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ABSTRACT

The p-Adic Numbers and Conic Sections

by

Abdelhadi Zaoui

This thesis introduces the p-adic metric on the rational numbers. We then present the

basic properties of this metric. Using this metric, we explore conic sections, viewed as

equidistant sets. Lastly, we move on to sequences and series, and from there, we define p-

adic expansions and the analytic completion of Q with respect to the p-adic metric, which

leads to exploring some arithmetic properties of Qp.
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1 INTRODUCTION

The set of real numbers is the ordered complete field. It contains rational numbers and

irrational numbers. A rational number is defined as the quotient of two integer numbers,

and the set of rational numbers is Q =
{

x
y : x,y ∈ Z

}
. An irrational number such as π can

be represented as the limit of a sequence of rational numbers. That is π = lim
n→∞

an, where

{an} =

{
3, 31

10 ,
314
100 ,

3141
1000 ....

}
. The subsequent terms of this sequence are getting closer and

closer to each other. So, {an} is a Cauchy Sequence, and any irrational number is defined as

the limit of a Cauchy Sequence. Now, one can define the set of real numbers as the rational

numbers plus all of the limits of Cauchy Sequences of rational numbers. So, the set of all

real numbers is the analytic completion of the rational numbers. Note that the decreasing

distance between the terms of the Cauchy Sequence above is given using the usual absolute

value. However, this is not the only way to define a metric on the rational numbers. There

is a different type of distance called a p-adic metric [8]. In this thesis, we consider this

p-adic metric and consequences for conic sections viewed as equidistant sets. In addition,

we present the analytic completion of the rationals with respect to this metric.
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2 P-ADIC METRIC

In this section, we will introduce the p-adic distance, which will be used later in some

conic sections’ equations. First, we begin by defining the usual absolute value or modulus

for an arbitrary set X.

Definition. Let K be a field. An absolute value is a function | · | : K −→ R≥0. For all

absolute values, the following properties hold:

1. |x| ≥ 0, for all x ∈ K.

2. |x| = 0, if and only if x = 0.

3. |xy| = |x||y|, for all x,y ∈ K.

4. |x+ y| ≤ |x|+ |y|, for all x,y ∈ K. (triangle inequality)

Additionally, if |x+ y| ≤ max
(
|x|, |y|

)
, for all x,y ∈ K, then | · | is non-archimedean.

Note that it is worth mentioning two absolute values. The first is the usual absolute

value, which is defined as:

|x|∞ =


x, if x ≥ 0,

−x, if x < 0.

The second one is the trivial absolute value, and it’s defined as:

|x|t =


1, if x , 0,

0, if x = 0.

From the absolute value, we define the following distance function:
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Definition. Let X be a set and d be a function mapping X×X into R. The pair (X,d) is

called a metric space, where d is the metric such that for all x,y,z ∈ X, we have:

1. d(x,y) ≥ 0.

2. d(x,y) = 0 if and only if x = y.

3. d(x,y) = d(y, x). (Symmetry)

4. d(x,z) ≤ d(x,y)+d(y,z). (Triangle Inequality)

Examples :

1. (R,d), where d(x,y) = |x− y|. (Euclidean distance)

2. (R2,d), where d((x1, x2), (y1,y2)) = |y1− x1|+ |y2− x2|. (Taxicab distance)

3. (R2,d), where d((x1, x2), (y1,y2)) =
√

(y1− x1)2+ (y2− x2)2. (Euclidean distance)

Definition. A metric d is ultrametric or non-archimedean, if the ultrametric inequality

is satisfied. That is for any x, y, and z inX, d(x,z)≤max
{
d(x,y),d(y,z)

}
, which is a stronger

property than triangle inequality.

Example. Let X be any set, and for any x,y ∈ X, we have:

d(x,y) =


0, if x = y

1, if x , y.

So, d is ultrametric, and it’s called the trivial metric, as defined in [11].
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For the rest of this paper, we’re interested in a particular example of a non-archimedean

metric, namely, the p-adic distance. First, we need to define the p-adic valuation.

2.1 p-Adic Valuation

Definition. [10] Let a and b be integers, where a , 0. If ak|b, but ak+1 ∤ b for some

k ∈ Z>0, then we say that ak exactly divides b, and we write ak∥b.

Definition. Let a ∈ Q, with a , 0. Then, a can be written as a = pn
(

x
y

)
, where p is a

prime number, n ∈ Z, x,y ∈ Z∗, gcd(x,y) = 1, and p ∤ xy. We call n the p-adic valuation of

a, and we write νp(a) = n or ordp(a) = n.

