∑
uN

i+1

pUN
i+1

(uNi+1)W [(0i
1,u

N
i+1)GN ]Ni+1(ρN−i), (45)

w
(i)
1 = W [(ũi−1

1 ,1,0N
i+1)GN ]i1⊕x̃i

1(ρi)
∑
uN

i+1

pUN
i+1

(uNi+1)W [(0i
1,u

N
i+1)GN ]Ni+1(ρN−i) (46)

Z(W̃(i)
N )ρ =

∑
xN

∑
ui−1
1

pUi−1
1

(ui−1
1 )

√
pU (0)pU (1)

2N−1
F (W(ui−1

1 ,0)(ρi)
∑
uN

i+1

pUN
i+1

(uNi+1)W [(0i
1,u

N
i+1)GN ]Ni+1(ρN−i),

W(ui−1
1 ,1)(ρi)

∑
uN

i+1

pUN
i+1

(uNi+1)W [(0i
1,u

N
i+1)GN ]Ni+1(ρN−i))

= 2
√
pU (0)pU (1)

∑
ui−1
1

pUi−1
1

(ui−1
1 )F (W(ui−1

1 ,0)
(ρ⊗N ),W(ui−1

1 ,1)
(ρ⊗N ))

= 2
√
pU (0)pU (1)F (W(i),0(ρ⊗N ),W(i),1(ρ⊗N )) = Z(W(i)

N )ρ (47)

lim
n→∞

1
2n

|{i ∈ Xn : Z(W(i)
N )ρ ≤ 2−2nβ

and Z(Ui|U i−1
1 ) ≥ 1 − 2−2nβ}| = I(X ;B)ρ, (48)

lim
n→∞

1
2n

|{i ∈ Xn : Z(W(i)
N )ρ ≥ 1 − 2−2nβ

and Z(Ui|U i−1
1 ) ≤ 2−2nβ}| = 1 − I(X ;B)ρ (49)
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to derive our result. This is because we are dealing with
asymmetric quantum reading. For symmetric quantum reading,
the constraint is not needed.

Remark 12: Subsections III-A.1 and III-A.2, and Propo-
sition 8 are easily applied to symmetric quantum channels
discrimination, having it as a particular case when pX(0) =
pX(1) = 1

2 . For the result in Theorem 11, there is no need to
introduce the new type of channel and, the asymptotic analysis
of the rate of good and bad channels does not impose anything
on Z(Ui|U i−1

1 ). The symmetric quantum reading treatment of
Theorem 11 goes similarly to Section IV of Ref. [39].

B. Polar Coding and Decoding Schemes

The encoding protocol of polar codes consists of setting
up the labels for information bits and frozen bits. The former
label is denoted by A and the latter by Ac. Thus, we use bits
uA = {ui}i∈A to transmit information. On the frozen bits,
they can be fixed for the whole transmission or can depend
on the previous ui−1

1 bits. For asymmetric channels, in our
case, the latter strategy is more suitable. See Ref. [20] for
more explanations.

The construction of a codeword is done as follows. The
source generates an uniform sequence u|A|

1 . Next, the encoder
determines the value ui, i ∈ Ac, of the frozen bits in the
ascending order by ui = λi(ui−1

1 ), where λi is a function
from {0, 1}i−1 to {0, 1}. Putting the sequence u

|A|
1 in the

information bits uA and the frozen bits in the remaining
coordinates, we have the vector uN . Now, the codeword is
given by xN = uNGN . Clearly, the code rate is R = |A|/N .
It remains to describe how the set A is determined and which
functions λi do we use.

Determining the set of information bits is crucial for the
performance of a polar code. Firstly, for a sufficiently large
code length N , we choose the cardinality of A so that the
code rate R < I(W)ρ. Next, we have to choose coordinates
to constitute set A. A common approach is to select the
coordinates with smallest reliability parameters. Formally, this
selection goes as follows. Let A be the set that for any j ∈ Ac

we have Z(W(j)
N ) ≥ Z(W(i)

N ) for all i ∈ A. Additionally,
because the construction under consideration is for asymmetric
channels, we also impose Z(Ui|U i−1

1 ), for all i ∈ A, to be
large when compared with the elements in Ac. Theorem 11
makes use of this constraint to characterize the asymptotic
rates in polar coding. If any of these two constraints are not
satisfied, we decrease the cardinality of A down to when they
are satisfied.

