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Abstract. Additive manufacturing is a widely used process consisting in the
building of a three-dimensional (3D) object from a model projected on a com-
puter, adding the material layer-by-layer. This technology allows the printing of
complex shape objects and is being increasingly adopted by the aircraft industry,
medical implants, jewelry, footwear, automotive, fashion products, among others.
The build orientation optimization of 3D models has a great influence on costs
and surface quality when printing three-dimensional objects.
In this work, three build orientation optimization problems are studied: single-
objective problem, bi-objective problem and many-objective problem. To this
end, three quality measures are applied: the support area, the build time and the
surface roughness, for the Car Hoodvent model. First, a single-objective opti-
mization problem is presented and solved by the genetic algorithm, obtaining
optimal solutions for each objective function. Then, the study of the bi-objective
optimization problem is carried out for each pair of two objectives and some
representative trade-off solutions are identified. Finally, the study of the many-
objective optimization problem, considering the three measures optimized simul-
taneously, is presented with some more optimal solutions found. The bi-objective
and many-objective problems are solved by a multi-objective genetic algorithm.
For a better analysis and comparison of the solutions found, the Pareto fronts are
used, enabling a better visualization of the solutions between the objectives. This
study aims to assist the decision-maker in choosing the best part print orientation
angles according to his/her preferences. The optimal solutions found confirmed
the effectiveness of the proposed approach.

Keywords: Additive Manufacturing, 3D Printing, Multi-objective Optimization,
Single-objective Optimization, Build Orientation.

1 Introduction

Rapid Prototyping (RP) is a current technology that manufactures models in less time
than any other current method. This has grown over the years and has been implemented
in many model manufacturing companies due to its effectiveness in reducing the over-
all product development cost and time [1]. Rapid prototyping is commonly applied in
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software engineering to try out new business models and application architectures such
as Aerospace, Automotive, Product development, and Healthcare. Figure 1 shows the
percentage of areas where rapid prototyping is used.

Fig. 1: Rapid prototyping worldwide1.

The RP is divided into two types of manufacturing, the additive manufacturing and
the subtractive manufacturing. The additive manufacturing (AM) consists of a set of
technologies for the manufacture of 3D objects by overlapping material layer-by-layer,
starting from scratch.

The subtractive manufacturing is based on removing material from a block of raw
materials 2. These two types of manufacture can be viewed in Fig. 2.

Fig. 2: Additive and Subtractive Manufacturing3.

1Available in: https://commons.wikimedia.org/wiki/File:Rapid_prototyping_

worldwide_by_Zureks.png, Accessed: 2020-12-28
2Available in: https://formlabs.com/blog/additive-manufacturing-vs-subtractive-manufacturing/,

Accessed: 2020-12-28
3Available in: https://bitfab.io/blog/additive-manufacturing/, Accessed: 2020-

12-28
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Additive manufacturing has been widely used in recent years by several companies
producing 3D objects, which is defined by the addition of layer-by-layer material, using
different construction materials, such as plastic, resin, rubber, ceramics, glass, concrete
and metal [2]. Currently, AM is applied in different areas, such as medical sciences (for
example, dental restorations and medical implants), jewelry, footwear industry, auto-
motive industry and aviation industry [3,4]. With this type of technology it is possible
to build very complex geometry parts without requiring much post-processing.

Over the last decades, several processes have been introduced in the AM, such as
fused deposition modeling (FDM), stereolithography, selective laser fusion, selective
laser sintering, laser cladding, laminated object manufacturing, laser vapor deposition,
etc. [5]. FDM is one of the most used processes for the production of 3D parts and
will be the technique involved in this work. This is defined as a process that creates a
3D object from a thermoplastic filament, which is heated to its melting point and then
extruded layer-by-layer. This process has as main advantages, the fact that it is flexible,
allows the development of 3D parts in different orientations [6], improves resource
efficiency, gives greater durability to the model and manages to produce parts on a small
scale and complex geometry [7]. In addition, this technology generates less material
waste and requires less time and reduced costs during the production of 3D objects [8].

The performance of AM depends on the orientation of the parts on the printer plat-
form, that is, each part must have an optimal orientation in order to improve the surface
quality, minimize the building time and finally decrease the total costs [9]. The selection
of the best build orientation is a very important factor since it affects several factors such
as the amount of material, the printing time, the material cost, the quality of the final
part (roughness) and the amount of support material. In addition, an optimal orientation
makes it possible to reduce or eliminate errors involved throughout the 3D model print-
ing process [2,10]. Several studies have been carried out in order to select the optimal
build orientation for a 3D CAD model.

