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Abstract. We study the mean first-passage time (MFPT) for asymmetric

continuous-time random walks in continuous-space characterised by waiting-times with

finite mean and by jump-sizes with both finite mean and finite variance. In the

asymptotic limit, this well-controlled process is governed by an advection-diffusion

equation and the MFPT results to be finite when the advecting velocity is in the

direction of the boundary. We derive a nonhomogeneous Wiener–Hopf integral

equation that allows for the exact calculation of the MFPT by avoiding asymptotic

limits and it emerges to depend on the whole distribution of the jump-sizes and on the

mean-value only of the waiting-times, thus it holds for general non-Markovian random

walks. Through the case study of a quite general family of asymmetric distributions of

the jump-sizes that is exponential towards the boundary and arbitrary in the opposite

direction, we show that the MFPT is indeed independent of the jump-sizes distribution

in the opposite direction to the boundary. Moreover, we show also that there exists

a length-scale, which depends only on the features of the distribution of jumps in

the direction of the boundary, such that for starting points near the boundary the

MFPT depends on the specific whole distribution of jump-sizes, in opposition to the

universality emerging for starting points far-away from the boundary.

Keywords: mean first-passage time, continuous-time random walk, Wiener–Hopf integral

equation

Submitted to: J. Phys. A: Math. Theor.



Exact calculation of the mean first-passage time of continuous-time random walks 2

1. Introduction

The mean first-passage time (MFPT) statistics are important, in general, for many

diffusive processes [1, 2, 3] and, in particular, for living [4, 5, 6] and reacting chemical

systems [7, 8, 9]. A large number of results have been derived [10, 2, 11], together with

recent findings both for Brownian [12, 13, 14, 15, 16, 17] and non-Brownian motions

as the diffusing-diffusivity approach [18, 19, 20] or Lévy-like motions [21, 22, 23, 24].

Beside established findings, the quantitative experimental analysis of first-passage

time distributions is becoming accessible in biology only recently [25, 26] and further

advancements are still of high interest because of new emerging applications and results

[27, 28, 29, 30, 31].

Here, we focus on the MFPT problem in the well-controlled setting of a one-

dimensional continuous-time random walk (CTRW) [32] in a continuous-space when the

waiting-times distribution has a finite mean and the jump-sizes distribution has both

finite mean and finite variance. If the mean value of the jump-sizes is different from zero,

in the asymptotic limit, the probability density function (PDF) of such random walker is

governed by an advection-diffusion equation and the corresponding MFPT results to be

finite when the advecting velocity is in the direction of the boundary. In particular, in

the present study, we derive a nonhomogeneous Wiener–Hopf integral equation [33] for

the determination of the MFPT that allows indeed for its exact calculation and then for

avoiding asymptotic limits. This formula emerges to depend on the whole distribution

of the jump-sizes and on the mean-value only of the waiting-times. Thus, it holds

for general non-Markovian random walks since, in CTRW, Markovianity intended as a

local governing equation of the particle distribution (in opposition to integral equation

in time) emerges solely with an exponential distribution of the waiting-times, see, [34]

and discussion around equation (2.6) in [35]. In this setting, we consider the quite

general case study of a family of asymmetric distributions of the jump-sizes that is

exponential towards the boundary and arbitrary in the opposite direction. By using the

derived nonhomogeneous Wiener–Hopf equation, we can show that the MFPT is indeed

independent of the jump-sizes distribution in the opposite direction to the boundary and

this finding leads to the generalization of existing results as, for example, those based on

an asymmetric double-exponential jump-sizes distribution [36, 37]. Moreover, we show

that there exists a length-scale distinguishing near-boundary and far-boundary starting

points that depends only on the features of the distribution of jumps in the direction of

the boundary. Therefore, if for initial positions far-away from the boundary a universal

behaviour is observed, namely the MFPT does not depend on the specific distribution

of the jump-sizes, for initial positions near the boundary the emerging length-scale is

indeed dependent on the specific distribution of the jump-sizes towards the boundary

and then the universality is lost.

The advection-diffusion framework applies strictly to the case when the arrival

location is fixed, but it can be assumed also as approximation when the mobility of the

walker, e.g., the predator, is much greater than the mobility of the endpoint, e.g., the
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pray [38, 39]. Actually, such approximation for animal movement works in practice, for

example, for modelling fish population [40] or when red foxes preying on duck nests [41]

and, in general, it is the best strategy for a prey to survive when the motion is on a

lattice [42, 43].

However, beside searching processes in the advection-diffusion setting, we want to

highlight that the derived formalism and results play a role indeed also in the recent

studies on stochastic resetting (SR) [44, 45, 46] and in particular in its generalisation as

random amplitude stochastic resetting (RASR) [47]. SR refers to diffusive processes that

are interrupted by a step-back to the origin while RASR is its generalisation in the sense

that the step-back to the origin is replaced indeed by a step-back with random amplitude.