The functions λi used in this paper are such that optimize
the probability of frozen bit output. Let ΛAc = {Λi}i∈Ac be
random variables which are independent of each other and
input and output systems, and satisfy

pΛi [λi(u
i−1
1 )] = pUi|Ui−1

1
(1|ui−1

1 ), (57)

for all ui−1
1 ∈ {0, 1}i−1. Then, λi is a realization of the

random variable Λi. There are practical methods to generate
in practice the functions λi using pseudorandom number
generators [20], but there is no need to address it in this paper.

Considering symmetric channel discrimination, a similar
encoding scheme can be proposed. First of all, the algorithm
for choosing the frozen bits is exactly the one presented
here without the dependence of the previous bits. Thus, the
encoding map is a realization of the random variable Λ̃i, where

pΛ̃i
[u] =

1
2
, (58)

for u = 0, 1. Secondly, the proposed strategy for defining
the set A is applicable for symmetric channels discrimination.
We only need to drop the constraint on Z(Ui|U i−1

1 ). Approxi-
mation techniques in symmetric polar codes [36] can compose
the decoding scheme to derive a faster encoding scheme.

Now we describe the decoding process. Suppose the sequen-
tial decoder has obtained, up to this moment, the vector ûi−1

1

and plans to obtain ûi. Then the decoding process divides into
two cases. For the coordinates in Ac, we apply the inverse
encoding function depending on the previous coordinates.
Namely, we employ

ûi = λ−1
i (ûi−1

1 ). (59)

Notice that no measurement is implemented in this step and,
for sufficiently large N , the error probability is arbitrarily
low. See Theorem 11 for the proof. Next, we deal with the
information bits. Quantum successive cancellation decoder is
used here. First of all, this makes our decoding strategy and
analysis completely different from any decoding method used
for classical polar codes. Secondly, because of the constructive
approach adopted in the paper, with measurements created
for our specific task, the polar decoding strategy differs from
previous works on quantum polar codes.

For characterizing the error probability decay of the polar
codes constructed, we firstly show the existence of “pretty
good measurements” design to decode quantum memory cells
and having desirable error probabilities in Proposition 13.

Proposition 13: Let W : x ∈ X → ρUBx ∈ D(HUB) be a
cq channel such that

ρUBx =
∑
u∈U

pU (u) (u)uU ⊗ ρBx,u, (60)

where X is a discrete random variable, and {|u〉}u∈U is an
orthonormal basis of a finite-dimensional Hilbert space. Then,
we can construct a POVM {ΛUBx }x∈X satisfying

1 −
∑
x∈X

pX(x)Tr{Λxρx} < 1
2
Z(W). (61)

Proof: To derive our claim, we need to invoke a result
from Barnum and Knill [6]. Let pU (u) be the probability of a
system to be found in the state ρu, for u ∈ U , then there exists
a POVM {Λ∗

u}u∈U such that the average success probability
is lower bounded as

Psucc =
∑
u∈U

pU (u)Tr{ρ⊗Nu Λ∗
u}

≥ 1 −
∑
u�=v

√
pU (u)pU (v)F (ρ⊗Nu , ρ⊗Nv ). (62)
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In particular, there exists a POVM {Λu}u∈U such that the
probability of error follows the following inequality

Perr = 1 −
∑
u∈U

pU (u)Tr{ρuΛu}

≤
∑
u�=v

√
pU (u)pU (v)F (ρu, ρv). (63)

Now, we return to our proof. Assume that Wu : x→ ρx,u is a
cq channel, where x ∈ X is a realization of a discrete random
variable X . The result in Eq. (63) says that there exist POVMs
{Λx,u}x∈X satisfying

1 −
∑
x∈X

pX(x)Tr{ρx,uΛx,u} < 1
2
Z(Wu). (64)

Defining, for every u ∈ U , the POVM

Λx :=
∑
u∈U

Λx,u ⊗ (u)u, (65)

we have that (66)–(68), shown at the bottom of the page.
The equality in (i) follows from the definitions of ρx and Λx

in Eq. (60) and (65), respectively. The inequality in Eq. (64)
is used to obtain (ii). The item (iii) is just the computation
of the reliability parameter for Wu. Lastly, we use in (iv) the
fact that F (

∑
x pX(x) (x)x ⊗ σx,

∑
x qX(x) (x)x ⊗ τx) =∑

x

√
pX(x)qX(x)F (σx, τx). �

Analyzing a quantum successive cancellation decoder
employing the measurements in Proposition 13 needs the use
of a quantum union bound. Lemma 14 introduces the one used
in this paper. As it is shown in the proof of Theorem 15, the
inequality in Lemma 14 allows us to derive a bound for the
error probability in accordance to what is expected using polar
codes.