There are different approaches to determine the best build orientation of a 3D CAD
model based on single-objective optimization [9,11,12,13,14]. Thrimurthulu et al. [15]
and Canellidis et al. [1] show methodologies addressing the optimal part orientation
taking into account the surface quality, the surface roughness and the build deposition
time. Matos et al. [10] used the Electromagnetism-like algorithm to determine the best
orientation of the six 3D CAD models. Six quality measures, the volumetric error, the
support area, the staircase effect, the build time, the surface roughness and the surface
quality were optimized separately and several optimal solutions have been obtained.

In recent years, different multi-objective approaches have also been developed to
determine the optimal orientation in the building of 3D objects [16,17,18,19]. Li et
al. [20] formulated a multi-objective optimization problem focused on obtaining the
desired orientations based on the following objectives: the support area, build time and
surface roughness. For this, Particle Swarm Optimization method was used. A multi-
objective approach considering as objective functions the surface roughness and the
build time, for different models, was developed by Padhye and Deb in [21]. The Non-
dominated Sorting Genetic Algorithm (NSGA-II) and Multi-objective Particle Swarm
Optimization (MOPSO) algorithms were used to obtain the Pareto front. In the study
carried out by Qin et al. [8], a method based on diffuse multi-attribute decision making
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to determine the optimal 3D part build orientation is presented. They concluded that
this method does not present a demanding high computational cost when compared to
other methods used for these type of problems.

In [22] a study applying the weighted Tchebycheff scalarization method embedded
in the EM optimization algorithm was made. A set of optimal solutions were identified,
resulting in a low printing time and the low necessary use of material. The NSGA-II
and Generalized Differential Evolution 3 (GDE3) were used in [23] in order to increase
the sustainability of additive manufacturing processes for the construction of a part in a
given orientation. Matos et al. in [24] applied a many-objective approach for a 3D CAD
model, where the NSGA-II was used with four quality measures .

The main goal of this work is to optimize the build orientation problem in order to
provide the decision-maker the optimal build orientations and their trade-offs in print-
ing the Car Hoodvent model. Three measures will be considered: the total contact area
of the external supports with the object (the support area), the time required to build
the object (the build time) and the surface roughness. First, a single-objective approach
is developed to find the optimal build orientations of the three measures, but optimized
separately. Then, a bi-objective approach is carried out to optimize the combinations of
two measures. Finally, a many-objective approach optimizing the three measures simul-
taneously is performed. The GA and NSGA-II methods implemented in the MATLAB
Global Optimization Toolbox® will be used, through the ga function, for solving the
single-objective problem and gamultiobj function, for solving the bi-objective and
many-objective problems.

This article is organized as follows. Section 2 introduces the build orientation prob-
lem and the model involved in the experiments is presented in Section 3. The quality
measures that will be optimized are described in Section 4 and the experiments based
on single- bi- and multi-objective optimization are presented in Sections 6-7. The nu-
merical experiments are discussed in Section 8 and Section 9 contains the conclusions
of this study and some recommendations for future work.

2 Part Orientation

2.1 Introduction

The selection of the best orientation is a very important factor in additive manufacturing,
since it contributes to the reduction of the manufacturing time, reduces the amount of
support structures, gives a better precision, reduces the construction price of the part
and obtains a better finish superficial [25].

To find the optimal orientation of a 3D object it is necessary to rotate it on different
axes (x, y and z axes). Figure 3 shows the rotations around the different axes. These ro-
tations follow the rule of the right hand (counterclockwise, that is, direction of positive
rotation).

The quality measures involved in this study and presented in Sect. 4 require a vec-
torial direction d = (x,y,z)T , which is calculated using the equation (1):

x2 + y2 + z2 = 1 (1)
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Fig. 3: Positive rotation around axes [26].

where the variables x, y, and z are given by:
x = sin(β )cos(ρ)
y = sin(β )sin(ρ)
z = cos(β )

In Fig. 4 can be visualized the direction unit vector with the variables represented.

Fig. 4: Unit vector of build orientation [18].

