
East Tennessee State University East Tennessee State University 

Digital Commons @ East Tennessee Digital Commons @ East Tennessee 

State University State University 

Electronic Theses and Dissertations Student Works 

5-2023 

A Programmatic Geographic Information Systems Analysis of A Programmatic Geographic Information Systems Analysis of 

Plant Hardiness Zones Plant Hardiness Zones 

Andrew Bowen 
East Tennessee State University 

Follow this and additional works at: https://dc.etsu.edu/etd 

 Part of the Data Science Commons, Other Computer Sciences Commons, Other Environmental 

Sciences Commons, and the Other Plant Sciences Commons 

Recommended Citation Recommended Citation 
Bowen, Andrew, "A Programmatic Geographic Information Systems Analysis of Plant Hardiness Zones" 
(2023). Electronic Theses and Dissertations. Paper 4206. https://dc.etsu.edu/etd/4206 

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ 
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an 
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please 
contact digilib@etsu.edu. 

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F4206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=dc.etsu.edu%2Fetd%2F4206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=dc.etsu.edu%2Fetd%2F4206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/173?utm_source=dc.etsu.edu%2Fetd%2F4206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/173?utm_source=dc.etsu.edu%2Fetd%2F4206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/109?utm_source=dc.etsu.edu%2Fetd%2F4206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


A Programmatic Geographic Information Systems Analysis of Plant Hardiness Zones 

________________________ 

A thesis 

presented to 

the faculty of the Department of Computing 

East Tennessee State University 

 

In partial fulfillment 

of the requirements for the degree 

Master of Science in Information Systems 

______________________ 

by 

Andrew Bowen 

May 2023 

_____________________ 

Dr. Brian Bennett, Chair 

Dr. Andrew Joyner 

Dr. Ghaith Husari 

 

 

 

Keywords: plant hardiness, climate change, geographic information systems, analysis 

  



   

 

2 

 

ABSTRACT 

A Programmatic Geographic Information Systems Analysis of Plant Hardiness Zones 

by 

Andrew Bowen 

The Plant Hardiness Zone Map consists of thirteen geographical zones that describe whether a 

plant can survive based on average annual minimal temperatures. As climate change progresses, 

minimum temperatures in all regions are expected to change. This work programmatically 

evaluates predicted future climate projection data and converts it to United States Department of 

Agriculture-defined hardiness zones. Through the next 80 years, hardiness zones are projected to 

move poleward; in effect, colder zones will lose area and warmer zones will gain area globally. 

Some implications include changes in crop growing degree days, which could alter crop 

productivity, migration and settlement of invasive species over native species in shifted zones, and 

the interruption of plant vernalization, which is an important factor in establishing dormancy. The 

programmatic evaluation and analysis of hardiness zone change is a strategic lens for viewing the 

effects and rate of climate change using an easy-to-grasp metric.  
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CHAPTER 1. INTRODUCTION 

Climate change is a global anthropogenic force caused by rising atmospheric levels of 

gases that trap heat and raise ambient temperatures. In 2007, the Intergovernmental Panel on 

Climate Change (IPCC) projected in their Assessment Report 4 (AR4) a worst-case scenario global 

temperature rise of 3.5 degrees Celsius (C) by the year 2100 [1]. Each successive report has 

projected a higher worst-case scenario global temperature rise, with AR5 (published in 2014) 

projecting 4.1 degrees C [2] and AR6 (published in 2021) projecting 4.8 degrees C by the year 

2100 [3]. According to the AR5, the IPCC reported high confidence in presently occurring shifts 

of aquatic species habitat distribution, migration patterns, and species interactions [2]. Moreover, 

the negative effects of climate change on crops reportedly outweigh the positive effects [2], despite 

higher temperatures and supposedly longer growing seasons. The AR6 predicts high confidence 

of mountain and polar glacial melting, permafrost thaw, ocean acidification, and ocean 

deoxygenation [3]. The Southeastern United States is also projected to be impacted by climate 

change; minimum temperature deviation from the climate normal in the Southeast U.S. has 

increased up to seven percent, days per year with a temperature higher than 95 degrees Fahrenheit 

increase by at least 30 days, and many areas see 5 to 15% economic damage due to climate change 

[4].  

