
East Tennessee State University East Tennessee State University

Digital Commons @ East Tennessee Digital Commons @ East Tennessee

State University State University

Electronic Theses and Dissertations Student Works

5-2023

Immersive Learning Environments for Computer Science Immersive Learning Environments for Computer Science

Education Education

Dillon Buchanan
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Curriculum and Instruction Commons, Graphics and Human Computer Interfaces

Commons, Scholarship of Teaching and Learning Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Buchanan, Dillon, "Immersive Learning Environments for Computer Science Education" (2023). Electronic
Theses and Dissertations. Paper 4189. https://dc.etsu.edu/etd/4189

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F4189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/786?utm_source=dc.etsu.edu%2Fetd%2F4189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=dc.etsu.edu%2Fetd%2F4189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=dc.etsu.edu%2Fetd%2F4189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1328?utm_source=dc.etsu.edu%2Fetd%2F4189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=dc.etsu.edu%2Fetd%2F4189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

Immersive Learning Environments for Computer Science Education

A thesis

presented to

the faculty of the Department of Computing

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer Science

by

Dillon Buchanan

May 2023

Dr. Chelsie Dubay, Chair

Dr. Phil Pfeiffer

Matthew Harrison

Keywords: computer-aided instruction, human-computer interaction, computer science

education, integrated development environments, data structures

2

ABSTRACT

Immersive Learning Environments for Computer Science Education

by

Dillon Buchanan

This master's thesis explores the effectiveness of an educational intervention using an interactive

notebook to support and supplement instruction in a foundational-level programming course. A

quantitative, quasi-experimental group comparison method was employed, where students were

placed into either a control or a treatment group. Data was collected from assignment and final

grades, as well as self-reported time spent using the notebook. Independent t-tests and correlation

were used for data analysis. Results were inconclusive but did indicate that the intervention had a

possible effect. Further studies may explore better efficacy, implementation, and satisfaction of

interactive notebooks across a larger population and multiple class topics.

3

Copyright 2023 by Dillon Buchanan

All Rights Reserved

4

DEDICATION

To Chloé Clark, who I met as Chloé Gamroth, and Stephanie Alu – two women with

beautiful hearts who taught me my worth.

5

ACKNOWLEDGEMENTS

Thank you to Phil for spending the summer proofreading the notebook used in this study.

6

TABLE OF CONTENTS

ABSTRACT .. 2

DEDICATION .. 4

ACKNOWLEDGEMENTS .. 5

LIST OF TABLES .. 9

LIST OF FIGURES .. 10

CHAPTER 1. INTRODUCTION ... 11

Research Questions and Hypothesis ... 13

Definition of Terms... 13

Significance of Study .. 14

CHAPTER 2. BACKGROUND ... 15

Learning Science ... 15

Experiential Learning.. 15

Individualized Instructional Design .. 16

Mechanisms for Enhancing the Instruction of Programming ... 22

Scaffolding for Coding ... 22

Automated Feedback for CS Students .. 24

Interactive Notebooks ... 26

Jupyter ... 26

.NET Interactive .. 26

Notebooks for Teaching .. 27

7

CHAPTER 3. METHODOLOGY .. 29

Notebook Construction ... 29

Topic Sequencing.. 29

Content Creation ... 31

Exercise Scaffolding ... 31

Study Methodology ... 32

Study Design ... 32

Distribution and Support of ILE ... 33

Data Collection ... 34

Data Analysis .. 34

CHAPTER 4. ANALYSIS ... 35

Independent T-Test ... 35

Correlation Test .. 36

CHAPTER 5. CONCLUSION.. 38

Future Work .. 38

REFERENCES ... 40

APPENDIX: QUESTION LIBRARY .. 42

Chapter 1.1 .. 42

Chapter 1.2 .. 42

Chapter 1.3 .. 43

Chapter 2.1 .. 44

8

Chapter 2.2 .. 45

Chapter 2.3 .. 45

Chapter 3.1 .. 46

Chapter 3.2 .. 46

Chapter 3.3 .. 46

Chapter 4.1 .. 47

Chapter 4.2 .. 48

Chapter 4.3 .. 49

Chapter 5.1 .. 49

Chapter 5.2 .. 50

Chapter 5.3 .. 51

VITA ... 52

9

LIST OF TABLES

Table 2.1 Competencies for Novice Programmer Success………………………………………22

Table 4.1 Group Statistics………………………………………………………………………..35

Table 4.2 Independent Samples Test…………………………………………………………….36

Table 4.3 Treatment Group Statistics…………………………………………………………....37

Table 4.4 Correlations…………………………………………………………………………...37

10

LIST OF FIGURES

Figure 2.1 Kolb’s Model of Experiential Learning…………………………………………….16

Figure 2.2 Stovetop Designs…………………………………………………………………....21

Figure 3.1 List of topics in sequence as they appear in the notebook. Chapters are separated

 by color……………………………………………………………………………...30

Figure 3.2 Polyglot Notebooks for Visual Studio Code. Before and after running a code cell..31

11

CHAPTER 1. INTRODUCTION

Computer science has seen rapid growth in recent years due to the rise of technology and

automation, resulting in an increased demand for individuals with skills and knowledge in this

field. According to the Bureau of Labor Statistics, there are over 1.4 million computer science

jobs but only around 400,000 computer science graduates [1].

A study conducted by the National Center for Education Statistics (NCES) found that the

average retention rate for students enrolled in introductory computer science courses was only

67% in 2018. This is lower than introductory retention rates in any other STEM field (e.g.,

physics and mathematics, where the retention rate was 75%). The NCES study also found that

student satisfaction in introductory computer science courses was low, with only 40% of students

reporting that they were "very satisfied" with their courses. Students in computer science

programs reported the lowest levels of engagement and sense of belonging compared to other

STEM fields [2, 3].

These findings suggest that there is a problem of practice in computer science education,

particularly in lower-level programming courses, that requires attention. One of the major

challenges facing computer science education is the lack of opportunities for students to practice

and receive feedback. Traditional approaches to teaching computer science often rely on lectures

and rote memorization. Lower division programming courses require students to understand

complex concepts, and students can struggle when applying lecture topics to practical exercises.

Some dissonance exists between concepts taught in the lecture hall and applying the concepts

through writing code. This issue is especially true of students enrolled in lower-level computing

courses. The high cognitive load of these topics and a lack of practice opportunities can lead to

disengagement and difficulty in understanding the material.

12

Also, people who teach computer science in post-secondary settings are not, as a rule,

conversant in learning science. Understanding these theories can help computer science

educators design effective learning experiences tailored to their learners' needs and learning

styles. To address these challenges, this thesis study aims to create an immersive learning

environment to provide personalized learning opportunities for students to explore beyond the

curriculum and to remediate their understanding where necessary.

 The Department of Computing at ETSU has observed a significant number of students

struggling with data structures, one particular introductory course [4] which has historically lead

to a pass rate of 65% – a prominent example of the challenges described above. Department

leadership postulates that high instructor turnover for this course and a traditionally lecture-

heavy format are root causes for this. To alleviate these concerns, department leadership

suggested the data structures course as the environment for this study.

