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A B S T R A C T   

Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic ac-
tivities with arising impacts upon urban air quality. To date, these air quality changes associated with lockdown 
measures have typically been assessed using limited city-level regulatory monitoring data, however, low-cost air 
quality sensors provide capabilities to assess changes across multiple locations at higher spatial-temporal reso-
lution, thereby generating insights relevant for future air quality interventions. The aim of this study was to 
utilise high-spatial resolution air quality information utilising data arising from a validated (using a random 
forest field calibration) network of 15 low-cost air quality sensors within Oxford, UK to monitor the impacts of 
multiple COVID-19 public heath restrictions upon particulate matter concentrations (PM10, PM2.5) from January 
2020 to September 2021. Measurements of PM10 and PM2.5 particle size fractions both within and between site 
locations are compared to a pre-pandemic related public health restrictions baseline. While average peak con-
centrations of PM10 and PM2.5 were reduced by 9–10 μg/m3 below typical peak levels experienced in recent 
years, mean daily PM10 and PM2.5 concentrations were only ~1 μg/m3 lower and there was marked temporal (as 
restrictions were added and removed) and spatial variability (across the 15-sensor network) in these observa-
tions. Across the 15-sensor network we observed a small local impact from traffic related emission sources upon 
particle concentrations near traffic-oriented sensors with higher average and peak concentrations as well as 
greater dynamic range, compared to more intermediate and background orientated sensor locations. The greater 
dynamic range in concentrations is indicative of exposure to more variable emission sources, such as road 
transport emissions. Our findings highlight the great potential for low-cost sensor technology to identify highly 
localised changes in pollutant concentrations as a consequence of changes in behaviour (in this case influenced 
by COVID-19 restrictions), generating insights into non-traffic contributions to PM emissions in this setting. It is 
evident that additional non-traffic related measures would be required in Oxford to reduce the PM10 and PM2.5 
levels to within WHO health-based guidelines and to achieve compliance with PM2.5 targets developed under the 
Environment Act 2021.   

1. Introduction 

Ambient air pollution is a major global environmental and health 
concern which exerts direct and indirect health, environmental and 

economic costs upon urban areas in the UK [1]. Exposure to Particulate 
Matter (PM) is particularly harmful for human health with consistent 
epidemiological evidence for an association with increased risk of acute 
and chronic diseases including asthma, coronary heart disease, stroke, 

* Corresponding author. 
E-mail address: felix.leach@eng.ox.ac.uk (F.C.P. Leach).  

Contents lists available at ScienceDirect 

Building and Environment 

journal homepage: www.elsevier.com/locate/buildenv 

https://doi.org/10.1016/j.buildenv.2023.110330 
Received 12 October 2022; Received in revised form 14 April 2023; Accepted 17 April 2023   

https://deposit.ora.ox.ac.uk/concern/datasets/uuid_3ea5302b-c151-4c35-a4b7-0269c36fbd9c?locale=en
https://deposit.ora.ox.ac.uk/concern/datasets/uuid_3ea5302b-c151-4c35-a4b7-0269c36fbd9c?locale=en
https://deposit.ora.ox.ac.uk/concern/datasets/uuid_3ea5302b-c151-4c35-a4b7-0269c36fbd9c?locale=en
https://deposit.ora.ox.ac.uk/concern/datasets/uuid_3ea5302b-c151-4c35-a4b7-0269c36fbd9c?locale=en
https://deposit.ora.ox.ac.uk/concern/datasets/uuid_3ea5302b-c151-4c35-a4b7-0269c36fbd9c?locale=en
https://deposit.ora.ox.ac.uk/concern/datasets/uuid_3ea5302b-c151-4c35-a4b7-0269c36fbd9c?locale=en
mailto:felix.leach@eng.ox.ac.uk
www.sciencedirect.com/science/journal/03601323
https://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2023.110330
https://doi.org/10.1016/j.buildenv.2023.110330
https://doi.org/10.1016/j.buildenv.2023.110330
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2023.110330&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Building and Environment 237 (2023) 110330

2

lung cancer and all-cause mortality [2–4]. In addition to the impacts on 
physical health, there is a growing body of literature linking PM air 
pollution to adverse cognitive and mental health outcomes [5,6]. Recent 
evidence suggests that there are health benefits to be gained from re-
ductions in PM to levels lower than the existing UK regulatory thresh-
olds and this is reflected in WHO 2021 Global Air Quality Guidelines [7, 
8]. 

The coronavirus disease (COVID-19) caused by Severe Acute Respi-
ratory Syndrome Coronavirus 2 (SARS-CoV-2) led to a global pandemic 
with major economic and societal consequences. Following the decla-
ration of a global pandemic on 11 March 2020 [9], successive countries 
rapidly adopted emergency public health measures including social 
distancing, amenity closures and travel restrictions. These measures in 
turn led to unprecedented changes in industrial, commercial, and soci-
etal activity and behaviours. Reduced transport activity, for example, 
has been linked by studies across the globe to major reduction in ground 
level primary air pollutant emissions an ambient NO2 concentrations 
[10–12]. Direct before and after comparisons undertaken at city or 
regional levels can be misleading, given the influences of seasonal 
trends, meteorological conditions, and urban form upon local pollutant 
concentrations within densely populated city settings [13]. In addition, 
the influence upon PM concentrations of primary and secondary con-
tributions and a wider range of emissions sources, further decouple 
ambient PM levels from changes in transport-related emissions, with 
evidence for minimal changes in many cities. Application of machine 
learning approaches to account for changes in weather and seasonal 
trends have suggested actual increases in PM concentrations during 
lockdown periods in London [14] and Oxford [15]. However, few 
studies have considered impacts of lockdown measures on air quality 
when using sensors at multiple city locations, enabling insights to be 
generated regarding the spatial impacts of a range of lockdown mea-
sures upon real-time particulate pollutant concentrations [16]. 