Lemma 14 ([24, Lemma 4.1]): Let ρ be a positive
semi-definite operator acting on a separable Hilbert space HB ,
let {Λi}Li=1 denote a set of positive semi-definite operators
such that 0 ≤ Λi ≤ I for all i ∈ {1, . . . , L}, and let c > 0.
Then the following quantum union bound holds

Tr{ρ} −Tr{ΠΛL · · ·ΠΛ1(ρ⊗
(
0
)
0PL)ΠΛ1 · · ·ΠΛL}

≤ (1 + c)Tr{(I − ΛL)ρ}

+ (2 + c+ c−1)
L−1∑
i=2

Tr{(I − Λi)ρ}

+ (2 + c−1)Tr{(I − Λ1)ρ}, (69)

where |0PL〉 ≡ |0P1〉 ⊗ · · · ⊗ |0PL〉 is an auxiliary state
of L qubit probe systems and ΠΛi is a projector satisfying

Tr{ΠΛi(ρ⊗
(
0
)
0PL)} = Tr{Λiρ}. In particular, for any set of

positive semi-definite operators, there exists a set of projectors
satisfying Eq. (69).

An important attribute of polar codes is the error probability
decay when the length of the code grows. We show in
Theorem 15 that error probability decays exponentially in the
square root of the code length. This result motivates the use
of polar codes in practical protocols devoted to discriminate
quantum memory cells.

Theorem 15: Let {Wx}x∈X be a quantum memory cell and
γ ∈ R a positive constant. Then there exists a polar code
with parameters (N,K,A) such that the error probability is
bounded above by

Pe(N,K,A) ≤ γ
∑
i∈A

Zρ(W(i)). (70)

In particular, for any fixed R = K/N < I(W ) and
β < 1/2, block error probability for polar coding under
sequential decoding satisfies

Pe(N,K) = o(2−N
β

), (71)

where o(·) is the little-O notation from complexity theory.
Proof: First of all, suppose we have access to an auxiliary

system |0PN 〉 = |0P1〉 ⊗ · · · ⊗ |0PN 〉. Lemma 14 guaran-
tees the existence of projective measurements obtained by
extending the pretty good measurements of Proposition 13.
We denote the projective and pretty good measurements by
the sets {ΠΛi}Ni=1 and {Λi}Ni=1, respectively. Then, using these
projective measurements on a quantum successive cancellation
strategy for the information bits, a bound for the error prob-
ability is obtained as follows (72)–(74), shown on the next
page, where c is the constant in Lemma 14, and the inequality
is obtained from the definition of a quantum successive cancel-
lation decoder and the inequality from Lemma 14. Distributing
and rearranging the sums, the following equality holds (75),
shown on the next page.

Continuing, (76) and (77) shown on the next page, where the
first equality follows from Eq. (31). For the second equality,
we have used the fact that [39]

∑
x pX(x)Tr{Axρx} =

Tr
{(∑

x (x)x ⊗ Ax

)(∑
x′ pX(x) (x′)x′ ⊗ ρx′

)}
. Now,

from the definition of synthesized channels present in
Eq. (30) the next equality is produced (78), shown on the
next page.

