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Abstract

Human papillomavirus (HPV) vaccines have been introduced in several coun-
tries and have shown positive results in reducing HPV infection and related
diseases. Nevertheless, immunization programs remain suboptimal and more
effort is needed to design efficient vaccination deployment. We formulate a
two-sex deterministic mathematical model that incorporates the most im-
portant epidemiological features of HPV infection and associated cancers.
To assess the population-level impact of HPV immunization programs, the
model incorporates school-based vaccine delivery for juveniles and catch-up
vaccination for adults. The dynamics of the model are rigorously analyzed
using the next-generation operator, the center manifold theorem, and nor-
mal forms theory. We formulate an optimal control problem to determine the
best deployment strategy for HPV vaccination for several plausible scenarios.
WWe establish the existence of solutions of the optimal control problem, and
use Pontryagin’s Minumum Principle to characterize the necessary conditions
for optimal control solutions. The findings suggest that if girls-only programs
are complemented with catch-up vaccination for adult females, such program
has the potential to achieve HPV-associated cancers eradication even if boys
and males do not receive the vaccine. We also find that the optimal vaccine
deployment, in term of minimizing HPV associated diseases and the cost of
vaccination, is to allocate as much vaccines as possible at the initial phase of
the epidemic and once a high vaccination coverage is reached then gradually
decrease vaccination rates.

Keywords: Epidemic model, Optimal Control, Vaccination, HPV, Disease
modeling
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1. Introduction

Cervical cancer (CC) is currently estimated to be the fourth most common
cancer in women worldwide and the second most frequent among women in
low- and middle-income countries (LMICs). According to the Global Cancer
Observatory (GLOBOCAN), in 2018, 570000 women were diagnosed with
CC worldwide and more than 300 000 died from the disease [7]. Most cases
of human papillomavirus (HPV) infections are asymptomatic and transient.
However, persistent infection with oncogenic HPV types, also known as high-
risk HPVs, is the main etiological factor for the development of cervical
lesions [42]. Oropharyngeal, anal, cervical, vaginal, vulvar, and penile cancers
have also been linked in varying degrees with high-risk HPV types. HPV
genotypes are highly diverse and more than 200 have been identified to date
of which approximately 40 infect the genital area [50]. However, only a small
group of HPV genotypes are responsible for most of the burden, with 12
HPV types classified as carcinogenic to humans (HPVs 16, 18, 31, 33, 35,
39, 45, 51, 52, 56, 58, and 59). In particular, approximately 70% of CC
cases could be attributed to HPV-16 and 10% to HPV-18 [57]. HPV-CC
has triggered the development of HPV vaccines. Currently, there are three
vaccines available and approved by the U.S. Food and Drug Administration
(FDA). The most recent, Gardasil 9 (9vHPV), is a 9-valent HPV vaccine
approved for use in men and women aged 9 to 45 [22].

Widespread HPV vaccination has the potential to crucially reduce HPV-
related cancers by preventing the infections that cause them. Nevertheless,
HPV infection is still one of the most common sexually transmitted infections
(STIs) worldwide and successful immunization has mainly occurred in high-
income countries [58]. As a consequence, in 2018, approximately 85% of the
570000 CC cases occurred in LMICs [7]. In Latin America, the prevalence
of HPV infection is almost twice as high in comparison with the worldwide
average. Moreover, according to data of the Pan American Health Organi-
zation (PAHO), if current trends continue, by 2030, CC incidence in Latin
America will increase to more than 110,000 cases annually [45]. In Mexico,
current estimates indicate that every year approximately 10000 women are
diagnosed with cervical cancer and almost 4500 die from the disease, mak-
ing Mexico the country with the highest mortality from CC within OECD
countries.
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In recognition that prevention with HPV vaccination and early treatment
of CC are highly cost-effective strategies, the Director-General of the World
Health Organization (WHO) made a global call in 2018 for action towards the
elimination of CC [26]. Consequently, several key players have supported the
WHO mission in multiple ways. As recently remarked by Brisson et al. [8],
strategic mathematical modeling is needed to address fundamental questions
in the global strategy. In particular, research is needed to evaluate and design
the most efficient and cost-effective strategies to reach CC elimination.

In recent years, a number of mathematical modeling studies have been
developed to investigate key epidemiological and clinical aspects of HPV in-
fection, e.g. [1, 2, 5, 9, 20, 19, 24, 25, 35, 40, 39, 48, 47, 46, 50, 55, 54].
Although these and other relevant studies have greatly increased our knowl-
edge about the natural history of HPV disease, ample opportunity remains
for advancing our knowledge of HPV dynamics and guiding decision-makers
in the implementation of immunization programs [31]. Since the introduc-
tion of HPV vaccines in 2006, they have been progressively introduced in a
variety of national immunization schedules. By June 2020, 107 of the 194
WHO member states have introduced HPV vaccination nationwide. How-
ever, there have been large discrepancies in coverage and targeted groups
among countries [10]. The vaccination program depends on country-specific
factors, mainly on the economic and geographical constraints as well as the
healthcare system organization. Early immunization programs targeted pre-
adolescent girls 9-14 years old supported by some mathematical modeling
studies that have found this intervention to be cost-effective (see [8] and the
references therein). Some countries including Australia and the UK targeted
a wider age range of females as part of catch-up programs with positive re-
sults reducing HPV associated burden [29, 33]. By 2019, more than 30%
of the programs were gender-neutral (GN) in the sense that both females
and males can receive the vaccine. Nevertheless, 79% of GN programs are
from high-income countries and 21% from upper-middle-income countries
[10]. The optimal vaccine distribution between genders is still a matter of
debate. Further studies are needed to investigate under which conditions the
inclusion of males and adult females into existing vaccination programs is
cost-effective [59, 62].

The rest of this paper is organized as follows. In the next section, we
formulate and calibrate a two-sex epidemic model to represent the trans-
mission dynamics of HPV infection in a heterosexual population. The basic
reproduction number and the stability properties of equilibrium points are
obtained in section 3. Rigorous optimal control analysis is carry-out using
Pontryagin’s maximum principle in section 4. Extensive numerical simula-
tions are presented in section 5 to support the analytical results. Finally, the
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discussion of the results is given in section 6.

2. Model formulation

The main routes of transmission for HPV infection are skin-to-skin or
skin-to-mucosa contacts. Mother-to-child transmission is also possible, but
sexual intercourse is the primary route of HPV infection [4]. Consistent with
this fact, we propose a Kermack-McKendrick-type model to investigate the
transmission dynamics of the HPV in a heterosexual population of variable
size N(t) where acquisition of HPV infection is only possible by sexual in-
tercourse. The model is structured by sex, hence, N(t) = Nf (t) + Nm(t),
where Nf (t) is the total female population and Nm(t) is the total male pop-
ulation (subscripts f , m will represent females and males, respectively). The
epidemiological structure of our model is based on the natural history of in-
fections with the HPV-types targeted by Gardasil-9 (HPVs 6, 11, 16, 18, 31,
33, 45, 52, and 58) given that these types are responsible for up to 90% of
CC cases. As a simplification, we combined infection by any of these types
into a single composite type.

