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Abstract

The burden of sexually transmitted infections (STIs) poses a challenge
due to its large negative impact on sexual and reproductive health
worldwide. Besides simple prevention measures and available treatment
efforts, prophylactic vaccine is a powerful tool for controlling some viral
STIs and their associated diseases. Here, we investigate how prophy-
lactic vaccines are best distributed to prevent and control STIs. We
consider sex-specific differences in susceptibility to infection, as well
as disease severity outcomes. Different vaccination strategies are com-
pared assuming distinct budged constraints that mimic a scarce vaccine
stockpile. Vaccination strategies are obtained as solutions to an opti-
mal control problem subject to a two-sex Kermack-McKendrick-type
model, where the control variables are the daily vaccination rates for
females and males. One important aspect of our approach relies on con-
ceptualizing a limited but specific vaccine stockpile via an isoperimetric
constrain. We solve the optimal control problem via the Pontryagin
Maximum Principle and obtain a numerical approximation for the solu-
tion using a modified version of the forward-backward sweep method
that handles the isoperimetric budget constraint in our formulation.
The results suggest that for a limited vaccine supply (20% − 30%
vaccination coverage), one-sex vaccination, prioritizing females, appears
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to be more beneficial than the inclusion of both sexes into the vac-
cination program. Whereas, if the vaccine supply is relatively large
(enough to reach at least 40% coverage), vaccinating both sexes,
with a slightly higher rate for females, is optimal and provides an
effective and faster approach to reducing the prevalence of the infection.

Keywords: Epidemic modeling, Optimal control, Vaccine Allocation,
Sexually transmitted infections

MSC Classification: 92B05 , 49N90 , 34A34

1 Introduction

According to global estimates of the World Health Organization (WHO), the
burden of sexually transmitted infections (STIs) remains high, counting over
350 million new infections annually with one of the four most common STIs
– chlamydia, gonorrhea, syphilis, and trichomoniasis World Health Organiza-
tion (2021). Although the majority of these infections can be cured, when not
treated, STIs might lead to serious health consequences. In 2020, the human
papillomavirus (HPV) caused over 600,000 new cases of cervical cancer and
342,000 deaths Sung et al (2021). Mother-to-child transmission of syphilis, or
congenital syphilis, leads to over 350,000 adverse birth outcomes such as, e.g.
early fetal and neonatal deaths, stillbirths, and preterm or low-birth-weight
babies Korenromp et al (2019). Negative effects associated with untreated gon-
orrhea and chlamydia infections include reproductive tract morbidities, such
as tubal factor infertility and pelvic inflammatory diseases among women Tse-
vat et al (2017). Gonorrhea, syphilis, or genital herpes simplex virus infection
(HSV) are associated with an increased risk of acquiring or transmitting HIV
Unemo et al (2017). Moreover, a recent observational trend study showed that
the absolute incidence of STIs cases increased in the last 30 years, especially in
sub-Saharan Africa and Latin America Zheng et al (2022) countries. In view
of this, more attention should be given to the prevention and control of STIs,
particularly in low- and middle-income countries, evaluating the benefits of
implementing different public health control strategies.

The spread of STIs can be significantly reduced by a number of non-
pharmaceutical interventions including sex abstinence, reduction in the num-
ber of sex partners, mutually monogamous relationships, and correct and
consistent use of latex condoms Workowski and Bolan (2015). Effective treat-
ment is available for bacterial and parasitic STIs. For example, gonorrhea,
syphilis, chlamydia, and trichomoniasis can be treated with antibiotics, often in
a single dose World Health Organization (2021); Workowski and Bolan (2015).
Viral STIs including HIV, genital HSV, viral hepatitis B, and HPV have lim-
ited treatment options, but disease symptoms can be weakened or controlled
with systematic treatment World Health Organization (2021); Workowski and
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Bolan (2015). Antiviral drugs typically reduce the viral load limiting clini-
cal symptoms, though virus eradication is difficult World Health Organization
(2021); Workowski and Bolan (2015). The spread of STIs can also be limited via
vaccination, which is the main tool for primary prevention of disease, and one
of the most cost-effective public health measures. Therefore, the development
of vaccines against STIs is essential to reduce the vast number of infections
globally, and their adverse health outcomes Gottlieb et al (2016). Currently,
there are vaccines for viral STIs that have been proven to be safe and effective,
including vaccines against HPV and hepatitis B virus Gottlieb et al (2016).
Major efforts continue in the development of vaccines against other STIs e.g.
herpes and HIV, with several vaccine candidates in early clinical development
World Health Organization (2021). Nevertheless, as the COVID-19 pandemic
has shown, even after successful vaccine development, vaccines usually come
on a limited budget and the available stockpile is rarely enough to guarantee
the immunization of the entire population Yamey et al (2022). Generally, in
addition to non-pharmaceutical interventions, public health authorities rely on
a fixed amount of vaccines to control an outbreak, and therefore, optimizing
the allocation of scarce vaccines becomes an important problem.

