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Constitutive models for the dynamics of polymer solutions traditionally rely on closure relations for the extra stress,
or related microstructural variables (e.g., conformation tensor) linking them to flow history. In this work, we study the
eigendynamics of the conformation tensor within the GENERIC framework in mesoscopic computer simulations of
polymer solutions to separate the effects of the non-affine motion from other sources of non-Newtonian behaviour. We
observe that non-affine motion or slip increases with both, the polymer concentration, and the polymer chain length.
Our analysis allows to uniquely calibrate a mixed derivative of the Gordon-Schowalter type in macroscopic models
based on a micro-macro mapping of the dynamics of the polymeric system. The presented approach paves the way
for better polymer constitutive modelling in multiscale simulations of polymer solutions, where different sources of
non-Newtonian behaviour are modelled independently.

I. INTRODUCTION

Polymeric solutions display complex rheological behavior
when subjected to flow. This is a direct result of additional
contributions to stress given by the stretching and orienta-
tion of the polymer chains immersed in the fluid. Multiscale
schemes are an extremely attractive solution for the simula-
tion of these and other complex fluids. These schemes aim
to simulate real flow processes without paying all the com-
putational cost required to resolve the microscopic details.1

The data from microscopic scale simulations can be used to
obtain the closure constitutive relations needed to solve the
macroscopic scale flow and obtain, for example, the viscosity
or normal stresses as a function of the shear rate in a flow-
ing polymeric solution.2 The most naive approach is to sim-
ply fit the simulation data with some phenomenological rela-
tionship, e.g. linking polymeric viscosity to local shear-rate
by using, for example, power-law models. A more physically
sounded approach is to use a model relating the state of the mi-
crostructure in the solution with the macroscopic properties of
interest. In this second approach, physically meaningful pa-
rameters are fitted using data from microscopic simulations or
experiments. This approach can work well for simple flows
(i.e., homogeneous deformation in a straightforward geome-
tries) but problems often arise when applying the fitted model
to more realistic flow processes.

Failure of the modeled constitutive equations to describe
complex flows can be attributed to two different sources of er-
ror: 1) the microstructure variables do not follow the kinemat-
ics exactly (i.e., polymers chains conformation do not deform
affinely) and/or 2) incorrect or insufficient physics are used to

describe the microstructure effects on the macroscopic stress
(i.e., polymer spring model etc.). Significant work has been
dedicated to address the second source, and improve models
performance through more complex physics. The Oldroyd,3

the Finite Extensible Nonlinear Elastic with Peterlin closure
(FENE-P),4 the simplified Phan-Thien-Tanner sPTT,5 and the
Giesekus6 models are only a few examples of constitutive
models, each displaying distinct rheological behavior due to
the different treatment of the polymeric entropy and the dy-
namics of the microstructure.

The time evolution of these constitutive equations can be
split in reversible and irreversible parts. The reversible part
is generally assumed to follow an Upper-Convected deriva-
tive, which comes from the natural idea that the polymers re-
spond affinely to an applied deformation (i.e., velocity gra-
dient). For the irreversible part, typically different constitu-
tive closures (Oldroyd, FENE-P, Giesekus etc.) are used to
model distinct non-Newtonian/viscoelastic responses. An al-
ternative is to introduce complexity in the rheological behav-
ior using a different choice for the time derivative (i.e., Lower-
Convected or mixed derivative). For example, Oldroyd-A and
Oldroyd-B models are originated from the same irreversible
constitutive closure, albeit with two different choices of time
derivative (i.e., Lower-Convected and Upper-Convected re-
spectively). In particular, it can be useful to consider a mixed
convected derivative that is balanced through an slip coeffi-
cient (i.e., Gordon-Schowalter type) when non-affine motion
in the dynamics of polymeric solutions occurs. Gordon and
Schowalter introduced an anisotropic fluid theory as an alter-
native to the Dumbbell theory that results in the well know
Oldroyd-B model.3,7 Non-affine motion is introduced as a
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first order approximation to Ericksen theory8 with an arbitrary
constant (the slip coefficient) weighting the lower convected
derivative contribution to the dynamics of the stress. The
effect is referred to by different authors as slip,7 non-affine
motion,9,10 and anisotropy or friction.5,11 Somewhat surpris-
ingly, a mixed derivative is seldom considered12 although it
has been shown to improve the performance of the extended
Pom-Pom (XPP) and Phan-Thien-Tanner (PTT) models.13 In
fact, both non-affine deformation and internal microstruc-
tural response (mechanical elasticity-dissipation), can inde-
pendently lead to non-Newtonian effects, and therefore they
should be modelled separately. The difficulty to separate both
sources of non-Newtonian behaviour has limited the number
of studies addressing the possibility of non-affine motion of
the chains.13,14 However, it is still necessary to accurately cal-
ibrate the slip coefficient, and the constitutive closure equation
appearing in these models independently to avoid mixing dif-
ferent sources non-Newtonian behavior.

In this work, we present a method to separate non-affine
motion of chains from other sources of non-Newtonian behav-
ior in dilute polymeric solutions. In our analysis, we assume
that microstructure and rheological properties of a polymer
solution system are well described with the local chain con-
formation tensor c given by

c=
1

Npolq2
0

Npol

∑
i
qiqi (1)

where Npol is the number of polymer molecules in a given
domain and qi is the end-to-end vector of each molecule in
such a domain. The region including Npol molecules should
be small enough to allow for a continuum treatment but large
enough to have a sufficiently large number of chains within.
The resulting conformation tensor field couples with the mass
and momentum balance equations leading to a complex rheol-
ogy for the solution. Using the GENERIC framework, it has
been shown that a general polymer model can be cast into the
following set of partial differential equations governing flow15

∂tρ =−∇ ·ρv (2)

∂tρv =−∇ ·ρvv−∇ ·Π+ηs∇
2v+

ηs

3
∇∇ ·v+ρg (3)

∂tc=−v ·∇c+c·κ+κT ·c−ξ (c · γ̇+ γ̇ ·c)+ 2
λpkBT

c·σ

(4)

The first equation is the continuity equation where, ρ is the
mass density field and v is the velocity field. The second equa-
tion is the usual momentum balance equation in the form of
the Navier-Stokes equation with solvent viscosity ηs, but with
a reversible stress given by Π = PI +σ · c+ c ·σ, where P
is the pressure field of the solvent, c is the conformation ten-
sor field, and σ is the conjugate variable of c, given by the
polymeric entropy sp(c) of the fluid as:

σ

T
=

∂ sp

∂c
(5)