In most cases, genital HPV infections do not develop clinical symptoms
and clear within two years. In general, the average incubation period of
HPV is between 1 month and two years [31]. Individuals with latent HPV
infection can transmit the virus [2]. After the latent period, some individuals
might develop a symptomatic infection that can persist for a long time (a
persistent infection is commonly defined as detection of the same high-risk
HPV types at 2 visits 4–6 months apart) [42]. Such persistent infections
are the most important risk factor for cervical cancer precursor lesions. Fe-
males with a persistent HPV infection might develop cervical intraepithelial
neoplasia (CIN), a precancerous condition in which abnormal cells grow on
the surface of the cervix. CIN starts as a low-grade neoplasia (CIN 1) but
may progress further to CIN 3 and cervical cancer if untreated [31]. Be-
sides cervical, vaginal, and vulvar cancers, both oropharyngeal and anal can-
cers occur in both sexes. HPV-disease can cause precancerous conditions in
men, in particular, penile intraepithelial neoplasia and invasive penile car-
cinomas [19]. In view of the above biological considerations, we subdivide
the female (male) subpopulation of size Nf (t) (Nm(t)) into six mutually ex-
clusive compartments: susceptible females (males) Sf (t) (Sm(t)), vaccinated
females (males) Vf (t) (Vm(t)), asymptomatic infectious females (males) Af (t)
(Am(t)), females (males) with a symptomatic and persistent infection If (t)
(Im(t)), females (males) in a precancerous stage Pf (t) (Pm(t)), and females
(males) with HPV-related cancer Cf (t) (Cm(t)). Therefore,

Nj(t) = Sj(t) + Vj(t) + Aj(t) + Ij(t) + Pj(t) + Cj(t), j = f,m. (1)
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The model assumes that individuals enter the sexually active population
at a constant rate Λk, and leave the population by ceasing sexual activity at
a per capita rate µk (k = f,m). A fraction wf (wm) of adolescent females
(males) are vaccinated before they enter the sexually active class and thus
are recruited into their vaccinated compartment Vf (Vm). We also consider
a vaccination program such that non-vaccinated susceptible sexually active
females and males are vaccinated at per-capita rates uf and um, respectively.
Current HPV vaccines are prophylactic vaccines that do not treat pre-existing
infections, hence, we do not consider their effect on people already infected
[56]. HPV vaccines can efficiently prevent HPV infection and CC precur-
sor lesions (> 90% efficacy [15]), but, for the sake of simplicity, we assume
vaccines are 100% effective in preventing HPV infection. We assume that
vaccine-induced immunity wanes at a rate θj (j = f,m); thus, for θj = 0
the protection is lifelong. Susceptible females (males) might acquire HPV
infection after sexual contacts with infectious males (females) with a force of
infection λm (λf ) that considers a frequency-dependent transmission,

λm =
βm
AAm + βm

I Im
Nm

, λf =
βf
AAf + βf

I If
Nf

. (2)

Here βm
A (βf

A) is the transmission rate from asymptomatic infectious males
(females) to susceptible females (males). Likewise, βm

I (βf
I ) is the transmis-

sion rate from symptomatic infectious males with persistent HPV infection
(females) to susceptible females (males). We assume that people who enter a
precancerous stage do not contribute to the force of infection. Following in-
fection, individuals enter to the corresponding asymptomatic infectious class
Aj, (j = f,m), where a fraction qjA recovers from the disease and the rest
develop a persistent HPV infection after a mean latent period of 1/kj

A years
(j = f,m). The population in the persistent infection class leave this class
at a rate kj

I with a fraction qjI recovered and a fraction 1− qjI (j = f,m) that
progress to the precancerous stage. kj

P (j = f,m) denotes the rate at which
individuals in the precancerous stage leave the class Pj (j = f,m) with a pro-
portion qjP recovered and 1−qjP developing HPV-associated cancer. The pop-
ulation in the classes Cj (j = f,m) decreases due to cancer-induced death at
a rate δj (j = f,m). The existence and magnitude of the naturally acquired
protection after HPV infection is still uncertain. Recent studies suggest that
rather than inducing protective immunity, HPV infection increases the risk of
future infection even by the same HPV-type [2, 52]. Accordingly, we assume
no immunity after recovery in the classes Aj, Ij, Pj (j = f,m). Furthermore,
since most individuals with HPV-associated cancers will require surgery that
usually involves the removal of tissues around the cervix (for women), we
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assume that in case of recovery, the population in the classes Cj (j = f,m)
do not acquire reinfection and no longer contribute to the transmission of
the infection [2, 40].

Under these considerations, the HPV epidemic model is given by the
following system of 12 differential equations:

Ṡi = (1− wi)Λi − (λj + ui + µi)Si + qiAk
i
AAi + qiIk

i
IIi + qiPk

i
PPi + θiVi,

V̇i = wiΛi + uiSi − (µi + θi)Vi,

Ȧi = λjSi − (ki
A + µi)Ai,

İi = (1− qiA)k
i
AAi − (ki

I + µi)Ii, i, j ∈ {f,m}, i ̸= j,

Ṗi = (1− qiI)k
i
IIi − (ki

P + µi)Pi,

Ċi = (1− qiP )k
i
PPi − (δi + µi)Ci,

(3)

where all the parameters are nonnegative. Fundamental state variables of
the HPV model (3) are summarized in Table 1. The intervention measures,
namely, the vaccination rates will be called controls and denoted by the vector
c = (wf , wm, uf , um)

T .

Variable Description

Nf (Nm) Total female (male) population
Sf (Sm) Susceptible females (males)
Vf (Vm) Vaccinated females (males)
Af (Am) Asymptomatic infectious females (males)
If (Im) Infectious females (males) with persistent HPV infection
Pf (Pm) Females (males) in a precancerous stage
Cf (Cm) Females (males) with HPV-related cancer

Table 1: Variables of the two-sex HPV epidemic model (3).

2.1. Model calibration

We consulted a wide range of HPV epidemiological studies to obtain
appropriate model parameters for the system (3). When available, we used
data sources relevant to the population in Mexico City. Table 2 provides a
summary of parameter values and their reference.
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2.1.1. Demographic parameters

2020 Census data from Mexico’s National Institute of Statistics and Ge-
ography (INEGI) has shown that Mexico City’s population was 9209494 (not
including the larger metropolitan area that connects to other municipalities
of other states). Approximately 70% of this population is aged 15-65 with
approximately 52% females and 48% males. Therefore, for the purpose of our
numerical simulations, we set Nm(0) = 3094541 and Nf (0) = 3352419 [44].
The estimated population annual growth rate in Mexico City during 2020 was
0.51% [44]. Hence, we can take a crude approximation of the recruitment
rate of new sexually active males as Λm = 0.0051∗Nm(0) = 15782. Likewise,
for females, we have Λf = 0.0051 ∗Nf (0) = 17097 per year. Using informa-
tion gathered from more than 6000 women and men, it has been estimated
that sexually active life expectancy was longer for men [37]. Accordingly, we
assume 1/µm = 50 years, 1/µf = 40 years.