The United States Department of Agriculture (USDA) maintains a Plant Hardiness Zone 

Map (PHZM) that depicts zones in which certain perennial plants are “hardy,” or whether they are 

likely to survive the seasonal changes in that location. The primary determinant in seasonal change 

of zones is the average annual minimum temperature, while maximum temperature can also be a 

factor. As such, the PHZM zones are based on the yearly average minimum temperature an area 

experiences [5]. The PHZM is primarily used as a recommendation for where a farmer and/or 
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gardener should grow which plants. As climate change progresses and temperatures rise, minimum 

temperatures, too, will rise and plant hardiness zones will shift, affecting the global ecosystem that 

all depend upon. 

Background 

 Two botanists from Harvard University’s Arnold Arboretum, Dr. Donald Wyman and Dr. 

Alfred Rehder, contributed to the creation of the first plant hardiness zone map for the U.S. [6]. 

Rehder detailed a system in 1927 in which the U.S. and Canada are divided into ten zones based 

on differences of about 5-6 degrees C in minimum temperatures. In 1940, Wyman used this same 

system, but based on nationwide data collected over a 40 year period (1895 to 1935) by the 

Weather Bureau and published by the USDA in 1936 [6]. Wyman quantitatively divided regions 

of the U.S. into hardiness zones accordingly (Figure 1) [6]. 

 
Figure 1. Dr. Donald Wyman’s first Plant Hardiness Zone Map of the United States. 
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 Since then, the USDA’s PHZM has been expanded from ten zones to thirteen, each with 

an “a” and “b” subdivision; each subdivision covers a range of roughly 3 degrees C. The USDA 

most recently updated the map in 2012, while the previous update was in 1990 [7]. This work 

presents examples of what the PHZM could look like if it were updated today (ten years past the 

most recent update) and many years into the future, accounting for the accelerative nature of 

climate change by employing custom ArcGIS script tools that make use of complex climate 

prediction models. Climate and precipitation normals are recomputed every 10 and 5 years, 

respectively [8], [9]; the methodology presented may be repeated regularly as normals are updated.  
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CHAPTER 2. DATA ACQUISITION 

 Two primary data sources were used in this work: PaleoClim [10], which provides paleo-

climate GeoTIFF data dating back to 3.3 million years ago, and WorldClim [11], which provides 

downloadable GeoTIFF image files of recent historical and future projections of climate data. 

These GeoTIFF image files are images that “know where they’re at” in regards to a world map. 

The resolution of the data used in this project for both data sources is 2.5 arc-minutes (around 5 

square kilometers per pixel) and was downloaded to and accessed via an East Tennessee State 

University (ETSU) Microsoft OneDrive account. File size ranged from 9 megabytes to 450 

megabytes per GeoTIFF file (the larger file size characterized by WorldClim data containing 19 

different raster bands—one for each bioclimatic variable—inside one GeoTIFF file). PaleoClim 

and WorldClim data were kept separate with respectively named file folders. In WorldClim, up to 

25 different global climate models (GCMs) are available for use over four time ranges: 2021-2040, 

2041-2060, 2061-2080, and 2081-2100.  

 

Table 1. PaleoClim 
PaleoClim Time Periods 

1979 - 2013 Current (Observed) 

4.2-0.3 ka Pleistocene: late-Holocene 

8.326-4.2 ka Pleistocene: mid-Holocene 

11.7-8.326 ka Pleistocene: early-Holocene 

12.9-11.7 ka Pleistocene: Younger Dryas Stadial 

14.7-12.9 ka Pleistocene: Bølling-Allerød 

17.0-14.7 ka Pleistocene: Heinrich Stadial 1 

130 ka Pleistocene: Last Interglacial 

787 ka Pleistocene: MIS19 

3.205 Ma Pliocene: mid-Pliocene warm period 

3.3 Ma Pliocene: M2 

 

Table 2. WorldClim 
WorldClim Time Periods 

1970 – 2000 (Observed) 

2021-2040 

2041-2060 

2061-2080 

2081-2100 
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Both sources use bioclimatic variables, which use monthly temperature and precipitation 

measurements to create “more biologically meaningful variables” [11]. Bioclimatic variables are 

coded 1 through 19 and each holds a data type that means something different than the next. BIO_1 

is annual mean temperature, BIO_2 is mean diurnal range, and so on. This work uses BIO_6 for 

its analyses, which contains the minimum temperature of the coldest month. As plant hardiness 

zones are classified by the USDA based on the extreme minimum temperature a plant can endure, 

this is the most meaningful bioclimatic variable to use.  