To address these challenges, this thesis study designed, implemented, and assessed the

use of emerging technologies that provide personalized learning opportunities for exploratory

and dynamic practice. Emerging virtual learning technologies can be used to create texts for

computer science courses. This study explored both the creation and efficacy of an immersive

learning environment as an instructional asset in a lower-level programming course. To do so,

this study required the creation and implementation of an interactive notebook to serve as an

immersive learning environment.

Interactive notebooks are development environments that contain both text and

encapsulated, executable code sections. This allows for lecture information to be close to code

examples and practice exercises. One example, Jupyter Notebook, was developed for Python in

2014. Recently (2021), Microsoft has released a new notebook format called Polyglot Notebooks

13

(formerly .NET Interactive Notebooks), which supports multiple languages. These emerging

technologies can be used to create instructional assets for computer science courses. The

notebook was following the instructional design patterns presented by Xie et al. Relevant

examples and exercises were placed close to the content. Following experiential learning theory,

this manner of composition provides opportunities for concrete learning, reflective observation,

and active experimentation.

Research Questions and Hypothesis

 This study sought to determine the following questions:

 Q1: Is there a significant difference in learning outcomes between students provided with

an interactive learning environment and those that are not?

 Q2: Will interaction time positively correlate with learning outcomes among students

who are provided with the interactive learning environment?

Hypothesis: The use of an interactive learning environment will result in improved

learning outcomes for students compared to traditional, lecture-based instruction. Furthermore,

student outcomes will correlate positively with usage among those provided with the interactive

learning environment.

Definition of Terms

 This study will leverage the following terms:

 Data Structures: Programming constructs for organizing and storing data [5].

 Contiguous Memory: A block of memory that a data structure occupies where all

elements are physically side-by-side [5].

 Memory Reference: A variable that stores an address to a memory location that contains

pertinent data [5].

14

 Algorithm: A sequence of programmatic steps prescribed to solve a problem. [6]

 Immersive Learning Environment: A learning mechanism that requires exploration and

increasing mastery, maintains user engagement, allows users to alter the environment,

and provides opportunity for accomplishment [7].

 Experiential Learning: "Experiential learning is the process of learning through

experience, or more specifically, learning through reflection on doing" [8].

 Interactive Notebook: An application that allows for multi-modal content blocks (such as

code, text, and other static media) to be placed adjacent to one another.

Significance of Study

This study aimed to provide insights into effective pedagogical approaches that can be

used to teach introductory concepts such as data structures in computer science education. By

integrating immersive learning contexts and reflection in teaching data structures concepts, the

study aimed to improve student learning outcomes and engagement, which can ultimately

contribute to the employability of computer science graduates. Additionally, this study can help

bridge the gap between theory and practice in computer science education and inform computer

science educators on effective pedagogical approaches for teaching foundational programming

skills.

15

CHAPTER 2. BACKGROUND

Learning Science

 Learning science is the study of how people learn and/or retain knowledge.

Learning science is often informed by two schools of thought: cognitive neuroscience and

cognitive psychology [9]. Scholarship in this field describes how people process and recall

information, solve problems and make decisions, and apply what they learn. The resulting

learning theories are frameworks that describe the application and efficacy of instructional

methodologies. Some of the most influential learning theories include behaviorism, cognitivism,

and constructivism. These theories differ in their assumptions about how learning takes place and

what role the learner assumes in the learning process [10].

Experiential Learning

First introduced by Dewey [11], experiential learning reexamines traditional education by

incorporating opportunities to acquire and apply new knowledge through experience. His theory

emphasizes learning experiences, internships, and capstone projects that develop critical thinking

skills, problem-solving abilities, and technical competence in transferable environments.

Informed by Dewey's work, Kolb [8] extended experiential learning to include

observation and reflection. Kolb defines learning as "the process whereby knowledge is created

through the transformation of experience" [8]. Two dialectic processes facilitate this

transformation: action and reflection paired with experience and abstraction.

16

 Kolb organizes these processes into a recurrent cycle (viz. Figure 2.1). Concrete

experiences provide a basis for making observations and reflecting on the event(s). Reflections

provide a basis for conceptualization. Finally, the understanding gained from conceptualization

can be tested by experimentation. Experiments lead to experiences, and thus the cycle continues.

According to [8], individuals must engage in all four stages of the learning cycle to truly learn

from their experiences.

Individualized Instructional Design

Dirksen [12] describes strategies for overcoming deficiencies, or "gaps", in students'

backgrounds that inhibit their ability to learn. Apart from a lack of knowledge, these gaps

Fig. 2.1 – Kolb's Model of Experiential Learning [8]

17

include a lack of appropriate skills, poor learning environments, ineffective attempts to

communicate course content, and insufficient motivation.

 Skill gaps involve a lack of facility with technique. Dirksen attributes these to

insufficient practice. Instructors can accommodate for gaps by providing students

with avenues for practice [13].

 Environmental gaps involve external, systemic barriers to learning. They include

workplace discrimination, lack of funding, lack of equipment, and bureaucratic

overhead. Instructors can inadvertently introduce these into a course – for example,

by requiring an expensive textbook when a less expensive one might do.

 Communication gaps often arise due to “the curse of knowledge”: i.e., a mismatch in

fluency between an instructor’s expertise and a student’s lack of experience. One

strategy for bridging this gap is to present content that a first-time learner may need to

know and to clarify key terms and concepts – particularly esoteric computing terms

like "class" that have different meanings depending on how they are used.

 Motivation gaps stem from causes that include a reluctance to change, anxiety, a lack

of understanding or interest, and distraction. While instructors cannot change how

students think and feel, even subtle changes in class structure and presentation can

make content easier to access, giving students more opportunities to self-motivate.

A specific type of motivation gap stems from the need to unlearn old methods, processes, and

habits to acquire new techniques. The reward for unlearning a process or habit, particularly one

that works, can seem insignificant compared to the effort to do so – especially at first. For

example, an introductory student will often name variables “x”, “y”, or “z”, as is taught in

18

algebra and calculus. In programming, a variable’s name should indicate its purpose, but

transitioning to more meaningful, longer names can be difficult for some novices.

A fifth issue raised by Dirksen is the difficulty of addressing the needs of individual

students in classroom settings. To manage this challenge, [12] recommends implementing

strategies for transforming extrinsic into intrinsic motivation. Outside factors, such as grades and

promotions, drive extrinsic motivation; self-esteem and pride drive intrinsic motivation. This

transformation can be aided by engaging students in things they like – for example, by

connecting assignments to personal interests. To do this effectively, instructors need to sense

students' motivations, sentiments, and backgrounds, while being mindful that these may differ

from their own. For example, an instructor could lead a discussion by soliciting examples from

the audience. Also, the level of the material and the amount of guidance must be appropriate for

each student. Personalized learning opportunities can provide students of different skill levels

with an appropriate level of scaffolding.