The p-adic valuation is the function as: νp : Q −→ Z∪{∞}, and νp(0) =∞.

Example.We compute νp(45) for different prime numbers, and we get:

ν3(45) = ν3(51 ·32) = 2,

ν5(45) = ν5(51 ·32) = 1,

ν7(45) = ν7(51 ·32 ·70) = 0.

Proposition 2.1: For all x,y ∈ Q, we have:

1. νp(xy) = νp(x)+ νp(y).

2. νp

(
x
y

)
= νp(x)− νp(y).

3. νp(x− y) ≥min
(
νp(x), νp(y)

)
, with equality when νp(x) , νp(y).

Proof. Let x,y, x′,y′ ∈Q and p a prime number. Write x= pnx′ and y= pmy′, with νp(x′)= 0

and νp(y′) = 0. Then,
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1.

νp(xy) = νp

(
pn+m(x′y′)

)
= n+m

= νp(x)+ νp(y).

2.

νp

( x
y

)
= νp

(
pn−m(x′y′)

)
= n−m

= νp(x)− νp(y).

3. Consider two cases:

Case 1. n = m :

νp(x− y) = νp

(
pn(x′− y′)

)
= νp(pn)+ νp(x′− y′)

= n+ νp(x′− y′).

We can rewrite x′ and y′ as: x′ = a
b and y′ = c

d , where a,b,c,d,∈ Z∗, gcd(a,b) = 1, and

gcd(c,d) = 1. Then, νp(x′− y′) = νp
(

a
b −

c
d

)
= νp

(
ad−bc

bd

)
Note that νp(x′) = 0 implies that p ∤ b, and νp(y′) = 0 implies that p ∤ d. So, p ∤ bd.

Hence, νp(x′− y′) = k ≥ 0.
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That is νp(x− y) = n+ νp(x′− y′) = n+ k ≥ min
(
νp(x), νp(y)

)
.

Case 2. n , m :

Without loss of generality, suppose that n > m. Then,

νp(x− y) = νp

(
pnx′− pmy′

)
= νp

(
pm

(
pn−mx′− y′

))
= νp(pm)+ νp

(
pn−mx′− y′

)

Because p divides pn−mx′, but it does not divide y′, p does not divide pn−mx′ − y′.

That is νp(pn−mx′− y′) = 0. Then, νp(x− y) = m+0 = m = νp(y) = min
(
νp(x), νp(y)

)
.

□

2.2 One-Dimensional p-Adic Absolute Value

Definition The p-adic absolute value of a ∈ Q is a map | · |p : Q −→ R≥0, that is defined

by:

|a|p =

 1
pνp(a) , if a , 0

0, if a = 0

Example.We compute |45|p for different prime numbers, and we get:

|45|3 =
∣∣∣32 �51

∣∣∣
3 =

1
32 =

1
9 ,

|45|5 =
∣∣∣32 �51

∣∣∣
5 =

1
5 ,

|45|7 =
∣∣∣32 �51 �70

∣∣∣
7 =

1
70 = 1.
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Now, let’s compare the distances between the same pair of points, using the usual ab-

solute value | · |
(
also called the absolute value at infinity | · |∞

)
and the p-adic absolute value

| · |p, where p is a prime number.

Let d: Q×Q −→ R≥0 be defined by: d(x,y) = |x− y|, for all x,y ∈ Q.

Consider x = 7
8 , y = 3

32 , and z = 7
16 . Then,

d(x,y) =
∣∣∣∣∣78 − 3

32

∣∣∣∣∣ = 25
32
,

d(x,z) =
∣∣∣∣∣78 − 7

16

∣∣∣∣∣ = 7
16
,

d(z,y) =
∣∣∣∣∣ 7
16
−

3
32

∣∣∣∣∣ = 11
32
.

This function satisfies the four conditions in the metric space definition above. Thus,

(Q,d) is a metric space. However, d is not ultrametric, since d(x,y) ≦̸ max
(
d(x,z),d(z,y)

)
.

Theorem. The p-adic distance dp(x,y) is ultrametric.