 While many global climate models (GCM) are supplied by WorldClim, this work employs 

the EC-Earth3-Veg model. This model, one of eight created by the EC-Earth Consortium in 

preparation for the 6th edition of the Coupled Model Intercomparison Project (CMIP6), considers 

many variables: oceanic chemistry, atmospheric dynamics, river runoff, and dynamic vegetative 

guesses, are all used as variables in estimating future climate outcomes [12]. The EC-Earth3-Veg 

model falls to the middle of the pack in climate sensitivity, a metric used by Carbon Brief of which 

a higher score corresponds to a higher projection of global warming [13]. 
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CHAPTER 3. METHODS 

 This work utilized various systems and tool including, but not limited to, the Windows 10 

operating system, ArcGIS Pro 3, Python 3.9.9, and several Python programming libraries such as 

arcpy, os, NumPy, and Pandas. The ArcGIS Pro 3 license was acquired courtesy of the ETSU 

Department of Geosciences.  

 The project began visualizing estimated paleolithic climate data over ranges of thousands 

of years ago (ka). As mentioned in Data Used, the BIO_6 bioclimatic variable is applied in all 

datasets, which represents minimum temperature. The ranges of paleolithic minimum temperatures 

across the globe vary; PaleoClim present-day minimum temperatures cover a range from -67.8° C 

to 27.1° C, while PaleoClim estimations of minimum temperatures 130 ka range from -54.6° C to 

26.4° C. 

 With the Python programming language and the arcpy library, written by Environmental 

Systems Resource Institute (ESRI), various scripts were written to convert these minimum 

temperature values to plant hardiness zones as they currently exist according to the USDA and 

symbolize the results in an intuitive manner. All the scripts share various features that do the 

following:  

• Use the ESRI Reclassify tool in the Spatial Analyst toolbox to take the initial BIO_6 raster 

or raster band and reclassify ranges of temperatures to plant hardiness zones 

• Check the input data for a format of degrees C or degrees C times 10, as the latter format 

is used by some older datasets like PaleoClim to utilize the integer data type to make math 

faster 
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• Provide informative messages to the user about the status of the script and whether datasets 

will or will not be used depending on their contents (principally, whether they contain a 

BIO_6 TIF image file) 

• Take an optional “Colormap” parameter for faster, appropriate coloration of the resulting 

hardiness map 

 The scripts differ some in the way that the data directories are structured. For scripts that 

target “Nested Directory”, the data for each time period were compiled each in their own folder 

depending on the time range with each folder typically containing multiple TIF files—one for each 

bioclimatic variable (this is the PaleoClim directory structure). Scripts targeting “Raster Bands” 

look for data in a folder representing the climate scenario, containing one TIF file per time range 

which in turn contained raster bands representing bioclimatic variables (this is the WorldClim 

directory structure). 

Arcpy Reclassify Tool 

 The arcpy Reclassify tool requires three input parameters: the input raster to be reclassified, 

the raster field that is to be used to perform the reclassification, and “remap,” which can be an 

object of either “RemapRange”—the object used in this study—or “RemapValue.” This object 

provides the logic for which temperature ranges should fall into which hardiness zones. The script 

checks each data source for a format of either degrees Celsius or degrees Celsius times 10 and then 

creates a custom formatted RemapRange object depending on the result.  

 The script then activates the Reclassify tool with the following parameters: the input raster 

provided by looping through the file list, the raster field of “Value”, and the RemapRange. An 

additional, optional input parameter, “missing values” is provided with a value of “NODATA” to 

ensure the script does not misrepresent missing temperature values as having a higher or lower 
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hardiness zone than what currently exists (for instance, 0 or 14) according to the USDA. The script 

then saves the result of the Reclassify tool, assigned to a variable, in a newly created output folder 

inside the directory given to the tool as a parameter and added to the current open map in ArcGIS 

Pro.  