[12] models learning as a process that transfers content to a person's long-term memory

via their sensory and short-term memories. Due to the volume of sensory information that people

process and the limitations of human short-term memory, little of what people perceive finds its

way into long-term memory [14, p. 59]. Dirksen recommends a two-part strategy for presenting

content that addresses these limitations. Part one uses surprising, significant, and/or unexpected

stimuli to ensure that content reaches a person's short-term memory. Part two relates this content

to what students have already learned and, if possible, experienced. Ideally, these relationships

should be strong to promote retention. While repetition alone can force content into long-term

memory, memories that are disconnected from other experiences will, over time, become cloudy

19

or fade altogether. Experiential learning helps promote memories from short-term to long-term

memory by employing significant and interesting recurrent experiences and repeated exposure.

Additionally, [12] recommends appealing to people's intuition to ensure retention.

Dirksen, like Kahneman, posits two modes of human decision-making: a fast, intuitive mode and

a slower, rational mode. Kahneman refers to the former as an elephant and the latter as a rider—a

metaphor that expresses the relative strength of intuitive cognition [15]. Dirksen recommends

storytelling and social engagement as two ways of engaging this faster, "impulsive" mode of

thinking. In support of social engagement, Dirksen cites evidence that Asian students perform

better than other minority groups because they study together. Other recommendations for

stimulating impulsive thought include the use of pertinent props, visual aids, humor, and

rewards—though Dirksen cautions about the unpredictable nature of rewards.

According to [12], "Change is a process, not an event." This is a core tenant for teaching

good habits and helping students unlearn undesirable ones. One crucial requirement for building

good habits, self-efficacy, is maintaining confidence in one's ability to succeed. Instructors can

build self-efficacy by providing students with early successes and allowing them to solve

problems independently.

Habits can also be developed using trigger models: formulas of the form "If X, then Y."

One type of trigger, an event trigger, instills a new habit by associating it with an existing habit:

for example, by adding a new, helpful habit to an existing routine, or chaining a mitigating action

to an old, undesirable habit. A second, an environmental trigger, uses a person's surroundings to

cue action: e.g., posting signs in bathrooms to remind employees to wash their hands before

returning to work.

20

Friction and cognitive load are opposing principles that must be balanced when designing

instruction. Friction is the use of challenging content to promote retention. Cognitive load is the

effort needed to meet a course's challenges. Cognitive load takes three common forms. Intrinsic

cognitive load is inherent to the topic at hand. Extraneous cognitive load is created by factors

that require effort and attention without adding to the knowledge gained. Germane cognitive load

is introduced by the learning mechanism. Load is a limiting factor: a student can only put in so

much effort before a lesson is lost on them. However, a lack of cognitive load can cause a

student to lose interest.

One way to create friction is to challenge what a student already knows. Doing so can

create relationships with other memories while challenging students' misconceptions about the

material being taught. Another is to present ideas using examples and counterexamples rather

than simply stating facts. A third is to introduce a social element into lessons.

The first step in balancing friction and cognitive load is to reduce extraneous cognitive

load. According to [12], the learning environment is the biggest source of extraneous load:

"Changing the design of the environment can make knowledge or skill gaps disappear."

Providing too much embedded information too quickly can overwhelm students, introducing

extraneous load; knowledge, rather, should be progressively embedded in the environment as

needed. Similarly, removing distractions from the environment will reduce extraneous load. For

example, Figure 2.2 illustrates two stovetop designs. In the left design, it is unclear which dial

affects which heating element. The design on the right is much clearer.

21

The second step is to adjust the load based on the difficulty of a lesson's content. For

complex content, learning mechanisms should introduce as little germane load as possible. [12]

says to "give learners early wins," validating the cognitive load they endure when first

encountering content. Conversely, instructors can improve retention for more straightforward or

familiar content by challenging students to make their own decisions. Dirksen provides the

example of recipes saying "season to taste" to illustrate directions that allow for self-driven

learning.

Knowledge is reinforced and misconceptions dispelled through feedback: the evaluation

of a student's work, including the method to communicate that evaluation. One popular feedback

device in academia is the multiple-choice test. [12] says, "Multiple-choice tests aren't really

about making the learner better at what they need to do. They are about making test

administration efficient and consistent." Multiple-choice tests frequently fail to measure

knowledge or skill. Other feedback and evaluation methods are more helpful and constructive for

students. Providing coaching after a learning experience can help students evaluate their abilities

and dispel misconceptions about the experience's content. Interactive notebooks, such as Jupyter,

can provide this feedback automatically. Self-evaluation is also helpful: it allows students to

reflect on what they need to improve and instructors to use these reflections to coach students.

Fig. 2.2 – Stovetop Designs. [12]

22

Mechanisms for Enhancing the Instruction of Programming

Scaffolding for Coding

In [16], Xie et al. introduce an iterative approach for teaching introductory computer

science. The authors argue that introductory courses need better methods of teaching the authors’

four core competencies. One, Tracing Code, is the ability to understand what code does line-by-

line. A second, Writing Syntax, is the ability to write code that is syntactically correct. A third,

Recognizing Templates, is identifying a block of code that accomplishes a given task and

understanding its operation and purpose. A fourth, Implementing Templates, is using learned

code blocks and structures to accomplish a task independently. These competencies can be

represented across two dimensions: skills (reading and writing code) and knowledge (language

semantics and templates.) [Table 2.1]

[12] used the Structure of Observed Learning Outcomes (SOLO) Taxonomy to develop

an iterative approach to teaching these competencies. This taxonomy uses a four-level model to

characterize a student's mastery of a given process: prestructural, or "no relevant knowledge";

unistructural, or an elementary understanding of a portion of that process; multistructural, or a

detailed understanding of most of a process; and relational, or an ability to summarize a process

and explain how it achieves its intended purpose. This taxonomy is derived from Bloom's six-

level taxonomy for measuring conceptual understanding [17].

Table 2.1 Competencies for Novice Programmer Success

 Coding Semantics Objective Templates

Read 1. Trace Code 3. Recognize Templates

Write 2. Write Correct Syntax 4. Implement Templates

23

The authors argue that the ability to trace code is a prerequisite for writing code, and that

an understanding of semantics is a prerequisite for understanding a code's purpose. They

hypothesize that students can fail to develop a relational knowledge of content when these

competencies are taught concurrently rather than in their proper sequence.

The authors suggest using an iterative approach to teaching each of the standard topics in

introductory programming. For example, to teach variables the instructor should first have

students read lines of code declaring, initializing, and changing the value of variables, and

explain what each line does. Then, they should have students write their own code to declare,

initialize, and change the value of variables. Next, they should show students templates related to

variables, like a code block that uses a third, temporary variable to swap the value of two

variables. Students should then be asked to describe what the code block is meant to do and

identify that pattern in code examples. Finally, instructors should have students employ the

templates that they have learned to complete a coding exercise. [16]

To test their theory, the authors conducted a one-day, 3-hour introduction to Python for

volunteers with no programming background. Volunteers were divided into a control group that

practiced only writing skills and an experimental group that practiced reading and writing.

Volunteers were asked to work through one of two pamphlets: one, for the control group, with

only writing exercises, and one for the experimental group, with exercises for each of the 4 core

competencies. After the instruction, participants were given a 15-minute break and a "distractor

task … to mitigate short-term, temporary learning gains related to taking the post-test shortly

after learning the material" [16]. The participants then took a 1-hour post-test and a survey.