Because the tensors c and σ commute,15 the reminder of re-
versible stress can be expressed as τ = 2c ·σ correspond-
ing to the extra or polymeric stress. This additional contri-
bution to the stress due to the microstructure results in the
coupling of Eqns. (3) and (4). Equation (4) governs the evo-
lution of the conformation tensor field c. Its reversible part
is given by the first three terms in the right hand side, de-
termined by the flow kinematics. Here, κ = (∇v)T and
γ̇ = (κ+κT )/2. The fourth term in equation (4) describes
slip or non-affine motion of the chain segments according to
the Gordon-Schowalter (GS) equation,7,16,17 where the slip
coefficient 0 ≤ ξ ≤ 2 quantifies the upper convected (UC)
to lower convected (LC) contributions in the mix derivative.
For example, for ξ = 0 the UC is recovered, ξ = 2 leads to
a fully LC derivative, whereas ξ = 1 results in a corotational
Jaumann-Maxwell derivative (See Appendix A 2). The slip
term characterizes the non-affine motion in the continuum for
the chains in solution or the network junctions in a melt.7,9

This term is associated in the GENERIC framework with an
antisymmetric friction matrix, this is, an irreversible contribu-
tion that, nevertheless, does not produce increase in the total
entropy of the system.17 The slip contribution can be under-
stood as an overdamped version of a more detailed GENERIC
theory with a fully symmetric friction matrix, in which a mi-
croscopic velocity near the suspended objects is an additional
fast variable.18,19 The slip contribution does not satisfy the
Jacobi identity and, strictly speaking, cannot be considered
as a mechanistic reversible contribution to the dynamics.20,21

Nevertheless, for the sake of economy and on due account of
being dissipation-less, we will refer to the first four terms in
the right-hand side of (4) – including the slip term – as the
reversible part of the dynamics.

We refer to the last term in Eqn. (4) – the polymeric en-
tropy contribution – as the irreversible part of the conforma-
tion tensor dynamics. The intensity of this entropic term is
determined by the polymeric relaxation time λp. The struc-
ture of this irreversible part has been obtained in Ref.15 under
the assumption that the polymer solution is dilute, leading to
a friction matrix (in GENERIC parlance) proportional to c.
Note however, that the last term in Eq. (4) can be generalized
to more complex forms of the friction matrix, thus allowing
the study of more concentrated systems and melts.17

II. WHY EVALUATE SLIP?

To justify the importance of the affine or non-affine charac-
ter of the reversible dynamics of c (i.e., the need to include the
slip term in Eq. (4)), it is useful to consider its effect on the
dynamics of c using simplified models with known analytic
expressions for the entropy sp. This allows us to obtain solu-
tions for the evolution of c, the stress, and some important rhe-
ological properties with straight-forward interpretation. For a
dilute solution of chains formed by Hookean dumbbells, we
have Oldroyd-B model3 whose entropy is given by15,17,

sOB
p (c) =

kB

2
[tr(I−c)+ ln(det(c))] (6)
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FIG. 1. Rheological behavior for “slipping” Oldroyd-B for affine ξ = 0.0 (solid lines) and non-affine ξ = 0.005 (dashed lines) simple shear
flow results. Left Panel: Viscosity as a function of Wi. The inclusion of a small slip coefficient ξ = 0.005 results in dramatic shear thinning
behavior. Right Panel: First and second normal stresses as a function of Wi. The first normal stress is reduced and a non-zero second normal
stress appears with the inclusion of slip. The ratio of the two is given by the slip coefficient N2/N1 =−ξ/2.

For chains composed of FENE-P springs, we have the follow-
ing expression for the polymeric entropy:15,17

sFENE
p (c) =

kB

2
[b lnφ(c)+ lndetc] (7)

where φ(c) = b+D
b −

1
b tr(c) with D the dimensionality and b

the finite extensibility parameter. Using Eqns. (5)-(7), the
expressions for σ for both models are:

σOB =
kBT

2
(c−1−I) (8)

σFENE =
kBT

2
(c−1−I/φ(c)) (9)

Using these two models we illustrate the importance of
evaluating two possible sources of non-Newtonian behavior
in polymer solutions: 1) slip or non-affine flow of chains, and
2) additional contributions to the polymeric entropy. First,
we consider the Oldroyd-B model (OB) in Eq. (8) with slip
ξ ≥ 0 (but small) and refer to this more general model as "slip-
ping" Oldroyd-B (SOB). In Figure 1, we show how including
a small degree of non-affine motion results in a significant
shear thinning in the shear viscosity η of the model fluid.
Here, we have considered two contributions to the viscosity
η(γ̇) = ηs +ηp(γ̇), where ηp is given by the polymeric con-
tribution to the shear stress, which depends on the shear rate
γ̇ . In Figure 1, we have normalized the viscosity by the zero
shear viscosity η0 =η(γ̇ = 0). As noted above, we considered
ξ = 0.005 (i.e., a non-zero but small slip coefficient produces
significant shear thinning without altering the entropic con-
tribution to the evolution of c in Eq. (4)). In addition, the
inclusion of slip results in an important reduction of the first
normal stress N1 and, most importantly, in a non-zero second
normal stress N2 in simple shear flow. Note that from these
results we can confirm that N2/N1 = −ξ/2.7 The ratio of the
second and first normal stress is known as the “viscoelastic ra-
tio” number, and relates elastic and viscous forces. This ratio
has also been interpreted as representing the recoverable strain
in the fluid.22 The SOB model shows that non-Newtonian ef-
fects like shear thinning viscosity, or the presence of a second

normal stress can be a direct result of non-affine motion of
chains (4) (i.e., no additional physics are required to at least
qualitatively describe this phenomena).

Next, we consider whether introducing slip is, in practice,
equivalent to the application of more complex expressions for
the polymeric entropy to account for non-Newtonian behav-
ior. That is, if the rheological effect of non-affine deformation
can be explained just as well by a different constitutive model
for the polymer chains mechanical response. For this, we take
the SOB model as our ground truth (i.e., treat it as experimen-
tal data), and then use FENE-P model in (9) without slip ξ = 0
as our to-be-fitted single parameter constitutive model. In Fig-
ure 2 , we adjust the FENE-P extensibility parameter b = 50
to fit a SOB(ξ = 0.05) shear flow data (left panel). However,
in the right panel, we show how using b = 50 the FENE-P
model predictions fail to describe extensional rheology. Con-
versely, we could fit the extensional SOB data with the FENE-
P model, but we will find a larger extensibility parameter b.
Having different parameters in shear and extensional flows de-
feats the purpose of the constitutive modeling since most ap-
plied flows are a combination of shear and extension. Figure 2
exemplifies a common clash in the study of rheometric flows
with models failing to simultaneously describe shear and ex-
tensional flows23 or viscous (η) and elastic (N1) effects with
the same set of parameters.24 This problematic lack of con-
sistency is often addressed by matching the rheometric data
with more complex models for the irreversible dynamics of
the microstructure. For example, instead of including slip, we
could generalize the Oldroyd-B model including a shear de-
pendent viscosity.25,26 If we apply this logic to our example,
it is easy to see that the implemented modeling fix would not
correspond with the physical reality – slip – and therefore, it is
likely to misrepresent the rheology of the fluid (i.e., fail to de-
scribe extensional viscosity or normal stress). This top-down
approach to model rheological behavior has been shown to
lead to unphysical behavior. Introducing slip is in line with
the alternative bottom-up approach, where model parameters
depend on the microstructure of the fluid (i.e., the conforma-
tion tensor).20,27
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An additional problem is the difficulty to disentangle non-
Newtonian effects in the reversible and irreversible parts of the
evolution equations for the microstructure. For example, mea-
surable experimental quantities do not include the microstruc-
ture directly and therefore do not allow for the evaluation of
non-affine motion. As we have shown, trying to explain all the
features of the rheometric data through the irreversible part
can lead to a lack of consistence like the one described above
between shear and extensional rheology. In this study, we met
the challenge of separating the reversible and irreversible parts
in Eq. (4) with an elegant and efficient approach through an
analysis of the eigenvalues and eigenvectors of c. This allows
us to establish whether or not slip is present in our microscopic
simulations, and evaluate the validity of the upper convected
derivative that is often taken for granted. More importantly,
our approach provides a method to avoid mixing errors result-
ing from non-affine flow or slip in the reversible part, with the
modeling errors in the irreversible part of the evolution equa-
tion. The ability to separate these two sources of error is a key
step in the validation of constitutive models to ensure reliable
predictions in different viscometric or complex mixed flows.