Low-cost air quality sensors, offer utility to enhance the spatial 
coverage relative to high-quality (regulatory grade) measurements 
which have historically been domain of expensive monitoring equip-
ment [17]. In this context, low-cost sensors might be ones that cost of 
order low thousands of dollars, rather than regulatory grade equipment 
which would cost of order high-tens or even hundreds of thousands of 
dollars. Cheaper sensors, to the order of several hundred dollars, are 
available, but these typically might not have the durability (and power) 
to be deployed in the field unattended for years [18,19]. Sensor tech-
nologies provide options for capturing the impacts of air quality in-
terventions and hot-spot assessment [20], providing flexibility, minimal 
infrastructure needs and, therefore suitability for evaluating 
spatio-temporal variability in pollutant levels [21–23]. In this work 
fixed, permanently powered, sensors are used, but technology has 
advanced such that alternatives such as wearable sensors are also 
available [24]. In addition, advances in sensor technology offer poten-
tial for supplementing regulatory monitoring, modelling and the source 
attribution evidence base for a better-informed exposure estimates and 
policy decisions [25–27]. This is particularly important for future data 
capture given the Environment Act Population Exposure Reduction 
target for PM2.5 concentrations (a reduction in PM2.5 population expo-
sure of 35% compared to 2018 to be achieved by 2040), alongside 
revised UK Air Quality Objectives [28]. Few studies have utilised 
low-cost sensor technology to assess impacts of COVID-19 in urban areas 
and to the best of the authors’ knowledge none have been undertaken in 
medium-sized cities such as Oxford [29,30]. 

This study investigates changes in PM (PM10 and PM2.5) concentra-
tions for successive phases of COVID-19-related restrictions using high- 
spatial resolution data generated by a validated low-cost sensor network 
in Oxford, UK, The validation is achieved using a Random Forest Ma-
chine Learning technique for field calibration, achieving high levels of 
confidence in the data developed in the authors’ previous work [31]. 
Comparison of changes in PM occurring at multiple locations in this real 
world natural experimental study will inform prospective city-level air 

quality interventions and therefore present opportunities to benefit 
human health. 

2. Methodology 

2.1. Study setting 

Oxford is a dynamic international city, with a population of 152,450 
residents (ONS 2019 mid-year estimate) and 32,930 students enrolled at 
two universities [32]. At least 46,000 people commute into the city for 
work on a daily basis [33]. Oxford has recognised challenges of poor air 
quality and in 2010, the whole city was declared an Air Quality Man-
agement Area (AQMA) [34]. Subsequently in 2014, a central Low 
Emission Zone (LEZ), focussing on bus emissions [20], was introduced 
and then further extended in 2020 [34]. In 2021, the city council 
formally committed to a set of policy actions outlined in its revised Air 
Quality Action Plan [34], with the introduction of a central ‘Zero 
Emission Zone’ in February 2022 [35]. 

Long-term trends in PM levels in Oxford have been characterised 
from measurements at two locations; Oxford High Street, a roadside 
location locally operated by Oxford City Council and Oxford St Ebbe’s 
(UKA00518), an Automated Urban and Rural Network (AURN) urban 
background location. In 2019, the annual mean PM2.5 concentration was 
9 μg/m3 at the urban background which exceeds the 2021 WHO Global 
Air Quality Guideline recommendation of 5 μg/m3 [34] but is within the 
UK Air Quality Objective of 10 μg/m3 [36]. To date, few policy measures 
have been adopted within Oxford to specifically address PM emissions, 
which have reduced only marginally in recent years. To illustrate, Fig. 1 
presents monthly mean PM concentrations at roadside and urban 
background for the period 2014–2021; the trend in each is shown by an 
ordinary least squares (OLS) regression line. Fig. 1 shows that the rate of 
decline in PM levels is around 25% over 8 years and similar at both 
urban background and roadside. Considering the local policy efforts to 
reduce road transport emissions over this period, such as the AQMA, 
LEZ, and ZEZ, this slow rate of decline is indicative of other, important 
non-road transport sources of PM influencing local concentrations. 
Source apportionment studies in Oxford have estimated that road 
transport accounts for ~10.4% PM10 emissions and 9.8% of PM2.5 
emissions respectively, with domestic combustion being the largest 
source [34]. Natural PM make up less than 9% for both PM10 and PM2.5. 

2.2. Calculation of baseline particle concentrations 

Baseline pre-pandemic PM levels were established using hourly 
measured data between 2016 and 2019 from the St Ebbe’s urban 
background reference instrumentation. Fig. 1 showed that trends in both 
PM10 and PM2.5 in recent years were broadly similar, making this a 
suitable baseline for pre-pandemic PM. 

Using this baseline dataset at a 1-h time resolution, the daily mean 
and an estimate of daily peak concentrations were derived for both PM10 
and PM2.5. The daily mean metric is recommended as a short-term guide 
level for PM [8], and in legally binding objectives [37] and limit value 
[38]. Peak concentrations were defined as the 95th percentile of daily 
1-h concentrations as this excludes outliers from the sensor datasets 
which are known to occur and coincided with periods of intense local 
emissions activity (e.g. rush hour) and periods of higher domestic fuel 
use (e.g. morning/evening). It was hypothesised that lockdown events 
may affect peak concentrations arising from some of these sources, 
particularly rush hour events due to a substantial reduction in traffic. 

Daily mean and peak PM10 and PM2.5 concentrations were calculated 
daily for the calendar years of 2016-19 and subsequently averaged for 
each ordinal calendar day to provide a daily marker of pre-pandemic 
concentrations for each metric in recent years. Fig. 2 presents a time 
series of the pre-pandemic daily mean PM10 and PM2.5 concentrations 
and Fig. 3 pre-pandemic peak concentrations (95th percentile of daily 1- 
h mean concentrations) with both displaying large day-to-day variation 
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throughout the year and some degree of seasonality. This variability 
limits their utility as an indicator of pre-pandemic mean and peak PM 
values for comparison with those observed during COVID-19 restriction 
events. To improve this as a marker for pre-pandemic concentrations, a 
monthly (28-day) rolling mean was therefore calculated (orange lines). 
The rolling average technique both reduced the day-to-day variation and 
minimised the lag artefact commonly found with standard moving/ 
rolling average techniques and facilitates the comparisons of daily pre- 
pandemic baseline vs. daily concentrations during COVID-19 restric-
tion events. 