Proof. Let x,y ∈ Q such that |x|p = p−νp(x) and |y|p = p−νp(y). From Proposition 2.1/(3),

we have that νp(x− y) ≥ min
(
νp(x), νp(y)

)
. So, p−νp(x−y) ≤ p

−min

(
νp(x),νp(y)

)
. It implies that

|x− y|p ≤ max
(
|x|p, |y|p

)
, as desired. □

Example.We compute the 2-adic distances d2(x,y), d2(x,z), d2(z,y), where x = 7
8 , y =

3
32 , and z = 7

16 . So, we get:

d2(x,y) =
∣∣∣∣∣78 − 3

32

∣∣∣∣∣
2
=

∣∣∣25 ·2−5
∣∣∣
2 = 25,
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d2(x,z) =
∣∣∣∣∣78 − 7

16

∣∣∣∣∣
2
=

∣∣∣7 ·2−4
∣∣∣
2 = 24,

d2(z,y) =
∣∣∣∣∣ 7
16
−

3
32

∣∣∣∣∣
2
=

∣∣∣11 ·2−5
∣∣∣
2 = 25.

So, the ultrametric property is satisfied, since d2(x,y) ≤ max
(
d2(x,z),d2(z,y)

)
.

Note that d2(x,y) = d2(z,y). This equality can be explained by the following theorem.

Theorem. Using the p-adic absolute value on the field of rationals Q, all triangles are

isosceles, as in [3].

Proof. Let ∆xyz be a triangle. It has sides of length p−νp(x−z), p−νp(x−y), and p−νp(y−z).

If any two of νp(x− z), νp(x− y), and νp(y− z) are equal, we’re done.

WLOG, suppose that νp(x− y) , νp(y− z). Then using the property (3) of the p-adic

valuation, defined above, we have that νp(x− z) = min
(
νp(x− y), νp(y− z)

)
. Ergo, at least

two of the three sides must be of equal length. □

The following definition and theorem are the main reason why we’re interested in the

p-adic absolute value, since it’s one of the non-trivial absolute values.

Definition.We say that two absolute values, | · | and | · |′, are equivalent if | · |′ = | · |r, for

some r > 0.

Ostrowski Theorem. [5] Every non-trivial absolute value on Q is equivalent to either

| · |p or | · |∞ , where p is a prime number.

14



2.3 Two-Dimensional p-Adic Absolute Value

We can extend the ordinary distance on Q to Q2. Thus, as in [1], we want to construct

a distance function on Q2, and we would like it to be ultrametric. First, as a non-example,

we consider the following map:

Dp : Q2×Q2 −→ R≥0

such that for A(a1,a2),B(b1,b2) ∈ Q2,

Dp(A,B) =

√(
dp(a1,b1)

)2
+

(
dp(a2,b2)

)2
.

Example : Let A =
(

1
4 ,

1
4

)
; B = (1

6 ,
1
3 ); C =

(
0, 18

)
.

D2(A,C) =

√(
d2

(
1
4
,0

))2

+

(
d2

(
1
4
,
1
8

))2

=

√(∣∣∣∣∣14 −0
∣∣∣∣∣
2

)2

+

(∣∣∣∣∣14 − 1
8

∣∣∣∣∣
2

)2

=

√(∣∣∣∣∣14
∣∣∣∣∣
2

)2

+

(∣∣∣∣∣18
∣∣∣∣∣
2

)2

=

√(∣∣∣2−2
∣∣∣
2

)2
+

(∣∣∣2−3
∣∣∣
2

)2

=

√(
22)2
+

(
23)2

=
√

80,

D2(A,B) =

√(
d2

(
1
4
,
1
6

))2

+

(
d2

(
1
4
,
1
3

))2

15



=

√(∣∣∣∣∣14 − 1
6

∣∣∣∣∣
2

)2

+

(∣∣∣∣∣14 − 1
3

∣∣∣∣∣
2

)2

=

√(∣∣∣∣∣ 1
12

∣∣∣∣∣
2

)2

+

(∣∣∣∣∣−1
12

∣∣∣∣∣
2

)2

=

√(∣∣∣∣∣13 ·2−2
∣∣∣∣∣
2

)2

+

(∣∣∣∣∣−1
3
·2−2

∣∣∣∣∣
2

)2

=

√(
22)2
+

(
22)2

=
√

32,

D2(B,C) =

√(
d2

(
1
6
,0

))2

+

(
d2

(
1
3
,
1
8

))2

=

√(∣∣∣∣∣16 −0
∣∣∣∣∣
2

)2

+

(∣∣∣∣∣13 − 1
8

∣∣∣∣∣
2

)2

=

√(∣∣∣∣∣16
∣∣∣∣∣
2

)2

+

(∣∣∣∣∣ 5
24

∣∣∣∣∣
2

)2

=

√(∣∣∣∣∣13 ·2−1
∣∣∣∣∣
2

)2

+

(∣∣∣∣∣53 ·2−3
∣∣∣∣∣
2

)2

=

√
(2)2+

(
23)2

=
√

68.

