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ABSTRACT 

Microwave Synthesis of Carbon Dot Nanoparticles 

by 

Hayden Ferguson 

 

 This study aimed to improve the known microwave method to produce carbon dot 

nanoparticles from ethylenediamine and citric acid. Carbon dots have recently gained much 

attention as they have diverse applications, such as bioimaging and drug delivery reagents as 

cancer theranostics. Research was focused on establishing the ideal time for the synthetic 

reaction to produce carbon dot nanoparticles with the microwave method. After several trials, the 

16-minute trial provided the best results based on Fourier transform infrared spectroscopy, 

ultraviolet-visible spectroscopy, fluorescence spectroscopy, and ultraviolet exposure. 
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CHAPTER 1. INTRODUCTION 

 Lots of people die because of cancer each day. In the United States in 2019, there were 

146.2 cancer caused deaths per 100,000 standard population. This was approximately 100 deaths 

higher per 100,000 people than the following leading cause of death.1 Carbon Dots (CDs) are 

widely studied as theranostic nanoparticles for cancer treatment and diagnosis at the same time.  

Carbon Dots are nanoparticles (NPs) with sizes less than 10 nanometers2 with unique 

properties, such as fluorescence (FL).3 FL is present when CD solutions are exposed to 

ultraviolet light (UV) due to the size of their sp2 orbitals and abundance of oxidized surface 

defects.4 As nanoparticles with large surface areas, CDs are modified chemically to be used in 

many fields including cancer therapy, solar cells, light emitting diode (LED), and bioimaging. 

For example, CDs are used to replace metal fluorophores in luminescent solar concentrators and 

photovoltaic cells.5 With their unique optical properties, CDs are being researched for LED 

technology. Carbon dots nanoparticles (CDs NPs) could replace current phosphors and 

semiconductor quantum dots (QDs) in LED technology because of CDs’ FL, CDs’ low cost, and 

CDs’ low environmental impact.6 

CDs are also used in bioimaging. Bioimaging is a growing field of medical technology 

that is noninvasive and gives medical professionals a view of specific biological activity.7 Unlike 

fluorescent dyes that are used in bioimaging today, CDs are effective for bioimaging with their 

low cytotoxicity, them not suffering from narrow excitation bands, and their lack of quick 

photobleaching.8 In bioimaging, CDs are used to identify biomarkers on cell membranes, 

biomarkers in the cytoplasm of cells, and as a reagent to help diagnose the type, size, and 

position of tumors.9 Yang et al. reported that microwave synthesized CDs showed an ability to 

identify cancer cells with overexpressed folate receptors. In their paper, the overexpressed folate 
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receptors are common in certain types of cancer.10 Cell membrane protein CD133 has been 

recognized as a useful biomarker to identify tumor initiating cells. In a study, anti-CD133 

monoclonal antibodies were attached to NPs to find tumor initiating cells.11  

CDs have been researched as a cancer drug delivery agent. Doxorubicin is a drug that has 

proven viable for eliminating cancer cells.12 Researchers were able to successfully attach folic 

acid and Doxorubicin to CDs that were synthesized via microwave method.9 As more research is 

being conducted on CDs NPs and cancer, using CDs to fight cancer cells in a clinical setting 

should be viable in the future. Current clinical chemotherapies to treat cancer are not specific for 

cancer cells.13 An effective cancer therapy should only terminate cancer cells. Targeted therapy 

looks to complete this by targeting cancer cells with a ligand before elimination of cancer cells 

with a drug.  

With these applications mentioned, it is important to study the synthetic techniques to 

prepare carbon dots. The two approaches for synthesizing CDs are the bottom-up approach and 

the top-down approach. A bottom-up approach synthesizes CDs by adding carbon molecules 

together to form CDs, and a top-down approach synthesizes CDs by reducing a carbon source 

into CDs. Examples of bottom-up techniques for synthesizing CDs include hydrothermal 

method, solvothermal method, and microwave method. Examples of top-down synthetic 

techniques for synthesizing CDs include laser ablation, electrochemical, and arc discharge.14  