2.3. Calculation of changes in particle concentrations during COVID-19 
restriction periods 

Differences in the levels of PM10 and PM2.5 measured during COVID- 
19 restriction events compared to the pre-pandemic baseline (on 
equivalent ordinal days) were used to evaluate the impact of COVID-19 
restrictions, whilst accounting for seasonal trends. The statistical sig-
nificance of deviations identified was tested using a non-parametric 
Wilcoxon signed test [39]. A non-parametric test was chosen because 
air quality datasets do not generally conform to a normal distribution 
and, in addition, the sample size of the datasets being tested were small 
when disaggregated to a COVID-19 lockdown event level, see Table 1. 

2.3.1. COVID-19 restriction events 
Eleven key COVID-19 emergency restriction events occurring during 

the study period were identified (Table 1). The events chosen were those 
expected to have greatest impact upon local air quality. Events lasting 
less than 10 days long were aggregated into groups of longer duration. 
Event details, including start/end dates were obtained from official 
national and local sources [40–42]. 

Despite the definitive dates presented in Table 1, the effect of 
advanced warning of events (from government authorities) upon the 
behaviour of residents is noteworthy, particularly in the transition from 
one lockdown state to the next. This is illustrated in Fig. 4, which shows 
the traffic levels on the High Street in central Oxford throughout the 
period of the study. It is clear that following escalation of the national 
alert level, and increasing media attention, prior to the introduction of 
the first national lockdown (event ‘b’ in Table 1), the traffic levels reduce 
sharply as residents made changes in travel behaviours even before the 
official enforcement date of 23 March 2020. 

2.4. Particle sensors 

A network of Praxis Urban sensor systems supplied by South Coast 
Science Ltd was used in this work [43]. This sensor platform was 
equipped with an Alphasense N3 optical particle counter (OPC) [44]. 
This sensor was chosen for a variety of reasons, firstly, the unit cost of 
the OPC-N3 is relatively low (~£250) when compared to reference grade 
OPC instruments. Secondly, it is currently the low-cost OPC sensor with 
the most independent testing and validation in the scientific literature 
[31,45]. Thirdly, access to raw sensor information (voltages) available 

Fig. 1. Monthly mean PM10 and PM2.5 concentrations and the OLS trend line at two locations in Oxford 2014–2021. (a) PM10 High St, (b) PM10 St Ebbe’s, (c) PM2.5 
St Ebbe’s. 
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remotely enables high-fidelity, independent data analysis and data 
quality assurance processes to be undertaken. This counter categorises 
the sensed particles into ‘bins’ of particle size based on the extent of laser 
light scattering to derive a mass fraction of PM10 and PM2.5 [26,43,44]. 
The sample logging rate of the OPC sensor was set to 10 s intervals (0.1 
Hz). Data were then aggregated to a 15-min mean for comparison with 
the reference measurements and 1-h mean for comparison with baseline 
measurements. Sensor data were aggregated to a 15-min mean resolu-
tion, from the initial logging interval of 10 s, to ensure conformity with 
the time datum for the AURN datasets. 

2.5. Reference measurements 

To assess the performance of the Praxis sensors, reference measure-
ments of ambient PM10 and PM2.5 were obtained from the Defra, Oxford 
St Ebbe’s AURN monitoring station (UKA00518)  [46] and the Oxford 
City Council managed Oxford High Street monitoring station [47]. Ox-
ford St Ebbe’s employs a Palas Fidas 200 fine dust aerosol optical 
spectrometer [48]. The Fidas method is a designated, type approved 
reference instrument for regulatory compliance monitoring [49]. The 
Oxford High Street monitoring station employs a TEOM 1400 fine dust 
mass measurement unit with an 8500 Filter Dynamics Measurement 
System (FDMS) fitted. The FDMS method is a designated as equivalent to 
the reference method [50]. Reference measurements were obtained at 
15-min average resolution by special arrangement with the network 
operators for the period 1st January 2020 to 18th October 2021. The 
quality assurance status of the AURN datasets was valid/verified. Sensor 
and reference method sample inlets were co-located within 2 m for the 
study duration and at the same height. 

2.6. Sensor locations 

The Praxis sensors were deployed at 15 locations around Oxford from 
January 2020 onwards. Deployment at some sites was delayed by the 
onset of the public health restrictions associated with the pandemic, but 
the full network was operational from August 2020. A map of Praxis 
sensor locations and the pre-existing regulatory reference measurement 
location is shown in Fig. 5. 

Sensor based air quality monitoring continued uninterrupted until 
September 2021 at the 15 locations listed in Table 2. Two sensors were 
co-located with the regulatory grade reference instrumentation. A list of 
sensor location names and environment types is presented in Table 2. 

Environment type attribute describes the classification of the sensor 
location using the nomenclature used in the UK [51]. The nomenclature 
was extended for this work to include an ‘urban intermediate’ classifi-
cation for sensor locations which did not strictly conform to either 
‘urban traffic’ nor ‘urban background’ classifications e.g. were >12 m 
from the side of a road with significant traffic but remained likely to be 
influenced by emissions from that adjacent road. 

2.7. Field calibration of sensors using a random forest model 

Sensor data were calibrated using an extension to the techniques 
previously described by Bush et al. [31] which proposed a simple and 
flexible machine learning (ML) method to attenuate for sensor baseline 
offset and multiple environmental interferences acting upon an OPC 
sensor signal. The method incorporates a combination of re-weighted 
regression (adaptive iteratively reweighted Penalized Least Squares - 
AIRPLS) [52] and a random forest (RF) regression [53] to limit, 
respectively, sensor offset and environmental interferences (including 
other sensor characteristics such as sample flow rate and raw electrode 
voltage readings). The method has been proven to deliver good results 
when trained with reference data at an urban background location with 
coefficient of determination values for the relationship between cor-
rected sensor and reference method of 0.79 (PM10) and 0.91 (PM2.5) 
using the ML validation dataset. 