2.1.2. Parameters associated with disease progression and recovery

The average infectious period is a major element of the rate of spread
of infectious diseases. Mechanistic epidemic models for HPV transmission
usually separate the time spent with HPV infection before CIN apart from
the time with CIN [2, 17, 21, 20, 19, 48]. Several studies have consistently
shown that the majority of HPV infections are transient and no longer de-
tectable within 2 years [3, 31, 41, 43]. In particular, approximately 70% of
HPV infections clear within one year and 90% within two years. Therefore,
we postulate an incubation period of 1/kj

A = 1 year in which 70% of the
individuals recover from the disease qjA ≈ 0.7 (j = f,m). Among women, the
meta-analysis [53] found that the average duration of a clinical HPV infec-
tion was 9.8 months, so 1/kf

I = 0.81 years. Given that [3] and the references
therein, reported a median time to clearance of 7.5 months for men, we take
1/km

I = 0.62 years. We also assume up to 90% of infection clear before a
detectable precancerous stage, hence, qjI ≈ 0.9 (j = f,m). In women, pro-
gression from low-grade neoplasia CIN-1 to severe dysplasia CIN-3 may take
several years [31]. In women with a normal immune system, it takes 15 to
20 years for an HPV infection to become an invasive cancerous growth. Nev-
ertheless, in women with weakened immune systems, it can take only 5 to
10 years. We take an average time of 1/kf

P = 15 years. The development of
cancers of the penis, anus, and oropharynx associated with HPV infections in
men also takes several years. However, there is a knowledge gap concerning
the natural history of HPV infection and progression to cancer in men [3].
For simplicity, we postulate 1/km

P = 15 years. According to data from the
Center for Disease Control (CDC), approximately 70% of HPV-associated
cancers diagnosed annually occur in women and only 30% in men [14], there-
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fore, qmP > 2qfP . For the purpose of the numerical experiments we assume
qmP = 0.9, qmP = 0.4. Finally, the mortality rate induced by CC in women has
been estimated to be between δf ∈ [0.0004, 0.0572] [35], we fix δf = 0.001.
The mortality rate induced by HPV-related cancers in men is assumed to be
less in comparison with the females’ rate, δm = 0.5δf .

2.1.3. Transmission rates and vaccine protection.

The high prevalence of HPV worldwide suggests that HPV is easily trans-
mitted. Very few studies have examined HPV transmission dynamics in het-
erosexual couples [11, 27, 63]. Burchell et al. [11] estimated HPV transmis-
sion rates among 179 couples with documented sexual exposure to an infected
partner. They found no difference between male-to-female transmission rates
and female-to-male transmission rates. However, they argue that female-to-
male transmission may occur more often, but may produce more transient
infection in males that clear before the study follow-up time [11]. A more
recent study [63] has found that female-to-male transmission appeared more
common than male-to-female transmission. Moreover, their observed trans-
mission rates were extremely high supporting a per-partnership transmission
probability of close to 100% [63]. Assuming that both genders have between
0 and 6 sexual partners [6], we set βj

i ∈ [0.0, 6] year−1 (j = f,m, i = A, I). In
addition, considering that HPV infected individuals with clinical symptoms
have on average higher viral load in comparison with asymptomatic carriers,
we will assume that βj

A < βj
I (j = f,m). In particular, we assume βf

I = 5.0,
βm
I = 3.0, βf

A = 2.5, βm
A = 1.5. Recent evidence suggests that HPV vaccines

can prevent the incidence of infection at least 10 years [15], we take 1/θj = 20
years (j = f,m).

3. Model analysis

3.1. Basic properties

It is straightforward to check that for both sexes, their population satisfies

Ṅi = Λi − µiNi − δiCi ≤ Λi − µiNi, i ∈ {f,m}. (4)

Hence, Ṅi < 0 if Ni > Λi/µi = N †
i (i = f,m). Moreover, from standard

comparison theorems for ODEs [34], we have

Ni(t) ≤ Ni(0)e
−µit +

Λi

µi

(1− e−µit), i ∈ {f,m}. (5)

As a consequence, Ni ≤ N †
i if Ni(0) ≤ N †

i (i = f,m). Therefore, the
biologically feasible region for model (3) given by Ω = Ωf ∪ Ωm, where

8



Parameters Range Mean Value units References

Λf [5000, 20000] 17097 individuals year−1 [44]
Λm [5000, 20000] 15782 individuals years−1 [44]
1/µm [10, 60] 50 years [37]
1/µf [10, 60] 40 years [37]

1/kfA, 1/kmA [0.1, 2] 1 years [3, 31, 41, 43]
qmA [0, 1] 0.8 dimensionless [3, 31, 41]

qfA [0, 1] 0.6 dimensionless [3, 31, 41]

1/kfI [0.1, 2] 0.81 years [53]
1/kmI [0.1, 2] 0.62 years [3]
qmI [0, 1] 0.9 dimensionless [3, 31, 41]

qfI [0, 1] 0.8 dimensionless [3, 31, 41]

1/kfP , 1/kmP [5, 30] 15 years [31, 49]

qfP [0, 1] 0.4 dimensionless [14]
qmP [0, 1] 0.9 dimensionless [14]
δf [0.0004, 0.0572] 0.001 year−1 [35]
δm [0.0004, 0.0572] 0.0005 year−1 [3, 49]

βf
I [0.05, 6] 4.0 year−1 [6]

βm
I [0.05, 6] 3.0 year−1 [6]

βf
A [0.05, 6] 2.0 year−1 [6, 55]

βm
A [0.05, 6] 1.5 year−1 [6, 55]

1/θf , 1/θm [5, 30] 20 year [30]

Table 2: Parameters of the HPV epidemic model (3), sample units and source of estima-
tion.

Ωf =
{
Sf , Vf , Af , If , Pf , Cf ≥ 0 : Nf ≤ N †

f

}
,

Ωm =
{
Sm, Vm, Am, Im, Pm, Cm ≥ 0 : Nm ≤ N †

m

}
,

is positively-invariant. Furthermore, if Ni(0) ≥ N †
i , then either the solution

enters Ω in finite time, or Ni(t) → N †
i as t → ∞ and the prevalence of

the infection Ai + Ii + Pi + Ci approaches zero (i = f,m). Thus, solutions
trajectories satisfy the usual positiveness and continuity properties and the
model is both epidemiologically and mathematically well-posed [28].

3.2. Disease-free equilibrium and the basic reproduction number

To compute the coordinates of the disease-free equilibrium (DFE), we set
the rate of change of all state variables in model (3) equal to zero. Solving
the system of algebraic equations we find a unique DFE

E0 =
(
S0
f , S

0
m, V

0
f , V

0
m, 0, 0, 0, 0, 0, 0, 0, 0

)
(6)
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where

S0
i =

((1− wi)µi + θi)N
†
i

ui + µi + θi
, V 0

i =
(ui + µiwi)N

†
i

ui + µi + θi
, i ∈ {f,m}. (7)

To analyze the behavior of the epidemic at the early stage of the epidemic,
we use the classical next generation operator K = FV−1; see [18]. Following
the notation in [60], the vectors that describe the new infection terms and
the transfer terms are given by,

F =



λmSf

λfSm

0
0
0
0
0
0


and V =



(kf
A + µf )Af

(km
A + µm)Am

−(1− qfA)k
f
AAf + (kf

I + µf )If
−(1− qmA )k

m
AAm + (km

I + µm)Im
−(1− qfI )k

f
I If + (kf

P + µf )Pf

−(1− qmI )k
m
I Im + (km

P + µm)Pm

−(1− qfP )k
f
PPf + (δf + µf )Cf

−(1− qmP )k
m
P Pm + (δm + µm)Cm


.

Hence,

F =

[
F1 04×4

04×4 04×4

]
and V =

[
V1 04×4

V2 V3

]
. (8)

where F1,Vj, j = 1, 2, 3 are 4× 4 matrices. In particular,

F1 =



0
βm
A S0

f

N†
m

0
βm
I S0

f

N†
m

βf
AS0

m

N†
f

0
βf
I S

0
m

N†
f

0

0 0 0 0

0 0 0 0


,

V1 =


kf
A + µf 0 0 0

0 km
A + µm 0 0

−
(
1− qfA

)
kf
A 0 kf

I + µf 0

0 − (1− qA
m) km

A 0 km
I + µm

.
Therefore, the basic reproduction number of the HPV epidemic model is

given by

R0 = ρ (K) = ρ
(
FV−1

)
= ρ

(
F1V

−1
1

)
=
√
RmRf (9)
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where

Ri =

(
βi
A

(ki
A + µi)

+
(1− qiA)k

i
Aβ

i
I

(ki
A + µi)(ki

I + µi)

)
S0
j

N †
i

, i, j ∈ {f,m}, i ̸= j. (10)

The biological interpretation of the reproduction number (10) is as fol-
lows. The term βi

AS
0
j /(k

i
A + µi)N

†
i measures the contribution of asymp-

tomatically infected individuals, where βi
AS

0
j /N

†
i is the average number of

effective contacts of asymptomatic individuals during their infectious period
(ki

A + µi)
−1. In the second term in (10), a fraction (1 − qiA) of the asymp-

tomatic leaves the class at a rate ki
A and enters the symptomatic infectious

class. These individuals have on average βi
IS

0
j /N

†
i effective contacts during

their infectious period (ki
I + µi)

−1.
As a consequence of Theorem 2 in [60], we can enunciate the following

result.