The study’s results supported three of the authors’ hypotheses: “H1: Novices who

practice each skill [independently] will be able to complete more programming tasks”, “H2:

24

Novices who practice each skill independently will make fewer errors”, and "H3: Novices who

practice each skill [independently] will have a greater depth of understanding of the skills." The

experimental group completed more practice problems than the control group and correctly

answered more of the post-test's questions – especially questions regarding Reading and Writing

Templates. The authors applied the SOLO Taxonomy to written responses and code comments

from the participants' work. Their analysis (ibid., pp. 36-37) supports H3 by showing that the

experimental group demonstrated a relational knowledge of the material in more cases than the

control group.

Results for a fourth hypothesis, "H4: Novices who practice each skill [independently]

will demonstrate more engagement in the learning process," were inconclusive largely due to the

study's cognitive load. To test H4, per the authors, the study's instructional design would need to

be altered.

Automated Feedback for CS Students

In [18], Fangohr et al. describe their experiences with their automatic grading system at

the for novice software engineering students learning Python. The University of Southampton's

novice software engineering class provides students with lab time – 90 minutes once each week

– to complete the week's assigned lab work. During lab time the professor and a selection of

assistants are available to help students as they work on the labs. The authors’ system was

developed to reduce the time that instructors and teaching assistants spent correcting code so that

they could spend more time explaining technique and new content.

Fangohr et al.’s system receives student assignments via email. When it receives an

assignment, the system queues that assignment with others waiting to be graded. Once an

assignment reaches the head of the queue, checks are run to ensure that the code is secure and

25

can be processed. If an error is encountered at this step, an email describing the error is queued.

If no error is encountered, the system runs a series of assignment-related tests and records a

grade. A response email is constructed containing an itemized grade card for the assignment.

Test cases for any incorrect problems are appended to the message, indicating which ones passed

and failed, with comments on each case's purpose. This response email is queued to be returned

to the student. In addition to alerting students to their errors, the system informed them of the

challenges to come in the next problems and test cases.

The system places value on three quality attributes: availability, accuracy, and security.

The system needs to maintain consistent uptime without error due to its mission-critical nature –

it must allow students to work on and submit assignments at any time, up to an assignment's

deadline. Responses need to be accurate to assure that students receive correct information and

that their grades are correct. Security is maintained by limiting submissions to authorized student

accounts; institutional security is maintained by the checks that are run prior to the code being

processed by the system.

Before the automatic grading system was implemented, faculty estimated that they spent

90% of time checking code for correctness and 10% helping students understand concepts and

build skills. After the system's implementation, students began to finish work before lab time

much more frequently, implying that the system’s responses were helping students to learn

without instructor intervention. As a result, lab time was spent on solidifying concepts and

building skills for students.

The system assessed two types of assignments: ungraded training exercises and graded

lab exercises. While each assessment could be submitted any number of times to receive

additional feedback, a lab exercise's first submission was the one recorded for a grade. When

26

they reviewed how students submited work, Fangohr et al. found that the training exercises were

being repeatedly submitted and improved, in order to build a deeper understanding of content.

The data also indicates that some students resubmitted lab exercises, even though doing so did

not increase their grade. The data implies that the automatic grading tool can serve an auxiliary

role as a teaching mechanism for improving student comprehension and skills.

Interactive Notebooks

Jupyter

Jupyter Notebooks are a tool for developing texts with an embedded environment for

writing and running code. They were developed as a means for data scientists to present the

stages in a dataset's acquisition, transformation, and analysis. Notebook content consists of two

types of blocks. One, a Markdown block, is a plain text field that can be edited similarly to text

in a word processor (e.g., Microsoft Word, Google Docs). The other, a code block, contains

code; this code can be executed within the notebook, and its output will display underneath the

block [19].

.NET Interactive

The default Jupyter framework limits a notebook’s examples to just one language: e.g.,

Python or C#, but not both. .NET Interactive, a Microsoft product, removes this restriction,

allowing designers to create examples from codes in multiple programming languages that share

data. For example, this could involve simulating a C# backend while a Javascript/HTML

frontend displays the results [20].

Using .NET Interactive, notebooks that build multilingual examples can be configured in

one of two ways. The first is to add the .NET Interactive kernel to a Jupyter environment. The

second is to use Microsoft's Polyglot Notebooks extension for Visual Studio Code.

27

Notebooks for Teaching

In [21], Barbara and Barker discuss Jupyter as a tool for education. A survey of case

studies shows that Jupyter is being used to teach a wide range of topics, including writing, music,

engineering, geoscience, astronomy – and computer science. Barbara and Barker say that Jupyter

helps to create a learning environment that encourages class participation and content

engagement. It allows students to interact with a notebook’s elements, such as code or dynamic

multimedia. This allows for active experimentation – one of Kolb's 4 steps in experiential

learning.

One reason for Jupyter’s popularity is its designation as an open source framework:

anyone can extend the source code to fit their needs. Three of the case studies that the authors

cite used such extensions to adapt a notebook to the classroom. In 2013, Willing used the

Music21 extension to assist in teaching music theory. In 2017, Heagley used an extension called

GeoSci.xyz to assist in lectures covering applied geophysics and geophysical methods. Finally,

Columbia's School of Engineering and Applied Sciences uses the matplotlib and cartopy

extensions to facilitate presentations to students visiting the labs on field trips.

The authors discuss seven different modes of notebook use. The first is a textbook that

provides linear material to read and interact with. A second is a workbook that students change,

add to, or otherwise manipulate. A third is a drill sheet: a text that asks students to solve

problems. Similar to math homework, these problems are typically repetitive and increase in

difficulty. A fourth is a guided note sheet: linear material that students follow during a lecture. A

fifth is an application: an interactive medium with (e.g.) buttons and sliders for manipulating

displayed content. A sixth is a lab report: a student-created notebook that synthesizes written

responses and code. The last is a presentation replacement: material used to augment a lecture.

28

Notebooks can function as static media or augmented with live coding demonstrations.

Instructors can mix and match these modes of use – for example, an instructor may use a "guided

note sheet" notebook as a "presentation replacement", having students follow along as they solve

problems that they have laid out.

In [22], Pfeiffer et al. present a textbook in the format of a Jupyter Notebook for an upper

division elective class aimed to teach Python 3 to programmers with prior experience in object-

oriented programming. The textbook contains two sections to cover the scope of the language.

The first (chapters 2-19) covers Python's core features; the second (chapters 19-29) covers a few

of the Python’s more popular extensions and libraries.

Each chapter is divided into sections that cover the core concepts of the topic at hand.

Within those sections, the text begins with an explanation of the concept, followed by an

example in code relevant to that concept. Students can execute the code example to examine the

result; more than that, they can edit the provided example to see how their changes affect the

result. In some cases, the sections provide exercises for students to attempt. The proximity

between these examples and exercises to the textbook content means that it is easier to reference

the text and understand what is being demonstrated or required for an exercise.

29

CHAPTER 3. METHODOLOGY

This study aims to evaluate the impact of an interactive notebook on student performance

in a lower-division computer science course. This chapter’s first section describes construction

of an interactive notebook for supplementing a course on data structures, a standard lower-

division computer science course. It explains and states the rationale for the selection of

materials, topic sequencing, and the design and development of the notebook itself. The

following section describes the educational intervention study. It explains and states the rationale

for the study’s research design, sampling procedure, and data collection and analysis methods.