PaleoClim Script 

 The script used for reclassifying the PaleoClim data (reclassify_nested_directory.py) takes 

one required parameter: the directory that holds subdirectories having TIF raster files. Each 

subdirectory is a time-period, ranging from 130 ka to present day. Data from the PaleoClim 

organization includes a ZIP file containing one TIF file for each bioclimatic variable depending 

on whichever time range one chose. This work collected eight time ranges in total, from 130 ka to 

present day. Older time (787 ka, 3.2 Ma, and 3.3 Ma) data is available from PaleoClim, but they 

unfortunately lack the BIO_6 variable required to investigate extreme minimum temperatures. 

Each ZIP file was extracted to its own folder with the same name into a directory called 

“paleoclim,” resulting in eight folders with bioclimatic variable TIF files in each. This nested 

directory structure saves time and effort in extracting each BIO_6 TIF file into a single directory, 

changing each file’s name to match its source, and then creating a script based on that structure.  

 I instead scripted a recursive folder and file search using the Python ‘os’ library that finds 

the BIO_6.tif image file in each subdirectory and adds that subdirectory to a list of folders. The 

script then uses the list to iterate through each folder’s BIO_6.tif image file for reclassification. If 

the script does not find a BIO_6.tif image file in the subdirectory, an informative message—"[item] 

may not contain bio_6.”—is returned to the user in the ArcGIS Pro process window, that 

subdirectory is not appended to the list of folders to use, and the script moves to the next 

subdirectory.  
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WorldClim Script 

 The script used for reclassifying WorldClim data (reclassify_tif_bands.py for running 

through all files in a scenario directory at once, or reclassify_layers.py for choosing individual 

layers from the ArcGIS Pro window), like the PaleoClim script, takes one similar parameter: a 

directory. This directory, however, should have no nested directories and instead contain only TIF 

image files. These image files consequently contain raster bands, one for each bioclimatic variable. 

The climate data acquired from WorldClim is derived from the IPCC 6th Assessment Report and 

includes projected future temperatures based on four Shared Socioeconomic Pathways (SSPs) over 

four broad time ranges: 2021-2040, 2041-2060, 2061-2080, and 2081-2100. As such, folders for 

each SSP are created and include the corresponding time ranges in those folders. 

 As in the PaleoClim script, the Python ‘os’ library scans through the parameterized 

directory and searches for files (consequential directories are ignored). The script then attempts to 

use the “Describe” arcpy method to search for the file’s “children” or raster bands and verifies that 

the bands contain the text “_6”, indicative of the BIO_6 bioclimatic variable. If found, a path is 

made to the raster band and the path is added to the list of files to iterate for reclassification. If a 

valid file type is not found or the raster does not contain a band that matches the description of 

bioclimatic variable 6, the script returns a message to the user about which file is invalid and 

continues its search through the given directory until its contents have been exhausted. 

AutoClip Scripts 

 An extra custom toolbox with replicated scripts is used in an additional effort to simplify 

the data output for users. This project primarily focuses on the contiguous U.S., where the USDA 

Plant Hardiness Zones are principally applicable. As such, these scripts contain an additional arcpy 

processing tool from the arcpy Management toolbox called “Clip” that aids in providing visual 
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results only for that land which is contained within the contiguous U.S. This tool takes three 

parameters: the input shapefile or layer to be clipped, the clip layer (or what to clip by), and a 

location for the output file. This work obtained a polygon shapefile from ESRI’s Living Atlas 

called “United States Country Boundary 2021” [14] to use as the clip layer. This shapefile included 

the states of Alaska and Hawaii, so it was edited to exclude these two states before using it with 

the AutoClip scripts.  

Hardiness Zone Change Analysis 

 This work makes use of a custom analytical script tool in ArcGIS Pro to export the resulting 

raster data numerically as the number of pixels for each zone. The tool takes multiple map layers 

as inputs (for WorldClim future data, ideally no more than four as there are four time ranges 

available for future climate data) and produces a Comma Separated Values (CSV) file. The script 

uses the Pandas Python library to build a data frame that contains pixels in each zone for each layer 

analyzed. This data helps to analytically visualize the change in each zone’s land area over time.  

 Another script tool like the one described above was written that instead makes use of the 

arcpy RasterToPolygon method to convert a raster image file to a polygon with interlaid divisions 

for the new hardiness zones. This method enables the use of another arcpy tool, 

CalculateGeometryAttributes, which is used to find the area in square kilometers of each hardiness 

zone. This tool provides more meaningful insights into the change of each hardiness zone by 

storing results as square kilometers instead of asking the user to conceptualize “pixels” as a unit 

of area in the real world. Both above scripts save the results as a CSV file whose path is specified 

by the user. 