III. HOW TO EVALUATE SLIP?

The key step in evaluating non-affine motion is to look at
the eigendynamics of the conformation tensor. We follow,
Ref.15 where we presented a discrete SPH model for a vis-
coelastic fluid, and described the dynamics of the conforma-
tion tensor in terms of its eigenvectors and eigenvalues. For
completeness, we reproduce now the analysis for the case of
the partial differential equation (4). We may write the confor-
mation tensor dynamics (4) in the form

d
dt
c= c·κ+κT ·c−ξ (c · γ̇+ γ̇ ·c)+ 2

λpkBT
c·σ (10)

where the substantial derivative is the first order differential
operator

d
dt
≡ ∂

∂ t
+v·∇ (11)

We wish to express this evolution of the conformation tensor
field in terms of its eigenvalues cα , and orthonormal eigenvec-
tors uα that satisfy

c ·uα = cαuα (12)

The conformation tensor field becomes

c= ∑
α

cαuαu
T
α (13)

where the superscript T denotes transpose, so uT
α is a row

vector.
The action of this linear differential operator on the spectral

decomposition of the conformation tensor (13) is

d
dt
c= ∑

γ

dcγ

dt
uγu

T
γ +∑

γ

cγ

duγ

dt
uT

γ +∑
γ

cγuγ

duT
γ

dt
(14)

Left and right multiplying both sides of (14) with the eigen-
vectors uα ,uβ , respectively, we obtain

uT
α ·

dc
dt
·uβ =

dcα

dt
δαβ +(cα − cβ )

duT
α

dt
·uβ (15)

where we have used that
duT

α ·uβ

dt = 0 because the eigenvectors
are orthogonal at all times. Left and right multiplying both
sides of Eqn. (10) with the eigenvectors uα ,uβ , and substi-
tuting (15) leads to

uT
α ·

dc
dt
·uβ =

(
1− ξ

2

)
cα καβ +

(
1− ξ

2

)
cβ κβα (16)

− ξ

2
cα κβα −

ξ

2
cβ καβ +

2
λpN pkBT

σα cα δαβ(17)

where we have introduced the matrix element of the velocity
gradient tensor in the eigenbasis of the conformation tensor

καβ ≡ uT
α ·κ·uβ (18)

We have also introduced σα = uα ·σ·uα which are the eigen-
values of σ. Note that both σ and c diagonalize in the same
basis, i.e. they are coaxial tensors. One way to see this is by
noting that they commute σ · c = c ·σ, which is a necessary
and sufficient condition for coaxiality.15

By equating Eq. (15) and Eq. (17), the diagonal and off-
diagonal components lead to the following evolution equa-
tions for the eigenvalues and eigenvectors

dcα

dt
= 2(1−ξ )cα καα +

2
λpN pkBT

cα σα (19)

duα

dt
= ∑

β

Hmix
αβ
uβ (20)

where the the antisymmetric matrix Hmix
αβ

is given in its off-
diagonal terms by

Hmix
αβ

=
1

cα − cβ

(
1− ξ

2

)
(cα καβ + cβ κβα)

− 1
cα − cβ

ξ

2
(cα κβα + cβ καβ ) (21)

Note that Eq. (21) is not singular at equilibrium because the
velocity gradient included in καβ is zero. The partial differ-
ential Eqns. (19)-(21), together with the normalization of the
eigenvectors uα are equivalent to the Eq. (4). However, they
have the distinct feature of fully separating the reversible and
irreversible dynamics of the conformation tensor. The evo-
lution of the eigenvectors involve only the kinematics of the
flow (i.e., what we are referring to as the reversible part of
the dynamics), while all the irreversible behaviour, governed
by the relaxation time λp appears in the eigenvalue equation.
Any non-affine deformation of the chains leading to a non-
vanishing slip coefficient ξ > 0 will therefore be reflected on
the evolution of the eigenvectors uα , which is independent of
the irreversible dynamics considered by Eq. (19). Note that
Eqns. (19)-(21) carry all the assumptions implicit in Eq. (4)
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FIG. 2. Left Panel: Eigenvalues of the conformation tensor as a function of Wi in simple shear. Right Panel: Eigenvalues of the conformation
tensor as a function of Wi in extensional flow. Red symbols represent the ground truth data (i.e., “slipping” OB model with ξ = 0.05). The
black solid line corresponds with OB model or ξ = 0.0. The yellow solid lines correspond with the FENE-P model given by Eq. (9) and no
slip. The finite extensibility parameter b can only be adjusted to describe shear or extensional flow but not both.

(i.e., are applicable to dilute systems). However, proposed ap-
proach can be applied to more general or complex versions of
Eq. (4) that describe the rheology of concentrated solutions
or entangled melts. For the separation of the reversible and
irreversible parts to hold in the eigendynamics of the confor-
mation tensor the only requirement is that σ and the friction
matrix multiplying it in the last term of Eq. (4) remain func-
tions of the eigenvalues of c.

IV. COMPUTATIONAL DETAILS

The strategy that we follow in this work is to conduct mi-
croscopic simulations of a simple microscopic model for di-
lute polymer solutions with resolved monomer chains,28 that
it is taken as the “truth” behind a generic polymer solution.
Using this model, previous detailed studies of the static prop-
erties and the rheological behavior of the solutions employed
in the microscopic simulations have shown good agreement
with theoretical predictions.29,30 From the microscopic simu-
lations, we will measure the macroscopic coarse-grained vari-
ables that appear in the macroscopic equations (2)-(4) in or-
der to validate these equations. In particular, in this work we
focus on the elucidation of the existence of non-affine mo-
tion described by a non-zero slip coefficient ξ . We study the
non-affine character of the flow, which can be captured in the
continuum equation (20).