So, D2(A,C) ≦̸ max (D2(A,B),D2(B,C)). That is (Q2,D2) is not an ultrametric space.

Theorem. [1] Let A = (a1,a2) and B = (b1,b2). A function on Q2×Q2, that does satisfy
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the ultrametric inequality, is given by D(A,B) = max
{
d(a1,b1),d(a2,b2)

}
, where d is an

ultrametric distance.

Proof. We let A = (a1,a2),B = (b1,b2), and C = (c1,c2). Then,

D(A,C) = max
{
d(a1,c1),d(a2,c2)

}
≤ max

{
max

(
d(a1,b1),d(b1,c1)

)
,max

(
d(a2,b2),d(b2,c2)

)}
= max

{
d(a1,b1),d(b1,c1),d(a2,b2),d(b2,c2)

}
= max

{
max

(
d(a1,b1),d(a2,b2)

)
,max

(
d(b1,c1),d(b2,c2

)}
= max

{
D(A,B),D(B,C)

}
.

□
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3 CONIC SECTIONS

In this section, we will compare conic sections in Euclidean space and conic sections

in the ultrametric space.

3.1 Conic Sections in Euclidean Space

Definition. The conic sections are the curves generated by the intersection of a plane

with one or two nappes of a cone, as mentioned in [13].

Figure 1: Conic Sections [14]

18



Eccentricity. The eccentricity e, of a conic section, as defined in [4], is the constant

ratio of the distance of the point on the conic section from the focus and directrix, which

is a fixed line that does not contain the focus. As eccentricity increases, the conic section

deviates more and more from the shape of the circle. The value of e for different conic

sections is as follows:

• For circle, e = 0.

• For ellipse, 0 < e < 1.

• For parabola, e = 1.

• For hyperbola, e > 1.

Figure 2: Eccentricity of Conic Sections [14]

Circle. The circle is a conic section that is formed when the cutting plane is parallel to

the base of the cone, as shown in Figure 1(a). The center is the focus point. The locus of

19



the points have a fixed distance from the focus (center) and it is the radius of the circle. So,

the circle, shown in Figure 3, with a radius r and centered at (h,k) is the set:{
(x,y) ∈ R2 :

√
(x−h)2+ (y− k)2 = r, where r ∈ R>0

}

Figure 3: Circle [14]

Ellipse. The ellipse is a conic section that is formed when a plane intersects with the

cone at one nappe and not parallel to the base, as defined in [15], and as shown in Figure

1(b). Consider the ellipse centered at the origin, with two foci points F(c,0) and F′(−c,0),

a minor axis of length 2b, and a major axis of length 2a, that is parallel to the x-axis.

Let p(x,y) be any point on the ellipse. By definition of an ellipse, the sum of distances

of this point to the two foci points F and F′ is constant. That is d(p,F)+ d(p,F′) = C,

where C is a constant. In fact, C = 2a. Hence, the ellipse, in Figure 4, is the set:

{
(x,y) ∈ R2 :

√
(x− c)2+ (y−0)2+

√
(x+ c)2+ (y−0)2 = 2a

}
.
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Figure 4: Ellipse [14]

Parabola.

The parabola is a conic section that is formed when the intersecting plane is at an

angle to the surface of the cone, as shown in Figure 1(d). It is a curve where any point of

coordinates (x,y) is at the same distance from the focus and the directrix, which is a straight

line that is perpendicular to the axis of symmetry. Consider the parabola with vertex (0,0),

a directrix y = −p, and a focus (0, p). The distance d from a point (x,y) to the point (x,−p)

on the directrix is the difference of the y-values. That is d = y+ p. The distance from the

point (x,y) and the point (0, p) is
√

(x−0)2+ (y− p)2, and it’s the same as the distance d.

That is y+ p =
√

(x−0)2+ (y− p)2. It follows that x2 = (y+ p)2− (y− p)2. So, this parabola,

shown in Figure 5, is the set:

{
(x,y) ∈ R2 : x2 = 4yp

}
.
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Figure 5: Parabola [14]

Hyperbola.

A hyperbola is formed when a plane is parallel to the axis of the cone, and intersects

with both the nappes of the double cone, as shown in Figure 4(c). The two unconnected

sections of the hyperbola are called branches. They are mirror images of each other, and

their diagonally opposite arms approach the limit to a line. Consider the hyperbola centered

at the origin, with the points (−c,0) and (c,0) as foci, and 2a as the distance between the

two vertices (a,0) and (−a,0). Let (x,y) be any point on this hyperbola. Then, by definition

of a hyperbola, the difference of the distances from (x,y) to the foci is constant. That

is d
(
(x,y), (c,0)

)
− d

(
(x,y), (−c,0)

)
= C, where C is a constant and C = 2a. Hence, the

hyperbola, in Figure 6, is the set:

{
(x,y) ∈ R2 :

√
(x− c)2+ (y−0)2−

√
(x+ c)2+ (y−0)2 = 2a

}
.
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Figure 6: Hyperbola [14]

3.2 Ultrametric Circles

What is the circle, using the p-adic distance on Q, of radius r, where r ∈ Q>0, and

centered at (0,0), for any prime p ?