2.2 Staircase Effect

In this work, the main objective is to optimize the build orientation of the 3D part in
order to reduce its surface roughness, the build time and the supports area, taking into
account several factors such as the staircase effect. The staircase effect may arise when
the thickness of the layers is uniform on curved surfaces, when there is shrinking of
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the layers, since the material of the layers is deposited from the bottom up and the
upper layers alter the shape of the inferiors, and also when the laser angle of the printer
is not correct. This effect causes dimensional errors and makes the part rough on its
surface [27].

Figure 5 shows the staircase effect of a model. The error associated with the stair-
case effect occurs due to the layer thickness and the slope of the part surface [28].

Fig. 5: Staircase phenomenon.

The maximum deviation between the part surface and the printed object caused
by the staircase effect is denoted as the cusp height (CH), which is calculated by the
maximum deviation from the layered part to the CAD surface measured in the normal
direction to CAD surface.

The cusp height depends on the angle α formed by the slicing direction d and the
model surface normal n, and on the layer thickness t. The cusp height is given by CH =
t cos(α), where cos(α) = |d · n|. Thicker layers and/or higher values of cos(α) will
produce larger values for cusp height and consequently a more inaccurate surface will
appear [29].

2.3 Orientation Computational System

The process of finding the best orientation for a 3D model starts with a 3D mesh model
that can be created by structures built in computer-aided design (CAD) software and
then converted to a standard tessellation language (STL) in a STL file (see Sect. 3).
Then, a pre-processing is carried out which consists of inserting the STL file in a 3D
printing program and define all parameters for printing the 3D part. In the following,
the optimization problem considering the objective functions in the process is solved
by an optimization algorithm. Finally, the optimal orientations are obtained for printing
the model. In Fig. 6, it can be seen the entire digital process, before making the model
on the 3D printer.
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Fig. 6: Computational process to obtain the best orientation of a 3D CAD model.

3 Car Hoodvent Model

The Car Hoodvent model is a front ventilation grill for a car, as shown in Fig. 7. The size
of this model is 389.5×147.5×18.5 (width×height×depth) in mm and the volume
is 144.2cm3. The layer thickness used in this work was 0.2mm.

Fig. 7: 3D CAD representation of the Car Hoodvent model.

The STL file is an approximation (tessellation) of the CAD model, where the ge-
ometric characteristics of the 3D model are depicted. Thus, the model is represented
by a mesh of triangles, describing only the surface geometry of a three-dimensional
object without any representation of color, texture or other common attributes of the
CAD model. The Car Hoodvent is defined by 8646 triangles and its representation is
presented in Fig. 8.

4 Quality Measures

4.1 Support Area

The amount of supports affects the building time of the part as well as the surface
accuracy. This can be measured by the support area or support volume. The support
volume has an effect on building the model and computationally this is very complex
to be calculated. It is the volume of the region that is between the platform of the 3D
printer and the layer under construction. The support area is the measure that accounts
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Fig. 8: Triangular representation of the Car Hoodvent model

for the amount of supports to be used in the construction of the part and is defined as the
total area of the downward-facing facets. This is measured through the total contact area
of the external supports with the object and consequently affects the building time of the
part and also the final cost. Support area mainly influences post-processing and surface
finish. This is computationally simpler and also the most important when it comes to
part accuracy [10,18].

The SA objective function is expressed by:

SA = ∑
i

Ai |d ·ni| δ (2)

δ =

{
1, d ·ni < 0
0, d ·ni > 0

where Ai is the area of each triangular facet i, ni is the normal unit vector of each
triangular facet i, d is the unit vector of the direction of construction and δ is the initial
function [19].

In Fig. 9, two examples of objects that need supports during their printing are pre-
sented.

Internal and external supports [30] Example of a 3D CAD
model with supports.

Fig. 9: Supports in 3D model.
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Figure 10 depicts the SA objective function landscape for the Car Hoodvent model.
This objective function is nonconvex with multiple local optima.

Fig. 10: SA objective function landscape of Car hoodvent.

4.2 Build Time

The time required to create an object accurately is composed of the time of the 3D
printer to deposit the material layer-by-layer plus the time for support removal and
surface finishing [1].

According to Zhao [18], the build time comprises the precise time for the platform
to move downwards during the construction of each layer, which depends on the total
number of slices of the solid. On the other hand, the number of slices depends on the
height of the object’s construction orientation, so the build time is proportional to the
height of the model. Therefore, minimizing the number and height of layers makes it
possible to shorten the build time of the part.