A. Full monomer polymer solution

A semi dilute polymer solution is modelled at a detailed
level with polymer molecules represented with a bead-spring
model floating in a solvent. The solvent is modelled with
the Smoothed Dissipative Particle Dynamics method (SDPD).
SDPD presents a number of advantages over traditional Dis-
sipative Particle Dynamics (DPD) and Smoothed Particle Hy-
drodynamics (SPH) methods: 1) it incorporates fluctuations

in a particle-based Lagrangian discretization of Navier-Stokes
(N-S) equations;31 2) it is compliant with the GENERIC
formalism.17 As a result, the method respects the First and
Second Law s of Thermodynamics, and the incorporation of
thermal fluctuations leads to the correct equilibrium probabil-
ity distribution given by Einstein’s formula.31 In addition, 3)
SDPD model parameters are directly connected to the physi-
cal parameters (density, speed of sound, and viscosity) of the
simulated system making it possible to give a physical inter-
pretation of the simulation results.32 In SDPD, the fluctuating
N-S equations are discretized to a set of stochastic differen-
tial equations for the position ri, velocity vi and entropy Si
of a set of discrete NSDPD particles.31 In the present work, we
consider only the mass and momentum balances since we are
working with isothermal flows. The evolution of the particles
position and momentum are given by

dri

dt
= vi (22)

m
dvi

dt
= Fi (23)

where Fi is the force acting on each SDPD particle that can
be split on its conservative (c), dissipative (d), random (r) and
external (e) contributions (i.e., Fi = ∑ j

(
F c

i j +F
d
i j +F

r
i j

)
+

F e
i ). Note that all force contributions with the exception of the

external force result from the sum of pair interaction among
fluid particles. Each contribution is given by

F c
i j =−∑

j

[
pi

d2
i
+

p j

d2
j

]
F̃i jri j (24)

F d
i j =−∑

j
[ai jvi j +bi j(vi j ·ei j)ei j]

F̃i j

did j
(25)

F r
i j = ∑

j

[
Ai jdW i j +

Bi j

3
tr(dWi j)

]
·ei j (26)

where ri j = ri − r j, vi j = vi − v j and ei j = ri j/ri j. The
particle density is calculated as di = 1/Vi = ∑ j Wi j, where
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Wi j =W (ri j,rc) is a normalized kernel function of finite sup-
port rc. The gradient of the weight function provides the func-
tion F̃i j = −∇W (ri j,rc)/ri j. Following previous work using
SDPD particles we have adopted Lucy kernel:33

W (r,rc) =

 105
16πr3

c

(
1+3 r

rc

)(
1− r

rc

)3
if r/rc ≤ 1

0 if r/rc > 1
(27)

In Eq. (24) above the pressure pi is given by Tait’s equation
of state:34

pi = p0

[(
ρi

ρ0

)γ

−1+ ε

]
(28)

where p0, ρ0 and γ parameters are chosen to minimize den-
sity variations (< 5%) by choosing a sufficiently large speed
of sound cs =

√
p0γ/ρ0. A background dimensionless pres-

sure contribution ε = 0.7 ensures positive pressure across the
domain for the range of deformation rates studied, which pro-
vides numerical stability.33 In Eq. (25), ai j = 5η/3− ζ and
bi j = 5(ζ +η/3) are friction coefficients given by the shear η

and bulk ζ viscosities. In Eq. (26), the amplitudes of the ther-
mal noises Ai j and Bi j are chosen to satisfy the Fluctuation-
Dissipation Theorem:

Ai j =

[
4kBTai j

F̃i j

did j

]1/2

(29)

Bi j =

[
4kBT (bi j−ai j/3)

F̃i j

did j

]1/2

(30)

For the random contribution to the force in Eq. (26), dWi j is
a matrix of independent increments of the Wiener process and
dW i j its traceless symmetric part. For additional details on
the SDPD model and its implementation the reader is referred
to previous work.31,32

The polymer chains are modelled by linking solvent-like
particles with Finite Extensible Non-linear Elastic (FENE)
springs:35

F FENE
i j =

Hri j

1− (ri j/rmax)2 (31)

where H = bkBT/r2
max is the spring elastic constant, ri j is vec-

tor connecting two consecutive particles forming a polymer
chain, rmax = 1.4dx is the limit value for the extensibility of
the spring and b a scale factor balancing elastic and thermal
forces acting on the particles. Note that polymer topology
is preserved thanks to the choice of a small maximum bond
length relative to the average inter-particle distance dx = 1
(i.e., bond crossing is prevented). Under these conditions the
system quickly equilibrates to a bond length l ∼ 0.6dx which
is roughly 40% of the limit extensibility. The equilibrium
value of l is not strongly affected by the flow conditions in the
study. This method for generating chains of SDPD particles
have been shown to reproduce the right scaling for static prop-
erties and diffusion coefficient of single polymer chains.29 For
solutions constructed in this way with Npol polymer chains of

TABLE I. Model parameters for the microscopic SDPD simulations.

Parameter Description Value
dx average inter-particle distance 1.0
∆t simulation timestep 0.003
ρ density 1.0
m particle mass 1.0
w chain concentration 0.1
ηs solvent viscosity 5.0
cs speed of sound 10
ε background pressure 0.7
h smoothing length 3dx
kBT thermal energy 1.0
b FENE-P spring constant 100
rmax max. extensibility radius 1.4dx

Nmon monomers each we define the effective polymer concen-
tration

w =
NmonNpol

NSDPD
(32)

where Nmon is the number of monomers per chain, Npol is
the number of polymer chains, and NSDPD is the total num-
ber of solvent fluid SDPD particles in the simulation. Note
that given that the SDPD viscous interactions between all par-
ticles (polymer or solvent) are always active, a concentration
of w = 1 is still representative of a polymer solution.29,30,36 A
summary of the parameters for the SDPD particles and spring
constants solutions is included in Table I. We have chosen
a set of unit-less parameters that determine the dimension-
less numbers characterizing the flow that are compatible with
experiments Reynolds 0.1− 10, Weissenberg 0.1− 100 and
Schmidt ∼ 1000.30 However, an appropriate selection of di-
mensional base parameters (i.e., maximum extensibility rmax,
mass density ρ and dynamic viscosity η) will yield the equiv-
alent parameter space in SI units.37

B. SPH discretization of continuum equations,
coarse-graining and mapping

The objective is to use microscale data from the full
monomer polymer solution simulations in order to check if
the macroscale Eq. (20) is satisfied for ξ =0. Otherwise, we
employ Eqns. (20) and (21) to measure the slip parameter
ξ . This requires to discretize the continuum field equations,
and define a mapping from the microscopic simulation data
to the discrete macroscopic variables. In this paper, we focus
on shear flows, for which the system is traslationally-invariant
along the direction normal to the flow. Therefore, and for the
sake of compiling sufficient statistics, the discretization takes
place on a 2D Eulerian grid with Nlatt nodes at the square lat-
tice positions Rµ ∈ R2,µ = 1, · · · ,Nlatt, as shown in the right
panel of Fig. 3. As we consider pure shear flow, where the
flow is invariant in the direction of the velocity field, the term
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v·∇uα in the substantial derivative vanishes, and we have