Theorem 3.1. The HPV epidemic model (3) has a unique disease-free equi-
librium given by E0 which is locally asymptotically stable if the basic repro-
duction number given by (9) satisfies R0 < 1, and unstable otherwise.

3.3. Existence and stability of the endemic equilibrium

In this section, we will show that there exists a unique positive equilibrium
point for model (3) given by

E∗ =
(
S∗
f , S

∗
m, V

∗
f , V

∗
m, A

∗
f , A

∗
m, I

∗
f , I

∗
m, P

∗
f , P

∗
m, C

∗
f , C

∗
m

)
. (11)

We start by expressing the infectious classes Ij, Pj, Cj as functions of the
asymptomatic infectious class Aj, (j = f,m), as follows,

I∗f = α0A
∗
f , α0 =

(1−qfA)k
f
A

kfI+µf
,

I∗m = α1A
∗
m, α1 =

(1−qmA )kmA
kmI +µm

,

P ∗
f = α2A

∗
f , α2 =

(1−qfI )k
f
I α0

kfP+µf
,

P ∗
m = α3A

∗
m, α3 =

(1−qi
m)ki

mα1

kmP +µm
,

C∗
f = α4A

∗
f , α4 =

(1−qfP )k
f
Pα2

δf+µf
,

C∗
m = α5A

∗
m, α5 =

(1−qmP )kmP α3

δm+µm
.

(12)

In an analogous way, solving the equations of model (3) for the variables
V ∗
f and V ∗

m as function of S∗
f and S∗

m, respectively, we obtain
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V ∗
f = α6 + α7S

∗
f , α6 =

wfΛf

µf+θf
, α7 =

uf

µf+θf
,

V ∗
m = α8 + α9S

∗
m, α8 =

wmΛm

µm+θm
, α9 =

um

µm+θm
.

(13)

If we substitute the equilibrium values (12) and (13) in the equations for
the susceptible and asymptomatic individuals, after some algebraic manipu-
lations we obtain

S∗
f =

α10A
∗
f + α11

α12

, S∗
m =

α13A
∗
m + α14

α15

,

and
(βm

A +βm
I α1)A∗

m(α10A∗
f+α11)

(α16A∗
m+α17)α12

=
(
kf
A + µf

)
A∗

f ,

(βf
A+βf

I α0)A∗
f (α13A∗

m+α14)

(α18A∗
f+α19)α15

= (km
A + µm)A

∗
m.

(14)

Solving for A∗
f as a function of A∗

m in the first equation in (14), gives

A∗
f =

A∗
mα15α11(βm

A +βm
I α1)

−α10(βm
A +βm

I α1)α15A∗
m+α12(α13A∗

m+α14)(1+α9)(kfA+µf)+α21
≡ ϕ1(A

∗
m).

Similarly, solving for A∗
m as a function of A∗

f in the second equation in
(14), gives

A∗
m =

A∗
fα12α14(βf

A+βf
I α0)

−α13(α12β
f
A+α12β

f
I α0)A∗

f+α15(A∗
fα10+α11)(1+α7)(kA

m+µm)+α20
≡ ϕ2(A

∗
f ),

where the auxiliary coefficients are defined as follows,

α10 = −kf
A − µf + qfPk

f
Pα2 + qfAk

f
A + qfI k

f
Iα0, α11 = Λf (1− wf ) + θfα6,

α12 =

(
1− θf

µf + θf

)
uf + µf , α13 = −km

A − µm + qmA kA
m + qmI k

m
I α1 + qmP k

m
P α3,

α14 = (1− wm) Λm + θmα8, α15 =

(
1− θm

µm + θm

)
um + µm,

α16 =
α13 (1 + α9)

α15

+ 1 + α1 + α3 + α5, α17 =
α14 (1 + α9)

α15

+ α8,

α18 =
α10 (1 + α7)

α12

+ 1 + α0 + α2 + α4, α19 =
α11 (1 + α7)

α12

+ α6,

α20 = α15α12 (α2 + α4 + α0 + 1) (km
A + µm)A

∗
f + α15α6α12 (k

m
A + µm) ,

α21 = α12α15 (α3 + α5 + α1 + 1)
(
kf
A + µf

)
A∗

m + α12α8α15

(
kf
A + µf

)
.

Observe that, if α10 < 0, α13A
∗
m+α14 > 0, α13 < 0, and α10A

∗
m+α11 > 0,

then the denominators of the functions ϕ1(A
∗
m) and ϕ2(A

∗
f ) are positive linear

functions for all A∗
f > 0 and A∗

m > 0. Therefore, ϕ1(A
∗
m) is a concave

monotonic increasing function of A∗
m while ϕ2(A

∗
f ) is a concave monotonic

increasing function of A∗
f (see Figure 1). The curves ϕ1(A

∗
m) and ϕ2(A

∗
f )
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intersect at (0, 0) and at a point (A∗
me, A

∗
fe) with positive coordinates defined

as

A∗
fe =

α12α17α15α19(kmA+µm)(kfA+µf)(R2
0−1)

ν1−α12α18α15α17(kmA+µm)(kfA+µf)
where

ν1 =
(
α12 (−α14α16 + α17α13)

(
kf
A + µf

)
+ α14 (β

m
A + βm

I α1)α10

)(
βf
A + βf

I α0

)
.

Moreover,

A∗
me =

A∗
fα14(βf

A+βf
I α0)

(−(βf
A+βf

I α0)α13+α15α18(kA
m+µm))A∗

f+α15α19(kA
m+µm)

.

Figure 1: Curves ϕ1(A
∗
m) and ϕ2(A

∗
f ).

Without loss of generality, we will denote the A∗
fe = A∗

f and A∗
me = A∗

m.
As a consequence, for the HPV epidemic model (3), there exists an endemic
equilibrium point if and only if R0 > 1. Next, we show that the HPV model
(3) undergoes a forward bifurcation when R0 = 1. For this, we use the
center manifold theorem and normal forms, see [13, 61]. First, we relabel our
variables:

Af = x1, Am = x2, If = x3, Im = x4, Pf = x5, Pm = x6,

Cf = x7, Cm = x8, Sf = x9, Sm = x10, Vf = x11, Vm = x12.
(15)

Let (f1, f2, . . . , f12) be the vector field of system (3) in the notation (15),
such that ẋi = fi, i = 1, . . . 12. Then,

13



f1 = λmx9 − (kf
A + µf )x1,

f2 = λfx10 − (km
A + µm)x2,

f3 = (1− qfA)k
f
Ax1 − (kf

I + µf )x3,
f4 = (1− qmA )k

m
A x2 − (km

I + µm)x4,

f5 = (1− qfI )k
f
I x3 − (kf

P + µf )x5,
f6 = (1− qmI )k

m
I x4 − (km

P + µm)x6,

f7 = (1− qfP )k
f
Px5 − (δf + µf )x7,

f8 = (1− qmP )k
m
P x6 − (δm + µm)x8,

f9 = (1− wf )Λf − (λm + uf + µf )x9 + qfAk
f
Ax1 + qfI k

f
I x3 + qfPk

f
Px5 + θfx11,

f10 = (1− wm)Λm − (λf + um + µm)x10 + qmA k
m
A x2 + qmI k

m
I x4 + qmP k

m
P x6 + θmx12,

f11 = wfΛf + ufx9 − (µf + θf )x11,
f12 = wmΛm + umx10 − (µm + θm)x12.