 In a final standalone script, Matplotlib helps create and save plots depicting the change in 

the hardiness zone area over time, where the x-axis is time in years (the specifics of which are 
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provided by the user), and the y-axis is area in square kilometers (only if the user is using data 

from the latter script tool, which outputs data in square kilometers). The ‘pearsonr’ function in 

SciPy’s stats class is used to perform a Pearson’s correlation test to uncover the correlation 

between the area gained or lost by each zone and time passed for future and past climate data. Also 

used are the the ‘polyfit’ and ‘poly1d’ NumPy functions to discover the characteristics (namely 

slope and y-intercept) of the data trendline. The correlation and trendline data enable the 

visualization of analytical information like the correlation coefficient and p-value in the plot area. 

It should be noted that a plot for the hardiness zone is not created if the values for each zone are 

empty—this occurs primarily in AutoClip scripts where extreme zones like 1 and 13 are often 

excluded from the contiguous U.S. 

 

Figure 2. Workflow of thesis project. 
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CHAPTER 4. RESULTS 

 The visual outputs of this work are plentiful due to the abundance of data sources and the 

visual nature of ArcGIS Pro and GIS work in general. The raw GeoTIFF files from either 

PaleoClim or WorldClim plugged into ArcGIS Pro are visualized as a white-black gradient with 

white representing warmer temperature values and black representing colder temperature values. 

Running this layer data through the appropriate script results in an output of classified PHZs (see 

Figure 3). Application of the reclassification scripts to unclipped, raw PaleoClim or WorldClim 

data results in a land world map with plant hardiness zones visualized by a color map (Figure 4); 

high temperature zones take on a red shade while lower temperature zones take on a blue shade, 

with moderate temperature zones ranging from yellows to greens. Areas that contain values from 

source data and that experience extreme temperatures, such as northern South America and many 

parts of Oceania and Antarctica are purposefully missing colorization. This signifies a minimum 

temperature value outside the range of provided remap values as the USDA hardiness zone 

classification only covers -51.1° C to 21.1° C.  
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Figure 3. Before and after AutoClip script 



   

 

20 

 

 A non-visual output includes CSV data frame results generated by the analytical script 

tools. Column names referring to each of the time frame layers from ArcGIS Pro characterize the 

former, with each row representing a zone, starting with the index of 1. The final row in the data 

frame refers to the median year that characterizes the time frame of the layer; this value is an 

integer provided by the user so that 1), the user may change the representation of the time frame 

and 2), the integer can be used as the x axis in visual representations of the data, as wide time 

frames cannot. A modified example of this file can be seen in Table 3. 

  

Figure 4. Global hardiness zones based on SSP126 for 2021-2040.  
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 The final output of this work represents the analysis of the ArcGIS Pro map and CSV 

results. Matplotlib scatter plots illustrate a trendline to visualize the change in the surface area of 

each hardiness zone over the time frame of each resulting hardiness zone layer. Included in the 

plots in Figure 5 show the equation for the slope, the correlation coefficient (r), and the p-value 

for each trendline. In Figure 5, one can see an observed downward trend of lower hardiness zones 

(such as 7 and 8) and an observed upward trend of higher zones (such as 10). The decision to 

include data from zones 7-10 is supported by the observation of Northeast Tennessee (the location 

of East Tennessee State University) being in zone 7 according to the USDA and zone 9 according 

to current time period BIO 6 variable calculations. Notably, zones 7, 8, and 10 in this visualization 

possess correlation coefficients (R^2) at or above 0.9, indicating a strong positive relationship 

between the progression of time and a respective gain or loss of zone area. This is further supported 

by the p-value calculation of 0.015 or lower—a value of lower than 0.05 is considered scientifically 

significant (the results were unlikely to have been obtained by chance or mistake).  