3.2.1 Circles Centered at the Origin

Define Cr as the set of points of the same distance from the origin (0,0), i.e.,

Cr =

{
(x,y) ∈ Q2 : Dp

(
(x,y), (0,0)

)
= r, where r ∈ Q>0

}
.

Lemma. If r , p−ν, then Cr = ∅. That is:{
(x,y) ∈ Q2 : Dp

(
(x,y), (0,0)

)
= ap−ν, p ∤ a and a , 1

}
= ∅.

Proof. Let (x,y) ∈ Q2. Suppose that pν1∥x and pν2∥y, where ν1 and ν2 are the valuations of

x and y, respectively.
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WLOG, let ν1 ≥ ν2. Then, Dp

(
(x,y), (0,0)

)
= p−ν2 , ap−ν, for any ν. Thus, (x,y) < Cr,

if a , 1. □

Now, we look at the unit circle case, where the radius is 1. Let x = a
b and y = c

d , and

let ν1 = νp(x) and ν2 = νp(y). So,

Dp

(
(x,y), (0,0)

)
= p−min(ν1,ν2) = 1 = p0.

Then, min(ν1, ν2) = 0, and we consider two cases:

1. ν1 = 0 and ν2 ≥ 0. That is p ∤ a, p ∤ b, and p|c.

2. ν1 ≥ 0 and ν2 = 0. That is p ∤ c, p ∤ d, and p|a.

Hence, the circle of radius 1, centered at (0,0) is the set:

{(a
b
,

c
d

)
: p ∤ ab, p|c OR p ∤ cd, p|a

}
.

Consider the point
(

3
5 ,

4
5

)
. Then:

D
((

3
5
,
4
5

)
, (0,0)

)
= max

(
d2

(
3
5
,0

)
,d2

(
4
5
,0

))
= max

(∣∣∣∣∣35
∣∣∣∣∣
2
,

∣∣∣∣∣45
∣∣∣∣∣
2

)
= max

(∣∣∣∣∣35 ·20
∣∣∣∣∣
2
,

∣∣∣∣∣15 ·22
∣∣∣∣∣
2

)
= max

(
1,

1
4

)
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= 2−min(0,2)

= 1.

So, the point
(

3
5 ,

4
5

)
is on the 2-adic unit circle.

3.2.2 Circles with Arbitrary Centers

Consider the points x,y,h,k,r ∈ Q, such that, |x|p = p−ν1 , |y|p = p−ν2 , |h|p = p−ν3 , |k|p =

p−ν4 , and r = a
b pν5 , for some prime number p and a,b ∈ Q>0.

We’re interested in the set of points (x,y) ∈ Q2 of the same distance r from the center

(h,k). That is D
(
(x,y), (h,k)

)
= r. Then,

D
(
(x,y), (h,k)

)
= max

(
d(x,h),d(y,k)

)
= max

(
p−min(ν1,ν3), p−min(ν2,ν4)

)
= p
−min

(
min(ν1,ν3),min(ν2,ν4)

)

= p−min(ν1,ν2,ν3,ν4)

=
a
b

pν5 .

Let ν = min
(
ν1, ν2, ν3, ν3

)
. Then, a

b pν5 = p−ν. Therefore, the p-adic circle centered at the

point (h,k) ∈ Q2 and of radius r ∈ Q>0 is the set:

{
(x,y) ∈ Q2 : r = p−ν, where ν = min

(
ν1, ν2, ν3, ν4

)}
.
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3.3 Ultrametric Ellipses

Unlike the circle, a point on an ellipse will not always be at the same distance from the

two foci. However, the sum of distances between any point on the ellipse and the foci will

always be the same.

3.3.1 Ellipses Centered at the Origin

Consider the ellipse E with the x−axis as the major axis and two foci (−h,0) and (h,0)

with h ∈ Q>0. We let (x,y) ∈ Q2 be any point on E with x,y ∈ Q>0. Then, the ellipse E is

the set:

E =
{
(x,y) ∈ Q2 : D

(
(x,y), (−h,0)

)
+D

(
(x,y), (h,0)

)
=C, where C ∈ Q>0

}
.