Now, the number of terms in the previous sum can be
reduced by means of a simple observation. Since the frozen

1 −
∑
x∈X

pX(x)Tr{Λxρx} (i)
= 1 −

∑
x∈X

pX(x)
∑
u∈U

pU (u)Tr{Λx,uρx,u} =
∑
u∈U

pU (u)
∑
x∈X

pX(x)
(
1 − Tr{Λx,uρx,u}

)
(66)

(ii)
<

∑
u∈U

pU (u)
1
2
Z(Wu)

(iii)
=

∑
x,x′∈X
x �=x′

√
pX(x)pX(x′)F

(∑
u∈U

pU (u) (u)u⊗ ρx,u,
∑
u∈U

pU (u) (u)u⊗ ρx′,u

)
(67)

(iv)
=

∑
x,x′∈X
x �=x′

√
pX(x)pX(x′)F

(
ρx, ρx′

)
=

1
2
Z(W) (68)
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Pe(N,K,A) = 1 −
∑
uN

pUN (uN )Tr{ΠΛ
uN

WuN

(ρN ) ⊗ (0PN

)
0PN} (72)

= 1 −
∑
uN

pUN (uN )Tr{ΠBN

Λ
u

N−1
1 uN

· · ·ΠBN

Λu1
WuN

(ρN ) ⊗ (0PN

)
0PN ΠBN

Λu1
· · ·ΠBN

Λ
u

N−1
1 uN

} (73)

≤
∑
uN

pUN (uN )
(
(1 + c)Tr

{
(I − ΛB

N

uN−1
1 uN

)WuN

(ρN )
}

+ (2 + c+ c−1)
N−1∑
i=2

Tr
{

(I − ΛB
N

ui−1
1 ui

)WuN

(ρN )
}

+ (2 + c−1)Tr
{
(I − ΛB

N

u1
)WuN

(ρN )
})

(74)

RHS of Eq. (74) = (1 + c)
∑
uN

pUN (uN )Tr
{

(I − ΛB
N

uN−1
1 uN

)WuN

(ρN )
}

+ (2 + c+ c−1)
N−1∑
i=2

pU (ui)
∑
ui−1
1

pUi−1
1

(ui−1
1 )Tr

{
(I − ΛB

N

ui−1
1 ui

)
∑
ui−1
1

pUN
i+1

(uNi+1)WuN

(ρN )
}

+ (2 + c−1)
∑
u1

pU (u1)Tr
{

(I − ΛB
N

u1
)
∑
ui−1
2

pUN
2

(uN2 )WuN

(ρN )
}

(75)

RHS of Eq. (75) = (1 + c)
∑
uN

pUN (uN)Tr
{

(I − ΛB
N

uN−1
1 uN

)WuN
1 (ρN )

}

+ (2 + c+ c−1)
N−1∑
i=2

pU (ui)
∑
ui−1
1

pUi−1
1

(ui−1
1 )Tr

{
(I − ΛB

N

ui−1
1 ui

)Wui
1(ρN )

}

+ (2 + c−1)
∑
u1

pU (u1)Tr
{

(I − ΛB
N

u1
)Wu1(ρN )

}
(76)

= (1 + c)
∑
uN

pUN (uN)Tr
{( ∑

uN−1
1

(
uN−1

1

)
uN−1

1 ⊗ (I − ΛB
N

uN−1
1 uN

)
)

( ∑
uN−1
1

pUN−1
1

(uN−1
1 )

(
uN−1

1

)
uN−1

1 ⊗WuN
1 (ρN )

)}

+ (2 + c+ c−1)
N−1∑
i=2

pU (ui)Tr
{(∑

ui−1
1

(
ui−1

1

)
ui−1

1 ⊗ (I − ΛB
N

ui−1
1 ui

)
)

( ∑
ui−1
1

pUi−1
1

(ui−1
1 )

(
ui−1

1

)
ui−1

1 ⊗Wui
1(ρN )

)}

+ (2 + c−1)
∑
u1

pU (u1)Tr
{

(I − ΛB
N

u1
)Wu1(ρN )

}
(77)

RHS of Eq. (77) = (1 + c)
∑
uN

pUN (uN )Tr
{( ∑

uN−1
1

(
uN−1

1

)
uN−1

1 ⊗ (I − ΛB
N

uN−1
1 uN

)
)
W(N),uN (ρN )

}

+ (2 + c+ c−1)
N−1∑
i=2

pU (ui)Tr
{(∑

ui−1
1

(
ui−1

1

)
ui−1

1 ⊗ (I − ΛB
N

ui−1
1 ui

)
)
W(i),ui(ρN )

}

+ (2 + c−1)
∑
u1

pU (u1)Tr
{
(I − ΛB

N

u1
)W(1),u1(ρN )

}
(78)
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Fig. 8. Analysis of fidelity for the pure probe state.