The general trend of hardiness zone area in the contiguous United States is a loss of area 

at low zones and a gain of area for higher zones. This occurs as zones shift poleward (northward 

Plant Hardiness Zone Area over Time 

Zone 1970 2021-2040 2041-2060 2061-2080 2081-2100 

1                         -                            -                            -                            -                            -    

2                         -                            -                            -                            -                            -    

3                         -                            -                            -                            -                            -    

4                         -                            -                            -                            -                            -    

5 4,021                          -                            -                            -                            -    

6 410,113  122,730  69,060  8,341                          -    

7 1,386,054  861,636  729,427  409,127  153,374  

8 2,403,925  1,920,243  1,786,212  1,532,842  1,179,266  

9 1,820,813  2,416,716  2,510,897  2,518,932  2,159,175  

10 1,407,968  1,773,127  1,846,932  2,075,083  2,573,001  

11 326,344  621,250  749,552  1,085,458  1,472,926  

12 43,526  85,401  105,783  160,202  245,313  

13 1,631  3,292  6,532  14,410  21,185  

Table 3. Area in square kilometers that each hardiness zone covers in the contiguous U.S. 
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in the northern hemisphere) and the colder, more northern zones leave the bounds of the U.S. while 

the warmer, more southern zones enter the U.S. 

  

Figure 5. Graphs denoting change in area over time for zones 7-10, SSP 370 from 1970-2100. 
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CHAPTER 5. DISCUSSION 

 Discussion will take place primarily around the results of the AutoClip scripts that display 

results narrowed down to the contiguous United States and using WorldClim future data with SSP 

370 unless stated otherwise. Additionally, the USDA’s PHZM was originally created for use only 

with the United States, so to extend the scope beyond its originally intended use may not be a valid 

direction for this project.  

 In viewing each product raster of the Reclassify scripts—the first visible output when using 

these script tools in ArcGIS Pro—one can partially see the movement of the hardiness zones 

poleward as time progresses. This phenomenon occurs as expected, since generally rising 

temperatures results in increasing minimum temperatures in all regions; as minimum temperatures 

increase, they may then fall outside the definition of the zone they were previously classified as. 

For example, areas that previously held the title of Zone 6 may now fall under Zone 7 if an average 

annual minimum temperature increase of at maximum 10 degrees F occurs.  

 Change of hardiness zone area in the U.S. and its climate-driven nature are two of the 

primary foci of this work. The contiguous United States holds around 4,000 square kilometers of 

hardiness zone 5 in the present-day dataset that uses data from 1970-2000. Each subsequent future 

time range model contains no minimum temperatures that, according to USDA plant hardiness 

definitions, would be indicative of zone 5. This means that in between present-day and the 2021-

2040 range, the contiguous U.S. will have lost about 4,000 square kilometers of zone 5 coverage 

under the SSP 370 prediction (otherwise stated, zone 5 will have been lost from the United States). 

Table 3 provides comprehensive data of hardiness zone area change from 1970 to 2100. 

 Other hardiness zones that do not completely disappear require a more complex analysis. 

For instance, zone 8—currently characterized by most of the Midwest and on into the Great 
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Plains—experiences a steady, regular decline in surface area in the U.S. over 130 years (Figure 5) 

—present and future estimations included. Pearson’s statistical correlation function determines the 

correlation coefficient for this trend to be -0.99 and the p-value to be 0.001. In other words, there 

is a clear, significant relationship between time moving forward (under SSP 370) and hardiness 

zone 8 losing area in the contiguous U.S. In another case, the state of Tennessee at present is almost 

entirely characterized by zone 9. As time continues, zone 9 steadily gains area; then in between 

2081-2100, it loses some area (Figure 5). The general trend of the movement of this zone is still 

poleward, but the change in zone area is no longer linear; this analysis results in a correlation 

coefficient of 0.567—a moderate positive correlation—and a p-value of 0.319, so these results are 

more likely to have been obtained through error and are generally unreliable.   

 Zone 13, like zone 5, is another notable anomaly in this analysis. Based on current climate 

data, no area in the contiguous U.S. is occupied by zone 13. However, its distribution rises 

seemingly exponentially (more complex analyses required for further insights) over time under 

SSP 370 (Figure 6). The correlation coefficient for the analysis of this hardiness zone area change 

is 0.905 and the p-value is 0.034, which indicates a statistically significant change. Table 4 details 

more statistical information for each hardiness zone area change.  