The build time (BT ) is given by

BT = max
i

(
dT v1

i ,d
T v2

i ,d
T v3

i
)
−min

i

(
dT v1

i ,d
T v2

i ,d
T v3

i
)

(3)

where d is the direction vector and v1
i ,v

2
i ,v

3
i are the vertex triangle facets i [24].

The objective function BT , for the part Car Hoodvent, is represented in Fig. 11. It
appears that this measure is non-convex and has multiple local optima.

4.3 Surface Roughness

Several factors affect the surface roughness (RA) such as the layer thickness, the number
of support structures and the orientation of the part [28,31]. In addition, it may imply
less resistance of the part during the work performance, leading to poor product quality
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Fig. 11: BT objective function landscape of Car hoodvent.

[32]. Over the past few years, several authors have studied different approaches to define
surface roughness [11,33,34,35,36,37,38]. For a better precision of the value of RA,
Behnam [39] elaborated a review of the various equations of surface roughness, forming
a set of equations that calculate the value of RA depending on the orientation angle.

The surface roughness for each triangle facet i, RAi, is defined taking into consider-
ation the build angle θ , and is given by

RAi =



70.82
t

cos(θi)
, if 0◦ ≤ θi ≤ 70◦

1
20
(
90RA70

i −70RA90
i +θi

(
RA90

i −RA70
i
))

, if 70◦ < θi < 90◦

117.6 t, if θi = 90◦

RAθi−90
i (1+w), if 90◦ < θi ≤ 135◦

1000
2

t
∣∣∣∣cos((90−θi)−φ)

cos(φ)

∣∣∣∣ , if 135◦ < θi ≤ 180◦

(4)

where t is the thickness of the layer, θi = 90−αi, αi is the angle of the unit vector of
the direction and the normal unit vector for each triangle facet i, RA70

i and RA90
i are

the values of RAi when θi = 70◦ and θi = 90◦, respectively. The w is a dimensionless
adjustment parameter for supported facets, φ is a phase shift in the range of 5◦ ≤ φ ≤
15◦ depending on the layer thickness [39]. The value 70.82 in the first branch of (4)
refers to a value inside the confidence interval (69.28∼ 72.36) used in [40], w = 0.2 as
proposed in [38] and φ = 5◦ as in [39].

The average surface roughness, considering the area of the triangular facets, can be
calculated as

RA =
∑i (RAi Ai)

∑i Ai
(5)

where RAi is the roughness (in µm) of each triangular surface i and Ai is the area of
triangular facet i. The smaller the RA values, the smoother the surface is.
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The landscape of the objective function RA is represented in Fig. 12 for the Car
Hoodvent model. Again, it turns out that this objective function has multiple local op-
tima and is non-convex.

Fig. 12: RA objective function landscape of Car Hoodvent.

5 Single-objective Optimization Approach

5.1 Problem

In order to define the single-objective build orientation problem of a 3D CAD model,
it is necessary to consider only the rotation angles θx of the model around x-axis and
θy around y-axis, since the 3D printer’s printing platform is fixed to the z-axis, not af-
fecting the part construction process. The mathematical formulation of the optimization
problem is given by

min f (θx,θy)
s.t. 0≤ θx ≤ 180

0≤ θy ≤ 180
(6)

where f is the objective function, θx and θy are the rotation angles along the x-axis and
the y-axis, respectively, where each angle is between 0◦ and 180◦.

This initial study aims to find the best build orientation taking into account each of
the measures (SA, BT and RA) presented in the previous section, optimizing the single-
objective problem.

5.2 Methodology

In order to obtain the optimal build orientation for the part studied in this article, the
ga function from MATLAB Global Optimization Toolbox® [41] is used. The Genetic
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Algorithm is implemented in this function. GA is a population-based stochastic algo-
rithm that that mimics biological evolution. In this algorithm the best individuals in the
current population are likely to be selected to produce offspring for next generations by
mutation and crossover. Over successive generations, the population evolves towards an
approximation to the optimal solution [42]. The default values of the ga function from
MATLAB were used. A population size of 50 individuals and the maximum number
of generations of 200 as stopping criterion and 30 independent runs were considered.
The direction d = (0,0,1)T was defined as the slicing direction after a rotation along
θ = (θx,θy) angles. This vector is a normalized vector (i.e. ‖d‖ = 1). The numerical
experiments were carried out on a PC Intel(R) Core(TM)i7-7500U CPU with 2.9GHz
and 12.0GB of memory RAM. The GA algorithm was coded in MATLAB Version
9.6.0.1472908 (R2019a) Update 9.