The scheme utilized in this research was a bottom-up microwave method. The chemicals 

were mixed in a beaker, with equal molar amounts, and heated in the microwave. In the 

microwave method, the reaction relies on interactions between the electromagnetic waves from 

the microwave and the electric dipoles of the molecules. Multiple carbon sources can be used to 

synthesize CDs via microwave method including carbon sources found in the kitchen and nature. 
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The microwave method for CDs is considered a green synthesis process.15 The largest pro of 

microwave synthesis is the short time of synthesis. Time can be saved, and more reactions can be 

completed when synthesizing CDs with microwave method. Problems with using a microwave 

for synthesis include the CDs having a large size distribution and isolating CDs after the 

reaction. The microwave method to synthesize CDs is simple, environmentally conscious, and 

time saving.16 Microwave method should be considered a viable technique to synthesize CDs. In 

Yang et al.’s research, they obtained a quantum yield of 25% on their microwave synthesized 

CDs.10 Another group, Zhai et al., synthesized CDs microwave method with citric acid (CA) and 

various amines. Their best trial was with a reaction between CA and ethylenediamine (ED). They 

recommended a reaction time that was long enough for complete carbonization.17 

Plan for this research was to complete microwave syntheses of CDs to discover the ideal 

time for heating the reaction. The procedure used was guided by the literature.18 Reaction was 

conducted with a microwave, purification was conducted by dialysis, lyophilization was 

conducted using a freeze dryer, and characterization was conducted with spectroscopy. The 

independent variable for the research was the time of the reaction in the microwave. The goal of 

this research was to find the best time for synthesizing CDs with functional groups, absorbance, 

and FL. This research utilized Fourier transform infrared spectroscopy (FTIR) to confirm the 

functional groups of carboxylic acid and amine. Ultraviolet-visible spectroscopy (UV-Vis) was 

utilized to confirm they were CDs and to quantitate their absorbance. Fluorescence spectroscopy 

(FL-S) was utilized to confirm and quantitate the FL of the CDs.  

Characterization is an important component of this research because CDs do not have a 

specific organic structure or chemical formula. CDs are comprised of a central core of sp2 and 

sp3 carbon atoms that form lattices with functional groups attached to the surface. 
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Characterization techniques for CDs include microscopy, spectrometry, spectroscopy, and 

diffraction.19 Spectroscopic characterization for CDs for this research included FTIR, UV-Vis, 

and FL-S. UV was used to confirm products’ FL. Characterization solves the challenge of 

identifying CDs. 
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CHAPTER 2. EXPERIMENTAL 

Materials and Instrumentals 

 Microwave, dialysis tubing (3,500 MWCO), Shimadzu IR-Prestige FTIR spectrometer, 

Shimadzu Pharma-Spec UV-1700 UV-Vis spectrometer, and Jobin Yvon Inc. FluoroMax-3 FL 

spectrometer. The chemical reagents used were deionized (DI) water, dry ice, citric acid, and 

ethylenediamine.  

Methods 

 In a 400 mL beaker, 5.000 g of solid citric acid (0.0260 mol) was dissolved in 50.0 mL of 

deionized water. And then, 1.740 mL of ethylenediamine (0.0260 mol) was added into the 

solution.  

 The solution was stirred and placed in the microwave with 625 watts. The watch glass 

was placed on top of the beaker. The solution concentrations and conditions were kept the same 

for the trials except for the time of the reactions. The reaction was run for 4 minutes, 8 minutes, 

12 minutes, 16 minutes, 20 minutes, and 24 minutes (T-4, T-8, T-12, T-16, T-20 and T-24). The 

product was stored in the fridge overnight covered in parafilm. On the second day, 30 mL of DI 

water was added to dissolve the product again. 

 The product solution was placed in water bath for dialysis for 24 hours. Once dialysis 

was done, the resulting liquid was transferred into a vial and stored in the refrigerator. 

 The lyophilization was completed with a freeze-drying machine. The purified product 

solutions were transferred into the fast-freeze flasks and stored in the freezer for 40 minutes. 