WorldClim SSP 370 
1970-2100 Zone Stats 

Zone Correlation Coefficient P-Value 

5 -0.832 0.081 

6 -0.953 0.012 

7 -0.995 0.0001 

8 -0.99 0.001 

9 0.567 0.319 

10 0.95 0.013 

11 0.959 0.01 

12 0.93 0.022 

13 0.905 0.034 

Table 4. Correlation statistics, zone are over time. 
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Implications of Zone Shift 

 Realistically, plants are not affected by what zone they live in, but rather by the 

temperatures that categorize each zone. Especially important for agricultural crops is growing 

degree days (GDDs). The measure of GDDs helps growers to understand how quickly a plant is 

expected to reach maturity, grow, or produce fruit in a season. According to the Baskerville-Emin 

method of calculating GDDs, the growing degrees counter—which determines the “amount” of 

growth accumulated—begins to climb when this temperature is reached and stops when the 

temperature falls below it. The more growing degrees accumulated, the more opportunity a plant 

is given to grow, provided other conditions are optimal [15]. At first glance, it could be assumed 

Figure 6. Hardiness zone comparison between 4 time periods. 
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that since hardiness zones are moving poleward and minimum temperatures are rising, plants will 

experience more growing degree units and be more productive overall. However, higher 

temperatures and increased sunlight may inflict a number of conditions on plants such as sunscald 

or wilting of leaves, blossom or fruit drop, and bolting, which is the premature flowering of plants 

before they are ready to harvest [16]. Depending on region and plant species, the poleward shift of 

hardiness zones could improve or worsen the plant’s productivity or ability to survive in that zone.  

 This poleward movement in zones implies an expected shift in plant species’ distributions. 

Moser et al. performed an experiment in 2011 to determine whether a Northward shift in two 

United Kingdom grass species would result in a viable habitat for the grasses [17]. The result is 

dependent on several factors, including resistance of present biotic communities to the invader 

(which is largely determined by the identity of the invader species and all native species in the 

invaded environment), the ability of the extant species to adapt or outcompete the invading species 

in response to climate changes (like drought, high temperatures, or seasonal changes), and more. 

Differences in plants from differing habitats would benefit from further studies on out-competition 

and habitat adaptability, especially as climate change encourages poleward migration of many 

species.  

 Although summer and warm temperatures are often seen as indicative of plant growth and 

dispersal, many plants require colder temperature periods to activate flowering and seed 

production. This process is known as vernalization [18], and for many plants, it is necessary for 

the continuation of the species. Rinne et al. [19] investigated the effects of “decoupling of photo- 

and thermoperiod”—or the loss of the day-hot night-cold dichotomy which is important in 

establishing dormancy for many plants. They discovered that a warmer temperature scheme (24 

degrees C during both the day and night) prevented hybrid aspen trees (Populus genus) from 
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establishing dormancy, and subsequently, undergoing vernalization [19]. Although climate change 

and shifting hardiness zones may not particularly result in a decoupling of photo- and 

thermoperiods, the rising of minimum temperatures do threaten to interrupt the vernalization and 

dormancy cycles of many deciduous plants soon. 

 Warmer temperatures can be detrimental to agricultural crop production for another reason. 

In a case study of Northern Japan’s rice production, researcher Hiroyuki Shimono used a simple 

growth model based on cooling degree days (CDD), which characterize the duration and strength 

of cold over a given season, to estimate rice crop losses due to climate change. Two important 

stages of rice crops are booting, which is defined by the length of the developing “panicle”, and 

heading, which is when the panicle can be seen growing out of the stem [20]. Shimono found that, 

from 1961 to 2010, rice crop heading dates came earlier (at about 0.7-1.9 days earlier every 10 

years) due to climate change. Despite a general increasing trend in air temperatures, temperatures 

in the study area and duration during the booting period of the crop have decreased at a rate of 

0.18 degrees C per 10 years. The drop in temperature during the booting stage combined with the 

earlier heading dates results in cold damage to the crop and an average yield loss of about 15% for 

a heading date of July 19th compared to an average loss of 2.5% for a heading date of August 28th 

[21]. These findings could be cause for concern, as rice is an extremely important crop to the global 

food supply. As explained by the Food and Agriculture Organization of the United Nations, “over 

50 percent of the world population depends on rice for about 80 percent of its food requirements” 

[22]. Although shifting hardiness zones may indicate warmer conditions for crops, these conditions 

may be unexpectedly detrimental to more complicated growing requirements, like the sensitive 

maturity schedule of the rice crop.  
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Implications of Toolbox 

 The toolbox demonstrated in this work has many implications for the GIS scientific 

community and the general population. Firstly, it allows for a new visualization of a important 

topic: the progression of climate change. Other visualizations of climate change are often difficult 

to follow, especially those that use more complicated metrics such as parts per million (ppm) of 

carbon dioxide (CO2) in the atmosphere. Those who are not familiar with these metrics may be 

quick to dismiss results of studies that use them. The PHZ metric is easier to understand because 

1) it is more well known in the general population, especially among gardeners and outdoorspeople 

and 2) the customizable and visually indicative nature of PHZs as they progress from colder to 

warmer zones, and then how those zones change over time.  