∂uα

∂ t
=∑

β

Hmix
αβ
uβ (33)

This equation is a partial differential equation involving the
fields v,uα ,cα ,κ. Note that, the velocity gradient κ ap-
pears within Hmix

αβ
, as shown in (18) and (21). Equation

(33) can be discretized in a number of ways (finite differ-
ences, elements, etc.). We choose here an SPH discretization
[v]µ , [uα ]µ , [cα ]µ , [κ]

µ
with a weight function that is the same

as the one we use to define the CG variables inferred from the
microscale simulation in subsection IV A. For example, the
velocity at the µ-th node is given by

[v]µ =
∑i viWiµ

∑i Wiµ
(34)

where we use Latin indices for microscopic variables and
Greek indices for macroscopic ones. The notation [· · · ]µ de-
notes the quantity associated to node µ in the square lattice.
The denominator corresponds to the “particle density” evalu-
ated at the cell location given by

dµ = ∑
i

Wiµ . (35)

The SPH method gives the following ordinary differential
equations for (33)

d[uα ]µ
dt

=∑
β

[
Hmix

αβ

]
µ

[
uβ

]
µ

(36)

where[
Hmix

αβ

]
µ

=
1

[cα ]µ − [cβ ]µ

(
1− ξ

2

)
([cα ]µ [καβ ]µ +[cβ ]µ [κβα ]µ)

− 1
[cα ]µ − [cβ ]µ

ξ

2
([cα ]µ [κβα ]µ +[cβ ]µ [καβ ]µ) (37)

The term [κβα ]µ involves space derivatives, which are com-
puted in the SPH discretization according to31

[κβα ]µ = [uα ]µ ·[∇v]µ ·[uα ]µ

[∇v]
µ
=

∑i W ′iµeiµ
(
[v]µ − [v]i

)
∑i Wiµ

(38)

where the prime denotes the derivative with respect to r (i.e.,
W ′iµ = ∂W

∂ r |r=riµ ).
The conformation tensor of node µ is defined microscopi-

cally as

[c]µ =
1

q2
eq

∑
Npol
a=1 qaqaW ∗aµ

∑
Npol
a=1 W ∗aµ

(39)

where qa = rN −r1 is the end-to-end vector of the a-th poly-
mer chain which has an averaged equilibrium length qeq. In

this case, W ∗aµ = W (‖Rµ −Xcm
a ‖,rc), with Xcm

a being the
center of mass of the a-th chain. The sum runs over the Npol
polymer molecules in the system, and W ∗aµ is the weight func-
tion evaluated at the distance between the center of mass of
the a-th polymer and the node µ . Therefore, the conforma-
tion tensor [c]µ contains contributions of polymer molecules
that are around node µ . The velocity of the nodes [v]µ is
a 3-component vector, and the velocity gradient [∇v]

µ
and

conformation tensors [c]µ are represented by a 3×3 matrices
that live in a 2D space, that of the square lattice (See Figure
3).

FIG. 3. The 3D mesoscopic system on the left (60× 100× 66), is
coarse-grained to produce the values of the velocity gradient and con-
formation tensors at each of the 20×22 nodes of the grid on the right.
On the mesoscopic 3D system, with relative concentration w = 0.1,
the size of the solvent particles (blue) has been reduced to facilitate
the visualization of the chains (green), chain ends (yellow) and wall
particles (grey).

A word about the argument of the kernels appearing in (34)-
(39) is in order. These kernels depend on the distance between
the position ri ∈ R3 and the lattice positions Rµ ∈ R2. They
are computed by stripping off the component in the neutral
direction of the position ri, in such a way that then it becomes
a vector r∗i ∈ R2. Then the substraction of r∗i and Rµ is a
bona fide mathematical operations that allows to compute the
distance. This is equivalent to understand the nodes as “cylin-
ders” in the neutral direction. For additional details see Ap-
pendix A 1.

Substitution of (37), (38) into (36) renders the continuum
Eqn. (33) into an ordinary differential equation involving the
node variables [v]µ , [uα ]µ , [cα ]µ , [κ]

µ
. Direct numerical eval-

uation of Eq. (36) presents some problems due to the need
of differentiating the evolution of uα in time, which is error
prone. However, Eq. (36) can be rewritten explicitly in inte-
gral form for each eigenvector uα . For the first eigenvector
u1, we have

ux
1(t)−ux

1(t0) =
∫ t

t0
(Hmix

12 ux
2 +Hmix

13 ux
3)dt ′ (40)

uy
1(t)−uy

1(t0) =
∫ t

t0
(Hmix

12 uy
2 +Hmix

13 uy
3)dt ′ (41)

uz
1(t)−uz

1(t0) =
∫ t

t0
(Hmix

12 uz
2 +Hmix

13 uz
3)dt ′ (42)

where the superscripts indicate coordinate components
(x,y,z). Equivalent expressions can be written for the eigen-
vectors u2 and u3. Since these evolution equations reflect the
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reversible part of the dynamics, they will provide complete
information on the specific convective character of the deriva-
tive of c in a macroscopic model.

V. RESULTS

In this section, we first characterize the rheology of the
model polymeric solutions with chains lengths N=10 and
N=20, and concentrations w ranging from 0.05 to 1 using Re-
verse Poiseuille Flow simulations. Then, we introduce our
Couette flow simulations for the analysis of the effect of slip
in simple shear. Finally, we apply the microscopic to macro-
scopic mapping procedure described above to determine the
magnitude of the slip coefficient in our model fluids.

A. Reverse Poiseuille flow simulations

FIG. 4. Shear viscosity of N=10 and N=20 solutions as a function
of the Weissenberg number for different polymer concentration (in-
dicated by the legend). The black line shows the solvent viscosity
ηs = 5.