bits are obtained by using a classical function, there is no
need to make a measurement on the frozen bits position; i.e.,
ΛB

N

ui−1
1 ui

= I for any i ∈ Ac. This leads to

RHS of Eq. (78) <
(1 + c+ c−1)

2

∑
i∈A

Zρ(W(i))

= o(2−N
β

), (79)

where the definition of reliability parameter for synthesized
channels have been applied. The fact that this sum equals to
o(2−N

β

) is a consequence of Proposition 4. �
When one considers this decoding scheme for symmetric

quantum reading, the same result as in Theorem 15 is obtained.
Thus, the strategy used is the same, and there is only the
need to properly design a pretty good measurement for the
symmetric channels under consideration.

IV. PROBE STATE ANALYSIS

We are going to analyze how reliability parameter and infor-
mation rate depend on the probe state used. The comparison
will be between pure and entangled probe states. In both
cases, a parameter of the probe states is maximized to give
the optimal value for the quantity under consideration.

First of all, we adopt

|ψ〉 =
√

1 − q |0〉 + e−iφ
√
q |1〉 (80)

as the pure probe state, where q ∈ [0, 1] and φ ∈ [0, 2π).
Because of the symmetric action of the AD channel with
respect to the z-axis in the Bloch sphere representation, we can
assume, without loss of generality, that φ = 0. Secondly, the
entangled state used as probe is given by

|Ψxz〉 = (ZzXx ⊗ I) |Φ〉 , (81)

where z, x ∈ X , and |Φ〉 =
√

1 − q |00〉 +
√
q |11〉, with

q ∈ [0, 1]. Notice that for q = 1/2, we have all four Bell
states. Using these pure and entangled states, we can compare
their goodness for quantum reading assisted by polar codes.
This comparison is made by optimizing the quantity under
consideration with respect to q.

Remark 16: Before presenting some of the computations
and analysis obtained from them, we need to explain the
notation used here. As described in Section II-B, The evolution
of an AD channel depends on the decay probability associated
with the parameter u of the channel. Since we are dealing with
two possible values of u, u0, u1 = {0, 1}, there are two values
for the decay probability to analyze. These values of the decay
probability can be any value γ ∈ [0, 1]. So, to not overcrowd
our notation, computations, and figures, we have opted to use
u0, u1 in this section instead of γ(u0), γ(u1). Since we do not
process the values of u0 and u1, there is no confusion in what
follows.

Now, consider pure probe states. Substituting Eq. (80) into
Eq. (3), it is possible to see that (82) and (83), shown at the
bottom of the page.

Now, the minimal value of the reliability parameter with
respect to q can be computed. First of all, notice that the
probability law pX is arbitrary. Therefore, the conclusions
derived below need to be independent of such a choice. So,
we have opted to study a normalized version of the reliability
parameter given by

Z(W)(ψ)ψ = min
q

Z(W)(ψ)ψ

2
√
q(1 − q)

= min
q
F (Wu0((ψ)ψ),Wu1((ψ)ψ)). (84)

So, the procedure goes as follows. For every pair (u0, u1),
we compute the value of q that minimizes the normalized

Wu0((ψ)ψ) =
(

1 − (1 − u0)q
√

(1 − u0)q(1 − q)√
(1 − u0)q(1 − q) (1 − u0)q

)
(82)

Wu1((ψ)ψ) =
(

1 − (1 − u1)q
√

(1 − u1)q(1 − q)√
(1 − u1)q(1 − q) (1 − u1)q

)
(83)
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Fig. 9. Analysis of fidelity for the half-probed state |Ψ1,0〉.

Fig. 10. Analysis of fidelity for the half-probed state |Ψ0,0〉.

reliability parameter (or fidelity). Now, considering the pure
probe state, it is shown in Fig. 8 the minimal values
Z(W)(ψ)ψ. The value of q giving minimum fidelity is q = 1,
which turns the optimal pure probe state to be the excited
state |1〉.

Considering mixed probe states, the same analysis can be
done. However, there is a difference on how to probe the
channel. Since we have an entangled bipartite state, it can be
used to probe the channel once or twice. The channel output
for probing once is given by (85), shown at the bottom of the
next page, where i = 0, 1 and δab is the Kronecker delta, and
for probing twice we have (86), shown at the bottom of the
next page.