Notebook Construction

A Tour of Data Structures in C# is a Polyglot Notebook whose use of experiential

learning theory principles was intended to enhance students' learning experience. ETSU's Data

Structures class (CSCI 2210) was selected as the study’s setting due to the convenience of its

location, a recent unexpected change of instructor, and historical low student performance and

satisfaction. The notebook follows the instructional design patterns presented by Xie et al. with

relevant examples and exercises placed close to the content. This manner of composition

provides opportunities for concrete learning, reflective observation, and active experimentation

[8].

Topic Sequencing

The notebook contains 5 chapters, each building on concepts presented in the previous

chapter. Each of the notebook’s final four chapters reinforces concepts through the use of

questions that relate new concepts to concepts introduced in previous chapters – e.g., Q3 from

5.3. Additionally, each of the notebook’s first four chapters asks questions that foreshadow

material presented in future chapters: e.g., Q1 from 4.1 (see Appendix for questions). Sequencing

30

in this manner promotes long-term retention by relating content to students' prior knowledge

while avoiding jumping from topic to topic – a potential source of extraneous cognitive load

[12].

The chapters are arranged based on four attributes that neighboring chapters share:

contiguous memory location, elastic size, node-based construction, and algorithmic construction

(Figure 3.1). Contiguous data structures store elements in a linear sequence in memory. Elements

are accessed based on their offset from the structure’s first element. Elastic structures can change

in size as elements are added and removed. Node-based structures store data in isolated memory

locations. Each node can store references to other nodes, thereby linking them into a structure.

Finally, the placement of elements in an algorithmic structure is determined by an underlying

algorithm (e.g., a hash function or sorted order).

Fig. 3.1 – List of topics in sequence as they appear in the notebook. Chapters are separated by color.

31

Content Creation

The notebook features two types of content. One, traditional textbook-style content, is

composed with Markdown Language and HTML, allowing for rich text content and static

multimedia (such as images and video). The textbook content describes a concept and is

followed by a code example that demonstrates it.

The other, executable code, consists of examples that are placed near textbook content.

This content allows for immediate active experimentation with the concepts presented in the

adjacent text, encouraging learners to engage in the Experiential Learning cycle modeled by

Kolb. Learners can then reflect and observe with reference material close at hand [8].

Exercise Scaffolding

Each chapter of the notebook contains four sections. Each section ends with exercises

that—as suggested by Xie et al.—are presented in increasing order of difficulty. The first section

in each chapter asks learners to read a line of code and explain it. This is followed by second that

asks learners to write lines of code to do tasks, a third that asks learners to explain blocks of

Fig. 3.2 – Polyglot Notebooks for Visual Studio Code – before and after running a code cell.

32

code, and a fourth that asks learners to apply the chapter’s concepts to a new problem,

incorporating new elements.

Study Methodology

This research was undertaken to determine whether the use of an interactive notebook

could improve student performance in a computing class and to identify those aspects of the

notebook that contribute to any observed changes. The study’s results were intended to provide

insight into the notebook’s effectiveness and to inform future research and practice in

educational technology. The following section outlines the design and methodology of the

educational intervention used to measure the interactive notebook’s efficacy.

Study Design

This study implemented a quasi-experimental design with non-equivalent groups. Student

participants were split into a treatment and control group. The treatment group could access the

interactive notebook, and the control could not. This design was chosen to provide a means for

inferring the intervention’s effects on student performance while controlling for other factors.

The initial sample population was gathered from all students enrolled in CSCI 2210 –

Data Structures. Each student received an invitation to participate in the study via email, a

Desire2Learn (D2L, ETSU’s online LMS) news post, and an in-class announcement. This initial

sampling was based on the recommendation and support of department leadership. This is called

purposeful sampling, where participants are selected based on ease of access rather than using a

random or stratified sampling technique. Despite its limitations, this method can provide

meaningful results if the sample is representative of the target population’s demographic and

background characteristics.

33

Once a student opted in for the study, either by responding to the solicitation email or by

emailing the primary investigator (PI) directly, the PI shared the informed consent (IC) document

electronically. The IC form was facilitated via Microsoft Forms and required authentication via

ETSU authentication protocols. Access to form responses was limited to the PI and the advisor.

After the 1.5-week opt-in period, the PI used Python’s random library to load the list of

participant names and randomly distribute them into 2 groups of 7 students each. The PI then

shared the group enrollment list with the course instructor, who created three groups using the

D2L groups tool: “control”, “treatment”, and “unassigned”. The “control” and “treatment”

groups were assigned according to the Python script’s distribution; students on the class list who

did not elect to participate in the study were placed in the “unassigned” group. The PI was

granted access to all three groups in order to disseminate the components and information related

to the interactive notebook. The PI did not have access to any student grades or performance

indicators during the academic semester. Group-level student demographic and biographical data

was not collected per IRB restrictions.

Distribution and Support of ILE

Using the D2L content tool and built-in system release conditions, the PI released

chapters of the interactive notebook to the study’s participants in the “treatment” group

incrementally and notified them via a D2L news post. Students in the “treatment” group were

encouraged, but not required, to use or leverage the interactive notebook. The interactions

between the PI and the treatment group were limited to answering questions related to notebook

functionality and/or compatibility. The PI did not communicate with the “control” group or the

“unassigned” group.

34

Data Collection

At the conclusion of the semester, the PI distributed a survey to the “treatment” group via

the Brightspace LMS. The survey contained a single prompt: “How many hours did you spend

using the [interactive notebook] to study this semester? Round to the nearest hour.” Also, the

course instructor provided anonymized assessment results to the PI via an encrypted spreadsheet.

Data Analysis

The analysis of the data collected for this study involved the use of an independent t-test

and a Pearson correlation coefficient. The independent t-test was used to determine if access and

use of an interactive learning environment had a significant impact on the grades of students

enrolled in the study. The Pearson correlation coefficient was used to examine the relationship

between notebook usage and final grade scores among students provided with an interactive

learning environment.