We characterize the viscoelastic response of the solutions
by using Reverse Poiseuille Flow (RPF), which consist of two
parallel Poiseuille flows in opposing directions driven by uni-
form body forces.36 This method has the singular advantage of
avoiding the need of fixed walls, where boundary conditions
like no slip need to be imposed.38 The flow is simply imposed
by dividing the simulation domain in two halves and apply-
ing a uniform external force in the x-direction F e = (Fe

x ,0,0).
In the first half of the domain Fe

x = g and in the second half
Fe

x = −g. Additional details on the implementation of the
method are given elsewhere.30 Figure 4 presents the viscos-
ity (i.e., η = τxy/γ̇) normalized by the solvent viscosity ηs
as a function of the Weissenberg number Wi=γ̇λp in solu-
tions for chains N=10 and N=20, and with chain concentra-
tions w =0.05, 0.1, 0.5 and 1.0. The viscosities are calcu-
lated once steady-state flow of is reached. The viscosity pro-
files presented in Figure (4) are the result of further averag-
ing the stress in time (i.e., an averages of every 1000 time
steps for each bin is given with a timestep ∆t = 0.003). The

timestep for all our simulations is given by the shorter time
scale in the Courant-Friedrich-Lewy condition δ tc = dx/32cs
and δ tη = dx2/16η .39,40 A characterization of the polymeric
relaxation time λp as a function for the chain length and con-
centration in the model fluids is discussed in ref.30. Here, we
consider λp(N = 10) = 5 and λp(N = 20) = 10 for a range
concentrations w =0.05 to 1 as defined by Eq. (32).

B. Slip in Couette flow simulations

FIG. 5. xz-plane view of the 3D simulation domain. Wall particles
in grey, backbone chain particles in green and chain ends in light
yellow. Only a limited selection of chains is displayed to facilitate
visualization of the stretching and orientation in flow. The solvent
particles and the rest of the chains have been hidden. The images
correspond to steady-state flow at Wi=11 at a concentration w = 0.1.
Top wall moves forward and bottom wall moves backwards. Left
Panel: Chain length N=10. Right Panel: Chain length N=20.

For the microscopic simulations, we employ a simulation
cell of dimensions (60x100x66) where two walls of regu-
larly spaced particles (dx=1) with a wall thickness of 3dx
are introduced in the z-direction in the regions 0 ≤ z ≤ 3 and
63 ≤ z ≤ 66 (See Figure 5). This gives a fluid domain with a
vertical dimension of Lz = 60.

To avoid confinement effects we limit our simulations to
relatively short chains of length N = 10 and N = 20 with an
equilibrium radius of gyration Rg ∼ 1.3 and ∼ 1.8 which is
roughly 1/50 and 1/30 the gap between the moving walls, re-
spectively. Therefore, the distance between the walls is much
larger than the characteristic coil size. In the evaluation of
the integrals in Eqns. (40)-(42) we have eliminated the layers
closest to the channels walls (i.e., excluding 3dx ∼ Rg) from
our analysis since the close proximity to the walls affects the
conformation of the chains.30

In our analysis, the domain is divided into bins shaped as
layers piling up in the vertical z direction. Due to the shear
flow conditions, the velocity [v]µ and conformation tensor
[c]µ are homogeneous within each bin and are, for the sake
of good statistics, averaged over the nodes in the same bin.

The microscopic simulations are run during an equilibra-
tion time after which the polymer chains are randomly dis-
tributed and oriented. From this initial configuration, a start-
up flow is imposed by displacing the upper and lower walls
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FIG. 6. Eigenvalues of the conformation tensor at different height
bins in the z−direction. c1 and c3 are represented by solid and dashed
lines respectively. The neutral direction c2, which remains unaltered
by flow, is shown by doted lines. The color coding indicates the
normalized coordinate z/Lz.

in the x-direction with velocities vwall and −vwall respectively.
To avoid an additional time-scale given by systems’ inertia, at
time t = 0 we impose to all particles in the fluid a linear veloc-
ity profile given by the walls velocity. This results into a linear
velocity profile with a constant shear rate γ̇ = 2vwall/Lz. Al-
though, a linear velocity profile is only imposed at t=0, no sig-
nificant variation to the velocity profile is observed through-
out the transient Couette flow simulations. As a result of the
imposed shear flow the chains in the fluid domain get first
oriented and then stretched, as shown in Fig. 5. The stretch-
ing and orientation of the chains is reflected macroscopically
in the behaviour of the eigenvalues and eigenvectors of the
conformation tensor, that evolve homogeneously through the
start-up shear flow simulations.

FIG. 7. xz-plane view of the simulation domain with the first eigen-
vectors u1 marked by black arrows at each lattice position. The col-
oring follows the trace of the conformation tensor c which, at equi-
librium, takes the value tr[c] = 3 and at steady-state flow reaches
roughly a value of 4 for this example with chains N=10. Left Panel:
Initial equilibrium configuration. Right Panel: Final configuration.

After mapping the conformation tensor c on the coarse-
grained grid, we diagonalize it and monitor the resulting
eigenvalues/vectors dynamics. In Fig. 6 we show the eigen-
values of the mapped [c]µ as a function of time during the
start-up shear flow. Here, we have considered layers of the

macroscopic lattice points and averaged the values in the x-
direction. The corresponding layer height in the z-direction
is displayed in the legend of Fig. 6. We observe an increase
of the first eigenvalue c1, and a decrease of the third eigen-
value c3, while the second eigenvalue c2 remains constant as
it corresponds to the neutral direction in Couette flow. This
behaviour is consistent with an alignment of the conforma-
tion tensor ellipsoid in the xz−plane. At the end of the sim-
ulations with a duration of approximately six times the poly-
meric relaxation time λp, we observe how the eigenvalues of
the conformation tensor c plateau towards the steady-state val-
ues. In Fig. 6, we notice that the two layers closer to the walls
z/Lz = 0.07 and z/Lz = 0.93 show a delay on their stretch-
ing and slightly lower stretching at the end of the simulation,
with respect to the other layers inside the fluid domain. We
attribute this behavior to a combination of exclusion and in-
teraction with the walls.30 In the remainder of our analysis we
will consider only the layers containing chains whose center
of mass is located between 0.16≤ z/Lz ≤0.84 (i.e., effectively
the first and last lattice layers of the macroscopic lattice are
excluded from our analysis).

Two snapshots of the eigenvector u1 field corresponding to
initial equilibrium and final states of the start-up shear flow
are shown in Fig. 7. The coloring in Fig. 7 follows the
trace of the conformation tensor tr(c) = c1 + c2 + c3. Initially
the eigenvectors are randomly distributed and overall the trace
tr(c) ' 3. This is also observed in Figure 6, where initially
the eigenvalues of c are all unity within the statistical error. At
the end of the start-up flow simulations, that extend to roughly
six relaxation times, clear alignment is seen in the final state,
and little to no variation in the eigenvalues and eigenvectors
is observed. Given the initial random distribution for the di-
rection of the eigenvectors, the integrals in Eqns. (40)-(42)
are evaluated from some time t0 > 0 during transient flow.
Note that Eqns. (40)-(42) must be evaluated in transient flow
since once steady-state is reached they are trivially satisfied.
The left hand side goes to zero because the orientation of the
eigenvectors is fixed, as seen in the right panel of Fig. 7. The
right hand side also goes to zero as καβ goes to zero due to
the alignment of κ with the eigenvectors uα .