So,

C = D
(
(x,y), (−h,0)

)
+D

(
(x,y), (h,0)

)
= max

(
dp(x,−h),dp(y,0)

)
+max

(
dp(x,h),dp(y,0)

)
= 2max

(
dp(x,h),dp(y,0)

)
.

Example.We consider the case where C = 2. Then,

2p0 = 2max
(
dp(x,h),dp(y,0)

)
p0 = max

(
dp(x,h),dp(y,0)

)
= max

(
dp(x,h), |y|p

)
.
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Recall that x,y, and h are positive rational numbers. Then, x = a
b ,y =

s
t , and h = c

d , where

a,b,c,d, s, t ∈ Z>0, and all fractions are in lowest terms. Hence,

p0 = max
( ∣∣∣∣∣ad−bc

bd

∣∣∣∣∣
p
,

∣∣∣∣∣ st
∣∣∣∣∣
p

)
.

Thus, the ellipse E is the set:

E =



(
a
b ,

s
t

)
∈ Q2 : p ∤ s, p ∤ t, and p|(ad−bc)

OR p ∤ (ad−bc), p ∤ bd, and p|s

OR p ∤ s, p ∤ t, p ∤ (ad−bc), and p ∤ bd


.

General Case. For any C ∈ Q>0, with C , 2, we have:

2max
(
dp(x,h),dp(y,0)

)
=C,

max
(
dp(x,h),dp(y,0)

)
=

C
2
.

We know that max
(
dp(x,h),dp(y,0)

)
= p−ν, where ν = min(ν1, ν2), with p−ν1 = dp(x,h)

and p−ν2 = dp(y,0). So, C = 2p−ν. Then,

C =


2p−ν, if p is odd

21−ν, if p = 2.

Now, and without loss of generality, we consider dp(y,0) = p−ν. That means y = s′
t′ pν,

where p ∤ s′, p ∤ t′, and s′
t′ is in lowest term. So, dp(x,h) =

∣∣∣ad−bc
bd

∣∣∣
p ≤ p−ν.

Since ad−bc
bd can be written as αβ pν

′

, with p ∤ α, p ∤ β and αβ is in lowest term, then∣∣∣ad−bc
bd

∣∣∣
p = p−ν

′

. Thus, we must have ν′ ≥ ν.
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So the ellipse is the set:

E =



(x,y) ∈ Q2 : |y|p = p−ν,dp(x,h) = p−ν
′

, with ν′ ≥ ν, and p is odd

|y|p = 2−ν,dp(x,h) = p−ν
′

, with ν′ ≥ ν, and p = 2

OR∣∣∣∣∣ad−bc
bd

∣∣∣∣∣
p
= p−ν, |y|p = p−ν

′

, with ν′ ≥ ν, and p is odd

∣∣∣∣∣ad−bc
bd

∣∣∣∣∣
p
= 2−ν, |y|p = p−ν

′

, with ν′ ≥ ν, and p = 2



.
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4 THE P-ADIC RATIONAL NUMBERS

In this section, we introduce some results concerning sequences and series, with respect

to the p-adic distance. This will lead to a discussion on p-adic expansions. Then we move

on to do arithmetic in Qp.

Definition. [5] Consider the field F, and let | · | be an absolute value on F.

1. A sequence {an} is said to be a Cauchy sequence, if for every ϵ > 0 , there is a N ∈ Z

such that |an−am| < ϵ, whenever n,m ≥ N.

2. If every Cauchy sequence of elements of F has a limit, then the field F is said to be

complete.

3. A subset S ⊂ F is said to be dense in F, if every open ball around every element of F

contains an element of S . That is B(x, ϵ)∩S , ∅, for every x ∈ F and every ϵ > 0.

Proposition 4.1. For any prime number p, lim
n→∞

pn = 0 with respect to | · |p.

Proof. The Archimedean property says that for two given positive numbers x and y, there

is a number N ∈N such that Nx > y. Let ϵ > 0, and consider the case where x = ϵ and y = 1.

Then, for some N ∈ N, Nϵ > 1. That is 1
N < ϵ. Because N < pN , we have 1

pN <
1
N < ϵ. Now,

let n ≥ N. So, 1
pn ≤

1
pN < ϵ. Note that pn , 0 and νp(pn) = n. It follows that |pn|p = p−n.

Thus, |pn|p < ϵ. As a result, lim
n→∞

pn = 0. □

Corollary 4.2. [12] Let {an} be a sequence in Qp. Then,
∞∑

n=0

an converges if and only if

lim
n→∞

an = 0.