5.3 Results

Five solution were obtained for the single-objective problem.Each objective function
(SA, BT , and RA) was separately optimized. The results are presented in Table 1.

Table 1: Optimal solutions for the single-objective problem.
θx θy SA BT RA

A ∀θx 90.00 2.452647×103 ——— ———
B 90.00 180.00 ——— 1.851336×101 ———
C 90.00 0.00 ——— 1.851335×101 ———
D 134.31 115.70 ——— ——— 1.515983×101

E 134.31 64.29 ——— ——— 1.515999×101

For the SA objective function, the optimal solution obtained was (∀θx,90.00) with
the value of SA of 2.452647×103, in which the orientation found can be seen in Fig. 13.

The optimal orientations found for the BT objective function were very close (90.00,180.00)
and (90.00.0.00), where the value of BT is 1.851336×101 and 1.851335×101, respec-
tively.

For the surface roughness, the optimal solutions obtained were (134.31,115.70)
and (134.31,64.29), with values of RA similar to 1.515983×101 and 1.515999×101,
respectively. The orientations A, B, C, D and E can be seen in Fig. 13.

6 Bi-objective Optimization Approach

6.1 Problem

The mathematical formulation of the bi-objective optimization problem is given by

min { f1 (θx,θy) , f2 (θx,θy)}
s.t. 0≤ θx ≤ 180

0≤ θy ≤ 180
(7)
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Solution A Solution B Solution C Solution D Solution E

Fig. 13: Representation of the optimal solutions A to E for the Car Hoodvent model.

where f1 and f2 are the objective functions.
In this section, pairs of the three objectives (SA, BT and RA) will be optimized.

Thus, the bi-objective optimization problem will be solved for all possible pair combi-
nation of the three objectives (SA, BT and RA):

– SA vs. BT - problem (7) with f1 = SA and f2 = BT ;
– SA vs. RA - problem (7) with f1 = SA and f2 = RA;
– BT vs. RA - problem (7) with f1 = BT and f2 = RA.

6.2 Methodology

In this work, the elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is ap-
plied [43] to solve problem (7), which is a multi-objective genetic algorithm that mimics
the natural evolution of species. Evolution starts from a population of randomly gen-
erated individuals, where each individual represents a potential solution to the multi-
objective optimization problem. The fittest individuals have a higher probability of be-
ing selected to generate new ones by genetic operators. This algorithm assesses each
individual in the current population using a Pareto ranking procedure and a crowding
measure. In the non-dominated sorting procedure, individuals are compared and ranked
according to dominance, defining fronts that correspond to sets of non-dominated indi-
viduals. A rank is assigned to each front representing its level of domination. First, the
best rank is assigned to the non-dominated individuals in the current population.Then,
the second best rank is attributed the non-dominated individuals in the remaining pop-
ulation. This procedure is repeated until all individuals in the current population are in-
cluded in a front. Afterwards, The solutions of the worst-ranked non-dominated fronts
are compared in terms of a crowding distance. Those in less crowded areas of the ob-
jective search space are selected for next generation.

The MATLAB® function gamultiobj provided in the Global Optimization Tool-
box [41] will be used to approximate the Pareto optimal solutions. The gamultiobj

function implements a multi-objective genetic algorithm that is a variant of the elitist
NSGA-II [43]. This function provides a set of algorithm options related with customiz-
ingthe algorithm and termination criteria.
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In this study, the default parameters of the MATLAB gamultiobj function were
applied, with a population size of 50 individuals and the maximum number of gener-
ations of 400 as a stopping criterion. The vector of direction, d, is the same as in the
single-objective problem.

In all graphs presented, the set of dominated and non-dominated solutions obtained
among the 30 independent executions is drawn with a blue dot and a red circle, respec-
tively. Representative solutions are marked as ’∗’.

6.3 Results

The Pareto front for SA vs. BT is depicted in Fig. 14. It can be seen that from solution A
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Fig. 14: Pareto front of SA vs. BT .

to C the SA value increases considerably, in contrast to the BT value which decreases.
From solution F to solution B it is possible to observe a large decrease in BT value,
maintaining this value for solution C. Solution L is dominated by solution C, since the
values of SA and BT are lower.