35

CHAPTER 4. ANALYSIS

Independent T-Test

Q1 examines whether there was a significant difference in learning outcomes between

students who were provided with the notebook and those who were not. To determine if access

to and use of the notebook had a significant impact on students’ grades, the researcher conducted

an independent t-test. The fourteen students were divided into a 7-person control group, which

did not receive the notebook, and a 7-person treatment group, which did. The results showed no

statistically significant difference between the mean project and assignment grades of the control

group (n=7, M=86.82, SD=8.61) and the treatment group (n=7, M=74.86, SD=19.97),

t(11)=1.455, p=.171. However, the effect size was medium (.778), indicating a potential practical

significance. The results failed to reject the null hypothesis, suggesting that the availability of an

interactive notebook did not have a significant impact on students' grades in this particular

course.

 grp N Mean Std. Deviation Std. Error Mean

Final Grade
c 7 86.816 8.607 3.253

t 7 74.857 19.969 7.547

proj1
c 7 88.290 7.566 2.860
t 7 84.000 13.916 5.260

proj2
c 7 93.860 6.256 2.365
t 7 77.140 38.499 14.551

proj3
c 7 90.710 8.864 3.350
t 7 90.710 12.724 4.809

proj4
c 7 85.000 10.408 3.934
t 7 59.290 40.252 15.214

proj5
c 7 94.140 5.178 1.957
t 7 77.140 34.017 12.857

proj6
c 7 58.570 42.692 16.136
t 7 65.000 35.237 13.318

proj7
c 7 97.140 5.669 2.143
t 7 70.710 36.105 13.646

Midterm Exam
c 7 93.860 5.843 2.209
t 7 94.570 10.518 3.975

Final Exam
c 7 82.710 8.845 3.343
t 7 79.570 12.205 4.613

Table 4.1 Group Statistics

36

Correlation Test

Q2 investigates whether interaction time positively correlated with learning outcomes

among students provided with the notebook. To determine whether this correlation held, the

researcher computed a Pearson correlation coefficient to examine the relationship between

interactive notebook usage and the final grade of the treatment group. The analysis revealed a

strong positive relationship between notebook usage (M = 2.34, SD = 2.99) and final grade (M =

74.85, SD = 19.97) scores, but the correlation was not statistically significant (N = 7, r = .625, p

= .134). Thus, the results failed to reject the null hypothesis: there is no statistically significant

difference in students' grades based on interactive notebook usage. These findings suggest that

students with high notebook usage could also have higher final grades, but the correlation

requires a larger sample size for an increase in significance.

Table 4.2 Independent Samples Test

Equal
variances
assumed?

Levene's Test t-test for Equality of Means t-test for Equality of Means

F Sig. t df
Sig.

2-Sided p
Mean
Dif.

Std. Err.
Dif.

95% Confidence
Lower Upper

Final
Grade

Yes 2.333 0.153 1.455 12.000 0.171 11.959 8.219 -5.948 29.866

No 1.455 8.155 0.183 11.959 8.219 -6.931 30.849

proj1
Yes 6.178 0.029 0.716 12.000 0.488 4.286 5.987 -8.759 17.330

No 0.716 9.262 0.492 4.286 5.987 -9.200 17.771

proj2
Yes 9.703 0.009 1.134 12.000 0.279 16.714 14.742 -15.406 48.834

No 1.134 6.317 0.298 16.714 14.742 -18.924 52.353

proj3
Yes 1.122 0.310 0.000 12.000 1.000 0.000 5.861 -12.770 12.770

No 0.000 10.713 1.000 0.000 5.861 -12.943 12.943

proj4
Yes 9.127 0.011 1.636 12.000 0.128 25.714 15.714 -8.524 59.953

No 1.636 6.799 0.147 25.714 15.714 -11.668 63.097

proj5
Yes 3.547 0.084 1.307 12.000 0.216 17.000 13.005 -11.336 45.336

No 1.307 6.278 0.237 17.000 13.005 -14.484 48.484

proj6
Yes 0.771 0.397 -0.307 12.000 0.764 -6.429 20.923 -52.015 39.158

No -0.307 11.584 0.764 -6.429 20.923 -52.197 39.340

proj7
Yes 6.823 0.023 1.913 12.000 0.080 26.429 13.814 -3.669 56.526

No 1.913 6.296 0.102 26.429 13.814 -6.991 59.848

Midterm
Exam

Yes 1.661 0.222 -0.157 12.000 0.878 -0.714 4.548 -10.623 9.194

No -0.157 9.382 0.879 -0.714 4.548 -10.938 9.510

Final
Exam

Yes 1.745 0.211 0.552 12.000 0.591 3.143 5.697 -9.270 15.556

No 0.552 10.940 0.592 3.143 5.697 -9.405 15.690

37

Table 4.3 Treatment Group Statistics

Mean Std. Deviation N

Final Grade 74.857 19.969 7

Study Time 2.430 2.992 7

Table 4.4 Correlations

Final Grade Study Time
Final
Grade

Pearson Correlation 1 .625

Sig. (2-tailed) .134

N 7 7
Study
Time

Pearson Correlation .625 1

Sig. (2-tailed) .134
N 7 7

38

CHAPTER 5. CONCLUSION

 The results of the independent t-test and Pearson correlation coefficient tests failed to

show any statistically significant difference in learning outcomes between students provided with

the notebook and those who were not. While the effect size for the t-test was medium, the lack of

significance suggests that the notebook’s availability did not have a significant impact on

students' grades in this particular data structures course.

This study was limited by several factors. Firstly, the study was conducted in a single

section of the class, which may affect its external validity. Secondly, the control group by chance

consisted of high-performing students, which may have influenced the results – particularly

those of the t-test. Finally, the small sample size limits the study’s power to detect differences

between the groups.

One interesting finding was the positive relationship between notebook usage and final

grade scores, as shown by the Pearson correlation coefficient. While the correlation was not

statistically significant, it suggests that students with high notebook usage could also have higher

final grades. However, this relationship needs to be further investigated with a larger sample size

to increase the statistical power and determine the significance of the correlation.

Future Work

Future work related to the use of notebooks in classroom settings should include

improvements to the educational intervention and changes to the study. By enhancing the

intervention and the notebook, it may be possible to build upon the foundation laid by this study

and further support student learning outcomes. Alternatively, changing the study design could

address some of the current study’s limitations and shortcomings.

39

 One feature of Polyglot Notebooks is the ability to simultaneously use an arbitrary

number of languages that share state. This feature can allow for more interactive and engaging

examples, such as visualizations that are easier to create or data structures that are simpler to

understand in one language versus another. It would also provide an environment for side-by-

side comparison between languages. Overall, incorporating multiple languages into the notebook

could provide a richer and more diverse learning experience.

 In a future study, it would be beneficial to more closely integrate the interactive notebook

into the course curriculum for the treatment group. During the current study, the notebook was

an optional tool for students to use; some students may not have taken full advantage of its

features. Incorporating the notebook more thoroughly into the course may increase students’

exposure to the intervention. Additionally, a more integrated approach could allow for better

tracking of student progress and engagement with the tool, which could provide more

comprehensive data on the notebook's impact on student learning outcomes. Further

investigation is needed to determine the most effective way to integrate the notebook into the

course and to explore any potential barriers to adoption by both students and instructors.

 Finally, future work could address the study’s limitations. Surveying two sections instead

of one would likely result in a larger sample size and a control group with a more controlled

population. A larger sample size would allow for more sophisticated statistical analysis and

could potentially reveal significant effects that were not detected in this study.

40

REFERENCES

[1] Simon et al., “Pass Rates in Introductory Programming and in other STEM Disciplines,”
Proceedings of the Working Group Reports on Innovation and Technology in Computer
Science Education, Dec. 2019, doi: https://doi.org/10.1145/3344429.3372502.

[2] J. McFarland et al., “The Condition of Education 2018,” May 2018 [Online]. Available:
https://nces.ed.gov/pubs2018/2018144.pdf.

[3] C. Stephenson et al., “Retention in Computer Science Undergraduate Programs in the
U.S. Data Challenges and Promising Interventions,” 2018 [Online]. Available:
https://www.acm.org/binaries/content/assets/education/retention-in-cs-undergrad-
programs-in-the-us.pdf.