2.7.1. RF correction model optimisation 
To optimise the method previously presented by Bush et al., for 

application under the conditions experienced in this study, sensitivity 
tests were conducted on the RF correction model. These informed the 
best configuration of the model for field calibration. Model re-training 
was conducted on 60% of the co-located sensor compared to reference 
method sample population available for this study. The performance of 
the model was then tested/validated on the remaining 40% with both 
samples selected at random. The sensitivity tests showed that:  

1. To achieve satisfactory levels of uncertainty in the corrected dataset, 
model training using the full sample population of the study was 
required, March 2020 to September 2021. Training and validating 
over shorter periods resulted in unsatisfactory model performance on 
unseen proportions of the time series (as has been seen in other work, 
such as deSouza et al. [54]). 

Fig. 2. Average daily mean and associated moving average of daily mean PM10 and PM2.5 concentrations, St Ebbe’s 2016–2019. (a) PM10, (b) PM2.5.  
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2. Further model performance benefits could be achieved by the in-
clusion of paired sensor-reference method data from data from both 
High St and St Ebbe’s monitoring locations. The inclusion of data 
from traffic orientated High St location complemented that provided 
by the urban background St Ebbe’s location and promoted diversity 
in the training and validation set. 

The behaviours noted above were likely driven by the short temporal 
duration of the datasets available for model training and the limited 
diversity found in these data. This attribute of the sample population 
had potential to detracted from study aims regarding characterisation of 
conditions during restriction events. As a result, this limitation was 

mitigated against using the methods outlined noted above. RF modelling 
was performed in Python using the scikit-learn open-source machine 
learning library [55]. Full details of the development of the RF regressor 
models including optimised hyperparameter settings and feature selec-
tion are described by Bush et al. Table 3 presents a summary of the 
hyperparameter settings for the scikit-learn RF regressor model imple-
mentation (using the squared error function to measure the quality of a 
split). All other model parameters were set to default settings. The 
maximum number of leaf nodes hyperparameters used for this study 
were established using a cross-validation sensitivity test also described 
in detail in Bush et al. 

2.7.2. RF correction model validation 
Validation outputs from optimised correction models are shown in 

Fig. 6 for PM10 and PM2.5 respectively, based on 1-h averaged data. At 
this time resolution, the correction models deliver datasets with a co-
efficient of determination (R2) of 0.90 for PM10 and 0.95 for PM2.5. The 
improvement in the performance of the sensors following the RF 
correction model is large. Table 4 shows the performance of the RF 
corrected data to simple baseline corrected data. More details in the 
method behind this are given in previous work by the authors [31]. 

2.7.3. Expanded uncertainty calculations 
Previous work [31] has showed that the expanded uncertainty esti-

mates for corrected sensor datasets, exceeded the levels required of 
indicative measurements and supplementary assessment techniques for 
PM (expanded uncertainty < ±50%), as set out by the European 
ambient air quality Directives [38]. 

As a final step in the model optimisation exercise the expanded un-
certainty of corrected datasets were calculated using the spreadsheet 
tool mandated by the CEN working group [56]. In these calculations, 
corrections to compensate for non-unity slope and intercept terms 
within the OLS regression equation are also permitted. Fig. 4a and b 
presents outputs from these calculations for the final corrected sensor 
data vs paired reference values. For PM10, the R2 value for final cor-
rected sensor vs reference method is ~0.90 and for PM2.5 the R-squared 
value is ~0.95. In addition, the expanded uncertainty for each correc-
tion model, which are estimated at ~10% and ~8% for PM10 and PM2.5 
respectively for the duration of the study period. The expanded uncer-
tainty threshold recommended by the working group for demonstration 
of equivalence of a candidate method (CM in Fig. 4) relative to reference 
method (RM in Fig. 4) is 25%. Similarly, European ambient air quality 

Fig. 3. Average daily 95th percentile of 1-h PM10 and PM2.5 concentrations and associated moving average measured, St Ebbe’s 2016–2019. (a) PM10, (b) PM2.5.  

Table 1 
UK and Oxfordshire COVID-19 lockdown transition descriptors and dates 
(inclusive).  

Event 
code 

Title Description Start 
date 

End 
date 

Event 
length 
(days) 

a Pre-lockdown Business as usual 2020- 
01-01 

2020- 
03-22 

82 

b National 
lockdown 

First national 
lockdown 

2020- 
03-23 

2020- 
06-15 

48 

c Gradual lifting 
of restrictions 

Schools & retail 
opens 

2020- 
06-16 

2020- 
09-24 

137 

d Tiered 
restrictions 

Medium to high 
alert local 
measures 

2020- 
09-25 

2020- 
11-04 

42 

e National 
lockdown 

Second national 
lockdown 

2020- 
11-05 

2020- 
12-01 

27 

f Tiered 
restrictions 

Stay at home & 
high alert local 
measures 

2020- 
12-02 

2021- 
01-04 

34 

g National 
lockdown 

Third national 
lockdown 

2021- 
01-05 

2021- 
03-07 

62 

h Step-1 out of 
lockdown 

Stay at home 
lifted, schools re- 
open 

2021- 
03-08 

2021- 
04-11 

35 

i Step-2 out of 
lockdown 

Non-essential 
retail re-opens 

2021- 
04-12 

2021- 
05-16 

35 

j Step-3 out of 
lockdown 

Gathering <30 
people permitted 
outside 

2021- 
05-17 

2021- 
06-20 

35 

k Step-4 out of 
lockdown 

Most restrictions 
lifted 

2021- 
06-21 

– –  
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objectives specify an uncertainty threshold of ±50% for both PM10 and 
PM2.5 for indicative monitoring or data to be used to supplement high 
quality measurements. Within this context, the sensor based PM10 and 
PM2.5 datasets produced by this study and corrected with the methods 
presented, may be regarded as high quality. 