Recently, SR has been experimentally investigated [48], too. Actually, a relation exists

between processes with resetting and optimal search strategies, in particular with certain

intermittent search processes [44, 45].

A remarkable feature of resetting events on the diffusive dynamics is that non-

stationary processes turn into stationary and the corresponding MFPT from infinite

turns into finite [46, 49]. Therefore, for such processes, it is of high interest the derivation

of a formalism for the determination of the survival probability as well as of the MFPT

[47, 50, 49]. To this aim, on the basis of the so-called first renewal picture, an approach

was introduced in the framework of the SR for determining the survival probability

of Brownian diffusion in the presence of resetting interval lengths between subsequent

resetting events that are exponentially distributed with time-dependent resetting rate

[50]. The same approach was later extended to more general random motions and

arbitrary distribution of resetting interval lengths [49].

A similar approach for determining the survival probability as well as the MFPT

in the case of RASR [47] is desired and not available yet. We report that RASR can

be divided into dependent RASR and independent RASR and that the simplest process

of independent RASR is the CTRW. Therefore, the Wiener–Hopf equation here derived

and the finding of a critical length-scale is a first-step in this direction. Moreover, we

report that the CTRW under resetting was considered for studying the MFPT in the

frame of anomalous diffusion with restarts [51, 52].

The reminder of the paper is organised as follows. In the next Section 2 we provide

the mathematical setting for a general random walk that in the asymptotic limit is

governed by an advection-diffusion equation and we discuss how such a system displays

a finite MFPT. Then we derive in Section 3 the Wiener–Hopf equation for the exact

computation of the MFPT and in Section 4 we put in action this formula for the case

study of a quite general family of asymmetric distributions of the jump-sizes that is

exponential towards the boundary and arbitrary in the opposite direction. Conclusions

are finally reported in Section 5.
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2. Finite-mean first-passage time

Let R be the set of real numbers, we denote by R+ and by R
+
0 the set of positive real

numbers and the set of non-negative real numbers, i.e., R+ = {x ∈ R|x > 0} and

R
+
0 = {t ∈ R|t ≥ 0}, analogously we denote by R

− and by R
−

0 the set of negative real

numbers and the set of non-positive real numbers.

We consider a one-dimensional random walk in continuous-space x ∈ R and

continuous-time t ∈ R
+
0 . In particular, we study a CTRW characterised by a jump-

sizes distribution q : R → R
+
0 and by a waiting-times distribution between consecutive

jumps ψ : R+
0 → R

+
0 , which normalise according to

∫

R

q(ξ) dξ = 1 and

∫

R
+

0

ψ(τ) dτ = 1,

respectively. If the distribution of the waiting-times is exponential then the process

is Markovian. We assume that drawings of the jump-sizes and of the waiting-times

are statistically independent, and both are independent and identically distributed (iid)

random variables.

Moreover, as it is reported in the Introduction, the present research aims also to be

a preliminary study for further advancements in SR [44, 45, 46] and, more in general,

in RASR theory [47], then within those frameworks the walker’s trajectory can be

interpreted as follows. Let Xt : R
+
0 → R be the walker’s position at time t ≥ 0, and let

the notation Xt−τ |y denoting the actual walker’s position at time t provided that the

walker was previously in y ∈ R at τ ∈ [0, t], which is the duration of the first random

waiting-time. By using the idea of the first renewal picture [47, 50], the walker may stay

until time t in the initial position x0 ∈ R with probability Ψ(t) = 1 −
∫ t

0
ψ(τ) dτ or, it

may be at time t in Xt−τ starting from the new initial-like position x0 + ξ, ξ ∈ R, with

the complementary probability
∫ t

0
ψ(τ) dτ , where ξ denotes a random jump amplitude

that may occurs at the new initial datum τ ∈ [0, t]. In formulae, for a statistically

homogeneous process, the conditional PDF p(x, t; x0) of the walker emerges to be [53]

p(x, t; x0) = Ψ(t)δ(x− x0) +

∫ t

0

ψ(τ)

∫
∞

−∞

q(ξ)p(x− ξ, t− τ ; x0) dξdτ , (1)

or

p(x, t; x0) = Ψ(t)δ(x− x0) +

∫ t

0

ψ(τ)

∫
∞

−∞

q(ξ − x0)p(x, t− τ ; ξ) dξdτ . (2)

In equation (1), variable ξ represents the size of the first jump, while in (2) it represents

the starting position immediately after the first jump.