(16)
Let us first consider the case where R0 = 1. Furthermore, we shall use βf

A

as the bifurcation parameter. Using (9), the value of βf
A such that R0 = 1 is

given by

βf
A = β† =

(
1

Rf

− βf
I k

f
A(1− qfA)S

0
m

(kf
A + µf )(k

f
I + µf )N

†
f

)
S0
m

(kf
A + µf )N

†
f

.

For the value β†, the Jacobian of the transformed system (16) evaluated at
the disease-free equilibrium, denoted as J†(E0), has a simple zero eigenvalue
χ1 = 0, while the other eigenvalues are negative. The right eigenvector w
and the left eigenvector v of J†(E0) for χ1 = 0 such that v ·w = 1 are given
by w = (w1, . . . , w12)

T where

w1 =
(kfI+µf)w3

(1−qfA)k
f
A

, w2 =
kmI +µm

(1−qmA )kmA
, w3 =

S0
f(βm

A (kmI +µm)+kmA βm
I (1−qmA ))(1−qfA)k

f
A

(1−qmA )kmA (k
f
A+µf)(kfI +µf)N†

m
,

w4 = 1, w5 =
(1−qfI )k

f
I w3

kfP+µf
, w6 =

(1−qmI )kmI
kmp +µm

, w7 =
(1−qfp )kfP(1−qfI )k

f
Iw3

(kfP+µf)(δf+µf)
,

w8 =
(1−qmP )kmP (1−qmI )kmI
(kmP +µm)(δm+µm)

, w9 =
η2+η3+η4+η5

η1
, w10 =

η7+η8+η9+qmI kmI
η6

,

w11 =
ufw9

µf+θf
, w12 =

umw10

µm+θm
,

and v = (v1, v2, v3, v4, 0, . . . , 0)
T where

v1 =
1

w1+η10+η11
, v2 =

S0
f v1 (βm

A (kmI +µm)+kmA βm
I (1−qmA ))

N†
m(kmI +µm)(kmA +µm)

,

v3 =
βf
I S

0
mS0

f v1 (βm
A (kmI +µm)+kmA βm

I (1−qmA ))
N†

m(kmI +µm)(kmA +µm)N†
f(k

f
I +µf)

, v4 =
βm
I S0

f v1

N†
m(kmI +µm)

.
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The coefficients ηj, (j = 1, . . . , 11) are constants that depend on the model
parameters. To determine the direction of the bifurcation when R0 = 1 we
calculate the coefficients a and b described in Theorem 4.1 in [13],

a = 2w1v2

[
w1

∂2f2
∂x2

1
+ w3

∂2f2
∂x3∂x1

+ w5
∂2f2

∂x5∂x1
+ w7

∂2f2
∂x7∂x1

+ w10
∂2f2

∂x10∂x1
+ w11

∂2f2
∂x11∂x1

]
+ 2w3v2

[
w5

∂2f2
∂x5∂x3

+ w7
∂2f2

∂x7∂x3
+ w9

∂2f2
∂x9∂x3

+ w10
∂2f2

∂x10∂x3
+ w11

∂2f2
∂x11∂x3

]
+ 2w2v1

[
w2

∂2f1
∂x2

2
+ w4

∂2f1
∂x4∂x2

+ w6
∂2f1

∂x6∂x2
+ w8

∂2f1
∂x8∂x2

+ w9
∂2f1

∂x9∂x2
+ w10

∂2f1
∂x10∂x2

+ w12
∂2f1

∂x12∂x2

]
+ 2w4v1

[
w4

∂2f1
∂x2

4
+ w6

∂2f1
∂x6∂x4

+ w8
∂2f1

∂x8∂x4
+ w9

∂2f1
∂x9∂x4

+ w10
∂2f1

∂x10∂x4
+ w12

∂2f1
∂x12∂x4

]
.

and b = v2w1

(
S0
m

N†
f

)
> 0. Since A∗

f is positive when R0 > 1, it can be shown

that the coefficient a is negative. Hence, the system (16) or equivalently the
HPV model (3) shows a forward bifurcation when R0 = 1. In other words,
the endemic equilibrium is locally asymptotically stable for R0 > 1. We
summarize the results of this subsection below.

Theorem 3.2. The HPV epidemic model (3), undergoes a transcritical for-
ward bifurcation when the basic reproduction number given by (9) satisfies
R0 = 1. Furthermore, for R0 > 1, model (3) has a unique endemic equilib-
rium E∗ which is locally asymptotically stable.

4. The optimal control problem

When health resources are limited there is a need to optimize time-varying
controls for which optimal control theory is widely used [9, 39, 46, 55]. Due
to economic costs associated with both control measures and disease, con-
stant vaccination rates are rarely the best deployment strategy to successfully
eradicate an epidemic. We introduce into the HPV model (3) time-dependent
vaccination rates c = (wf (t), wm(t), uf (t), um(t))

T . Our aim is to find vac-
cination strategies that minimize the health burden associated with HPV
while reducing total costs of vaccination. We propose the following objective
functional to measure vaccination costs (wf (t), wm(t), uf (t), um(t)), as well as
health burden due to symptomatic infectious individuals (If , Im), individu-
als in precancerous stage (Pf , Pm), and individuals in HPV-related cancerous
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stage (Cf , Cm):

J(c) =

∫ T

0

([
A1

2
w2

f (t) +
A2

2
w2

m(t) +
A3

2
u2
f (t) +

A4

2
u2
m(t)

]
+ [B1If +B2Im +B3Pf +B4Pm +B5Cf +B6Cm]) dt,

(17)

with a control set defined by

U = {c|wi(t), ui(t) bounded and Lebesgue measurable on [0, T ], i = f,m},
(18)

and with bounds

0 ≤ wi(t) ≤ wmax
i , 0 ≤ ui(t) ≤ umax

i , i = f,m, (19)

for all t ∈ [0, T ], where T is the final time. The weight parameters Ai, Bj

(i = 1, . . . , 4; j = 1, . . . , 6) describe the relative impact of the control or
state variables on the value of the objective functional. We choose quadratic
terms to measure control cost following the current trend of the literature
[39, 46, 55].

The Optimal Control Problem (OCP) is stated as follows:

min
c ∈ U

J(c) subject to model (3) and non-negative initial conditions. (20)

The Fillipov-Cesari theorem [23, Chapter III, Theorem 4.1] gives condi-
tions to assert existence of solutions of the OCP.

Theorem 4.1. There exists a solution c∗ = (w∗
f (t), w

∗
m(t), u

∗
f (t), u

∗
m(t))

T to
the OCP (20).

Proof. We need to check the hypotheses required by Theorem 4.1 in [23,
Chapter III].