3. Results and discussion 

3.1. Temporal changes in co-located data 

Fig. 8 presents evidence on the adequacy correction methods 
developed by this study to produce reliable estimates of PM10 and PM2.5 
for the intended comparative application. Fig. 8 presents a timeseries of 
daily mean PM10 and PM2.5 for sensor and reference method observa-
tions made at the High Street and St Ebbe’s monitoring locations. The 
sensor and reference method baselines and the pre-pandemic baseline 
for the urban background in Oxford are also shown. The latter is based 
on the 1-month rolling mean of the mean daily PM concentrations 
observed by the St Ebbe’s reference method in the years 2016–2019. 
Fig. 8a presents a time series of daily mean PM10 at the High St moni-
toring location for PM10 (PM2.5 is not measured at this location). From 
Fig. 8a we observe that the corrected sensor based daily mean PM10 

values broadly track those of the reference method, although the sensor 
trace appears noisy in comparison to that observed at St Ebbe’s (Fig. 8b). 
In addition, there are periods when the corrected High St sensor signal 
departs from that of the reference method for example in January 2022 
when the sensor under-reads relative to the reference and in March and 
April 2021 when it over-reads relative to the reference. From Fig. 8b and 
c, we observe that daily mean PM10 and PM2.5 concentration at St Ebbe’s 
urban background location closely track those of the co-located refer-
ence method throughout the study period. The estimated baselines for 
these observations are likewise shown to be well correlated. The evi-
dence in Fig. 8 and that of the regression analyses in Fig. 7 presents 
reasonable evidence for the adequacy of the correct sensor data 
collected by the study for the comparative applications intended. 

The estimates of typical daily mean PM10 and PM2.5 concentrations 
experienced at urban background locations in Oxford in recent years 
presented in Fig. 8 (orange line) to contextualise the observations made 
throughout the 2020/21 lockdown events. Fig. 8a–c provide evidence 
for PM levels in 2020/21being comparatively low - Fig. 8a shows the 
sensor and reference methods observations at the High St roadside 
location are broadly equivalent to the levels experienced at the urban 
background in previous years. A similar observation can also be made on 
Fig. 8b and c, where we see evidence for sensor and reference 

Fig. 4. Smoothed daily mean vehicle and pedestrian flows Oxford, High St. 2019–2022. (Smoothing by exponentially weighted mean at alpha = 0.04).  

Fig. 5. Map of low-cost air quality sensor and reference measurement locations in Oxford. The numbering corresponds to the sensor locations listed in Table 2.  
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measurements in 2020/21 being lower than the average measured at 
this location between 2016 and 2019. 

3.2. Spatial changes over the study period 

Fig. 9 presents the frequency distribution of corrected hourly mean 
particle concentrations for each of the 15 sensor locations in the form of 
a box plot. The plots present (i) the daily mean IQR as the box element 
(ii) the median as the horizontal bar inside the IQR, (iii) the mean as the 
green triangle inside the IQR, (iv) the statistical maxima and minima 
(defined as 75th percentile ± 1.5 * the IQR) as the whisker element 
horizontal endpoints, and (v) outlying sensor observations are shown as 
black dots (a single marker per outlier observation). In Fig. 9, a 
consistent distribution in measured PM10 and PM2.5 across the sensor 
network is observed; the sensor datasets are skewed in a manner 
frequently seen in particles datasets, with an asymmetrical right-skewed 
probability density function (approaching a lognormal distribution). 
The mean PM10 concentration over the duration of the study and across 
the network was 11 μg/m3 (SD ± 5.9 μg/m3), and mean PM2.5 con-
centrations was 8 μg/m3 (SD ± 5.9 μg/m3). The full dynamic range in 
hourly PM10 was 4–75 μg/m3, and 1–50 μg/m3 for PM2.5, although for as 
shown by the whisker elements of the plots, after excluding data points 
that can be reasonably assumed to be outliers the likely dynamic range 

in the 1-h mean is approximately 4–35 μg/m3 (PM10) and 1–30 μg/m3 

(PM2.5). The propensity for right skewed data in Fig. 9a and b (including 
outliers) whilst typical of air quality datasets may also be indicative of 
sensor performance issues (e.g. interferences from temperature, relative 
humidity, low sample volume) and a limitations in the training of the RF 
correction model which has undercompensated for the interference(s). 
Outliers may also arise from individual effects at sensors, for example a 
parked, idling vehicle or a person smoking a cigarette. The mean 
interquartile range (IQR) for both PM10 and PM2.5 was ~6 μg/m3 SD 
(±1.7 μg/m3), indicating that the bulk of the observations are of a 
similar sample population. 

Fig. 9 also illustrates a small local impact from traffic related emis-
sion sources upon particle concentrations near traffic-oriented sensors. 
At these locations we observe higher average and peak concentrations 
and the IQR is broader from traffic-oriented sensors than that displayed 
by more intermediate and background orientated sensor locations. The 
greater dynamic range in concentrations is indicative of exposure to 
more variable emission sources, such as road transport emissions, and 
correlates well with the sensor proximity to traffic emissions (Table 2). 

Notwithstanding the variations above, Fig. 9 shows evidence for 
differing PM10 and PM2.5 behaviours across the sensor network; 
demonstrating the value of a multi-sensor network to assess spatial 
differences in PM patterns and trends over the study period. PM2.5 
values are broadly constant and of the same dynamic range throughout 
the network - PM2.5 levels from the urban background reference station 
are representative of all a few of the locations measured in this study. 
These locations (Ahlul Bayt, High Street, South Parks Road, and 
Worcester College) are all located on particularly busy roads with (in the 
case of Ahlul Bayt and High Street) high levels of bus and HGV traffic. 
With PM10, however, there is greater dynamic range in observation, 
with differences of a factor of approximately 1.7 visible across the 
network. The same four locations show higher levels of PM10 as does the 
John Radcliffe hospital, a site with construction being undertaken dur-
ing the period measured and a combined heat and power (CHP) gen-
eration plant located on-site (the stack from the CHP plant is 
approximately 250 m from the location of the sensor). 