We consider a CTRW with finite-mean waiting-times, i.e.,

0 < 〈τ〉 =
∫

∞

0

τ ψ(τ) dτ < +∞ , (3)

and finite-mean and finite-variance jump-sizes, i.e.,

−∞ < 〈ξ〉 =
∫

∞

−∞

ξ q(ξ) dξ < +∞ , (4)

0 < 〈ξ2〉 =
∫

∞

−∞

ξ2 q(ξ) dξ < +∞ . (5)
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Therefore, the diffusive limit t→ ∞ of the process can be obtained in the corresponding

limit s → 0 of ψ̃(s), i.e., ψ̃(s) ≃ 1 − s〈τ〉 + O(s2), and, analogously, the tails

|x| → +∞ of the walker’s PDF in the corresponding limit κ → 0 of q̂(κ), i.e.,

q̂(κ) ≃ 1 + iκ〈ξ〉 − κ2〈ξ2〉/2 + O (k3), where ψ̃(s) and q̂(κ) are the Laplace transform

of ψ(t) and the Fourier transform of q(x), respectively. Thus the marginal distribution,

namely P (x, t) =

∫
∞

−∞

p(x− y, t)P0(y) dy, with P (x, 0) = P0(x), results to be governed

by the advection-diffusion equation [10]

∂P (x, t)

∂t
= −v ∂P (x, t)

∂x
+D

∂2P (x, t)

∂x2
, (6)

where

v =
〈ξ〉
〈τ〉 , D =

〈ξ2〉
2 〈τ〉 . (7)

The solution of (6) is [10, page 16, formula (1.3.30)]

P (x, t) =

∫
∞

−∞

P0(y)√
4πDt

exp

{
−(x− y − vt)2

4Dt

}
dy . (8)

Without loss in generality, we restrict the initial position in x0 ∈ Ω ⊆ R+ and

locate the target in x = 0. This means that the starting position of the walker can not

be located on the boundary. Let λ : Ω × R
+
0 → R+ be PDF of the first arrival at the

absorbing boundary in x = 0 at time t ∈ R
+
0 for a given initial position in x0 ∈ Ω, then

the survival probability, namely the probability that the walker is not absorbed, up to

the time t is

Λ(x0, t) = 1−
∫ t

0

λ(x0, τ) dτ , t ∈ R
+
0 , x0 ∈ Ω ⊆ R

+ . (9)

Actually, the distribution λ(x0, t) and the conditional PDF p(x, t; x0) are related. In

particular, if we assume that a walker, with initial position x0, is arrived in x = 0 at

some instant t−τ , with τ ∈ [0, t], then λ(x0, t) provides the probability for the walker to

return in x = 0 after a time-interval τ , namely at time t, and this gives the convolution

integral [54, 32, 10]

p(0, t; x0) =

∫ t

0

λ(x0, τ)p(0, t− τ ; 0) dτ . (10)

Formula (10) can be derived also by including a sink −λ(x0, t)δ(x) in the advection-

diffusion equation (6) [52, 55].

To conclude, by combining (9) and (10) in the Laplace domain and by using (8),

we have [10]

Λ̃(x0, s) =
1

s

[
1− p̃(0, s; x0)

p̃(0, s; 0)

]

=
1

s

[
1− exp

{
− [v +

√
v2 + 4Ds] x0
2D

}]
. (11)
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Thus, by applying the L’Hôpital’s rule, the MFPT results to be

T (x0) = lim
s→0

Λ̃(x0, s) = −x0
v
> 0 , with 〈ξ〉 < 0 , (12)

by reminding from (7) that sgnv = sgn〈ξ〉. Actually, the linear dependence of the MFPT

on x0, as stated in formula (12), is indeed universal, namely it is independent of any

specific distribution of the jump-sizes whenever the limit leading to (6) is met.

3. A nonhomogeneous Wiener–Hopf integral equation for the MFPT

The finite MFPT (12) derived in Section 2 holds in the limits t, |x| → +∞, or

analogously s, κ → 0, in which the behaviour is governed by an advection-diffusion

equation (6). This behaviour can be observed only for initial position x0 → +∞,

namely far from the absorbing boundary. As a matter of fact, such asymptotic result

is independent of the specific distributions of the waiting-times and of the jump-sizes,

provided that (3) and (4,5) hold.

An alternative definition of the survival probability is indeed

Λ(x0, t) =

∫
∞

0

pabs(x, t; x0) dx , ∀ t ∈ R
+
0 , x0 ∈ R

+ , (13)

where pabs(x, t; x0) is the conditional distribution with an absorbing boundary at x = 0.