For an effective vaccination program, it is extremely important to iden-
tify subgroups within the general population that should be prioritized to be
vaccinated Hansen and Day (2011). In the context of STIs, the key allocation
problem is to investigate how to effectively distribute a limited vaccine stock-
pile among individuals, females and males, to minimize the prevalence of the
infection in a population Bogaards et al (2015); Heffernan et al (2014); Saldaña
et al (2019). Strategic mathematical modeling has already been directed to
study resource allocation problems using different approaches such as mixed-
integer linear programming models Saif and Elhedhli (2016); Tavana et al
(2021), feedback control Camacho et al (2019), analytical insights from com-
partmental models Bogaards et al (2011); Duijzer et al (2018); Heffernan et al
(2014); Gao et al (2021); Vo et al (2021), and optimal control Estadilla et al
(2021); Malik et al (2016); Saldaña et al (2019). Here, we focus on optimizing
time-dependent control interventions in an epidemiological model, using the
optimal control theory (OCT) as a methodology for designing effective vac-
cination strategies. The OCT has been proven to be a powerful tool in the
development and evaluation of intervention strategies to cope with the bur-
den of infectious diseases Bussell et al (2019). For example, several studies
have used Kermack-McKendrick-type models coupled with the optimal control
theory to devise vaccine prioritization for specific diseases such as influenza
Matrajt et al (2013); Shim (2013), dengue Maier et al (2017); Rodrigues et al
(2014), and COVID-19 Estadilla et al (2021); Libotte et al (2020); Saldaña and
Velasco-Hernández (2021). Nevertheless, to the best of the authors’ knowledge,
the number of studies investigating vaccine allocation via optimal control the-
ory for STIs is relatively low Brown and White (2011); Camacho et al (2019);
Malik et al (2016); Saldaña et al (2019).
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In this work, we contribute to the vaccine allocation literature investigating
how prophylactic vaccines are best distributed in a population. Assuming sex-
specific differences in susceptibility and disease outcomes, the main focus of
our study is to investigate under which conditions the inclusion of both sexes
into vaccination programs adds to the population-level impact of one-sex-only
interventions. Theoretically, high vaccination coverage for one sex might be
enough to reach herd immunity and eradicate an STI in a heterosexual pop-
ulation Bogaards et al (2011). Yet, some complications can arise depending
on many factors such as (i) the male-to-female sexual infectivity rate is gen-
erally higher than that of female-to-male Low et al (2006); Wong et al (2004)
(ii) the health risks associated with the infection are considerably higher for
females e.g. pelvic inflamatory disease, chronic pelvic pain, ectopic pregnancy,
infertility and cervical cancers Low et al (2006); Wong et al (2004). Further,
in some cases, there can be a group who is reluctant towards the vaccination;
thus, a high vaccination coverage can be difficult to achieve even when target-
ing one sex-specific group Saldaña et al (2019). Our approach to addressing
these issues relies on an optimal control problem, where the cumulative level of
infected individuals is minimized under a limited vaccine stockpile and subject
to a two-sex epidemic model. One of the main novelties of our approach relies
upon modeling the limited vaccine supply using an isoperimetric constrain
Kamien and Schwartz (2012).

The rest of this paper is organized as follows. In Section 2, we propose a
two-sex Kermack-McKendrick-type model to describe the spread of an STI in
a heterosexual population. The model considers prophylactic vaccine strate-
gies that might include both genders. The analysis of equilibria together with
the basic and control reproduction numbers are also investigated in Section
2. In Section 3, we formulate an optimal control problem (OCP) to seek opti-
mal sex-specific vaccination programs aiming to minimize the total number of
infections in the population. In Section 4, we provide a numerical approxima-
tion to the solution of OCP for several realistic vaccine scenarios with budget
constraints that mimic a scarce vaccine stockpile insufficient to immunize the
total population. We conclude by discussing the implications of our findings
for gender-specific vaccination programs against STIs.

2 Methods

2.1 Model formulation

The model stratifies the total population at time t, denoted N(t) according
to gender, so N(t) = Nf (t) + Nm(t), where Nf and Nm represent the num-
ber of sexually active females and males, respectively. Both populations Nk

(k = f,m) are subdivided into mutually exclusive compartments according
to infection status as unvaccinated susceptible (Sk), vaccinated susceptible
(Vk), and infectious individuals (Ik). Hence, Nk(t) = Sk(t) + Vk(t) + Ik(t),
(k = f,m). The transmission dynamics of a sexually transmitted infection in a
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heterosexual populations are described by the following system of differential
equations:

Ṡk = bkNk − (λj→k + uk + dk)Sk + αkIk + θkVk,

V̇k = ukSk − (1− εk)λj→kVk − (dk + θk)Vk, (k, j = f,m, k 6= j)

İk = λj→k(Sk + (1− εk)Vk)− (αk + dk)Ik,

(1)

where all the parameters and initial conditions are non-negative.
We assume individuals are recruited into the sexually active population as

unvaccinated susceptible at a constant rate bk proportional to Nk and 1/dk is
the average duration of the sexual life for sex k = f,m. Prophylactic immu-
nization occurs at a rate uk. The vaccine reduces the force of infection by a
factor εk ∈ [0, 1]; thus, εk is the vaccine effectiveness and the vaccine is 100%
effective when εk = 1. Vaccine-induced immunity wanes at a rate θk, thus
if θk = 0, protection is lifelong. Individuals recover naturally from the infec-
tion at a rate αk. No immunity is assumed after recovery. The acquisition of
infection occurs with a sex-specific force of infection given by

λf→m =
βf→mIf
Nf

, λm→f =
βm→fIm
Nm

. (2)

Here, βf→m (βm→f ) is the female-to-male (male-to-female) transmission
rate. We remark that although system (1) is a minimalist model, it capture the
core characteristics of sexually transmitted infections in a heterosexual popu-
lation under vaccination. For a full description of model parameters, together
with their ranges and baseline values see Subsection 4.1 and Table 1.

2.2 Mathematical analysis

From system (1) it is immediate that the total population for sex k = f,m
satisfies Ṅk = (bk − dk)Nk. Since we are interested in studying model (1) over
a finite time interval [0, tf ], we assume that the population for both sexes is
constant i.e. Nk(t) = Nk(0) := N∗k for all t ∈ [0, tf ], so bk = dk. We stress
that the constant population size assumption is standard in epidemic modeling
and is based on the fact the time scale of the epidemic process is considerably
faster than that of the demographic one for a short time horizon. Therefore,
the biologically feasible region for system (1) is

Ω =
{

(Sk, Vk, Ik) ∈ R3
+ : N∗k = Sk(t) + Vk(t) + Ik(t), t ∈ [0, tf ] (k = f,m)

}
Let xi be an state variable of model (1), then if xi = 0 then ẋi ≥ 0. It

follows that all solutions of the system (1) with an initial condition in Ω remain
in Ω for all t ≥ 0 and Ω is forward invariant. The basic existence, uniqueness,
and continuation results hold for model (1) hold in Ω Wiggins et al (2003).
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Therefore system (1) is epidemiologically well-posed Hethcote (2000) and it is
sufficient to study its dynamics in Ω.