After 40 minutes, the frozen samples were attached to the freeze dryer for vacuum drying 

overnight. 
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 The final color and yield of product obtained depended on the time of the reaction. The 

solid product was redissolved in DI water to prepare 0.01 mg/mL solutions for spectroscopy. The 

UV-Vis and FL-S were carried out for quantitative absorbance and quantitative fluorescence data 

respectively. The solid product was examined with FTIR for functional groups.  
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CHAPTER 3. RESULTS AND DISCUSSION 

The reaction was between citric acid and ethylenediamine in a microwave. The time of 

reaction served for the independent variable. Tables 1a and 1b summarize the results. The 

equation used for product yield was the mass of final product divided by the mass of citric acid 

used, five grams, times 100.18 

 

 

Table 1a: Physical Results 

Reaction Time 4 Minutes (T-4) 8 Minutes (T-8) 12 Minutes (T-12) (T-16 (#1)) 16 Minutes (T-16 (#2)) 

State of Matter 

After Reaction 

Normal Liquid Viscous Liquid 

Viscous Liquid 

and Solid with Air 

Pockets 

Solid with 

Air Pockets 

Color After 

Reaction 

Yellow Green-Yellow 

Red-Brown with 

Green-Yellow 

Red-Brown with some  

Green-Yellow 

Final Product 

Mass (g) 

0.293 0.448 0.673 0.945 0.635 

State of Final 

Product 

Solid Solid Solid Solid Solid 

Yield (Wt.%) 5.86 8.96 13.5 18.9 12.7 
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Table 1b: Physical Results 

Reaction Time 20 Minutes (T-20) (T-24 (#1)) 24 Minutes (T-24 (#2)) 

State of Matter 

After Reaction 

Solid with Air 

Pockets 

Solid with 

Air Pockets 

Color After Reaction Red-Brown Red-Brown 

Final Product Mass (g) 0.788 N.A. 1.114 

State of Final Product Solid Liquid Solid 

Yield (Wt.%) 15.8 N.A. 22.3 

 

The longer reactions yielded the color that was desired, a reddish-brown indicated by 

literature.18 This color was not present in the T-4 and T-8 post-reaction samples. There was no 

reported yield for T-24 (#1) in Table 1b. T-24 (#1)’s final product was a liquid because too much 

reaction product solution was freeze dried at once. This solid clump melted during transportation 

of the sample and dissolved all the carbon dot product making a liquid final product for             

T-24 (#1). A similar clump was seen with T-24 (#2)’s product after lyophilization. Though the 

frozen clump of T-24 (#2)’s was removed, away from the rest of its product.  

Based on the results, the reaction between citric acid and ethylenediamine needed to be 

run for more time than 4 or 8 minutes to produce the red-brown color mentioned. That color may 

indicate the functional groups necessary for future drug and targeting agents’ attachment to the 

carbon dots, the carboxylic acid and the amine groups.13 Those two groups were proven with the 

FTIR spectrums. The FTIR results were interpreted based on an FTIR table.20 
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Table 2: FTIR Results 

Product 

Absorption 

(cm-1) 

Functional 

Group 

T-4 T-8 T-12 

T-16 

(#1) 

T-16 

 (#2) 

T-20 

T-24 

(#1) 

T-24 

(#2) 

O–H 

Stretching 

3,700 -

3,200 

–OH or 

Water 

No No No Yes No No No No 

O–H 

Stretching 

3,600 -

2,500 

(Weak or 

Medium) 

Carboxylic 

Acid 

Yes 

(Strong) 

Yes 

(Strong) 

Yes 

(Weak) 

Yes 

Yes 

(Very 

Weak) 

Yes Yes Yes 

N–H 

Stretching 

3,300 

–NH2 or  

–NH 

No No Yes Yes Yes Yes No Yes 

C=O 

Stretching 

Around 

1,687 

Carboxylic 

Acid 

Yes 

(Weak) 

Yes 

(Weak) 

Yes Yes Yes Yes 1,705 Yes 

N–H 

Bending 

Around 

1,650 

Amine No No Yes Yes Yes Yes Yes Yes 

N–O 

Stretching 

1,550 

Nitro 

Compound 

Yes Yes Yes Yes Yes Yes Yes Yes 

 

 The O–H stretch at 3,600 cm-1 was seen on T-16 (#1) only. The O–H peak may indicate 

T-16 (#1) was not dry enough for FTIR. The typical O–H stretch of the carboxylic acid was seen 

between 3,600 cm-1 and 2,500 cm-1 for all the products. N–H stretching was seen at 3,300 cm-1 

for all spectrums other than T-4, T-8, and T-24 (#1), or they were covered by carboxylic acid 
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peak. There were strong peaks seen around 1,687 cm-1, representing the C=O stretch of a 

carboxylic acid. There were peaks for amine seen around 1,650 cm-1 in each product except T-4 

and T-8. The peak at 1,550 cm-1 showed a nitro group. Therefore, the samples T-12, T-16, and  

T-20 were the ones to have both –COOH and –NH2 groups in their FTIR spectra. 