3.3. Proximity of measured concentrations in relation to annual limit and 
guideline values 

Fig. 10 presents the range and distribution of daily mean PM10 and 
PM2.5 concentrations measured at each sensor location for a 12-month 
period from the study (July 2020 to June 2021). Restricting the study 
dataset to 12-months facilitates comparison with air quality objectives, 
limits and guideline values which are based on calendar year datasets [8, 
37]. Fig. 10a shows that the majority of daily mean PM10 observations 
are well below both the 45 μg/m3 WHO guideline level and 50 μg/m3 UK 
Air Quality Objective (the latter not to be exceeded >35 times in a 
calendar year). Furthermore, because all (upper) whisker elements 
terminate below the 50 μg/m3 (at least 15 μg/m3 below) it is only sensor 
observations that can be reasonably classified as outliers that approach 
or more rarely exceed the thresholds above; good evidence that the daily 
mean PM10 health protection thresholds are rarely exceeded in Oxford. 

Fig. 10b presents similar information for daily mean PM2.5 for which 
the WHO have set a guideline value of 15 μg/m3 [8]; there are no UK or 
European legislative thresholds set for this pollutant and averaging 
period. Fig. 10b shows that although the majority of daily mean PM2.5 
observations are ≤15 μg/m3, the upper bounds of IQR (i.e. the 75th 

percentile concentration value) are ≤15 μg/m3, higher percentile con-
centrations do exceed the WHO guideline value. These data provide 
good evidence to indicate that the 15 μg/m3 daily mean WHO guide 
value for PM2.5 was regularly exceeded in 2020/21 despite the lock-
down conditions, reduced traffic volumes (see Fig. 4) and associated 
emissions. 

Fig. 11 presents annual mean PM10 and PM2.5 concentrations 
measured over the same 12-month period. Relevant UK, European and 

Table 2 
Sensor deployment by location and environment type.   

Location name Height Distance from 
roadside 

Environment type 

1 New Marston 4 n/a Urban 
background 

2 St Ebbe’sa 2.7 8 Urban 
background 

3 Jesus College 3.3 1.1 Urban 
intermediate 

4 Said Business School 9.7 28 Urban 
intermediate 

5 St Giles 5.5 3.5 Urban 
intermediate 

6 Ahlul Bayt Centre 4 10.8 Urban traffic 
7 County Hall 5 7.1 Urban traffic 
8 Divinity Road 2 7.9 Urban traffic 
9 High Streeta 1.4 3.7 Urban traffic 
10 John Radcliffe 

Hospital 
2.75 2.1 Urban traffic 

11 South Parks Road 12 7 Urban traffic 
12 Speedwell Street 5.9 4.4 Urban traffic 
13 The Plain 1.2 9.7 Urban traffic 
14 Warneford Hospital 3 4.8 Urban traffic 
15 Worcester College 4.7 n/a Urban traffic  

a Denotes co-located reference location. 

Table 3 
Summary of Random Forest hyperparameter setting used in model training.  

Hyperparameter Model Type 

PM10 PM2.5 

No. of trees 100 100 
Criterion 0 0 
Max. tree depth 0 0 
Min. samples per leaf node 1 1 
Max. no. of leaf nodes 6,000 4,000 
Min. sample per node 2 2 
Min. leaf node weight fraction 0 0 
Min. impurity decrement 0 0 
Min impurity split 0 0 
Max. no. features (see Bush et al. [31] for 

the derivation of feature used) 
15 15 

No. jobs − 1 − 1 
Bootstrap sampling 1 1 
Training sample population n = 46,032 (High St 

and St Ebbe’s) 
n = 30,902 (St 
Ebbe’s)  
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WHO thresholds are again shown as dashed horizontal lines for both 
PM10 and PM2.5. Fig. 11a and b Measured annual mean concentrations 
are well below regulatory UK and European threshold values for both 
PM10 (40 μg/m3) and PM2.5 (25 μg/m3). Similarly, Fig. 11a shows that 
annual mean PM10 concentrations at all locations were below the WHO 

2005 guide value (20 μg/m3), and all but two locations (High Street and 
South Parks Road) were below the more stringent 2021 revised guide 
value (15 μg/m3). Fig. 11b shows that there was widespread exceedance 
of the 2021 revised WHO guideline value for annual mean PM2.5 (5 μg/ 
m3), whereas only three sensor locations, Divinity Road, High Street, 
South Parks Road exceeded the 2005 guide value (10 μg/m3 as an 
annual mean), which is also the UK PM2.5 legally binding objective. 
Again, these data provide strong evidence that despite lower traffic 
volumes during 2020/21 (see Fig. 4) the 2021 WHO annual mean 
guideline value for PM10 was approached or exceeded close to busy 
roads in Oxford and there was widespread exceedance of the same 
guideline value for PM2.5, a level that is the new legally binding Air 
Quality Objective in the UK. These findings indicate that additional non- 
traffic related measures would be required in Oxford to reduce the PM10 
and PM2.5 levels to within health-based guidelines and to achieve 
compliance with forthcoming legally binding objectives. 

3.4. Identifying changes in particle concentrations linked to COVID-19 
restriction events 

Figs. 12 and 13 present a heat-map based analysis of the variation in 

Fig. 6. Regression analysis of corrected (a) PM10, (b) PM2.5 sensor data from co-located sensor and reference method observations for the duration of the study.  

Table 4 
Comparison in performance of sensors before and after RF correction method 
[31].   

Mean absolute error 
(MAE) 

Coefficient of 
determination (R2) 

Improvement in 
MAE arising from 
RF correction 
model Baseline RF 

correction 
model 

Baseline RF 
correction 
model 

PM10 

(μg/ 
m3) 

34.6 1.6 0.01 0.90 95% 

PM2.5 

(μg/ 
m3) 

8.9 0.76 0.28 0.95 91%  

Fig. 7. Regression analysis of final corrected sensor data from co-located sensor and reference method observations for the duration of the study with gradient and 
intercept correction applied. (a) PM10, (b) PM2.5. 
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Fig. 8. Time series of co-located sensor and reference method PM10 and PM2.5 measurements showing the deviations from the baseline over the study period and 
comparing of the corrected sensor data with corresponding reference measurement. (a) PM10 at the High St monitoring station, (b) PM10 at the St Ebbe’s monitoring 
station, (c) PM2.5 at the St Ebbe’s monitoring station. 