The disease-free equilibrium (DFE) of model (1) is given by

E0 = (S0
f , V

0
f , I

0
f , S

0
m, V

0
m, I

0
m)

=

(
(df + θf )N∗f
uf + df + θf

,
ufN

∗
f

uf + df + θf
, 0,

(dm + θm)N∗m
um + dm + θm

,
umN

∗
m

um + dm + θm
, 0

)
.

Therefore, the susceptible and vaccinated fractions at equilibrium are

s0k =
S0
k

N∗k
=

dk + θk
uk + dk + θk

, v0k =
V 0
k

N∗k
=

uk
uk + dk + θk

, (k = f,m). (3)

Observe that in the absence of vaccination, at the DFE, the whole population
remain susceptible. Using the next-generation operator Diekmann et al (1990)
and the method of Van den Driessche and Watmough (2002) we obtain the
following next-generation matrix

K =

 0
βm→f (S0

f + (1− εf )V 0
f )

(αm + dm)N∗m
βf→m(S0

m + (1− εm)V 0
m)

(αf + df )N∗f
0

 (4)

The control reproduction number is defined as the spectral radius ρ(K), that
is, the largest eigenvalue of the next generation matrix. Therefore, the analytic
expression for the control reproduction number is

Rc(uf , um) =

√
βf→m(s0m + (1− εm)v0m)

(αf + df )
×
βm→f (s0f + (1− εf )v0f )

(αm + dm)
. (5)

The notation Rc is used to emphasize that the reproduction number is
derived under control measures, in this case, vaccination. The square root in
(5) arises since it takes two generations for infected hosts to produce new
infected hosts of the same sex Van den Driessche and Watmough (2008). For
a biological intuition of Rc observe that an infectious individuals of sex j
produces on average βj→k(s0k + (1 − εk)v0k) infections on the opposite sex k
(k, j = f,m, k 6= j), during his/her infectious period 1/(αj + dj).

The basic reproduction number in the absence of vaccination, R0, satisfies

R0 = Rc(0, 0) =

√
βf→m

(αf + df )

βm→f

(αm + dm)
> Rc(uf , um) for uf , um > 0. (6)
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As a direct consequence of Theorem 2 in Van den Driessche and Watmough
(2002), we obtain the local stability for the DFE. The result is formalized as
follows.

Theorem 1. The disease-free equilibrium E0 for model (1) is locally asymp-
totically stable if Rc < 1 and unstable if Rc > 1.

We now investigate the existence of the endemic equilibria of the form
(S†f , V

†
f , I

†
f , S

†
m, V

†
m, I

†
m) where 0 < I†f < N∗f , and 0 < I†m < N∗m (a straight-

forward computation can show that I†f = 0 implies I†m = 0, and vice-versa).
Further, since we are dealing with constant population for both sexes, we
can express the endemic equilibria for the susceptible as S†k = N∗k − V

†
k − I

†
k

(k = f,m). Then we can solve the equilibrium equations for the vaccinated

classes V †f and V †m in terms of the infected classes I†m and I†m as

V †m =
um(N∗m − I†m)

dm + um + θm + (1− εm)βf→mI
†
f/N

∗
f

,

V †f =
uf (N∗f − I

†
f )

df + uf + θf + (1− εf )βm→fI
†
m/N∗m

.

Next, defining

δ = dm + θm + (1− εm)um,

ζ = (αm + dm)N∗f

(
(dm + um + θm)N∗f + (1− εm)βf→mI

†
f

)
,

we can express the infected males as I†m = I†fF (I†f ) where

F (I†f ) =
βf→mN

∗
m(δN∗f + (1− εm)βf→mI

†
f )

βf→mδN
∗
f I
†
f + (1− εm)(βf→mI

†
f )2 + ζ

. (7)

Finally, the infected females at the endemic equilibrium I†f correspond to the
zeros of the following four order polynomial

AI†f (F (I†f ))2 +BF (I†f ) + C = 0 (8)

where

A = β2m→f (1− εf )(N∗f − I
†
f )

B = βm→fN
∗
m

(
−(αf + df )(1− εf )I†f + (N∗f − I

†
f )(df + θf + (1− εf )uf )

)
C = −(αf + df )(df + θf + uf )(N∗m)2
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In the particular case for which the vaccine efficacy is 100%, that is, εf = εm = 1,
we can find a unique endemic equilibrium given by

I†f
N∗f

=
R2
0(dm + θm)(df + θf )− (dm + θm + um)(df + θf + uf )

R2
0(dm + θm)(df + θf ) + βm→f (dm + θm)(df + θf + uf )/(αm + dm)

,

I†m
N∗m

=
(αf + df )I†f

βm→fs
0
f (N∗f − I

†
f )
.

(9)

Observe that the above equilibrium only exist if the condition

R2
0(dm + θm)(df + θf ) > (dm + θm + um)(df + θf + uf )

is fulfilled. This occurs if and only ifRc > 1, therefore the classical forward bifurcation
occurs when the vaccine is 100% effective and the two-sex epidemic model (1) presents
a unique endemic equilibrium. In the general case, it is not possible to obtain a
closed-form solution for the endemic equilibria but numerical results indicate that the
number of endemic equilibria is at most two. Furthermore, a backward bifurcation
can occur if the vaccine effectiveness εk (k = f,m) is below a certain threshold. Figure
1 depicts the typical dynamics for the endemic equilibria of the infected female class
where the backward bifurcation is present. The equilibrium dynamics for the male
infected class follow the same qualitative behavior (not shown).

40 50 60 70 80
cf

5000

10000

15000

20000

25000

30000

Infected females If

Fig. 1: Endemic equilibria for the infected female sub-population, If , as a
function of the expected number of sexual contacts that a typical man carries
out per year cf . Vaccine effectiveness for both sexes is 80%. Parameter values
are shown in Table 1.

3 Optimal vaccine allocation

In this section, we propose an optimal control problem with an isoperimetric con-
strain to investigate the best sex-specific vaccine deployment under a limited vaccine
budget. For this, we consider time-dependent vaccination rates uf (t) and um(t) per
unit of time, thus the controlled model becomes

Ṡk = bkNk − (λj→k + uk(t) + dk)Sk + αkIk + θkVk,

V̇k = ukSk − (1− εk)λkVk − (dk + θk)Vk, (k, j = f,m, k 6= j)

İk = λk(Sk + (1− εk)Vk)− (αk + dk)Ik,

(10)



Springer Nature 2021 LATEX template

Optimal vaccine allocation for the control of STIs 9

subject to non-negative initial conditions. The vaccination rates will be called controls
and denoted by the vector c(t) = (uf (t), um(t))T .