 UV-Vis spectroscopy was used to quantify the absorbance of the products. In a separate 

study, UV-Vis spectroscopy was conducted on CDs NPs, and the carbon dots in that study 

absorbed the most at a wavelength of 341 nanometers.21 This suggests that carbon dots were 

present in the solutions for spectroscopy here because each UV-Vis spectrum exhibited its 

highest absorbance at a wavelength close to an x-axis value of 341 nanometers. Two tests were 

run for each product indicated by Series 1 and Series 2. A table summarizing the UV-Vis results 

follows on the next page. 
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Table 3: UV-Vis Results 

Product T-4 T-8 T-12 T-16 (#1) T-16 (#2) T-20 T-24 (#1) T-24 (#2) 

Series 1  

x-axis 

Apex WL 

(nm) 

344.5 340.5 346.5 343.5 343.5 346.5 341.5 346.0 

Series 1 

y-axis 

Apex ABS 

0.122 0.154 0.071 0.662 0.640 0.078 0.005 0.044 

Series 2  

x-axis 

Apex WL 

(nm) 

347.5 342.5 348.0 342.5 343.5 348.5 341.5 345.0 

Series 2 

y-axis 

Apex ABS 

0.123 0.154 0.072 0.657 0.640 0.079 0.005 0.044 

Average  

x-axis 

Apex WL 

(nm) 

346.0 341.5 347.3 343.0 343.5 347.5 341.5 345.5 

Average 

y-axis 

Apex ABS 

0.123 0.154 0.072 0.660 0.640 0.079 0.005 0.044 
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 All the UV-Vis spectra show the typical peak at around 350 nanometers, which is the n to 

pi star transition from carbonyl bonds.21 The intensity of peak increases from 0.123 to around 

0.660 for the trial of T-16 (#1) and to around 0.640 for the trial of T-16 (#2). Then it is decreased 

to lower intensity after reaction time is over 20 minutes. According to the UV-Vis data, the  

16-minute trial gave the highest absorbance among all the products. The key takeaway from UV-

Vis data is that the samples consistently showed their highest absorption values at a wavelength 

close to an x-axis value of 341 nanometers, representing the presence of carbon dot nanoparticles 

with similar UV-Vis results to Lin et al.21 

Fluorescence spectroscopy was conducted on each sample, using ten different excitation 

wavelengths. In a separate study that conducted FL-S on CDs NPs, the 360-nanometer excitation 

plot peaked at 450 nanometers on the x-axis.22 Similarly, every FL-S plot for the 360-nanometer 

excitations seen with the results for the current microwave study here apexed at an x-axis value 

of 450 nanometers. This shows likeness between literature FL-S results for carbon dots and the   

FL-S results of this study that follow. 
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Table 4: FL-S Results 

Product T-4 T-8 T-12 T-16 (#1) T-16 (#2) T-20 T-24 (#1) T-24 (#2) 

Highest 

Fluorescence 

Excitation 

WL (nm) 

360 360 360 360 360 360 360 360 

360 nm 

x-axis 

Apex WL 

(nm) 

 

450 

 

450 450 450 450 450 450 450 

360 nm 

y-axis 

Apex FL 

292,126 

 

263,040 

 

343,544 

 

1,359,492 

 

1,284,385 

 

224,948 

 

8,086 

 

133,214 

 

 

 All spectrums’ fluorescence values peaked using an excitation wavelength of 360 

nanometers. The excitation wavelengths ranged from 300 nm to 390 nm with increments of ten 

nanometers. The changing values of the excitation wavelength had a strong effect on the 

fluorescence value of the samples. When an excitation wavelength of 300 nanometers was used, 

the fluorescence value was low. When an excitation wavelength of 360 nanometers was used, the 

sample showed its highest fluorescence. All the samples showed fluorescence. For the samples, 

which emit highest fluorescence at 450 nanometers wavelength, among them, T-16 (#1) yielded 

the highest intensity. It appeared 16 minutes is the most promising time for a high fluorescence. 