The representative solutions (marked as black ∗) selected from the Pareto front are
presented in Table 2.

The non-dominated solutions A to C presented in this pair of measures can be seen
in Fig. 13 and the orientations represented by F and L can be observed is Fig. 15.

The Pareto front for SA vs. RA is represented in Fig. 16.
Table 3 presents some representative trade-offs from this Pareto curve. Solutions A

and D are extremes of the Pareto front. Along the Pareto front curve the value of SA
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Table 2: Representative solutions for the bi-objective problem for SA vs. BT .
θx θy SA BT

A ∀θx 90.00 2.452647×103 3.895428×102

F 100.27 111.07 1.221222×104 3.649269×102

B 90.00 180.00 1.222754×104 1.851336×101

C 90.00 0.00 1.861518×104 1.851335×101

L 117.87 0.77 2.132272×104 8.120970×101

Solution F Solution L

Fig. 15: F and L representative solution orientations for Car Hoodvent model.
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Fig. 16: Pareto front of SA vs. RA.

increases and the value of RA decreases. It is also verified that solutions A to G have
an increase in the value of RA and for G to D the RA decrease. The orientations of the
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representative solutions A and D can be seen in Fig. 13 and the solutions G and H are
represented in Fig. 17.

Table 3: Representative solutions for the bi-objective problem for SA vs. RA.
θx θy SA RA

A ∀θx 90.00 2.452647×103 1.552228×101

G 147.96 90.06 3.260279×103 1.552131×101

H 125.90 77.97 7.444974×103 1.530164×101

D 134.31 115.70 1.290427×104 1.515983×101

Solution G Solution H

Fig. 17: G and H representative solution orientations for Car Hoodvent model.

The graphical representation of the Pareto front for the combination of the objective
functions BT vs. RA is depicted in Fig. 18. Representative solutions are shown in the
Pareto front and in Table 4 with a significant increase in the value of BT from solution
B to solution D. The BT function is inversely proportional to the RA function, as shown
by the Pareto front curve, when the value of BT increases, the value of RA decreases.
Representative solutions B, D and E are shown in Fig. 13, the orientation presented by
the letter L are represented in Fig. 15 and the solutions I, J and K can be seen in Fig. 19.
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Fig. 18: Pareto front of BT vs. RA.

Table 4: Representative solutions for the bi-objective problem for BT vs. RA.
θx θy BT RA

B 90.00 180.00 1.851336×101 3.173028×101

K 92.56 0.04 2.438678×101 3.065574×101

L 117.87 0.77 8.120970×101 2.077520×101

I 130.85 0.78 1.054779×102 1.837226×101

J 134.59 176.56 1.282955×102 1.806146×101

E 134.31 64.29 3.878288×102 1.515999×101

D 134.31 115.70 3.878333×102 1.515983×101

Solution I Solution J Solution K

Fig. 19: I, J and K representative solution orientations for Car Hoodvent model.
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7 Many-Optimization Approach

The last step of this work considers the simultaneous optimization of the three objective
functions (SA vs. BT vs. RA). The mathematical formulation of the many-objective
optimization problem is given by

min { f1 (θx,θy) , f2 (θx,θy) , f3 (θx,θy)}
s.t. 0≤ θx ≤ 180

0≤ θy ≤ 180
(8)

where f1, f2 and f3 are the objective functions. Thus, in this problem (8), the three
measures are simultaneously optimized where f1 = SA, f2 = BT and f3 = RA.

Again, NSGA-II was also used to solve this problem, with the MATLAB ® function
gamultiobj. In addition, stopping criteria were also the default values as well as the
direction vector.

The representative solutions A, B, C, D and E found in the single-objective and bi-
objective problems were also found in this problem as can be seen in the Pareto front
represented in Fig. 20.

Fig. 20: Pareto front of SA vs. BT vs. RA.

In the following, the 2D-projections for each pair of combinations of measures, SA
and BT , SA and RA, and BT and RA are shown in Fig. 21.

Table 5 shows the values for the various objective functions. These different solu-
tions are represented in Fig. 13, Fig. 15 and Fig. 19.
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Fig. 21: 2D projected solutions of the Pareto front of SA vs. BT vs. RA.