We conceptualize a limited vaccine supply assuming that the number of vaccines
available under the time interval of interest [0, tf ] is fixed with a value W and that
all vaccines will be delivered to the population. We further assume that the vaccine
stockpile is not enough to vaccine the whole population i.e. W < N since in another
case there is no need to optimize vaccine allocation.

This condition can be modeled by the following isoperimetric constraint Kamien
and Schwartz (2012); Lenhart and Workman (2007):∫ tf

0
uf (t)Sf (t) + um(t)Sm(t)dt = W. (11)

The problem for public health officers is to choose an optimal vaccine deployment
to minimize the prevalence of the infection, as well as the overall costs of vaccine
deployment. In mathematical terms, such a goal can be achieved by minimizing the
following objective functional

J =

∫ tf

0
A1If (t) +A2Im(t) +A3u

2
f (t) +A4u

2
m(t)dt. (12)

The weight parameters Ai (i = 1, . . . , 4) describe the relative impact of the con-
trol or state variables on the value of the objective functional (see Section 4.3).
Observe that we have proposed a quadratic cost functional. This assumption is com-
monly justified by arguing that the quadratic terms penalize high levels of control
administration in comparison with the cost of low levels Saldaña et al (2019). We
follow this approach but we remark that this formulation is the most mathemati-
cally convenient, as for such L2-type functionals, the optimal controls can be easily
obtained via Pontryagin’s Maximum Principle.

The control set is defined by

U = {c(t) : uk(t) bounded and Lebesgue measurable on [0, tf ], k = f,m}, (13)

with bounds
0 ≤ uf (t), um(t) ≤ umax, ∀t ∈ [0, tf ]. (14)

Observe that besides the budgetary constrain (11), the vaccination rates should
be constrained (due to logistic limitations) under a maximum vaccination rate umax

per unit of time e.g. daily vaccination rate.
To obtain an approximation for the maximum vaccination rate umax, let us con-

sider a population M(t) where no individuals has been immunized. If the vaccination
rate, u, is proportional to population size, we have M ′(t) = −uM(t), and M(0) = 1
for a normalized population. It follows that M(t) = exp(−ut) are the individuals
that have not been vaccinated at time t. Therefore, the fraction of vaccinated indi-
viduals at time t, that is, the vaccination coverage, Vc(t), is Vc(t) = 1 − exp(−ut).
For a fixed time horizon tf , we have

Vc(tf ) = 1− exp(−utf ) or u = − ln(1− Vc(tf ))/tf . (15)

Considering a very optimistic case in which health authorities achieve a vaccination
coverage Vc(tf ) = 80% of the population in tf = 1 year, we obtain that the con-
stant vaccination rate u ≈ 1.60 per year. Therefore, we choose a maximum daily
vaccination rate as umax = 1.60/365.

Given the special structure of (11), we can convert the isoperimetric constrain
(11) into a fixed endpoint constrain Kamien and Schwartz (2012), by defining
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Z(t) =

∫ t

0
uf (s)Sf (s) + um(s)Sm(s)ds. (16)

The additional state variable, Z(t), represents the cumulative number of vaccines
that have been given at time t, and satisfies

Ż(t) = uf (t)Sf (t) + um(t)Sm(t) Z(0) = 0, Z(tf ) = W. (17)

The Optimal Control Problem (OCP) is stated as follows:

min
c ∈ U

J(c) subject to model (10) coupled with constrain (17). (18)

An application of the Fillipov-Cesari theorem (Fleming and Rishel, 1975, Chapter
III, Theorem 4.1) gives conditions to assert existence of an optimal control pair

c∗(t) = (u∗f (t), u∗m(t))T

and corresponding optimal state solutions

X∗(t) = (S∗f (t), V ∗f (t), I∗f (t), S∗m(t), V ∗m(t), I∗m(t), Z∗(t))T

for the OCP (18). The proof is standard for L2-type objective functionals and we
omit it. Proofs of such statements can be found in Camacho et al (2019); Saldaña et al
(2019); Sepulveda-Salcedo et al (2020). We now use Pontryagin maximum principle
to state the necessary criterion satisfied by an optimal control Fleming and Rishel
(1975); Kamien and Schwartz (2012).

Theorem 2. If X∗(t) and c∗(t) are optimal for the OCP (18), then there exist a
constant λ0 and piecewise differentiable functions λ(t) = (λ1, . . . , λ7), where for all
t ∈ [0, tf ] we have (λ0, λ(t)) 6= (0,0), such that for every t ∈ [0, tf ]

H(t,X∗(t), c∗(t), λ(t)) ≤ H(t,X∗(t), c(t), λ(t)) (19)

for all admissible controls c ∈ U , where the Hamiltonian function H is defined by

H(t,X, c, λ) = λ0

[
A1If +A2Im +A3u

2
f +A4u

2
m

]
+

λ1
[
bfNf − (λm→f + uf + df )Sf + αf If + θfVf

]
+

λ2
[
ufSf − (1− εf )λm→fVf − (df + θf )Vf

]
+

λ3
[
λm→f (Sf + (1− εf )Vf )− (αf + df )If

]
+

λ4
[
bmNm − (λf→m + um + dm)Sm + αmIm + θmVm

]
+

λ5
[
umSm − (1− εm)λf→mVm − (dm + θm)Vm

]
+

λ6
[
λf→m(Sm + (1− εm)Vm)− (αm + dm)Im

]
+

λ7
[
ufSf + umSm

]
.