(H1) The right-hand side of system (3) is bounded by a linear function
in the state and control variables. We have proven in Section 3 that solutions
of system (3) are bounded. Let f(t,X, c) be the right-hand side of system
(3). Consider

f(t,X, c) = g(t,X) + h(t,X) · c

where g is the right-hand side of system (3) ignoring the terms that include control
variables, and

h(t,X) · c = (−wfΛf − ufSf ,−wmΛm − umSm,

wfΛf + ufSf , wmΛm + umSm, 0, 0, 0, 0, 0, 0, 0, 0)T .
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Ignoring the negative terms of system (3), we obtain bounds for f as

|f | ≤ |A| · |X|+ |u| ≤ φ · (|X|+ |c|)

where

A =



0 0 θf 0 qfAk
f
A 0 qfI k

f
I 0 qfPk

f
P 0 0 0

0 0 0 θm 0 qmA k
m
A 0 qfI k

f
I 0 qfPk

f
P 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

βm
A + βm

I 0 0 0 0 0 0 0 0 0 0 0

0 βf
A + βf

I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 kf
A 0 0 0 0 0 0 0

0 0 0 0 0 km
A 0 0 0 0 0 0

0 0 0 0 0 0 kf
I 0 0 0 0 0

0 0 0 0 0 0 0 km
I 0 0 0 0

0 0 0 0 0 0 0 0 kf
P 0 0 0

0 0 0 0 0 0 0 0 0 km
P 0 0



,

X = (Ssup
f , Ssup

m , V sup
f , V sup

m , Asup
f , Asup

m , Isupf , Isupm , P sup
f , P sup

m , Csup
f , Csup

m )T ,

and φ is a constant that depends on the parameters and bounds of solutions
of system (3).

(H2) The right-hand side of system (3) is a Lipschitz function on the
state variables. We need to prove that |f(t,X1, c) − f(t,X2, c)| ≤ C · |X1 −
X2| · (1 + |c|). This follows from realizing that f is a C1-class function,
f(t,0,0) is bounded, and ∂

∂X
f(t,X, c) = Jacobian is bounded.

(H3) The set of admissible state and control variables is not empty. Ob-
serve that the admissible control variables are bounded, thus the right hand
side of system (3) has bounded coefficients. By the Carathéodory theorem
[38, Chapter IX, Theorem 9.2.1], the set of admissible state variables and
control variables is not empty.

(H4) The set U is closed and convex. Observe that U is closed and convex
by definition.

(H5) There is a compact set such that X(T ) belongs to that set for every
state variable X with non-negative initial conditions. As proven in Section
3, there is an invariant, compact set that contains X(t) for every t ≥ 0 with
non-negative initial conditions.

(H6) The right-hand side of system (3) is linear in the control variables,
and the integrand of the objective function is convex in the control variables.
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From H1, we can the that the right-hand side of system (3) is linear in the
control variables. Also, the integrand of the objective function is

L(t,X, c) =

[
A1

2
w2

f +
A2

2
w2

m +
A3

2
u2
f +

A4

2
u2
m

]
+ [B1If +B2Im +B3Pf +B4Pm +B5Cf +B6Cm] ,

which is quadratic in the control variables and therefore is convex in the
control variables.

(H7) There exist constants c1 > 0, c2 > 1, c3 > 0 such that L(t,X, c) ≥
c1 · |c|c2 − c3. Observe that

L(t,X, c) ≥ A1

2
w2

f +
A2

2
w2

m +
A3

2
u2
f +

A4

2
u2
m,

so we can take c1 = mini=1,2,3,4Ai/2, c2 = 2 and c3 = 0.

4.1. Necessary optimality conditions: Adjoint system

To obtain a characterization of optimal control solutions, we may define
the Hamiltonian for OCP (20) as

H(t,X, c,Λ) = ΛT (t) · f(t,X, c) + L(t,X, c) (21)

where
Λ(t) = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12)

T . (22)
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Explicitly,

H = λ1 · [(1− wf )Λf − (λm + uf + µf )Sf + qfAk
f
AAf + qfI k

f
I If + qfPk

f
PPf + θfVf ]

+ λ2 · [(1− wm)Λm − (λf + um + µm)Sm + qmA k
m
AAm + qmI k

m
I Im + qmP k

m
P Pm + θmVm]

+ λ3 · [wfΛf + ufSf − (µf + θf )Vf ]

+ λ4 · [wmΛm + umSm − (µm + θm)Vm]

+ λ5 · [λmSf − (kf
A + µf )Af ]

+ λ6 · [λfSm − (km
A + µm)Am]

+ λ7 · [(1− qfA)k
f
AAf − (kf

I + µf )If ]

+ λ8 · [(1− qmA )k
m
AAm − (km

I + µm)Im]

+ λ9 · [(1− qfI )k
f
I If − (kf

P + µf )Pf ]

+ λ10 · [(1− qmI )k
m
I Im − (km

P + µm)Pm]

+ λ11 · [(1− qfP )k
f
PPf − (δf + µf )Cf ]

+ λ12 · [(1− qmP )k
m
P Pm − (δm + µm)Cm]

+

[
A1

2
w2

f +
A2

2
w2

m +
A3

2
u2
f +

A4

2
u2
m

]
+ [B1If +B2Im +B3Pf +B4Pm +B5Cf +B6Cm] .

By the Pontryagin’s Minimum Principle [51], we obtain the following
result:

Theorem 4.2. Let (c∗,X∗) be an optimal pair for OCP (20). Then, there
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exist adjoint variables Λ that satisfy the following adjoint system:

λ̇1 = −λ1

(
−µf −

βm
AAm

Nm

− βm
I Im
Nm

− uf

)
+ λ2Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2

)

− λ3uf − λ5

(
βm
AAm

Nm

+
βm
I Im
Nm

)
− λ6Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2

)
,

λ̇2 = λ1Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2

)
− λ2

(
−µm − βf

AAf

Nf

− βf
I If
Nf

− um

)

− λ4um − λ5Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2

)
− λ6

(
βf
AAf

Nf

+
βf
I If
Nf

)
,

λ̇3 = −λ1θf + λ2Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2

)
− λ3 (−µf − θf )

− λ6Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2

)
,

λ̇4 = λ1Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2

)
− λ2θm − λ4 (−µm − θm)

− λ5Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2

)
,

λ̇5 = −λ1q
f
Ak

f
A + λ2Sm

(
−βf

AAf

(Nf )
2 +

βf
A

Nf

− βf
I If

(Nf )
2

)
− λ5

(
−µf − kf

A

)
− λ6Sm

(
−βf

AAf

(Nf )
2 +

βf
A

Nf

− βf
I If

(Nf )
2

)
− λ7k

f
A

(
1− qfA

)
,

λ̇6 = λ1Sf

(
−βm

AAm

(Nm)
2 +

βm
A

Nm

− βm
I Im

(Nm)
2

)
− λ2q

m
A k

m
A

− λ5Sf

(
−βm

AAm

(Nm)
2 +

βm
A

Nm

− βm
I Im

(Nm)
2

)
− λ6 (−µm − km

A )

− λ8k
m
A (1− qmA ) ,
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λ̇7 = −B1 − λ1q
f
I k

f
I + λ2Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2 +

βf
I

Nf

)

− λ6Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2 +

βf
I

Nf

)
− λ7

(
−µf − kf

I

)
− λ9k

f
I

(
1− qfI

)
,

λ̇8 = −B2 + λ1Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2 +

βm
I

Nm

)
− λ2q

m
I k

m
I

− λ5Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2 +

βm
I

Nm

)
− λ8 (−µm − km

I )− λ10k
m
I (1− qmI ) ,

λ̇9 = −B3 − λ1q
f
Pk

f
P + λ2Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2

)

− λ6Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2

)
− λ9

(
−µf − kf

P

)
− λ11k

f
P

(
1− qfP

)
,

λ̇10 = −B4 + λ1Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2

)
− λ2q

m
P k

m
P

− λ5Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2

)
− λ10 (−µm − km

P )− λ12k
m
P (1− qmP ) ,

λ̇11 = −B5 + λ2Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2

)

− λ6Sm

(
−βf

AAf

(Nf )
2 − βf

I If

(Nf )
2

)
− λ11 (−µf − δf ) ,

λ̇12 = −B6 + λ1Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2

)
− λ5Sf

(
−βm

AAm

(Nm)
2 − βm

I Im

(Nm)
2

)
− λ12 (−µm − δm) ,

λi(T ) = 0 ∀ i = 1, 2, . . . , 12.