To conclude, the highest quantitative fluorescence value for the carbon dots were exhibited when 
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contacted by a light with a wavelength of 360 nanometers and at an emission wavelength of 450 

nanometers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images 1a-1h: Product Solutions Exposed to UV-Light, Top Row from Left to Right: T-4, T-8, 

T-12, and T-16 (#1) Bottom Row from Left to Right: T-16 (#2), T-20, T-24 (#1), and T-24 (#2) 

 

 In the above images, fluorescence was seen when 0.01 milligram per milliliter solutions 

of CD NPs were exposed to UV-light. Despite the dilute concentration, the product solutions 

fluoresced blue when exposed to ultraviolet light. This agrees with the results of FL-S that 

peaked at an x-axis value of 450 nanometers in that the product solutions fluoresced in the blue 
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portion of the visible light spectrum quantitatively and qualitatively. This correlates the FL-S 

results with the UV-light results. The samples T-16 (#1) and T-16 (#2) showed the highest 

fluorescence quantitatively and qualitatively.  
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CHAPTER 4. CONCLUSION AND FUTURE WORK 

 In the research, the microwave method with different times were used to synthesize 

carbon dots. The eight trials were characterized by FTIR, UV-Vis, and Fluorometry. According 

to the results, it is believed that the reaction time should run around 16 minutes. 

 Starting from four-minute trial, all the samples contained the two desired functional 

groups, carboxylic acid and amine group, according to FTIR. Products absorbing the most 

around 341 nanometers with UV-Vis hinted that carbon dots were present. Products fluorescing 

quantitatively and qualitatively confirmed that carbon dots were present. The 16-minute trial 

showed the highest fluorescence quantitatively and qualitatively.  

 There are options for future work with the microwave reaction. The power level of the 

microwave could be adjusted, and a hydrothermal vessel could be used instead of a beaker. 

Combined with purification, the best yield% will be studied. The method will be used to give big 

quantities of carbon dots for further applications in cancer theranostic research.  
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APPENDICES 

Appendix A: FTIR Spectra 

 

Image 2a: FTIR Spectrum of T-4 

 

Image 2b: FTIR Spectrum of T-8 
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Image 2c: FTIR Spectrum of T-12 

 

 

 

Image 2d: FTIR Spectrum of T-16 (#1) 
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Image 2e: FTIR Spectrum of T-16 (#2) 

 

 

 

Image 2f: FTIR Spectrum of T-20 
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Image 2g: FTIR Spectrum of T-24 (#1) 

 

 

 

 

Image 2h: FTIR Spectrum of T-24 (#2) 
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Appendix B: UV-Vis Spectra 

 

 

Image 3a: UV-Vis Spectrum of T-4 

 

 

Image 3b: UV-Vis Spectrum of T-8 
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Image 3c: UV-Vis Spectrum of T-12 

 

 

 

 

Image 3d: UV-Vis Spectrum for T-16 (#1) 
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Image 3e: UV-Vis Spectrum for T-16 (#2) 

 

 

 

 

Image 3f: UV-Vis Spectrum for T-20 
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Image 3g: UV-Vis Spectrum for T-24 (#1) 

 

 

 

 

Image 3h: UV-Vis Spectrum of T-24 (#2) 
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Appendix C: FL-S Spectra 

 

 

 

 

 

Image 4a: Fluorescence Spectrum for T-4 
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Image 4b: Fluorescence Spectrum for T-8 

 

Image 4c: Fluorescence Spectrum for T-12 
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Image 4d: Fluorescence Spectrum for T-16 (#1) 
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Image 4e: Fluorescence Spectrum for T-16 (#2) 

 

Image 4f: Fluorescence Spectrum for T-20 
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Image 4g: Fluorescence Spectrum for T-24 (#1) 

 

 

Image 4h: Fluorescence Spectrum for T-24 (#2) 
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