From equation (2) we have

pabs(x, t; x0) = Ψ(t)δ(x−x0)+
∫ t

0

ψ(τ)

∫
∞

0

q(ξ−x0)pabs(x, t−τ ; ξ) dξdτ ,(14)

such that it holds

Λ(x0, t) = Ψ(t) +

∫ t

0

ψ(τ)

∫
∞

0

q(ξ − x0)Λ(ξ, t− τ) dξdτ . (15)

Hence, by passing through the Laplace transform, we obtain

Λ̃(x0, s) = Ψ̃(s) + ψ̃(s)

∫
∞

0

q(ξ − x0)Λ̃(ξ, s) dξ , ∀ x0 ∈ R
+ . (16)

By plugging (9) into (16), we observe that, for each waiting-times distribution with finite

mean, the first passage time density λ(x0, t) is dependent on the specific waiting-times

distribution. Through the limit s→ 0 in (16), we have that the MFPT T (x0) is

T (x0) = 〈τ〉 +
∫

∞

0

q(ξ − x0)T (ξ) dξ , ∀ x0 ∈ R
+ , (17)

which is a nonhomogenous Wiener–Hopf integral equation [33] whose kernel is a PDF

[56, 57]. The condition x0 6= 0 allows for avoiding to step into distribution theory,

which requires the definition of the kernel in such a way that the equation holds at

the endpoints [33, Chapter 8]. An inhomogeneous Fredholm equation for the MFPT

was indeed derived under different assumptions by using an unbiased random walk for

modelling animal movement and searching [38].
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We observe that for discrete time-steps, i.e., t 7→ n ∈ N, we have ψ(τ) = δ(τ−1) 7→
δn 1 and Ψ(t) = Θ(1 − t) 7→ δn 0, such that formula (15) reduces to the well-known

homogeneous Wiener–Hopf integral equation for Markovian processes [1, equation (10)]

Λ(x0, n) =

∫
∞

0

q(ξ − x0)Λ(ξ, n− 1) dξ , (18)

with boundary condition Λ(x0, 0) = 1, ∀ x0 ∈ R+. Clearly, discrete-time random walks

are a special case of CTRW. In particular, we stress that while equation (18) is a

straightforward special case of (15), equation (15) cannot be derived from (18). In fact,

the nonhomogeneous nature of formula (15) embodied by the probability of no jump in

[0, t] is a feature that does not belong to a discrete-time setting. Formula (15) can not be

derived from formula (18) and this allows for a more detailed analysis of the MFPT with

respect to the existing literature, as it discussed in the following. Moreover, from (17),

we observe that the MFPT T (x0) depends on the whole distribution of the jump-sizes,

that in general is asymmetric, and on the mean-value only of the waiting-times, while

it is independent of the whole distribution of these last. From the independence of (17)

of the waiting-times distribution, we have that (17) holds for general non-Markovian

CTRWs, in fact it is known that solely in the special case of an exponential distribution

of waiting-times a CTRW is Markovian [34, 35].

Equation (17) can indeed be extended to the d-dimensional case. As a matter of

fact, formula (2) can be extended to a CTRW in d-dimensions such that, by defining

q : Rd → R
+
0 , for all t ∈ R

+
0 and x ,x0 ∈ Rd, we have that

p(x, t;x0) = Ψ(t)δd(x−x0)+

∫ t

0

ψ(τ)

∫

Rd

q(ξ−x0)p(x, t−τ ; ξ) ddξ dτ ,(19)

which, in presence of an absorbing boundaries, turns into

pabs(x, t;x0) = Ψ(t)δd(x−x0)+

∫ t

0

ψ(τ)

∫

Rd+

q(ξ−x0)pabs(x, t− τ ; ξ) ddξdτ ,(20)

where Rd+ = {(x1, ..., xd)T ∈ Rd|xi > 0 , ∀ i ∈ {1, ..., d}}. Finally, by repeating the same

steps from (2) to (17), we obtain the following d-dimensional Wiener–Hopf equation for

computing the MFPT of a d-dimensional CTRW

T (x0) = 〈τ〉+
∫

Rd+

q(ξ − x0)T (ξ) d
dξ , ∀x0 ∈ R

d+ . (21)

4. The role of the distributions of the jump-sizes towards and away from

the boundary

We introduce now dimensional spatial-quantities ξD and xD0 through a length-scale ℓ:

ξD = ℓ ξ , xD0 = ℓ x0 , (22)

such that, consistently with (7), it holds

〈ξD〉 = ℓ 〈ξ〉 = ℓ v 〈τ〉 = vD〈τ〉 . (23)
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Moreover, we consider the following quite general family of distributions of the

jump-sizes:

ρ(ξD) = q(−ξD) =





(1− b)

ℓ
exp

(
−ξ

D

ℓ

)
; if ξD ∈ R

+
0 ,

b ρ<(ξ
D) ; if ξD ∈ R− ,

(24)

that generalizes the double-exponential distribution studied in literature [36, 37]. In

(24), the length-scale ℓ represents the mean value of the jump-sizes toward the boundary

and parameter b denotes the probability to jump away from the absorbing boundary.