[4] ACM/IEEE-CS Joint Task Force on Computing Curricula. "Computing Curricula 2020:
Paradigms for Global Computing Education." Association for Computing Machinery
and IEEE Computer Society, 2020.

[5] J. Kubica, Data Structures the Fun Way. No Starch Press, 2022.

[6] D. Zingaro, Algorithmic Thinking. No Starch Press, 2021.

[7] P. LeBlanc, “Reading Signals from the Future: EDUCAUSE in 2038,” Jul. 02, 2018.
[Online]. Available: https://er.educause.edu/articles/2018/7/reading-signals-from-the-
future-educause-in-2038. [Accessed: Mar. 29, 2023]

[8] D. A. Kolb, Experiential Learning: Experience as the Source of Learning and
Development, 2nd ed. Upper Saddle River, New Jersey: Pearson Education, Inc, 2014.

[9] N. Wexler, “What Teachers Need To Know About The Science Of Learning--And What
They Don’t,” Forbes, Feb. 19, 2019. [Online]. Available:
https://www.forbes.com/sites/nataliewexler/2019/02/19/what-teachers-need-to-know-
about-the-science-of-learning-and-what-they-dont/?sh=151467ba6582#372154456582.
[Accessed: Mar. 29, 2023]

[10] J. Wong et al., “Educational Theories and Learning Analytics: From Data to
Knowledge,” in Utilizing Learning Analytics to Support Study Success, D. Ifenthaler, D.
Mah, and J. Yau, Eds. Cham: Springer, 2019.

[11] J. Dewey, Experience and Education. New York: Free Press, 1938.

[12] J. Dirksen, Design for how people learn, 2nd ed. Berkeley, Calif.: New Riders, 2016.

[13] J. McManus and P. Costello, “Project based learning in computer science: a student and
research advisor’s perspective,” Journal of Computing Sciences in Colleges, vol. 34, no.
3, Jan. 2019.

[14] S. Weinschenk, 100 Things Every Designer Needs to Know About People, 2nd ed.
Peachpit Press, 2020.

[15] Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and
Giroux.

41

[16] B. Xie et al., “A theory of instruction for introductory programming skills,” Computer
Science Education, vol. 29, no. 2–3, pp. 205–253, Jan. 2019, doi:
https://doi.org/10.1080/08993408.2019.1565235. [Online]. Available:
https://faculty.washington.edu/ajko/papers/Xie2019IntroCSTheoryOfInstruction.pdf.
[Accessed: Nov. 14, 2021]

[17] B. S. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill, and D. R. Krathwohl, Taxonomy
of Educational Objectives: The Classification of Educational Goals. Handbook I:
Cognitive Domain. Longman, 1956.

[18] H. Fangohr, N. O'Brien, A. Prabhakar and A. Kashyap, "Teaching Python Programming
with Automatic Assessment and Feedback Provision," University of Southampton, 11
September 2015. [Online]. Available: https://arxiv.org/pdf/1509.03556.pdf. [Accessed
Nov. 14, 2021].

[19] Project Jupyter. "Project Jupyter." [Online]. Available: https://jupyter.org/. [Accessed:
Apr. 2, 2023].

[20] Microsoft. “.NET Interactive.” [Online]. Available: https://github.com/dotnet/interactive
[Accessed: Apr. 2, 2023].

[21] L. A. Barba and L. J. Barker, "Teaching and Learning with Jupyter," 06 12 2019.
Available: https://jupyter4edu.github.io/jupyter-edu-book/index.html. [Accessed Dec.
19, 2022].

[22] P. Pfeiffer, Z. Bunch and F. Oyeniyi, "A Tour of Python 3," East Tennessee State
University, 2021.

42

APPENDIX: QUESTION LIBRARY

Chapter 1.1

1. What does the following code do?

int[] monthlySales = new int[];

2. Given the array inchesOfSnow = [7, 2, 0, 0, 1, 0, 5], what does the
following code do?

Console.WriteLine(inchesOfSnow[5]);

3. Given the above array, what does the following code do?

inchesOfSnow[4] = 2;

4. What does the following code do?

bool[] questionsCorrect = [true, false, false, true, true];

5. What does the following code do?

bool[] questionsCorrect = {true, false, false, true, true};

6. Give some examples of builtin Array methods in C#. What do they do?

Chapter 1.2

1. Create an array and fill it with the first 7 numbers of the Fibonacci Sequence, starting

with 0.

2. Using the array created in exercise 1, print the value 3 to the screen.

3. Reverse the above array, and then subtract 5 from each value.

4. Create a multidimensional array to represent a Tic-Tac-Toe board.

5. Initialize the values in the array to spaces. If you wish, you can combine 4 and 5 into one

step.

6. Place a few 'X's and 'O's on the board, and then print the array.

7. Create a jagged array with 6 rows.

43

8. Using a fresh copy of the array from exercise 1, set the sizes of the jagged array's rows to

the Fibonacci Sequence: for example, this array's first and last rows should have 1 and 8

elements, respectively. Fill each row to capacity with the initial values of the Fibonacci

sequence: for example, this array's third row should have {1, 1, 2} as its elements, while

its fifth should have {1, 1, 2, 3, 5}. Finally, print the array.

Chapter 1.3

1. Explain what the following code accomplishes.

foreach (int x in array) {
 Console.Write($"{x} ");

}

2. Explain what the following code accomplishes.

for(int i = 0; i < array.Length; i++) {
 array[i] *= 2;

}

3. Explain what the following code accomplishes.

int[][] arr = new int[4][];
int[] lengths = {4, 2, 5, 7};

for(int i = 0; i < arr.Length; i++) {
 arr[i] = new int[lengths[i]];
}

4. Explain what the following code accomplishes.

using(var reader = new StreamReader(@"./file.txt")) {
 for (int i = 0; i < array.Length; i++) {
 var line = reader.ReadLine();
 array[i] = int.Parse(line);
 }
}

5. Explain what the following code accomplishes.

int index = -1;

for(int i = 0; i < array.Length; i++) {

44

 if(array[i] == 3) {
 index = i;
 break;
 }
}

6. Explain what the following code accomplishes.

for (int i = 0; i < array.Length - 1; i++) {
 for (int j = 0; j < array.Length - i - 1; j++) {
 if (array[j] > array[j + 1]) {
 int temp = array[j];
 array[j] = array[j + 1];
 array[j + 1] = temp;
 }
 }
}

Chapter 2.1

1. What does the following code do?

List<char> letters = new List<char>();

2. Use the following list for the exercises below: list = [9, 3, 5, 1, 2, 4, 7,

6, 8]

What does the list look like after the following code executes?

list.Add(27);

3. What does the list look like after the following code executes?

list.Insert(3, 99);

4. What does the list look like after the following code executes?

list.Remove(3);

5. What does the list look like after the following code executes?

list.Remove(10);

6. What does the list look like after the following code executes?

list.RemoveAt(2);

45

7. What does the list look like after the following code executes?

list.RemoveAt(14);

8. Give some examples of builtin List methods in C#. What does each of them do?

Chapter 2.2

1. Create a queue and fill it with the first 5 digits of pi, excluding the decimal point.

2. Print the value 4 to the screen using the queue from exercise 1.
Hint: There are multiple ways to solve this problem. Try a few different methods.