In order to check the presence of slip in the dynamics of
eigenvectors that are governed by Eqns. (40)-(42), we plot the
right hand side of these equations as a function of the left hand
side. In these plots, a slope of one indicates that Eqns. (40)-
(42) are satisfied. Note that in the neutral y-direction Eq. (41)
is trivially satisfied for this specific flow geometry. In Fig. 8,
we evaluate the presence of slip for a solution of chains of size
N = 10 and at a concentration w = 0.1, using different values
of the slip parameter ξ =0.0, 0.02 and 0.1 in Eq. (21). Here,
we have also considered the average in the x-direction at lay-
ers of the macroscopic lattice of points distributed along the
z-direction (i.e., left and right hand sides of Eqns. (40)-(42)
evaluated as averages in the x-direction). The best agreement
between the left- and right-hand side of Eqns. (40)-(42) is
achieved for ξ =0. In addition, we find that as we discussed in
the previous section for the eigenvalues of c, the evolution of
the eigenvectors in Fig. 8 is homogeneous in the z-direction
during the transient flow, if one excludes the layers closest to
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FIG. 8. Left Panel: The right hand side of Eq. (40) as a function of its left hand side, for N=10 and w=0.1, for the different bins. Three values
of ξ = 0.0 (solid lines), ξ = 0.02 (dashed lines), ξ = 0.1 (dotted lines) are shown. Right Panel: Equivalent evaluation of the z-component of
the first eigenvector given by Eq. (42).

the solid walls. We conclude that a more clear picture of the
effect of slip in our analysis can be achieved by also averaging
in the z-direction through the height of the channel (i.e., av-
eraging over the simulation domain but excluding the layers
closest to the walls). The average of the curves in Fig. 8 is
shown in Fig. 9. The best agreement (i.e., a slope of one),
between the left and right hand sides of Eqns. (40) and (42)
is now more clearly seen for ξ = 0.0. Therefore, we can con-
clude that, for this system with N=10 and w=0.1, the chains
are deforming affinely with the flow. We note that this case
corresponds with the smallest chains at the lowest concen-
tration in our study, where inter-chain interaction effects are
expected to be negligible.

To continue our analysis, we first consider higher concen-
trations with chains of length N=10. Using the fully averaged
representation in the x- and z-directions, we observe that the
flow ceases to be affine as we increase the concentration (See
Fig. 10). For concentrations w=0.5 and w=1.0 in Fig. 10
center and right panels, we find that Eq. (40) is satisfied for
ξ =0.005. This result suggests that the slip coefficient plateaus
for concentrations w &0.5 in solutions with chains N=10. We
note that the same dependence of the slip coefficient ξ is ob-
tained when comparing the z−component of the eigenvectors
in Eq. (42).

Next, we considered a set of simulations with chains that
are twice as long (N=20) as in the previous examples. We find
a continuously increasing trend with slip parameter ξ =0.0035,
0.005, 0.007 and 0.008 for concentrations w=0.05, 0.1, 0.5
and 1.0. Figure 11 shows the evaluation of Eq. (40), where
the increasing trend for the slip coefficient for the first three
concentrations in the systems with chain length N=20. For
these systems, a plateauing is also observed for higher con-
centrations. The slip coefficient becomes smaller at low con-
centrations, but the concentration at which the slip coefficient
is negligible is not reached. Note that the study of concen-
trations lower than w=0.05 is limited by the simulation size
required to achieve statistical significance. However, given
the decreasing trend, one should expect that the slip coeffi-
cient will go to zero at small enough concentrations. As in the
case of N=10 solutions, for N=20 the same results for the slip

coefficient as a function of the concentration is found for the
evaluation of the z-component of the eigenvector through Eq.
(42).

The increase in the slip coefficient ξ with chain length N
and concentration w indicates that the non-affine evolution of
the conformation tensor eigenvectors is related to the inter-
chain contacts and/or interactions in the solution. We observe
that the larger the chain coil size the lower is the concentration
required to produce slip with respect to the imposed flow. In
addition, the fact that the same slip parameters are obtained
simultaneously for both x- and z-components of the eigenvec-
tors gives a strong support to the physical origin of slip, and
to the validity of the form in Eq. (4) introducing slip through
the Gordon-Schowalter derivative.

Finally, we summarize the observed trends in the slip co-
efficient with chain length and concentration in Fig. 12. As
shown by our simulation results in Figures 8-11, the slip co-
efficient ξ increases with both chain length and concentration
in Figure 12. For the lower concentrations, the slip coeffi-
cient decreases, and becomes zero for N=10 and w=0.1. On
the other hand, a clear plateau is observed at higher concen-
trations, where for concentrations w & 0.5 further increasing
w has little to no effect on ξ for either chain length. These
trends make physical sense since both chain length and con-
centration will increase the interactions between chains and,
therefore, reduce the mobility of chain segments. The reduced
mobility can be understood as a resistance for the chains to
orient that results on the non-affine motion of chains. We
note that the slip coefficients that we find in this study are
very small, with the highest ξ =0.008 found for chains N=20
and w=1.0. This indicates that only small fraction of the mix
derivative in Eq. (4) is given by the contribution of a lower
convected derivative. Experimental studies have reported the
ratio −N2/N1 to be in the range 0.05-0.3, which will suggest
a much larger slip coefficient.13 Nevertheless, as we have dis-
cussed in Sec. II, even small values of the slip coefficient
may affect significantly the rheology of the solution. Further-
more, the determination of the slip coefficient ξ through the
ratio−N2/N1 does not separate the sources of non-Newtonian
and viscoelastic behavior arising from the reversible and irre-
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FIG. 9. Left Panel: Evaluation of the integral in Eq. (40) after averaging over all bins at different heights. Three values of ξ = 0.0 (solid lines),
ξ = 0.02 (dashed lines), ξ = 0.1 (dotted lines) are shown. Right Panel: Equivalent evaluation of the z-component of the first eigenvector
given by Eq. (42).

FIG. 10. Evaluation of the integral in Eq. (40) for N=10 increasing concentration w=0.1 (left), 0.5 (center), and 1.0 (right). Eqn (40) is satisfied
for ξ =0.005 for both w = 0.5 and w = 1.0, indicating a plateau in the dependence of ξ with the concentration.

versible parts of Eq. (4) and might overestimate ξ . The ability
to separately characterize this effect will allows us to deter-
mine the irreversible part of the constitutive modelling via Eq.
(19) without spurious effects resulting from a wrong choice in
the modelling of the flow kinematics.