Proof. Let {sn} be the sequence of partial sums for {an}, and let ϵ > 0.
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First, we assume that
∞∑

n=0

an converges. It implies that {sn} is Cauchy. So, by Definition

(1) , there is an N ∈ N such that for all n ≥ N, |sn+1 − sn|p < ϵ. Hence, |an+1|p < ϵ, for all

n ≥ N. If we let N′ = N +1, then |an|p < ϵ for n ≥ N′.

Next, we assume that lim
n→∞

an = 0. Then there is some N ∈ N such that for all n ≥

N,|an|p < ϵ. It implies that |an+1|p < ϵ for all n ≥ N . Similarly, |sn+1− sn|p < ϵ for all n ≥ N.

By Definition (1), {sn} is Cauchy and hence converges. Thus,
∞∑

n=0

an converges. □

Proposition 4.3. [12] The p-adic series
∞∑

n=0

pn converges, and its sum is 1
1−p .

Proof. Let {sn} be the sequence of partial sums of
∞∑

n=0

pn. So, sn =

n−1∑
i=0

pi. We have that

1n − pn = (1− p)
n−1∑
i=0

pi. That is sn =
1n−pn

1−p =
1−pn

1−p . It follows that lim
n→∞

sn = lim
n→∞

(1− pn

1− p

)
.

Then, lim
n→∞

sn =

1− lim
n→∞

pn

1− p
. By Proposition 4.1, we know that lim

n→∞
pn = 0. Hence, lim

n→∞
sn =

1
1− p

. Consequently,
∞∑

n=0

pn =
1

1− p
. □

Note that using this result, for instance, in Q2, we have −1 = 1+ 2+ 4+ 8+ · · ··. We’ll

make sense of this, when we introduce the p-adic expansion.

Proposition 4.4. [7] Any series of the form
∞∑

n=k

an pn, with an ∈ {0,1, · · ··, p− 1} and

k ∈ Z, converges in Qp.

Proof. By Proposition 4.1, we have that lim
n→∞

pn = 0. We suppose that 0 ≤ an < p for all

n ≥ k. It implies that lim
n→∞

an pn = 0. So, by Corollary 4.2,
∞∑

n=k

an pn converges in Qp. □
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Definition. [2] The p-adic expansion of the number β ∈ Qp is a series of the form:

β =

∞∑
n=k

an pn,

where k ∈ Z∪{∞}, ak , 0, and 0 ≤ an ≤ p−1, for all n ≥ k.

The integers an are the coefficients of the expansion, as mentioned in [2].

Examples.

1. 172 in base 3 is 201013, since 172 = 2 · 34 + 0 · 33 + 1 · 32 + 0 · 31 + 1 · 30. So, we

write the 3-adic expansion as 10102 to designate 1 ·30+0 ·31+1 ·32+0 ·33+2 ·34.

2. 1,133,655 in base 11 is 70480611, because 1,133,655 = 7 ·115+0 ·114+4 ·113+

8 ·112+0 ·111+6 ·110. That is, we can write the 11-adic expansion of 1,133,655 as

608407. So, 1,133,655 = 6 ·110+0 ·111+8 ·112+4 ·113+0 ·114+7 ·115.

3. Here, we go back to the example in Proposition 4.3, where −1 = 1+ 2+ 4+ · · ··

We proceed by adding 1 to both sides of the equality. Then,

−1+1 = 1+20+21+22+ · · ·

0 = 0 ·20+21+21+22+ · · ·

0 = 0 ·20+0 ·21+22+22+ · · ·

0 = 0 ·20+0 ·21+0 ·22+ · · ·

If we continue, we end up having 0 on both sides of the equality. So, the series

1+2+4+ · · · does represent the additive inverse of 1 in Q2.
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Arithmetic in Qp. The mechanics of adding, subtracting, multiplying, and dividing is

quite similar to the corresponding elementary operations on decimals. The difference is

that the “carrying” and “borrowing” etc, go from left to right instead of right to left, see [8].

Examples.We consider a few examples of basic arithmetic in Qp.

• Example of addition.

5 ·7−1 + 3 ·70+ 6 ·71 + 2 ·72 + · · · · · ·

+ 4 ·7−1 + 1 ·70 + 3 ·71 + 5 ·72+ · · · · · ·

2 ·7−1 + 5 ·70 + 2 ·71 + 1 ·72+ · · · · · ·

• Example of subtraction.