(20)

Except at points of discontinuity of c∗(t), the adjoint variable λ(t) satisfies
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λ̇1 = λ1

(
βm→f I

∗
m

N∗m
+ u∗f + df

)
− λ2u∗f − λ3

βm→f I
∗
m

N∗m
− λ7u∗f ,

λ̇2 = −λ1θf + λ2

[
(1− εf )

βm→f I
∗
m

N∗m
+ (df + θf )

]
− λ3(1− εf )

βm→f I
∗
m

N∗m
,

λ̇3 = −λ0A1 − λ1αf + λ3(αf + df ) + λ4
βf→m

N∗f
S∗m + λ5(1− εm)

βf→m

N∗f
V ∗m

− λ6
βf→m

N∗f
(S∗m + (1− εm)V ∗m),

λ̇4 = λ4

(
βf→mI

∗
f

N∗f
+ u∗m + dm

)
− λ5u∗m − λ6

βf→mI
∗
f

N∗f
− λ7u∗m,

λ̇5 = −λ4θm + λ5

[
(1− εm)

βf→mI
∗
f

N∗f
+ (dm + θm)

]
− λ6(1− εm)

βf→mI
∗
f

N∗f
,

λ̇6 = −λ0A2 + λ1
βm→f

N∗m
S∗f + λ2(1− εf )

βm→f

N∗m
V ∗f − λ3

βm→f

N∗m
(S∗f + (1− εf )V ∗f )

− λ4αm + λ6(αm + dm),

λ̇7 = 0.

(21)

Furthermore,
λ0 = 1 or λ0 = 0. (22)

Last, the following transversality conditions are satisfied:

λi(tf ) = 0 i = 1, . . . , 6, λ7(tf ) = free. (23)

The adjoint variables λi(t) (i = 1, . . . , 6) have a classical interpretation in OCP as
the marginal valuation of the associated state variable at time t Kamien and Schwartz
(2012). The value of the constant λ0 in the Hamiltonian (20) is either 0 or 1. If λ0 = 1,
then the OCP (18) would have a solution in which the objective matters Kamien
and Schwartz (2012). In this scenario, the Hamiltonian function has the standard
form, and minimization of the objective functional (12) is equivalent to minimization
of H as a function of c(t) along the optimal path. This is not always possible for
OCPs that include an isoperimetric constrain Fleming and Rishel (1975). This results
from the fact that the controlled system,(10) coupled with (17), has more endpoint
conditions than differential equations. Hence, the system is over-determined and the
optimization problem may become unfeasible. If λ0 = 0, one can handle the OCP
finding an admissible control c∗(t) that satisfies the isoperimetric constrain (11).
However, such control will neglect the value of the objective functional Sepulveda-
Salcedo et al (2020). Problems in which λ0 = 0 are called abnormal Fleming and
Rishel (1975) and the optimal control usually presents a bang-bang structure since
H is a linear function in the control. A feasible control, in this case, is to start
vaccinating with the maximal effort at the initial phase and to continue vaccinating
with maximal effort to deploy all the vaccines at a time t̂ ∈ (0, tf ) Hansen and Day
(2011); Sepulveda-Salcedo et al (2020).

In our context, we cannot disregard the value of the objective functional since is
essential to find the optimal vaccine deployment. Hence, hereafter we assume λ0 = 1.
In these conditions, we can use the first-order optimality conditions to obtain the
following characterization of the optimal controls:
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u∗f (t) = min

{
max

{
0,

(λ1 − λ2 −K)S∗f
2A3

}
, umax

}
, (24)

u∗m(t) = min

{
max

{
0,

(λ4 − λ5 −K)S∗m
2A4

}
, umax

}
. (25)

The constant K ∈ R comes from the solution of the last equation in the adjoint
system (21), which implies λ7 = K, where K should be chosen to fulfill the condition
Z(tf ) = W .

4 Numerical Results

Here, we complement the analytical results in the previous sections with the numer-
ical computation of the optimal control. To obtain the optimal control solutions
we must solve the optimality system which is a boundary value problem involving
the state equations (10), coupled with the fixed endpoint constrain (17), and the
adjoint system (21). The characterization of the optimal control (24)-(25) has to be
substituted in the latter equations to get a system that only depends on the state
and adjoint variables. Observe that although the model variables for the controlled
system (10) have free end conditions, the additional state variable Z(t) has a speci-
fied endpoint (17). Therefore, the forward-backward sweep method (FBSM) cannot
be applied directly to solve the optimality system Lenhart and Workman (2007).
Instead, we need to find the value K for the adjoint variable λ7 = K such that
Z(tf ) = W . To this end, we consider an adapted FBSM that takes as an input a
guess for K, and solves the corresponding OCP. The solution obtained by the imple-
mentation of FBSM is denoted as ϕ(K), and the corresponding final value for the
auxiliary function Z that computes the number of cumulative vaccinated individuals
is denoted ZK(tf ). The adapted FBSM is an iterative process that seeks the value
of K that minimizes the difference ZK(tf )−W . We use the classical secant method
to solve this outer iterative process which usually involves several iterations of the
FBSM.

4.1 Model parameters

We retrieved the baseline values for some of our model parameters using sexual
behavior data from United States of America (USA) and estimations from previous
studies on STIs. Rather than studying a single disease, our approach is to investigate
a set of scenarios of interest that might be plausible for the most common STIs. The
selection of parameters is outlined as follows.

The sexually active life expectancy has been estimated to be on average higher for
males than for females Lindau and Gavrilova (2010). In particular, the sexually active
life expectancy for males is 34.7 years with a 95% confidence interval (34.1, 35.3).
Thus, 1/dm ∈ (34.1, 35.3) years. The sexually active life expectancy for females is
30.7 years with a 95% confidence interval (30, 31.4). Thus, 1/df ∈ (30, 31.4) years.
In 2020, is was estimated in the USA that the percentage of female population is
50.52 percent compare to 49.48 percent male population United Nations (2020).
Therefore, N∗f = 0.5052N and N∗m = 0.4948N . For simplicity, we assume that the
total population is N = 100, 000.