Fig. 9. Frequency distribution of corrected hourly mean particle concentrations by sensor. (a) PM10, (b) PM2.5  
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mean PM concentrations measured during the COVID-19 public health 
restriction events of 2020-21 (restriction events have been previously 
defined in Table 2). Measured PM levels are compared with the 2016-19 
pre-pandemic baseline. Differentials in mass concentration for the daily 
mean and 95th percentile value of hourly observations were calculated 
for each sensor and restriction event. Statistical significance in each 
differential is indicated by shading; shaded cells are not significantly 
different at 95% confidence, whereas unshaded cells are. 

Fig. 12 illustrates several patterns in measured PM concentrations 
during the COVID-19 restriction events of 2020-21 relative to the 
baseline. Clearly, there is a marked variability in the differences shown 
both across the sensor network (the vertical axis) and over lockdown 
events (the horizontal axis), this is more evident in the daily means 
(using the scales shown). Peak concentrations, represented by the mean 
daily 95th percentile (Fig. 13), are in general consistently lower than 
baseline urban background levels throughout all lockdown events. On 
average, peak concentrations of PM10 were ~10 μg/m3 lower than 
baseline values (SD ± 6.0 μg/m3), peak concentrations found on cor-
responding days in previous years. Similarly, peak PM2.5 levels were ~9 
μg/m3 (SD ± 3.0 μg/m3) lower than concentrations observed on corre-
sponding days in recent years. There was no overall trend for any sensor 
showing increases in peak concentrations relative to the baseline of 
statistical significance. 

This variability between peak (95th percentile) and mean concen-
trations is interesting. Perhaps by removing much traffic from the roads, 
the peak values, which may be caused only be a few “gross emitters” 
(vehicles which make up a small minority of the fleet but can account for 
substantial emissions [57]), have fallen, but given the low contribution 
of traffic to the overall PM in Oxford [58], the mean levels are much less 
affected. Given that recent studies on the health impacts of acute 
compared to chronic exposure indicate that chronic exposure is more 
important for public health [59], this would suggest that measures tar-
geting traffic reduction in isolation may not be the most effective in this 
setting for improving population health. 

Some of the variability in daily mean differentials may be 

demarcated by local emission sources and sensor location classifications. 
On the vertical axis sensor locations closer to roads and influenced by 
hyper-local road transport emissions present concentrations consistently 
above the baseline (remember that the baseline is an urban background 
baseline), whereas urban background locations display concentrations 
consistently below the baseline. 

The comparable differentials displayed by High Street and Divinity 
Road are notable given the local setting of each. The High Street location 
is a roadside location in central Oxford with ~16,400 vehicle flows per 
day. Given these conditions, the positive differential at this location 
relative to baseline concentrations is expected. Conversely, Divinity 
Road is a narrow, minor road in a residential area of East Oxford. It is 
interesting to note, therefore, that the levels observed at Divinity Road 
during the periods of restrictions were only marginally less than those 
found at the High Street; although neither can be shown to be signifi-
cantly different from the baseline in some periods (see shading in Fig. 8). 
Further local knowledge of the locations reveals that Divinity Road has a 
steep incline and is known locally as a traffic and pollution hotspot – the 
road is frequently used as a cut through/rat run by local traffic at all 
times of the day and evidentially similar levels to those of a traffic 
orientated location. Given the residential area (indeed the sensor is 
mounted on a residential property) this may have importance for resi-
dents’ exposure to PM. 

On the horizontal axes of Fig. 8 it is possible to track the variation in 
PM levels over the course of successive restriction events relative to 
typical concentrations from previous years. Although it is observed that 
the sensor network was not fully commissioned in time to capture the 
transition into ‘lockdown’ at all locations, there is evidence from three 
locations over this period. Notably, there is some statistically significant 
evidence of levels of daily mean PM10 and PM2.5 being elevated relative 
to the baseline during the 1st national lockdown, (event ‘b’ from 23 
March 2020). 

After the 1st national lockdown, events ‘c’ to ‘d’ correspond to the 
gradual easing of restrictions (schools returning, retail opening etc.) and 
subsequently the introduction of tiered locally tuned restriction 

Fig. 10. Frequency distribution of daily mean PM10 and PM2.5 concentrations measured over at sensor location during a 12-month period. (a) daily mean PM10, (b) 
daily mean PM2.5 
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measures (from 10 May 2020 and 24 September 2020 respectively). 
During this period there is statistically significant evidence of daily 
mean and peak levels being lower than the baseline. Lockdown events ‘e’ 
and ‘f’ (National lockdown-2 and Tier 2 to 4 local restrictions for Oxford 
on 5 November 2020 and 2 December 2020) coincide with daily mean 
and, to a lesser degree, peak concentrations levels above the baseline 
throughout the sensor network although these observations are not 
generally statistically significant (at P = 0.05). December 2020 was 
followed, by periods when mean and peak concentrations throughout 
Oxford were lower than the baseline and there is marked consistency 
and statistical significance in this trend over this period, particularly for 

peak PM concentrations. Events ‘g’ to ‘i’ correspond to the introduction 
of National lockdown-3 and Steps 1 and 2 out of lockdown, from 5 Jan 
2021 to 17 May 2021. Note that, these events and the observed levels 
coincided with periods of the year that normally exhibit seasonal max-
ima, thus indicating that PM levels in first quarter of 2021 (i.e. pre- 
pandemic restrictions) were atypically low compared with the base-
line. During lockdown periods ‘j’ and ‘k’ (Step-3 out of lockdown 17 May 
2021 and ‘Freedom Day’ 21 June 2021 respectively) the lower con-
centrations observed in quarter 1 of 2021 had returned close to typical 
baseline levels. 