Thus, we distinguish between exponentially-distributed jumps in the direction of the

absorbing boundary and arbitrary jump-distributions in the opposite direction, such

that ∫ 0

−∞

ρ<(ξ
D) dξD = 1 ,

∫ 0

−∞

ξD ρ<(ξ
D)dξD = −〈ξ+〉 = − ℓ

a
, a > 0 , (25)

The above formula (25) defines the parameter a that is the absolute value of the ratio

between the mean value of the jump-sizes towards the boundary, i.e., −ℓ, and the mean

value of the jump-sizes in the opposite direction to the boundary, i.e., 〈ξ+〉. Thus, if

a > 1 the jump-sizes towards the boundary are on average larger than the jump-sizes

away from the boundary and vice versa if a < 1. Indeed, if a = 1 the mean value of the

jump-sizes is the same in both directions.

For the average of the jump-sizes, we obtain

〈ξD〉 =
∫

∞

−∞

ξD q(ξD)dξD = −
∫

∞

−∞

ξD ρ(ξD) dξD ,

= − b

∫ 0

−∞

ξD ρ<(ξ
D) dξD − (1− b)

ℓ

∫
∞

0

ξD exp

(
−ξ

D

ℓ

)
dξD ,

= b 〈ξ+〉 − (1− b) ℓ =
b ℓ

a
− (1− b) ℓ = ℓ

[
1 + a

a
b− 1

]
,

= ℓ 〈ξ〉 , 〈ξ〉 = 1 + a

a
b− 1 , (26)

which is in agreement with formula (23) and, for any arbitrary length-scale ℓ ∈ R+, it

fulfils the condition 〈ξD〉 < 0 if a > b/(1 − b) or, equivalently, b < a/(1 + a), and we

remark that this last establishes also an upper bound for b at which the MFPT becomes

infinite, see figure 1c.

In order to calculate the solution of (17) with (24), in the spirit of the Wiener–Hopf

technique [58, 59, 60], we first generalise the MFPT to T : R → R and equation (17)

reads

T (x0) = f(x0) +

∫
∞

0

ρ(x0 − ξ)T (ξ) dξ , x0 ∈ R , (27)

where

T (x0) =





T+(x0) : R
+ → R ,

T−(x0) : R
−

0 → R ,

(28)
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f(x0) =





f+(x0) : R
+ → R ,

f−(x0) : R
−

0 → R .

(29)

For our purposes, and without loss of generality, we set f−(x0) = 0, with x0 ∈ R
−

0 ,

and then we have

T−(x0) =

∫
∞

0

ρ(x0 − ξ)T+(ξ) dξ , x0 ∈ R
−

0 . (30)

We introduce the generalised Fourier transform with κ ∈ C

T̂ (k) =

∫
∞

−∞

exp(ikx0)T (x0) dx0 , (31)

that leads to the following pairs

T̂±(κ) = ±
∫

±∞

0

exp(+iκx0)T±(x0) dx0 , (32)

T±(x0) =
1

2π

∫

L±

exp(−iκx0)T̂±(κ) dκ , (33)

where L± are proper integration paths in the complex plane.

By applying Fourier transform (31) to equation (27) and by using formulae (32)

and (33), we observe that

T̂ (κ) = T̂−(κ) + T̂+(κ) ,∫
∞

−∞

exp(+iκx0)f(x0) dx0 =

∫
∞

0

exp(+iκx0)f+(x0) dx0 = f̂+(κ) ,

∫

R

exp(+iκx0)

{∫

R+

ρ(x0 − ξ)T+(ξ) dξ

}
dx0 =

∫

R+

{∫

R

exp(+iκx0)ρ(x0 − ξ) dx0

}
T+(ξ) dξ ,

=

∫

R+

exp(+iκξ)T+(ξ) dξ

∫

R

exp(+iκy)ρ(y) dy ,

and we obtain

[1− ρ̂(κ)] T̂+(κ) = −T̂−(κ) + f̂+(κ) . (34)

Moreover, since by comparing (17) and (27) we have that f+(x0) = 〈τ〉 = const. > 0 for

x0 ∈ R+, then from the formula

1

2πi

∫

L+

exp(−iκx0)
κ

dκ = Res
exp(−iκx0)

κ
= lim

κ→0
κ
exp(−iκx0)

κ
= 1 , (35)

it holds

f̂+(κ) = −i〈τ〉
κ
. (36)

By following the above procedure and by using the standard Wiener–Hopf method

[58, 59, 60], we have calculated the MFPT of CTRW models in continuous-space with a

paradigmatic asymmetric double-exponential distribution of jump-sizes and mean value

〈ξ〉 (see Appendix A). The emerging non-uniqueness issues have been solved by imposing

constraints on physical consistency as: non-negativity, increasing monotonicity and the
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convergence to the expected asymptotic behaviour for starting-points far-away from the

boundary. Finally, the MFPT results to be

T+(x0) = −〈τ〉
〈ξ〉 (1 + x0) , ∀ x0 ∈ R

+ , 〈ξ〉 ∈ R
− , 〈τ〉 ∈ R

+ , (37)

that is in agreement with the literature [37, page 513, Corollary 3.2].