The parameter βm→f = cmpm→f is the transmission rate from males to females,
where cm is the expected number of sexual contacts with men that a typical woman
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carries out per unit of time and pm→f is the probability of female infection given
contact with an infectious male. Likewise, the transmission rate from females to
males βf→m = cfpf→m, is the product of the expected number of sexual contacts
with women that a typical man carries out per unit of time cf and the probabil-
ity of male infection given contact with an infectious female pf→m. To obtain the
conservation of total sex contacts, the mixing function should satisfy the following
condition Busenberg and Castillo-Chavez (1991):

cfN
∗
m = cmN

∗
f . (26)

Observe that if N∗f 6= N∗m then the parameters cf and cm can differ substan-
tially. Under our conditions, if we assume that cf is fixed, we can obtain cm =
0.4948cf/0.5052 = 0.9794cf . Men and women in good health report frequent sex
(once or more weekly) Lindau and Gavrilova (2010). In our study, we assume that the
expected number of sexual contacts that a typical man carry out follows a triangular
distribution cf ∼ Tri(0, 100, 52) per year Lindau and Gavrilova (2010). Furthermore,
there is evidence that the male to female sexual infectivity rate is generally greater
than that for female to male Low et al (2006); Wong et al (2004). For example, for
genital herpes HSV-2, estimations indicate that pm→f ≈ 4pf→m Heffernan et al
(2014). Therefore, we set pm→f > pf→m, and we propose pm→f ∼ Tri(0, 1, 0.70),
and pf→m ∼ Tri(0, 1, 0.40).

According to the WHO, to be approved, vaccines are required to have a high
efficacy rate of at least 50% World Health Organization (2021). Current vaccines
against STIs have been proven to be highly effective to prevent infection e.g. vaccines
against HPV, and hepatitis B virus Gottlieb et al (2016). In this study, we consider
vaccine efficacy between 60%-95% for both sexes (εf , εm ∈ [0.60, 0.95]). The average
infectious period might vary substantially in STIs, depending on the disease ranging,
from a few days up to several months Workowski and Bolan (2015). As a consequence,
we assume 1/αk ∈ [10, 100] days (k = f,m). Regarding the duration of vaccine-
induced immunity, we assume that the protection last from at least one year and
can be maintained up to 30 years, hence 1/θk ∈ [1, 30] years (k = f,m). Model
parameters are summarized in Table 1.

Parameters Values – ranges Units

Female’s sexually active life expectancy 1/df 30.7– (30, 31.4) year
Male’s sexually active life expectancy 1/dm 34.7– (34.1, 35.3) year
Average number of sexual contacts for males cf 52– Tri(0, 100, 52) year−1

Average number of sexual contacts for females cm 50– Tri(0, 97, 50) year−1

Probability of female infection pm→f 0.70– Tri(0, 1, 0.70) dimensionless
Probability of male infection pf→m 0.40– Tri(0, 1, 0.40) dimensionless
Vaccine efficacy εk 0.80– (0.60, 0.95) dimensionless
Duration of the infectious period 1/αk 20– (10, 100) days
Vaccination rates uk 0.50– (0.0, 1.60) year−1

Duration of vaccine-induced protection 1/θk 20– (1, 30) year

Table 1: Baseline model (1) parameters (k = f,m). References for the param-
eter values are given in the main text. The total population is assumed to be
N = 100, 000 with a gender distribution N∗f = 0.5052N and N∗m = 0.4948N .
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4.2 Global sensitivity analysis for the reproduction
numbers

Here, a global sensitivity analysis is performed to provide a quantitative measure of
the contributions of the model parameters on the reproduction numbers R0 and Rc.
We use a variance-based sensitivity analysis classically referred as the Sobol method
which is, so far, one of the most powerful techniques among current global sensitiv-
ity analysis methods Zhang et al (2015). Sobol sensitivity analysis determines the
contribution of input parameters to the overall variance of a model outcome of inter-
est, in our case, the reproduction numbers. In particular, the so-called first-order
Sobol indices measure the contribution to the output variance by a single model
input alone. Whereas, the total-order index measures the contribution to the output
variance caused by a model input, including both its first-order effects and all higher-
order interactions Saltelli et al (2008). We perform numerical experiments (100,000
samples) using SALib, an open-source library written in Python for performing sen-
sitivity analyses Herman and Usher (2017). The ranges used for the parameters are
listed in Table 1.
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Fig. 2: (a) First (blue) and total (red) Sobol’s indices for the basic repro-
duction number R0. The ranges for the parameters are listed in Table 1. The
vertical black lines in the indices represent 95% confidence intervals. (b) His-
togram for the distribution of R0. The solid line represents a kernel density
estimation for the continuous distribution.

Figure 2 (a) shows the first (blue) and total (red) Sobol’s indices for the basic
reproduction number R0. The dark marks on top of the bars in Fig. 1 represent
95% confidence intervals for the sensitivity indices. Notice that they are very small.
Observe that the expected number of sexual contacts ck together with the recovery
rates αk (k = f,m) are the parameters that contribute the most to the variability of
R0. Whereas, the contribution to the variability of R0 given by the mortality rates
dk (k = f,m) is practically zero. Figure 2 (b) shows a histogram for the distribution
of R0. The solid line represents a kernel density estimation for the continuous distri-
bution. Observe that although in most cases R0 value is below 1, in some extreme
scenarios R0 can be as high as 3.

Figure 3 (a) shows the first (blue) and total (red) Sobol’s indices for the control
reproduction number Rc. As in the case for R0, the parameters ck and αk (k = f,m)
contribute the most to the variance of Rc. Figure 3 (b) shows a histogram for the
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distribution of Rc. Observe that the distribution for Rc is more close to low values
in comparison with the R0 distribution (see Figure 2 (b)). Hence, even though the
vaccine parameters (εk, uk, θk) are not the most influential parameters on Rc, they
still can significantly reduce the value of Rc.
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Fig. 3: (a) First (blue) and total (red) Sobol’s indices for the control repro-
duction number Rc. The ranges for the parameters are listed in Table 1. The
vertical black lines in the indices represent 95% confidence intervals. (b) His-
togram for the distribution of Rc. The solid line represents a kernel density
estimation for the continuous distribution.