3. Create a stack from the given array string[] fruits = {"apple",

"banana", "cherry", "durian", "elderberry", "fig"}.

4. Use a loop to print all of a stack's contents.

5. What happens when you Peek the stack? What about when you use TryPeek?

Demonstrate this in the code blocks, and then record your answer in a markdown cell.

Chapter 2.3

1. List some other potential uses for stacks and queues.

2. Explain what the following code accomplishes.

foreach (int x in list) {
Console.Write($"{x} ");
}

3. Explain what the following code accomplishes.

string s = "";
while (stack.TryPop(out s)) {
Console.WriteLine(s);
}

4. Explain what the following code accomplishes.

string s = "";
char nextLetter;
while (stack.TryPop(out nextLetter)) {

46

s += nextLetter;
}

5. Explain what the following code accomplishes.

string s = "";
if (queue.TryDequeue(out s)) {
Console.WriteLine(s);
}
else {
Console.WriteLine("Queue is empty.");
}

6. What is (are) the difference(s) between using foreach with a list to process data and

using Pop in a stack or Dequeue in a queue?

Chapter 3.1

1. What is a reference type variable?

2. What is held in Node.data?

3. What is held in Node.next?

4. What does the following loop accomplish?

while (currentNode != null) {
 //...
}

Chapter 3.2

1. Print the contents of the list in the cell above.

2. Print the value "101" from the list.

3. Swap the head node with the 3rd node in the list (data = 12).

4. Add a new node with data = 88 after the second node (data = 71)

Chapter 3.3

1. In a doubly-linked list, why is it possible to remove the last element in O(1) time?

2. Explain the purpose of the following loop.

47

do {
 //...

} while (currentNode != circularLinkedList.head);

3. Explain what the following function accomplishes.

function() {
 if(this.head == null) {
 return;
 }
 else if(this.head.data == data) {
 this.head = this.head.next;
 }
 else {
 Node current = this.head;
 while(current.next != null) {
 if(current.next.data == data) {
 current.next = current.next.next;
 return;
 }
 current = current.next;
 }
 }
}

4. What is the time complexity of the function from exercise 3? Why?

5. Designers of data structures routinely tinker with the details of their implementations in

order to optimize the behavior of key operations.

One such variant of a linked list places a dummy element at the head of every linked list.

This dummy element contains no data - rather, it anchors the rest of the list. One

drawback of this approach is that it "wastes" space: the dummy element will never

contain meaningful content. What, then, are this implementation's advantages?

Hint: how do add, remove, and find handle empty lists?

Chapter 4.1

1. What qualities of a tree make them similar to liked lists? What qualities make them

different?

48

2. What is the root node?

3. What are parents and children?

4. In the diagram above, what is the depth of 9? of 0? of 4?

5. In the diagram above, what is the height of the tree?

6. What is traversal? How does breadth-first traversal differ from depth-first traversal?

Chapter 4.2

1. Using the BinarySearchTree class, create the tree in the following diagram:

2. In what order can the nodes be added to create a balanced tree? Write the code below.

49

3. How does order affect accessing nodes in a tree? What about balance? Write your answer

in a new markdown cell.

Challenge: In the following code cells, create methods to perform reverse traversals for pre-

order, in-order, post-order, and level order traversals.

Chapter 4.3

1. What does the following loop accomplish? Why does the first if statement return null?

while (currentNode.data != data) {
 if (currentNode.left == null && currentNode.right == null) {
 return null;
 }

 if (data < currentNode.data) {
 currentNode = currentNode.left;
 }
 else {
 currentNode = currentNode.right;
 }
}
return curentNode;

2. What does the following function accomplish? What process does it aid in?

public Node function(Node x) {
 Node current = x.right;
 while (current.left != null) {
 current = current.left;
 }
 return current;
}

3. Describe a left rotation. When would a left rotation result in a balanced tree?

4. Describe a right-left rotation. In what case would you this instead of a left rotation?

Chapter 5.1

1. Given array = {17.5, 16.7, 0.0, 8.4, 99.3, 66.7, 59.8}, what

value does array[2] access?

2. Given the same array, what value does array["Tuesday"] access?

50

3. Given:

dictionary = {

 Sunday: 17.5,

 Monday: 16.7,

 Tuesday: 0.0,

 Wednesday: 8.4,

 Thursday: 99.3,

 Friday: 66.7,

 Saturday: 59.8

}

what value does dictionary[2] access?

4. Given the same dictionary, what value does dictionary["Tuesday"] access?

5. Given the same dictionary, what value does dictionary["February"] access?

6. What can you infer about the data being stored in these structures? How does that

inference change from one to the other, if at all?

Chapter 5.2

1. Write the code to access the grade of Rachael, given the following dictionary:

Dictionary<string, int> dict = new Dictionary<string, int>() {
{"Andrea", 97},
{"Samuel", 26},
{"Gerald", 85},
{"Tomas", 85},
{"William", 92},
{"Xander", 91},
{"Rachael", 89},
{"Collin", 85},
{"Brutus", 74},
{"Caesar", 90}
};

51

2. Write the code to add a grade of 96 to a student called Luis.

3. Write the code to increase Luis's grade to a 100.

4. What is the worst-case lookup time for a hash table implemented with chaining? What

about probing? Give your reason for both.

5. Consider a hash table that implements linear probing where n=3. What problems might

occur when the capacity (total number of buckets) is 30, if any?

Chapter 5.3

1. What is the purpose of the following code?

public int this[string key] {
 set {
 //...
 }
 get {
 //...
 }
}

2. Explain how function caching would be helpful for a function that returns the nth item of

the Fibonacci sequence given n.

3. The AssociativeArray class in 5.1 uses a list. Could its performance be improved by

using a tree instead? And, if so, what requirements would need to be imposed on the key-

value pairs?

4. Chaining also uses lists. Given that tree accesses are O(log n), which underlying structure

will perform better on average? Why? In what cases does this vary, if any?

52

VITA

DILLON BUCHANAN

Education: M.S. Computer Science, East Tennessee State University, Johnson

 City, Tennessee, 2023

 B.S. Computer Science, East Tennessee State University, Johnson

 City, Tennessee, 2021

Professional Experience: Graduate Teaching Associate, East Tennessee State University,

 College of Business and Technology, 2023

 Graduate Research Assistant, East Tennessee State University,

 Clemmer College of Education, 2022

Information Systems and Technology Specialist, Trailblazer

Coffee, 2020-2021

Publications: Buchanan, Dillon and Pottinger, Benjamin (2023). “Character

 Analysis from Text Stories Using Sentiment Analysis and

 Unsupervised Clustering” Appalachian Regional Business

 Symposium. Under Review.

Honors and Awards: 2023 Outstanding Graduate Student, Department of Computing

	Immersive Learning Environments for Computer Science Education
	Recommended Citation

	Microsoft Word - Immersive Learning Enviromnents for Computer Science Education.docx