By reversing the dimensional to non-dimensional relations (22) and (23), the ratio

x0/〈ξ〉 in terms of non-dimensional quantities becomes in dimensional quantities

x0
〈ξ〉 =

xD0
ℓ

ℓ

vD〈τ〉 =
xD0
vD〈τ〉 ,

1

〈ξ〉 =
ℓ

〈ξD〉 =
ℓ

vD 〈τ〉 , (38)

and, in dimensional form, formula (37) reads

T+(x
D
0 |〈ξD〉) = − 1

vD
(ℓ+ xD0 ) , ∀ xD0 ∈ R

+ , vD ∈ R
− , ℓ ∈ R

+ . (39)

We remind that, the same asymmetric exponential-distribution of jumps that we

considered here (A.1) as a special case of (24), it was considered joined with a diffusion

process and a constant drift with an exponential waiting-times distribution [37], while

a different family of asymmetric exponential-distribution of jumps was indeed used in a

partially related study on a one-dimensional lattice [36].

We show now that the MFPT of a CTRW with exponentially distributed jumps

towards the boundary is independent of the distribution of the jumps in the opposite

direction. In particular, if through the Wiener–Hopf integral equation (27) we have that

formula (39) is the MFPT for an asymmetric double-exponential distribution, we can

show, again through (27), that it is indeed also the solution when the jump-sizes are

distributed according to (24).

Equation (27) in dimensional form is

T+(x
D
0 |〈ξD〉) = 〈τ〉+

∫
∞

0

ρ(xD0 − ξD)T+(ξ
D|〈ξD〉) dξD , xD0 ∈ R

+ , (40)

and by plugging (39) into (40) we have

− 1

vD
(ℓ+ xD0 ) = 〈τ〉 − 1− b

vD ℓ

∫ xD

0

0

exp

(
ξD − xD0

ℓ

)
(ℓ+ ξD) dξD

− b

vD

∫ 0

−∞

ρ<(ξ
D)(ℓ+ xD0 − ξD) dξD ,

= 〈τ〉 − (1− b) xD0
vD

− b (ℓ+ xD0 + 〈ξ+〉)
vD

,

=
b 〈ξ+〉 − (1− b) ℓ

vD
− xD0
vD

− b (ℓ+ 〈ξ+〉)
vD

,

= − 1

vD
(ℓ+ xD0 ) , xD0 ∈ R

+ . (41)

Thus, the MFPT of an asymmetric CTRW in continuous-space with exponentially

distributed jumps in the direction of the boundary is indeed independent of the

distribution of the jumps in the opposite direction. This result generalizes those based

on the double-exponential jump distribution, see, e.g., [36, 37], and it is new in literature.
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The proof 10 has been checked against numerical simulations of the corresponding

CTRW models for different jump-size distributions, see Appendix B for details. The

plots of the comparisons are shown in figure 1 where, beside the linear growing of the

MFPT T (x0) with respect to x0 with varying 〈ξ〉 or varying 〈τ〉, the dependence of the

MFPT on the involved parameters a and b is also displayed.

From formula (39), we have that the asymptotic universal behaviour (12) is attained

when xD0 is much more far from the boundary than the length-scale ℓ and this last

depends only on the features of the jump-size distribution towards the boundary (24,

40-41), i.e.,

T+(x
D
0 ) ∼ −x

D
0

vD
, vD ∈ R

− , ∀ xD0 ≫ ℓ , (42)

with 0 ≤ b < a/(1 + a) and a ∈ R+.

Moreover, from (39-41) in the setting (24), we have that there exists a self-similarity

property between the jump-sizes and the initial position because the process scales

through the same length-scale ℓ with respect to both. By introducing a time-scale of

the MFPT that is τMFPT = −ℓ/vD = −1/v ∈ R+, then the MFPT scales according to

T+(x0) = τMFPT T+

(
xD0
ℓ

)
, T+(z) = 1 + z , ∀ xD0 , ℓ , τMFPT ∈ R

+ . (43)

Hence, from formula (43) we may see that if the jump-sizes ξD scales with respect to a

larger (smaller) length-scale ℓ then also the resulting MFPT with an initial position xD0
scales with respect to a larger (smaller) length-scale.

5. Conclusions

We studied the problem of a finite MFPT when the diffusion is ruled by a CTRW model

characterised by waiting-times with finite mean and by jump-sizes with both finite mean

and finite variance.