4.3 Vaccination scenarios

We investigate several vaccination scenarios to evaluate the optimal sex-specific vac-
cine deployment among the population. The time horizon for our simulations is 365
days, that is, tf = 365 days and t ∈ [0, tf ]. In the objective functional (12), the
parameters A1 and A2 balance the cost of the reduction in health and well-being of
infected females and males, respectively. These costs related to pain and suffering
are sometimes referred to as morbidity costs Muennig and Bounthavong (2016). On
the other hand, A3 and A4 represent the costs of vaccine deployment in females and
males, respectively.

In real-life scenarios, the monetary costs and side effects of a vaccination program
are typically small compared with the potential losses that an outbreak can inflict.
Hence, we assume A1, A2 > A3, A4. Furthermore, females are more severely affected
by STIs because of anatomical physiological characteristics. So in a heterosexual
setting, women bear the largest burden Workowski and Bolan (2015). The classical
example is HPV infection. While HPV infection can lead to cervical cancer and death
in women, the infection in men rarely leads to severe health problems (penile cancer
from HPV might happen but the rate is far lower than the rate for cervical cancer)
Sung et al (2021). Therefore, A1 > A2. In particular, for the numerical simulations,
we assume A1 = 10, A2 = 1. The cost of vaccine deployment is assumed to be the
same for both sexes, and are fixed as A3 = A4 = A2/2. Initial conditions are set as
follows. If (0) = Im(0) = 10, Vf (0) = Vm(0) = 0, and Sf (0) = N∗f − If (0) − Vf (0),
Sm(0) = N∗m−Im(0)−Vm(0). These conditions represent a starting vaccination roll-
out program where no individuals in the population have been vaccinated. Regarding
the vaccine stockpile, we consider three cases corresponding to supply of vaccines for
20% (W = 0.2N), 30% (W = 0.3N) and 40% (W = 0.4N) of the total population.
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Fig. 4: First column: Optimal time-dependent vaccination rates for females
u∗f (t) (blue) and males u∗f (t) (red). Second column: Cumulative number of vac-
cinated females (blue) and vaccinated males (red) computed from the optimal
states corresponding to the optimal controls on the first column. The total
cumulative number of vaccines administered, Z(t), is shown in yellow. For
both columns the supply of vaccines correspond to 20% (a)-(b) (first row),
30% (c)-(d) (second row) and 40% (e)-(f) (third row) of the total popula-
tion. Baseline parameter values are listed in Table 1. Initial conditions are
If (0) = Im(0) = 10, Vf (0) = Vm(0) = 0, and Sf (0) = N∗f − If (0) − Vf (0),
Sm(0) = N∗m − Im(0)− Vm(0).

To better quantify the gender-specific optimal vaccine deployment we define

Zf (t) =

∫ t

0
uf (s)Sf (s)ds, Zm(t) =

∫ t

0
um(s)Sm(s)ds. (27)
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Observe that Zf (t) and Zm(t) represent the cumulative number of vaccinated females
and males, respectively, at time t, and Z(t) = Zf (t)+Zm(t) for all t ∈ [0, tf ]. Further-
more, since vaccinated individuals can still get infected, it follows that Zf (t) ≥ Vf (t),
Zm(t) ≥ Vm(t) for all t ∈ [0, tf ].

The first column in Figure 4 shows the optimal control solutions, that is, the opti-
mal time-dependent vaccination rates for females u∗f (t) (blue) and males u∗m(t) (red).
The second column shows the sex-specific optimal vaccine deployment using cumu-
lative vaccinated individuals. The cumulative number of vaccinated females Zf (t)
(blue), males zm(t) (red) are obtained from the optimal states corresponding to the
optimal controls on the first column. The variable Z(t) that represents the total
cumulative number of vaccines administered is also shown. Observe that Z(tf ) = W
for each of the cases investigated: W = 0.2N∗ (first row), W = 0.3N∗ (second row)
and W = 0.4N∗ (third row). For all cases (see Figure 4 (a), (c), (e)), the optimal
control solutions suggest that health officers must allocate as much vaccines as pos-
sible at the early phase of the outbreak. After a significant fraction of the population
is immunized, then reduce quickly the vaccination rate to low levels and keep it like
that for a long period of time. Finally, gradually decrease vaccine deployment to zero.

One important result from plots (a), (c), (d) in Figure 4 is that although the
vaccination rate for females should be higher than the one for males, this difference is
relatively small. Hence, under these conditions men should be included in vaccination
programs together with females. Figure 4 (b), (d), (f) shows, as expected from the
optimal controls, that the cumulative number of vaccinated females is above the one
for males. Nevertheless, the key point to notice is that the difference on the sex-
specific cumulative vaccination increases as the vaccine stockpile reduces (note that
the difference is bigger in Figure 4 (b) in comparison with Figure 4 (f)). In other
words, for a very limited vaccine supply, one sex-vaccination can be more beneficial
than the inclusion of both sexes into the vaccination program.
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Fig. 5: (a) Number of infected females as a function of time without con-
trol (red line) and with optimal vaccination rates corresponding to the case
W = 0.3N (blue line). (b) Number of infected males as a function of time
without control (red line) and with optimal control (blue line). The integral
of the shaded area represents the number of infections averted by the optimal
vaccination rates.