For each value of x, z, we minimize the fidelity with respect
to q considering these two cases, which we call half-probed
and full-probed cases. The first one corresponds to Eq. (85)
and the second to Eq. (86). Our first description is over the
half-probed. See Figs. 9 and 10 below. Notice that we have
shown just the instance z = 0, since the result for z = 1 is
the same.

Two conclusions can be obtained from Figs. 9 and 10.
Firstly, the shape of the fidelity of half-probed state |Ψ10〉 is
the same as for the pure probe state. This is clear from the fact
that the value of q giving minimum fidelity is q = 0, which
turns the probe state to be |1〉3. As the second point, we see in

3For q = 0, we have that |Ψ10〉 = X ⊗ I |Φ〉 = |10〉.

Fig. 11. Fidelity of pure state |1〉 minus fidelity of half-probed state |Ψ0,0〉.

Figs. 9 and 10 that half-probing with the state |Ψ00〉 can give
some improvement in the channel discrimination task. So, even
though the shape of these two figures looks similar, they are
not the same. The improvement obtained for probing with the
state |Ψ00〉 is obtained when q �= 1. However, the difference
is not so significant, making the use of |Ψ00〉 justifiable only
if the entanglement cost is negligible.

We have shown the distribution of q, for every pair (u0, u1),
which minimizes the fidelity for three cases, a pure probe
state and two half-probed states. The state |1〉 is the optimal
probe candidate for the pure probed state over every pair
(u0, u1). The same result is produced for half-probed state
|Ψ10〉. This means that the optimization strategy gives the
value q = 0 for every pair (u0, u1), which implies the same
probing strategy as for the pure probed state, and, therefore,
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Fig. 12. Analysis of fidelity for the full-probed state |Ψ0,0〉.

Fig. 13. Analysis of fidelity for the full-probed state |Ψ1,0〉.

same fidelity. One can see this in Figs. 8 and 9. Probing with
half-probe state |Ψ00〉 we obtain a different result. As one
can see in Fig. 10b, there are pairs of (u0, u1) where the
optimal value of q is different of 1. This region is the one we
obtain improvements when compared with the pure probed
state and half-probed state |Ψ10〉. Such improvements are not
so significant, as Fig. 11 shows. Notice that the caption of
Fig. 11 states “pure probe state”, but the same result holds by

replacing the pure probe state with the half-probed state |Ψ10〉,
since the optimal fidelities of these two probing strategies are
the same.

The subsequent analysis is over a full-probed state. In oppo-
sition to what has been shown in the half-probed case, there
is no improvement in using full-probed |Ψ00〉. Fig. 12 shows
that q = 1 gives the minimal value of fidelity in this case.
This leads to the fidelity having values equal to the square

Wui ⊗ idA2((Ψxz)Ψxz) =
[(

(1 − q)δ0x (0) 0A2 + qδ1x (1) 1A2

)
+ui

(
(1 − q)δ1x (0) 0A2 + qδ0x (1) 1A2

)]
(0) 0A1

+(δ0z − δ1z)
√

(1 − ui)q(1 − q)
[
δ0x (0) 1A2 + δ1x (1) 0A2

]
(0) 1A1

+(δ0z − δ1z)
√

(1 − ui)q(1 − q)
[
δ1x (0) 1A2 + δ0x (1) 0A2

]
(1) 0A1

+(1 − ui)
[
(1 − q)δ1x (0) 0A2 + qδ0x (1) 1A2

]
(1) 1A1 (85)

Wu0 ⊗Wu1((Ψxz)Ψxz) = [(1 − q)δ0x + u0(1 − q)δ1x] (0) 0A1 ⊗ (0) 0A2

+q(u0δ0x + δ1x) (0) 0A1 ⊗ [u1 (0) 0A2 + (1 − u1) (1) 1A2 ]

+(−1)z
√

(1 − u0)(1 − u1)q(1 − q)[δ0x (0) 1A1 + δ1x (1) 0A1 ] ⊗ (0) 1A2

+(−1)z
√

(1 − u0)(1 − u1)q(1 − q)[δ0x (1) 0A1 + δ1x (0) 1A1 ] ⊗ (1) 0A2

+(1 − u0)qδ0x (1) 1A1 ⊗ [u1 (0) 0A2 + (1 − u1) (1) 1A2 ]
+(1 − u0)(1 − q)δ1x (1) 1A1 ⊗ (0) 0A2 (86)
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Fig. 14. Fidelity of full-probed state |Ψ1,0〉 minus fidelity of full-probed
state |Ψ0,0〉.