 The toolbox is also unique in its methods of transferring data (numbers, temperatures as 

provided by climate data sources) to information (a classification of the data that then takes on an 

inferred meaning). This idea is easily transferrable to other disciplines that seek to convert data to 

some sort of classification of information. Finally, this toolbox provides access to specific ESRI 

geoprocessing tools without requiring the end user to know which tools they need to accomplish 

their purposes. In a distribution of this toolbox, its purpose would be explicitly and thoroughly 

stated with keywords that allow users to find it easily and leave the technical aspects to the tool.  
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CHAPTER 6. CONCLUSION 

 The systematic evaluation and analysis of plant hardiness zone change is a strategic lens 

for viewing the effects and rate of climate change using an easy-to-grasp metric. As climate change 

lowers the amount of cool and cold days in a year, hardiness zones move poleward, as changing 

annual minimum temperatures cause a change of zone territory. This work presents a workflow 

for converting extreme minimum temperatures to hardiness zones to gain an insight into how zones 

have changed in the past 100,000 years and how they may change in the future based on current 

climate projection models.  

Limitations 

 Some limitations exist in the current work. To begin, the bioclimatic variable used—BIO 

6—is not the exact same definition of the USDA Plant Hardiness Zones. BIO 6 is defined as the 

minimum temperature of the coldest month, while the USDA definition is “the average annual 

minimum winter temperature”. These definitions are marginally different and likely contributed 

to discrepancies between the current USDA PHZM and ones constructed using the toolbox and 

current data from both PaleoClim and WorldClim. In addition, there is another bioclimatic variable 

that could be used in further iterations of this project that could more closely match the USDA 

definitions. BIO 11, which is “mean temperature of coldest quarter” [11] could also provide 

meaningful results about future plant hardiness zones when applied to the tools in this work. 

 Many future climate models exist in the scientific climate change community. This work 

focuses only on EC-Earth3-Veg, while seven other models exist from the Earth Consortium alone 

and numerous others by other organizations that all use their own set of variables to estimate 

climate trends. Using any of the other future climate models may result in different map estimates. 
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 A couple final limitations relate to the software used in this work. Python is a relatively 

slower language compared to its parent languages such as C, C++, C#, etc. An integration with 

one of these faster languages may help in performance, as well as a possible integration with 

ArcMap instead of ArcGIS Pro. End users will also require a license to use ArcGIS Pro and this 

toolbox.  

Additional Applications 

As stated above, the EC-Earth3-Veg GCM used in this work is not the only applicable 

model; many other models available through WorldClim may be used to attain different estimates 

of hardiness zone change, as each one considers different variables or use different processes than 

the last [13]. Standardization between models that use different variables could also yield more 

scientifically meaningful results. Additionally, more models are created with each iteration of 

CMIP, so the work presented here can continue onto CMIP7, and so on.  

The script tools presented may find other applications in other areas of GIS study. The 

remap values may be adjusted inside the script and altered to create zones based on different data, 

such as maximum temperature, average precipitation, etc., as well as allowing for specification of 

one geographic area, such as within a state, province, or county.  

Future Work 

 All visual GIS work was completed using ArcGIS Pro. ESRI maintains a suite of 

applications, including those that aid in the creation of web applications that encourage end-user 

interaction. Future endeavors related to this work could include creating a web app that pulls future 

climate projections automatically and, based on user input, displays which hardiness zone their 

residence or region may reside in 80 years into the future. Conversely, the same can be applied 

with PaleoClim data: end-users may be interested in what the climate was like at their residence 
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130,000 years ago. The work to make this information discoverable has already been done, and a 

web app could speed up the process and allow for enhanced end-user customization.  
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