Table 5: Representative solutions for the many-objective problem for SA vs. BT vs. RA.
θx θy SA BT RA

A ∀θx 90.00 2.452647×103 3.895428×102 1.552228×101

B 90.00 180.00 1.222754×104 1.851336×101 3.173028×101

E 134.31 64.29 1.290403×104 3.878288×102 1.515999×101

D 134.31 115.70 1.290427×104 3.878333×102 1.515983×101

C 90.00 0.00 1.861518×104 1.851335×101 1.909200×101

L 117.87 0.77 2.132272×104 8.120970×101 2.077520×101

J 134.59 176.56 2.636640×104 1.282955×102 1.806146×101

K 92.56 0.04 3.192372×104 2.438678×101 3.065574×101

8 Discussion of the results

In all functions studied in this article, it can be seen that the minimizers of the three
objectives functions are different. Thus, these objectives are conflicting and there are
different trade-off solutions that represent different compromises between the objec-
tives.

In the three problems studied, several Pareto-optimal solutions were obtained, with
twelve solutions chosen as representative solutions. Solutions A, B, C, D and E were
found in all problems (single-objective, bi-objective and many-objective problems) and
solutions J, K and L were found only on bi-objective and many-objective problems.
In addition to these, other solutions were selected that were found in the bi-objective
problem. Solution F was found in SA vs. BT problem, G and H were found in the
combination of objective functions SA vs. RA, and solution I was found in BT vs. RA
problem. Solution L was found in the bi-objective problem SA vs. BT as a dominated
solution. In addition to this combination of functions, solution L was also obtained in
the bi-objective problem BT vs. RA and in the many-objective problem SA vs. BT vs. RA
as a non-dominated solution. Solution A has the same function values for (∀θx,90.00).

Through the values of the objective functions, the path graph presented in Fig. 22
and the orientations allow to identify trade-offs and compare the characteristics of the
representative solutions. It is possible to observe that the orientation obtained in solution
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A is the one with the least supports and has the least rough, with the longest build
time. Conversely, the values of SA and RA are maximum for solution K, that is, it has
more supports and it is an orientation that increases the surface roughness of the model.
Solutions B and C are the orientations that spend less time on printing, that is, they have
a shorter height (they lie on the 3D printing platform horizontally). The longest build
time takes place in solution H, since that is what implies a maximum printing height.

Fig. 22: Path graph for all objective functions for the Car Hoodvent model.

9 Conclusions and Future Work

In this article three build orientation optimization problems were studied, single-objective,
bi-objective and many-objective problems, for the Car Hoodvent model. For that, the
GA was applied for the single-objective problem and the NSGA-II algorithm imple-
mented in the MATLAB® environment, for the bi-objective and many-objective prob-
lems. Three objective functions were applied, the support area, the build time and the
surface roughness. The objective of this work is to assist the decision maker in defin-
ing the orientation of 3D models taking into account different factors. The optimized
building orientation aims to reduce building costs and improve the quality of the model.

Firstly, a single-objective problem was presented using the three objectives, SA,
BT and RA, and the orientations A, B, C, D and E were found. Then, a bi-objective
approach with combinations of two measures were studied, SA vs. BT , SA vs. RA and
BT vs. RA. Here, the Pareto fronts for each combination of functions were shown and
the representative non-dominated solutions were identified. The third part of this paper,



Build Orientation Optimization of Car Hoodvent with Additive Manufacturing 21

a multi-objective problem with the objective of optimizing the three quality measures
simultaneously, SA vs. BT vs. RA, was proposed. In this phase, the 3D Pareto front of
the three functions and the 2D projections of this, were shown in order to select the
representative solutions.

The results obtained were analyzed using path value graphs in terms of the ob-
jectives and representative solutions to facilitate the identification of the compromises
between the objective functions. This approach allowed us to find different optimal
solutions successfully, considering the different criteria based on the three quality mea-
sures. This strategy proved to be promising for the future, since it helps the decision
maker to choose a build orientation according to his preferences.

After analyzing the results, it was found that in all the problems studied, the Pareto
fronts presented non-convexities and discontinuities, highlighting the importance of for-
mulating and solving these types of problems as multi-objective problems. In addition,
it is a very interesting issue for the industry, allowing to print a 3D object in a short
time, with less material waste and with better surface finish.

In the future, multi-objective optimization using other objective functions and test-
ing more difficult models will be performed.
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