of the pure probe state. Thus, optimizing the full-probed
strategy using |Ψ00〉 leads to the same result as for pure
probe state. Lastly, we consider the full-probed strategy using
|Ψ10〉. We have q = 0 giving the optimal value of fidelity.
A consequence of this is probing the quantum channel twice
using states |0〉 and |1〉, respectively, in each round. Since
for pure probes, using the state |1〉 is optimal, then the
round when we probe with |0〉 contributes by increasing the
fidelity. Therefore, the optimal fidelity obtained using full-
probed |Ψ10〉 is much higher than using full-probed |Ψ00〉,
as can be seen in Fig. 14.

As an overall picture, we can conclude the following. The
best optimized probing strategy uses the half-probed state
|Ψ00〉 with the distribution of q, for every pair (u0, u1),
given by Fig. 10b. However, since the improvement is not
so significant, see Fig. 11, and manipulating entangled state is
typically costly, a sub-optimal strategy uses the pure state |1〉
in each round.

The previous results can be extended to the mutual infor-
mation between the classical system X and the quantum
channel output system B. In Proposition 8 we have seen that
information rate and reliability parameter are connected in a
way that when the information rate is close to its maximum,
then the reliability parameter is close to its minimum, and
vice versa. Thus, we can conclude the following. For channels
with values of u0 and u1 close, the mutual information will be
close to zero. On the other hand, when one of the ui, i = 0, 1,
is close to the unit and the other is close to zero, the mutual
information attains its maximum possible value. Furthermore,
probing the quantum memory cell using the half-probed |Ψ00〉
strategy is again the optimal procedure for quantum reading.

V. FINAL REMARKS

We have demonstrated a new polar coding scheme for
quantum memory cell discrimination. To achieve this goal,
we had to introduce new definitions of information rate and
reliability parameter of a quantum channel. The polarization
phenomenon produced by channel combining and analyzed in
the channel splitting part has been shown for these two quanti-
ties. This was established due to an inequality connecting both
of them. In the channel splitting part, we have also introduced
the synthesized channels created by the polar coding. We have
shown that when the number of channels is arbitrarily large,
the set of synthesized channels can be divided into two groups,
good and bad channels. Additionally, the fraction of such

channels is related to the mutual information of the original
quantum channel in consideration. This result has motivated us
to construct an optimal encoding scheme for quantum reading.
A decoding scheme was introduced and analyzed, as well.
Using an existence proof of pretty good measurements given
in this paper and a previous quantum union bound from the
literature, we have shown that our decoding scheme has error
probability that decays exponentially fast with the square root
of the code length. In the end, optimizations over probe states
are investigated, leading to the conclusion that, in general,
half-probed states are the best choice.

This paper has given some future investigation topics.
A question that can be stated is how to apply polar cod-
ing to more general classical and quantum systems. First
of all, we can extend the binary discrimination to a d-ary
discrimination task. The mathematical equivalence of this is
considering a classical system with a larger alphabet. Some
classical polar codes have been proposed in the literature and,
with the proper adjustments, can be applied here. Secondly,
we can consider the set of quantum memory cells to be
composed of generalized amplitude damping channels. This
class of channel can be seen as a second-order approximation
of classical digital memory, where the model considers the
environment temperature. In this open question, the task would
be to find the optimal probe state for channel discrimination.
Third, and more important, how can one construct efficient
polar codes for Gaussian bosonic channel discrimination. This
is still a research topic even for classical Gaussian channels.
The Gaussian bosonic channel is the ultimate goal as a quan-
tum channel model for classical digital memories. Because
this class of channels is defined over continuous variables,
attacking it needs to be two-fold. Firstly, the polar code scheme
has to take into account the channel to prove the polarization
phenomenon. Secondly, an optimization over the probe states
is necessary under the energy constraint. These two approaches
are not independent, which makes the task even more difficult.
Lastly, we do not know if there exists a provable optimal
probe state in the context above. Uniqueness also needs to
be verified.
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