We remark that for all the scenarios explored, the implementation of the vac-
cination program manage to significantly reduce the prevalence of the infection in
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comparison with the no control case. Figure 5 deploys the number of infected indi-
viduals without control (red solid line) and under the application of the optimal
vaccination rates (blue solid line) corresponding to the case W = 0.3N (see Figure
4 (c)). Females and males are presented in Figure 5 (a) and (b), respectively. The
integral of the shaded area corresponds to the number of infections averted by the
vaccination programs.
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Fig. 6: First column: Optimal time-dependent vaccination rates for females
u∗f (t) (blue) and males u∗f (t) (red). Second column: Cumulative number of
vaccinated females (blue), males (red) computed from the optimal states cor-
responding to the optimal controls on the first column. The total cumulative
number of vaccines administered, Z(t), is shown in yellow. For both columns
the supply of vaccines correspond to 20% (first row), 30% (second row) and
40% (third row) of the total population. Baseline parameter values are listed
in Table 1. Initial conditions If (0) = Im(0) = 10, Vf (0) = 10000, Vm(0) = 0,
and Sf (0) = N∗f − If (0)− Vf (0), Sm(0) = N∗m − Im(0)− Vm(0).
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The results in Figure 4 were derived for a starting vaccination roll-out program.
Another scenario of interest is when a single-sex vaccination strategy is already estab-
lished. In this context, public health authorities would like to evaluate if it is better
to increase coverage in the existing single-sex program or to vaccinate both sexes
simultaneously Bogaards et al (2011). We assume Vf (0) = 10000, hence, a substantial
number of females have already been vaccinated, and Vm(0) = 0, i.e. no vaccinated
males. This scenario mimics HPV vaccination programs in several countries which
are currently directed at females only Bruni et al (2021). Other model parameters
are fixed as show in Table 1, except the total vaccine stockpile W that now counts
10000 vaccines less (the ones that are already delivered for females). The optimal
control profiles together with the cumulative vaccinated individuals for these condi-
tions are shown in Figure 6. From the optimal controls (see Figure 6 (a), (c), (d)) it
is clear that for a scenario of very limited vaccine stockpile, i.e. W < 0.3N∗, vaccine
administration should continue prioritizing the female-only target population. How-
ever, if the stockpile is relatively large, i.e. W > 0.4N∗, the inclusion of males in the
vaccination program is the optimal strategy to effectively eliminate the epidemic in
the population.

5 Discussion

The prevention and control of sexually transmitted infections have extensive pub-
lic health benefits including the reduction of preventable deaths of newborns, and
improved sexual and reproductive health World Health Organization (2021). Vaccine
development and successful implementation of effective immunization programs are
critical actions to progress in the control of STIs Gottlieb et al (2019). Nevertheless,
due to cost and logistical challenges, vaccine stockpile is typically limited and not
enough to achieve a high-immunization coverage, particularly in low-middle-income
settings Yamey et al (2022). Data reports significant sex-specific differences on bio-
logical risks for STI acquisition, the clinical manifestation of the infection, and their
potential for transmission to the opposite sex Hook (2012); Wong et al (2004). Hence,
determining optimal sex-specific vaccination programs against STIs is a challenging
task that deserves more attention. A major example are HPV vaccination programs
which were introduced in several countries for young girls. These early female-only
HPV immunization programs have been found to be cost-effective when cervical can-
cer prevention is the main objective (see Brisson et al (2020) and the references
therein) . Yet, a number of studies e.g. Elfström et al (2016); Stanley (2012) have
suggested that if rather than to prevent cervical cancer alone, the aim is to reduce
all HPV-associated diseases, then the inclusion of males can be cost-effective. Cur-
rently, more than 30% of the HPV programs are gender-neutral (GN), i.e. with both
females and males receiving the vaccine. However, 79% of GN programs are from
high-income countries whereas only 21% from upper-middle-income countries Bruni
et al (2021).

In this study we investigate under which conditions the inclusion of both males
and females into vaccination programs adds to the population-level impact of female-
only interventions. Considering sex-specific differences in transmissibility and severity
in disease outcomes, we compare various vaccination strategies against STI transmis-
sion for different realistic settings described by distinct budget constraints associated
with the vaccine supply. The vaccination strategies are obtained as solutions to an
optimal control problem aiming to reduce the total prevalence of the infection subject
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to a minimalist two-sex Kermack-McKendrick-type model. The control variables are
the daily vaccination rates for females and males, respectively, that mimic a prophy-
lactic vaccine with effectiveness not necessarily equal to 100%. One important aspect
of our approach relies upon modeling a limited but specific vaccine stockpile via an
isoperimetric constrain Kamien and Schwartz (2012). We solve the optimal control
problem via the Pontryagin Maximum Principle and obtain a numerical approxi-
mation for the solution using a modified version of the FBSM which handles the
isoperimetric budget constraint in our formulation.

We considered two main scenarios regarding the current immunization coverage
in the population (i) a starting vaccination roll-out program where no individuals in
the population have been vaccinated (see Figure 4) and (ii) a female-only vaccination
strategy which is already established and has reached around 20% coverage in females
(see Figure 6). The second scenario is relevant for public health authorities who
would like to evaluate if it is better to increase coverage in the existing female-only
program or to vaccinate both sexes simultaneously. Each of these scenarios is further
sub-divided according to the total vaccine supply available W which is incorporated
via the isoperimetric constrain (11). The simulations for the first scenario show that
although the vaccination rate for females should be higher than the one for males,
this difference is relatively small if the vaccine supply is relatively large (enough
to reach at least 40% coverage). Hence, under these conditions, vaccinating both
sexes, with a slightly higher rate for females, is optimal and provides an effective and
faster approach to reducing the prevalence of the infection. However, the difference
on the sex-specific vaccine distribution increases as the vaccine stockpile reduces.
In other words, for a very limited vaccine supply (30% coverage or less), female-
only vaccination can be more beneficial than the inclusion of both sexes into the
vaccination program. Furthermore, for the case in which a female-only program is
already ongoing, vaccine administration should continue prioritizing the female-only
target population and males should only be included is the vaccine stockpile is very
large. Since the male-to-female sexual infectivity rate is generally higher than that of
female-to-male, prioritizing female vaccination might seem counter intuitive, because
vaccinating super-spreaders (in this case males) is usually effective to reduce the
prevalence of the infection. Yet, this may be due to the fact that the health risks
associated with STIs are considerably higher for females in comparison with men.
This is considered in the solution of our optimal control problem using the weight
parameters in the objective functional.

As with the majority of studies, we considered some simplifying modeling assump-
tions that can be improved in further studies. First, we assumed that single-dose
vaccination is enough to reach full immunity. Nevertheless, a two-dose series is often
needed and there might be a delay of some days (or weeks) to achieve full immunity.
Second, we assumed that susceptible individuals are easily identified for a prophy-
lactic vaccine that lacks therapeutic effects and in therefore not effective in already
infected individuals. In the contrary case, some vaccines can be misdirected in the
infected population. Finally, we have considered a heterosexual population but inclu-
sion of individuals with another sexual orientation can play a key role in disease
dynamics. Future investigations are necessary to validate if the principal properties
of the optimal vaccination policies drawn from this study are affected when these
assumptions are relaxed.
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