Furthermore, the optimal controls satisfy the following equations

w∗
f (t) = max

(
min

(
Λf (λ1 − λ3)

A1

, wmax
f

)
, 0

)
,

w∗
m(t) = max

(
min

(
Λm(λ2 − λ4)

A2

, wmax
m

)
, 0

)
,

u∗
f (t) = max

(
min

(
Sf (λ1 − λ3)

A3

, umax
f

)
, 0

)
,

u∗
m(t) = max

(
min

(
Sm(λ2 − λ4)

A4

, umax
m

)
, 0

)
.

(23)
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5. Numerical results

Here, we complement the analytical results in the previous sections with
the numerical computation of the optimal control. To obtain the optimal
control solutions we must solve the optimality system which is a two-point
boundary value problem with an initial condition in the state equations (3)
and a terminal condition on the adjoint system. We employ an iterative
fourth-order Runge-Kutta integration scheme to solve the optimality system.
First, we solve the HPV epidemic model forward in time using an initial guess
for the time-dependent vaccination rates c. The results obtained for the state
variables are plugged into the adjoint system and we solve such a system
with terminal conditions backward in time. The controls are updated using
a convex combination of the previous controls and the new control obtained
substituting the states and adjoints into its characterization. This process
is repeated until the current state variables, adjoints, and controls converge
within a pre-set tolerance value. This algorithm is usually known as the
forward-backward sweep method [36].

Observe that by definition, the vaccination rates wf and wm are fractions,
hence, 0 ≤ wmax

f , wmax
m < 1. We fix wmax

f = wmax
m = 0.99. To obtain

an approximation for the adult vaccination rates uf , um, let us consider a
normalized total population N(t) where no individuals has been vaccinated
at the initial time. Assuming that the vaccination rate, denoted by u, is
proportional to population size, we have N ′(t) = −uN(t), N(0) = 1. A
direct computation allow us to obtain N(t) = exp(−ut), hence, the fraction
of vaccinated individuals at time t, that is, the immunization coverage, C, is
C(t) = 1− exp(−ut). For a fixed time horizon τ , we have

C(τ) = 1− exp(−uτ) or u = − ln(1− C(τ))/τ. (24)

Considering a very optimistic case in which health authorities achieve a vac-
cination coverage C(τ) = 80% of the population in τ = 1 year, we obtain
that the constant vaccination rate u ≈ 1.60 per year. Therefore, we fix the
following bounds 0 ≤ umax

f , umax
m ≤ 1.60.

We carry out extensive numerical simulations that aim to model some
realistic scenarios associated with HPV vaccination policies. The clinical
management and cost associated with HPV infection vary among countries.
We choose the weight factors in the objective functional considering HPV cost
in a Mexican setting. According to data in [32], the treatment cost of CIN in
Mexico is approximately eight times more expensive than the cost of treating
a typical HPV infection. Moreover, the treatment cost of CC is typically six
times more expensive than the cost of treating the CIN stage. Therefore,
we assume that 8B1 = B3, and 6B3 = B5. In addition, the monetary costs
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(a) (b)

(c) (d)

Figure 2: Optimal time-dependent vaccination rates derived from the OCP (20) for inter-
ventions Π1 (a), Π2 (b), Π3 (c), Π4 (d), respectively. For all scenarios the weigh parameters
are taken as follows: A1 = A2, A3 = A4 = B1 = 1 × 105, A1 = A3/5, 8B1 = B3, and
6B3 = B5.

of vaccination programs are commonly small compared with the potential
losses that an epidemic can inflict. Therefore, we assume Ai ≈ B1 (i =
1, 2, 3, 4). Nevertheless, one might argue that school-based vaccine delivery
is logistically easier and therefore cheaper than vaccination for adults. We
explore this hypothesis assuming A1, A2 < A3, A4. In particular, for the
purpose of the numerical simulations, we fix A1 = A2, A3 = A4 = B1 =
1× 105, A1 = A3/5. Regarding the values of the weight factors modeling the
cost of HPV infection in men, we consider that the cost associated with HPV
infection in men is approximately the same as the cost of HPV infection in
women (B2 = B1, B4 = B3, B6 = B5).

As initial conditions we assume a 5% prevalence in the asymptomatic
compartments Ai, a 3% prevalence of the infection in the persistent infectious
classes Ii, and a 0.1% prevalence en the precancerous and cancerous classes
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(a) (b)

Figure 3: Simulation of the solutions of HPV epidemic model (3) as a function of time in
the absence of control and using the optimal vaccination strategies Πk (k = 1, ..., 4) for
cancer cases in females Cf (t) (a) and in males Cm(t) (b). Model parameters are taken
from table 2. Initial conditions are described in the main text.

Pi, Ci, (i = f,m). Moreover, in Mexico, the HPV vaccination program has
only targeted females, therefore Vm(0) = 0 and Vf (0) > 0. Currently, there
is no official information on the actual number of females vaccinated against
HPV. Hence, for the numerical simulations, we assume a 10% vaccination
coverage in females. Under these conditions, we derive and compare the
following time-dependent HPV vaccination strategies:

Π1: Girls-only vaccination (w∗
f (t)).

Π2: Girls and boys vaccination (w∗
f (t), w

∗
m(t)).

Π3: Girls and adult females vaccination (w∗
f (t), u

∗
f (t)).

Π4: Vaccination for all (w∗
f (t), w

∗
m(t), u

∗
f (t), u

∗
m(t)).

Girls-only vaccination, intervention Π1, has been the standard interven-
tion adopted in Mexico and several other countries [15]. Therefore, compar-
ing Π1 with the other proposed intervention Πk (k = 2, 3, 4) will allow us
to better understand the value of adding boys and adults into the existing
girls-only standard strategy. The time-dependent optimal vaccination rates
for interventions Πk (k = 1, ..., 4) are derived as particular cases of the OCP
(20). Numerical approximations are presented in Figure 2 (a)-(d) where the
horizontal axis represents time in years and the vertical axis the vaccination
rates. The simulation presented in Figure 2 (a) shows the standard girls-only
intervention. Observe that for intervention Π1 the vaccination rate should
be maintained at its maximum capacity for the whole time. This means that
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(a) (b)

Figure 4: Simulation of the solutions of HPV epidemic model (3) as a function of time in
the absence of control and using the optimal vaccination strategies Πk (k = 1, ..., 4) for
precancer cases in females Pf (t) (a) and in males Pm(t) (b). Model parameters are taken
from table 2. Initial conditions are described in the main text.

this control alone is not enough to successfully eradicate HPV infection. The
simulation in Figure 2 (b) shows that the same is true for intervention Π2.
Therefore, adding boys to existing girls-only vaccination programs is still not
sufficient to control the epidemic. On the other hand, the optimal time-
dependent vaccination profiles for intervention Π3 (see Figure 2 (c)) show
that if adult female vaccination is used in addition to girls vaccination, both
controls should be executed at 100% for approximately 30 years and then
decrease gradually to zero. Finally, if all controls are used together, in other
words, if we use intervention Π4, all vaccination rates should be executed at
100% for approximately 15 years and then gradually decrease to zero to con-
trol the epidemic (see Figure 2 (d)). Observe that for all the interventions,
the optimal vaccine deployment is to allocate as much vaccines as possible
at the initial phase of the epidemic and once a high vaccination coverage is
reached then gradually decrease vaccination rates to zero.