In particular, we obtain a nonhomogeneous Wiener–Hopf integral equation (17) that

allows for an exact calculation of the MFPT by avoiding asymptotic limits. This formula

results to depend on the whole distribution of the jump-sizes and on the mean-value

only of the waiting-times, thus it holds for general non-Markovian CTRWs. The derived

Wiener–Hopf integral equation (17) has been used for the paradigmatic case of an

asymmetric double-exponential distribution of the jump-sizes and also for a more general

family of asymmetric distributions of the jump-sizes, namely exponential towards the

boundary and arbitrary in the opposite direction, and we derived two main results that

are: i) when the jumps towards the boundary are exponentially distributed then the

MFPT is indeed independent of the jumps distribution in the opposite direction and ii)

a length-scale emerges, which depends only on the features of the distribution of jump-

sizes in the direction of the boundary, that establishes a criterion for distinguishing

when the starting point is near and when it is far-away from the boundary. As a matter

of fact, in opposition to the universal MFPT for starting points that are far-away from
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the boundary, for starting points that are near the boundary this universality is lost,

specifically because of the dependence of such emerging length-scale on the specific

distribution of the jump-sizes towards the boundary. A scaling-law for the solution also

emerges.

Moreover, the derived Wiener–Hopf equation is supported by the comparison of the

MFPT as calculated by using formula (17) against the MFPT obtained as output of the

simulations of the corresponding CTRW models with different jump-sizes distributions.

These findings can be viewed as an extension, when the two processes are

comparable, of the results derived by Kou and Wang [37], who discussed a more general

jump diffusion process including both a Brownian motion and jumps, together with a

constant drift, but with an asymmetric double-exponential distribution of jump-sizes

and in the Markovian setting by adopting exponentially-distributed waiting times.

To conclude, we observe that, in the considered case (24), the limit of the exact

MFPT for initial positions approaching the boundary is not zero but determined by

the emerged length-scale, which is a parameter of the jump-sizes distribution towards

the boundary. Hence, this non-zero limit provides also an indirect estimation of the

jump distribution towards the boundary as exponential when the MFPT is known, for

example, from data or from molecular simulations.

Concerning the application of the derived result, a finite MFPT is proper of some

searching models that lead to advection-diffusion equations [38, 39] but, beside this, we

would like to highlight that a finite MFPT is indeed proper also of diffusive processes

with stochastic resetting [44, 45, 46]. In this respect, we report that the Wiener–

Hopf equation here derived and the corresponding approach constitute a first step for

determining the survival probability as well as the MFPT in the generalised stochastic

resetting RASR [47], which are not available yet. Therefore, an extension of the present

approach for fulfilling this purpose embodies a future perspective if this research.

To conclude, we would like to remind that in spite of the fact that random walks,

or at least their classical settings, seem to be fully understood, some general features are

still under investigation. In this respect, we have in mind the analysis concerning the

fact that diffusive models meet the Galilean invariance, in the best cases, solely weakly

[61] and also the proof that exponential tails of walkers’ PDF are indeed a universal

property of diffusing particles at finite time, as well as at short time [62]. The result

here derived, despite obtained in a classical setting for the CTRW approach, joins with

those lasts.
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Appendix A.

We analyse the paradigmatic case study of a double-exponential distribution for the

jump-sizes:

q(ξ) =





(1− b) exp(ξ) ; if ξ ∈ R
−

0 ,

ab exp(−a ξ) ; if ξ ∈ R+ ,

(A.1)

where b ∈ [0, 1], a ∈ R+ and, for lightening the notation, the length-scale ℓ has been

dropped for a while. The mean value of the non-dimensional ξ results to be

〈ξ〉 =
(
1 + a

a

)
b− 1 , (A.2)

that is consistent with (26).

ρ(ξ) = q(−ξ) =





(1− b) exp(−ξ) ; if ξ ∈ R
+
0 ,

ab exp(a ξ) ; if ξ ∈ R− .

(A.3)

Since in the considered case (A.1) it results ρ̂(k) = ab/(a + ik) + (1 − b)/(1 − ik),

formula (34) reduces to

T̂+(κ) = T̂ 0
+(κ)− i〈τ〉

(
a + iκ(1− a) + κ2

κ3 + iκ2(ab+ b− a)

)
, (A.4)

where T̂ 0
+(κ) is the solution of the homogeneous case, i.e., f+(x0) = 0. Solution T̂ 0

+(κ)

can be determined, by definition, up to a multiplicative constant (see formula (17) with

〈τ〉 = 0) that here we denote by C:

T̂ 0
+(κ) = −C (a+ iκ)(1 − iκ)

κ2 + iκ(ab+ b− a)
T̂−(κ) . (A.5)

By remembering the definition of T−(x0) in (30), that holds for x ∈ R
−

0 , we have that

T̂−(κ) = −
∫

−∞

0

exp[+iκx0]

{∫
∞

0

ab exp(a(x0 − ξ))T+(ξ) dξ

}
dx0

= −
∫

−∞

0

exp(+iκx0 + ax0) dx0

∫
∞

0

ab exp(−aξ)T+(ξ) dξ

=
T−(0)

a + iκ
, (A.6)

and then

T 0
+(x0) =

1

2π

∫

L−

exp(−iκx0)T̂ 0
+(κ) dκ

= −C T−(0)