This study is not, however, able to make a direct link between traffic 

Fig. 11. Measured annual mean PM10 and PM2.5 concentrations over the 12 months July 2020 to June 2021 with corresponding annual mean objectives and guide 
values indicated. (a) annual mean PM10, (b) annual mean PM2.5 

Fig. 12. Heat map representation of the differential in daily mean PM during COVID-19 pandemic restriction events 2020/21 relative to the baseline. (a) Daily mean 
PM10, (b) Daily mean PM2.5. Differences shown in μg/m3. All changes are statistically significant unless denoted by shading. 
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levels and PM pollution at a specific location, because PM and traffic 
counting has not been directly co-located, however such a study would 
be a clear next step for this work. Similarly, the data is not able to 
apportion the source of the PM explicitly, further work and alternative 
techniques could be applied in order to further understand the sources of 
the PM in Oxford and whether there is significant spatial and/or tem-
poral variation. Finally, PM is hardly the only pollutant to affect human 
health, and so future work should consider additional pollutants such as 
oxides of nitrogen, ozone, and other harmful pollutants. 

4. Summary and conclusions 

In this study, a network of low-cost particle sensors has been 
deployed at 15 locations in the city of Oxford. A random forest machine 
learning algorithm has been used to provide robust high-quality data for 
PM10 and PM2.5, demonstrating that the data used are compliant with 
European ambient air quality directive [38] objectives for uncertainty. 
The impact of public health induced restrictions associated with the 
COVID-19 pandemic on PM10 and PM2.5 levels has been explored across 
network data over the period January 2020 to September 2021. 

The study evidence draws several conclusions:  

1. There is evidence for a reduction in PM levels in 2020/21 in Oxford 
compared to previous years. Specifically, we identified modest re-
ductions in daily average PM10 and PM2.5 concentrations (~1 μg/m3) 
and more substantive reductions (9–10 μg/m3) in peak concentra-
tions from the pre-pandemic baseline. These findings suggest that 
traffic reduction associated with public health restrictions may have 
had an impact on peak morning and evening concentrations; and 
therefore benefits for reducing short-term pollutant exposures 
among those living in the city.  

2. There was marked spatial and temporal variability in PM10 and PM2.5 
observations throughout the COVID-19 emergency restrictions of 
2020-21. The highest PM10 and PM2.5 levels were still measured at 
roadside locations, despite major traffic reductions during public 
health restrictions  

3. PM10 concentrations rarely exceed World Health Organisation 
Global Air Quality Guidelines for annual mean or 24-h concentra-
tions in Oxford City, even at roadside locations. However, WHO 

guideline annual mean and 24-h concentrations for PM2.5 were 
widely exceeded throughout the sensor network during public health 
restrictions, including at residential locations. All but three locations 
were compliant with the long-term UK target for PM2.5 (annual mean 
10 μg/m3). Given the disparity in peak compared to mean PM10 and 
PM2.5 reductions, and the source apportionment of PM10 and PM2.5 
in Oxford (including major contribution of non-transport sources), 
additional measures to deliver emissions reductions will be required 
to reduce annual average concentrations towards WHO health-based 
guidelines. 

4. Some sensor network locations exhibited atypical behaviours (con-
centrations) when taken in the context of their general environment; 
for example a sensor location based in residential areas exhibiting 
levels of PM10 and PM2.5 consistent with heavily trafficked city- 
centre roadside locations. This demonstrates the value of a sensor 
network approach for generating high spatial resolution air quality 
data to identify pollution hotspots, which can be the focus for future 
intervention measures. 

These observations agree with the findings of other studies [15] 
which showed that despite achieving 70% reduction in city centre traffic 
volume, Oxford’s COVID-19 emergency restrictions had negligible 
impact upon long-term PM levels (after accounting for seasonal and 
meteorological influences) with indication of an increase in PM10 during 
the second national lockdown. This is consistent with and indicative of 
the source apportionment characteristics for PM in Oxford where agri-
culture and domestic heating play a more prominent role in the 
contribution to ambient PM. 

The natural experiment opportunity presented by multiple COVID- 
19 pandemic emergency measures has shown that measures restricting 
emissions from road traffic will not significantly reduce PM10 or PM2.5 
concentrations in Oxford (or likely elsewhere in the UK). As a result, 
other interventions will be needed to reduce long term PM concentra-
tions, of benefit for human health. Specifically, sources to be targeted for 
further interventions to reduce PM levels include fossil fuel based 
commercial and residential heating and agriculture. 

We have demonstrated the utility of high spatial resolution low-cost 
sensor networks for the acquisition of, high quality evidence on PM10 
and PM2.5 levels in an urban setting. The sampling capabilities of the 

Fig. 13. Heat map representation of the differential in daily 95th percentile of 1-h mean PM during COVID-19 pandemic restriction events 2020/21 relative to the 
baseline. (a) Daily 95th percentile of 1-h mean PM10, (b) Daily 95th percentile of 1-h mean PM2.5. Differences shown in μg/m3. All changes are statistically significant 
unless denoted by shading. 
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sensing techniques used have facilitated the characterisation of both 
hourly peak, daily and long-term mean and mode PM levels and these 
have been contextualised against historical measurements in Oxford 
using reference instrumentation from recent years. The convenience of 
the sensing technologies used has allowed sampling to be carried out 
over a diverse network of monitoring locations and typical local con-
ditions in Oxford. The sensor network and supporting data processing 
techniques have enabled the impact of altered patterns in economic 
activity and travel behaviours arising from the COVID-19 emergency 
restriction measures within the Oxford to be understood with a high 
degree of certainty. 
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Nomenclature 

AIRPLS Adaptive Iteratively Reweighted Penalized Least Squares 
AURN Automated Urban and Rural Network 
AQMA Air Quality Management Area 
CHP Combined Heat and Power 
CM Candidate Method 
COVID-19 Coronavirus disease 
FDMS Filter Dynamics Measurement System 
IQR Inter-Quartile Range 
LEZ Low Emission Zone 
ML Machine Learning 
OPC Optical Particle Counter 
PM Particulate M < atter 
PM2.5 Fraction of PM where particles are less than 2.5 μm in 

diameter 
PM10 Fraction of PM where particles are less than 10 μm in diameter 
RF Random Forest 
RM Reference Method 
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 
SD Standard Deviation 
UK United Kingdom 
WHO World Health Organisation 
ZEZ Zero Emission Zone 
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