3 ·7−1 + 0 ·70+ 4 ·71 + 1 ·72 + · · · · · ·

- 5 ·7−1 + 6 ·70 + 4 ·71 + 3 ·72+ · · · · · ·

5 ·7−1 + 0 ·70 + 6 ·71 + 4 ·72+ · · · · · ·

• Example of multiplication.

2 ·7−1 + 5 ·70+ 3 ·71 + 1 ·72 + · · · · · ·

× 3 ·7−1 + 4 ·70 + 2 ·71 + 6 ·72+ · · · · · ·

6 ·7−2 + 1 ·7−1 + 4 ·70 + 4 ·71 + · · · · · · · · · · · ·

1 ·7−1 + 0 ·70 + 1 ·71+ · · · · · · · · · · · ·

4 ·70 + 3 ·71+ · · · · · · · · · · · ·

5 ·71 + · · · · · · · · · · ·

6 ·7−2 + 2 ·7−1 + 1 ·70 + 0 ·71 + · · · · · · · · · · · ·
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• Example of division.

5 ·70+1 ·71+6 ·72+ · · ·

3 ·70+5 ·71+1 ·72+ · · · ·
)
1 ·70+2 ·71+4 ·72+ · · ·

− (1 ·70+6 ·71+1 ·72+ · · ·)
3 ·71+2 ·72+ · · · · ·

− (3 ·71+5 ·72+ · · · · ·)
4 ·72+ · · · ·

− (4 ·72+ · · ··)
0 ·72+ · · ··

Note that we can use the long division to find the expansion of a rational number.

Example. We want to find the expansion of 1
7 in Q5. That is

∞∑
n=k

an5n, where k ∈ Z∪ {∞},

ak , 0, and 0 ≤ an ≤ 4, for all n ≥ k.

First, notice that
(

1
7

)
· (7) = 1. That can be rewritten as:( ∞∑

n=k

an5n
)
·

(
2 ·50+1 ·51

)
= 1 ·50+0 ·51+0 ·52+0 ·53+0 ·54+0 ·55+ · · · ·

Hence,
∞∑

n=k

an5n = 1·50+0·51+0·52+0·53+0·54+0·55+····
2·50+1·51 . Then,

3 ·50+3 ·51+0 ·52+2 ·53+1 ·54+4 ·55+ · · · · · · · · · · · · · ·

2 ·50+1 ·51)1 ·50+0 ·51+0 ·52+0 ·53+0 ·54+0 ·55+ · · · · · · · · · · · · · ·

− (1 ·50+4 ·51)
1 ·51+4 ·52+4 ·53+4 ·54+4 ·55+ · · · · · · · · · · · · · ·

− (1 ·51+4 ·52)
4 ·53+4 ·54+4 ·55 · · · · · · · · · · · · · · · ·

− (4 ·53+2 ·54)
2 ·54+4 ·55 · · · · · · · · · · · · · · ·

− (2 ·54+1 ·55)
3 ·55+4 ·56 · · · · · · · · ·

− (3 ·55+0 ·56+1 ·57)
4 ·56+1 ·57 · ··
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As a result, the expansion of 1
7 in Q5 is:

∞∑
n=k

an5n = 3 ·50+3 ·51+0 ·52+2 ·53+1 ·54+4 ·55+ · · ··
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5 FUTURE WORK

Probing deeper, and in order to develop this work further, we want to continue exploring

conic sections, using the p-adic distance. So, for the future work, we’ll be interested in the

following:

• Remaining cases of circles and ellipses with arbitrary centers and arbitrary foci.

• Remaining conic sections. That is how parabolas and hyperbolas can be defined with

respect to p-adic distances.

• General equidistant sets.

Definition. Let (X, d) be a metric space and let A be a non-empty set of X. If x ∈ X,

then the distance of x to A is: dist(x,A) = in f
{
d(x,a) : a ∈ A

}
.

Now if A and B are both non-empty sets, then equidistant set determined by A and B

and denoted A = B is defined as: {A = B}B {x ∈ Rn : dist(x,A) = dist(x,B)}.

• Can we do this in Q2
p instead of Q2?

35



BIBLIOGRAPHY

[1] G. Akst. A Strange Ultrametric Geometry. Mathematics Magazine, 49(3):142–145,

1976.

[2] K. Conrad. The P-Adic Expansion of Rational Rumbers. 2019. Accessed: March 10,

2023.

[3] C. Crompton. Some Geometry of The P-Adic Rationals. Rose-Hulman Undergradu-

ate Mathematics Journal, 8(1):2, 2007.

[4] M. Gill. Eccentricity and The Cultural Imagination in Nineteenth-Century Paris.

OUP Oxford, 2009.
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