To compare and demonstrate the impact of the optimal vaccination in-
terventions Πk (k = 1, ..., 4), we show the time series for the infected classes
Ij(t), Pj(t), and Cj(t) (j = f,m) for each of the interventions together with
the model dynamics in the no control case (see Figures 3-5). The number
of cancer cases for each strategy is graphically depicted in Figure 3, while
Figure 4 depicts the number of cases in the precancerous stage. Figure 5
shows the number of people in the symptomatic infectious class. The simu-
lations in Figures 3-5 show that for any of the interventions Πk (k = 1, ..., 4),
the number of HPV-associated cancer, precancers and symptomatic cases in
both females and males are reduced in comparison with the no control case.
Nevertheless, such reduction is not significant for interventions Π1 and Π2.
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(a) (b)

Figure 5: Simulation of the solutions of HPV epidemic model (3) as a function of time in
the absence of control and using the optimal vaccination strategies Πk (k = 1, ..., 4) for
symptomatic infected cases in females If (t) (a) and in males Im(t) (b). Model parameters
are taken from table 2. Initial conditions are described in the main text.

Hence, girls-only and girls plus boys vaccination will not be enough to erad-
icate HPV-associated cancers. Moreover, adding boys to existing girls-only
vaccination programs does not change significantly epidemic dynamics. This
suggests, under the conditions explored here, that girls-only vaccination is
more cost-effective than girls and boys vaccination. Furthermore, from the
simulations (see Figures 3-5) we can also observe that interventions Π3 and Π4

have the potential to eradicate HPV-associated diseases and cancer. At first
glance, one might think that if HPV diseases can be successfully eradicated
by vaccinating only females (both girls and adults), then there is no need to
include boys and adult males in HPV vaccination programs. Nonetheless, as
shown in Figure 2 (c)-(d), intervention Π3 needs to be deployed at 100% for
approximately twice the time in comparison with intervention Π4. In other
words, HPV eradication can be achieved way faster with intervention Π4.
Hence, if resources allow, consideration should be given to including the en-
tire population at risk in vaccination programs. Yet, in a context of limited
resources, such as the usual situation in low- and middle-income countries,
the preferred strategy should be the vaccination of girls and adult females
without including boys or adult males.

6. Discussion and concluding remarks

HPV infection, one of the most common sexually transmitted infections
worldwide, poses a major health problem, especially in low- and middle-
income countries. Although HPV vaccines were introduced more than a
decade ago and have shown positive results reducing infection and associated
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disease, immunization programs remain suboptimal [49]. Initially, the WHO
recommended HPV vaccination focusing mainly on pre-adolescent girls aged
9-12, arguing that females are at risk of developing cervical cancer [15]. How-
ever, currently, the number of HPV-associated cancer cases of the orophar-
ynx, oral cavity, and larynx in men were, respectively, 4, 2, and 7 times higher
than in females [15]. In addition, in many countries, HPV vaccine coverage
is less than 60%, making the protection against males difficult to achieve.
Therefore, the recommended cohorts for immunization are both adolescent
girls and boys 9-15 years of age [15, 62]. There are also important arguments
to extend vaccination to older cohorts. First, since non-vaccinated sexually
active individuals can acquire the infection and contribute to transmission,
they constitute a reservoir of the infection. Another key argument is that
the duration of vaccine-induced protection is unknown. If immunity wanes
early vaccinated adolescents will need a booster later in life.

In this work, we used the optimal control theory to investigate the best
deployment strategy for HPV vaccination programs. We develop a deter-
ministic epidemic model based on the natural history of HPV infection and
associated diseases. To investigate the population-level impact of HPV im-
munization programs, the model incorporates school-based vaccine delivery
for juveniles and catch-up vaccination for adults. The dynamics of our 12-
dimensional non-linear HPV epidemic model (3) are rigorously investigated.
The next-generation matrix is used to get an analytical expression for the
basic reproduction number R0 and the local stability of the disease-free equi-
libria is demonstrated for R0 < 1. We used the center manifold theorem
and normal forms to show that if R0 > 1, the HPV model has a unique
endemic equilibrium that is locally asymptotically stable. Next, we incor-
porated time-dependent vaccination rates into the system (3) and applied
Pontryagin’s Maximum Principle to determine the optimal vaccination pro-
grams under several plausible scenarios. We prove the existence of solutions
for the optimal control problem, characterize the optimal controls, and ob-
tain numerical approximation using the forward-backward sweep method.
The numerical simulations of the optimal control are implemented using a
set of realistic parameter values mostly obtained from the international lit-
erature and demographic parameters calibrated from Mexico city data for
illustration of theoretical HPV dynamics in a Mexican setting.

The findings of this study suggest that although girls-only vaccination
can reduce HPV-associated burden, it cannot lead to complete eradication
of the infection at least for a time horizon of 50 years in regions where HPV
vaccination coverage is below 10%. Introducing boys into existing girls-only
programs is still not enough to reach the eradication of HPV-associated can-
cers. However, our simulations suggest that if girls-only programs are com-
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plemented with catch-up vaccination for adult females, such program has
the potential to achieve HPV-associated cancers eradication as long as the
coverage in females is maintained high for several years even if boys and
males do not receive the vaccine. This finding is consistent with results in
previous studies [5, 12, 16, 25] which suggest that the maximum reduction
in the prevalence of infection is always achieved by single-sex vaccination.
As a consequence, one might think that if HPV diseases can be successfully
eradicated by vaccinating only females (both girls and adults), then there
is no need at all to include boys and adult males in HPV vaccination pro-
grams. Nonetheless, our simulations also suggest that HPV eradication can
be achieved way faster with a vaccination program in which both sexes are
included (probably at a greater cost). This agrees with the conclusion in
[32], where Insigna et al. found that the addition of a catch-up vaccination
program for adults of both sexes provides considerably greater reductions in
HPV disease over the short and medium term than the vaccination of 12-
year-olds alone. Hence, if resources allow, consideration should be given to
including the entire population at risk in vaccination programs. Yet, in a
context of limited resources, such as the usual situation in low- and middle-
income countries, the preferred strategy should be the vaccination of girls
and adult females without including boys or adult males. Concisely, the re-
sults of this work suggest that the order of vaccination priority should be
young girls, adult females, young boys, and finally adult males. However,
we have to stress that these results are derived for a context where HPV
vaccine is just being introduced and vaccine-induced protection wanes after
approximately 20 years. Finally, the optimal profile for the time-dependent
vaccination rates found in this work suggest that HPV vaccination programs
should follow a hit-hard hit-early approach. In other words, the optimal
vaccine deployment is to allocate as much vaccines as possible at the initial
phase of the epidemic and once a high vaccination coverage is reached then
gradually decrease vaccination rates to zero which agrees with the results in
[25, 39].

While efforts were made to include the main epidemiological features of
HPV infection, the proposed model can be extended. For instance, future
studies might incorporate HPV-type-specific infection for a more detailed
description of disease progression. However, complex HPV models might
be difficult to calibrate given the potential limitation of existing studies to
inform such models [2, 31]. Since screening is a key measure to prevent CC
and other HPV-associated cancers, HPV models can also incorporate regular
screening alongside vaccination programs [55]. Another possible extension is
the inclusion of the homosexual and bisexual population [24]. Finally, we
remark that the results for the OCP studied here are derived for a L2-type
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objective functional. However, other formulations for the objective functional
are also possible and deserve further study.
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