VI. CONCLUSIONS

We have analysed the behaviour of polymer solutions mod-
elled microscopically through the SDPD model of fluid parti-
cles with some of these particles linked with FENE-P springs.
The resulting model fluids mimic polymer chains in solu-
tion. The reorientation dynamics upon start-up shear flow
has been discussed by using the macroscopic conformation
tensor field as observable. For this simple flow, the evolu-
tion of the conformation tensor is homogeneous, except for
regions very close of the walls where chain depletion occurs.
We have introduced an analysis of the evolution of the eigen-
vectors of the conformation tensor that allows for the separa-
tion of non-Newtonian effects resulting from non-affine mo-
tion of chains and those resulting directly for the polymeric
entropy. Non-affine motion is introduced in the reversible dy-
namics of the evolution of the conformation tensor through

a mixed convected derivative of the Gordon-Schowalter type.
In this model, non-affine motion of chains can be quantified
through a single parameter: the slip coefficient ξ . Our simula-
tion results show that non-affine motion occurs in these poly-
meric mesoscopic model fluids. The effects of non-affine mo-
tion, measured through the slip coefficient, increase with both
the polymer concentration and chain length. The slip coeffi-
cients determined from our simulations are small, but using
the “slipping” Oldroyd-B model we have demonstrated that
a small degree of non-affine motion has significant repercus-
sions for the rheology of the solution.

We hope this work will encourage experimental validation
of non-affine motion of chains in the rheological behavior and
modeling of complex fluids. Experimental verification of the
presence of slip could be achieved through measurement of
the orientation of chains in transient flows41 (i.e., via birefrin-
gence measurements). At moderate strain rates, prior to fail-
ure of the stress-optic rule,41,42 birefringence measurements
can be used as a proxy for stress measurements. Birefrin-
gence measurements have been used in the past to character-
ize the resistance to chain orientation and its effect molecu-
lar weight and polydispersity in the limit of vanishing shear
rates.43,44 The presented approach could be applied, for ex-
ample, to transient birefringence measurements to character-
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FIG. 11. Evaluation of the integral in Eq. (40) for N=20 and w=0.05 (left), 0.1 (center) and 0.5 (right) averaged over all the heights in the fluid
domain as in Figure 9. Equation (40) is satisfied for ξ >0.0 for all concentrations indicating the presence of non-affine deformation and finite
slip.

FIG. 12. Slip coefficient ξ as a function of the concentration for
fluids with chains N=10 and N=20.

ize the presence of a lag between chain orientation and the
inducing flow due to slip.45,46

Finally, we highlight that having a method to discriminate
independently the different sources of non-Newtonian rheo-
logical behaviour through the eigendynamics of the confor-
mation tensor will help produce better data-driven constitu-
tive equations for polymer solutions, where non-affine motion
and entropic contributions are clearly separated. Following
our method, once the slip parameter is obtained, we can infer
σ – the entropic contribution to the evolution of c – by using
Eq. (19). In this way, simulation (or possibly experimental)
data provides the necessary information to learn the closure
constitutive equation for the polymeric stress. This two step
approach will be the subject of follow up work applying the
multiscale scheme presented herein.

ACKNOWLEDGMENTS

This research is supported by the Basque Government
through the BERC 2018-2021 program, by the Basque Busi-
ness Development Agency under ELKARTEK 2022 pro-
gram (KAIROS project: grant KK-2022/00052), by the
Spanish State Research Agency through BCAM Severo
Ochoa excellence accreditation SEV-2017-0718, and through

projects PID2020-117080RB-C55 (“Microscopic founda-
tions of soft-matter experiments: computational nano-
hydrodynamics” and acronym "Compu-Nano-Hydro"), and
PID2020-117080RB-C54 (“Coarse-Graining theory and ex-
perimental techniques for multiscale biological systems.”)
funded by AEI - MICIN.

Appendix A: Appendixes

1. Dimensionality in the micro/macro mapping

In the analysis of the micro/macro mapping, we considered
whether the determination of the macroscopic coarse-grained
variables could be more easily achieved using a projection
of the 3D microscopic system into a 2D plane correspond-
ing with the macroscopic domain (i.e., neglecting or setting to
zero the components of all vectors and tensors in the neutral
direction). To check on this, we analyze the effect of dimen-
sionality on the coupling process. We assume that the confor-
mation tensor evolves according to

ċ−κT ·c−c·κ=
2

λpkBT
(I− fd(tr(c))c) (A1)

where fd is some arbitrary function of the trace of c. This
will correspond well to the simple models we have considered
before (i.e., Oldroyd-B or FENE-P). As an example we take
simple shear and write the system of ODEs for a 3D geometry

ċxx−2γ̇cxy = 1− f3cxx (A2)
ċxy− γ̇cyy =− f3cxy (A3)
ċxz− γ̇cyz =− f3cxz (A4)

ċyy = 1− f3cyy (A5)
ċyz =− f3cyz (A6)
ċzz = 1− f3czz (A7)

and a 2D geometry

ċxx−2γ̇cxy = 1− f2cxx (A8)
ċxy− γ̇cyy =− f2cxy (A9)

ċyy = 1− f2cyy (A10)
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From this two sets of ODEs, we can see that equations A2,
A3 and A5 are equivalent to A8-A10 only for specific cases
like the Oldroyd-B model which has fd = 1). That is, the
evolution of each component maintains the same relationship
in 3D and 2D. However, for FENE-P fd = f (tr(c)) and the
above is not true since all the equations are coupled with the
trace elements of c. Therefore, when we map attributes from
the microscopic system into the 2D the grid for the macro-
scopic simulation, we need to consider those as 3D. That is,
the conformation tensor [c]µ and the velocity gradient [∇v]µ
have to be considered as 3×3 matrices.

2. Planar extension SOB model

To study the limits of the SOB model discussed in the pa-
per, here we present the analytic solution for the conformation
tensor components to the SOB model in planar extension.

cxx =
1

1−2(1−ξ )Wi
(A11)

cyy =1 (A12)

czz =
1

1+2(1−ξ )Wi
(A13)

with all the off-diagonal components equal to zero. In Fig-
ure 13, we present the first (c1 = cxx) and second (c2 = czz)
eigenvalues of the conformation tensor as a function of the
slip coefficient ξ for Wi=0.1 and Wi=0.45. Note, that the di-
agonal components of c are equivalent to the eigenvalues in
extensional flow, but this is not true in shear or complex flows.

FIG. 13. Analytic solutions for the eigenvalues of the conformation
tensor using the “slipping” Oldroyd-B model with 0≤ ξ ≤2 in planar
extension.

The evolution of the eigenvalues of c in planar extension
can be used to better understand the effect of the slip coef-
ficient across the range 0 ≤ ξ ≤ 2. For ξ = 0, we recover
the UC derivative resulting in the Oldroyd-B model: chains
are orienting and stretching in affine motion with the flow.
For 0 < ξ < 1, non-affine motion or slip is observed (i.e.,

SOB model): chains are still orienting and stretching follow-
ing the flow but this deformation is not affine. Up to ξ = 1,
we observe a general tendency for chains to orient with the
flow (i.e., cxx > czz). Setting ξ = 1 results in the corotational
Jaumann-Maxwell derivative and the conformation tensor re-
mains invariant. For ξ < 1, chain orientation is reverted and
for the limit case of ξ = 2 the Oldroyd-A model is recovered.
For these last two cases (ξ > 1), the solution is inverted and
czz > cxx. Therefore, for the description of polymeric solutions
only ξ < 1 seems appropriate.
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