2πi

∫

L−

(i+ κ) exp(−iκx0)
κ2 + iκ(ab+ b− a)

dκ

= −C T−(0)
{

1

ab+ b− a
+

(1 + a− ab− b) exp[(a− ab− b)x0]

a− ab− b

}
, (A.7)
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by remembering that

Res

{
(i+ κ) exp(−iκx0)
κ2 + iκ(ab+ b− a)

}
= lim

κ→0

{
κ
(i+ κ) exp(−iκx0)
κ2 + iκ(ab+ b− a)

}
+

lim
k→i(a−ab−b)

{
[κ+ i(ab+ b− a)]

(i+ κ) exp(−iκx0)
κ2 + iκ(ab+ b− a)

}

=
1

ab+ b− a
+

(1 + a− ab− b) exp((a− ab− b)x0)

a− ab− b
. (A.8)

Hence, by applying anti-transformation (32) to (A.4) and by using (A.7), we obtain

T+(x0) = −C T−(0)
(

1

ab+ b− a
+

(1 + a− ab− b) exp((a− ab− b)x0)

a− ab− b

)

+
〈τ〉
2πi

∫

L−

(a+ iκ(1 − a) + κ2) exp(−iκx0)
κ3 + iκ2(ab+ b− a)

dκ , (A.9)

that, after computing

Res

{
(a+ iκ(1− a) + κ2) exp(−iκx0)

κ3 + iκ2(ab+ b− a)

}
= lim

k→0

d

dκ

{
κ2

(a+ iκ(1− a) + κ2) exp(−iκx0)
κ3 + iκ2(ab+ b− a)

}

+ lim
κ→i(a−ab−b)

{
[κ + i(ab+ b− a)]

(a+ iκ(1− a) + κ2) exp(−iκx0)
κ3 + iκ2(ab+ b− a)

}

=
ax0(a− b− ab)− a2b+ b+ a2

(a− ab− b)2

−(ab + b)(1 + a− ab− b) exp((a− ab− b)x0)

(a− ab− b)2

=
ax0

a− ab− b
+

a2 + b− a2b

(a− ab− b)2

+
(ab+ b)(1 + a)(b− 1) exp((a− ab− b)x0)

(a− ab− b)2
, (A.10)

becomes

T+(x0) = −C T−(0)
{

1

ab+ b− a
+

(1 + a− ab− b) exp[(a− ab− b)x0]

a− ab− b

}

+〈τ〉
{

ax0
a− ab− b

+
a2 + b− a2b

(a− ab− b)2

+
(ab+ b)(1 + a)(b− 1) exp((a− ab− b)x0)

(a− ab− b)2

}
. (A.11)

Moreover, constant C can be estimated by calculating T−(0) through definition (30) by

using (A.11) and, by remembering that

∫
∞

0

exp(−aξ) dξ = 1

a
,

∫
∞

0

ξ exp(−aξ) dξ = 1

a2
, a > 0 ,

we obtain C = −1. Finally, the desired solution is

T+(x0) = T−(0)

{
1

ab+ b− a
+

(1 + a− ab− b) exp((a− ab− b)x0)

a− ab− b

}
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+〈τ〉
{

ax0
a− ab− b

+
a2 + b− a2b

(a− ab− b)2

+
[(ab+ b)(1 + a)(b− 1)] exp[(a− ab− b)x0]

(a− ab− b)2

}
,(A.12)

that, by using (A.2), can be written in terms of 〈ξ〉:

T+(x0) = T−(0)

{
1

a〈ξ〉 −
(1− a〈ξ〉) exp(−a〈ξ〉x0)

a〈ξ〉

}

+〈τ〉
{
− x0
〈ξ〉 +

〈ξ〉(1− a) + 1

a〈ξ〉2

−(〈ξ〉+ 1)(1− a〈ξ〉) exp(−a〈ξ〉x0)
a〈ξ〉2

}
. (A.13)

In the case 〈ξ〉 = 0, formula (A.13) reduces to

T+(x0; 〈ξ〉 = 0) = T−(0) (x0 + 1) + 〈τ〉
{
1 + (1− a)x0 −

a x20
2

}
, (A.14)

which can be derived by using the series expansion of the exponential function, and in

the symmetric case a = 1, from (A.14) it results

T+(x0; 〈ξ〉 = 0, a = 1) = T−(0) (1 + x0) + 〈τ〉
{
1− x20

2

}
, (A.15)

that are both (A.14) and (A.15) not MFPT solutions.

In fact, any MFPT solution has to fulfil, by definition, the conditions

dT+
dx0

> 0 , ∀ x0 ∈ R
+ , (A.16)

T+(x0) ≥ 0 , ∀ x0 ∈ R
+ . (A.17)

Therefore, for solution (A.13), condition (A.16) is fulfilled if

dT+(x0)

dx0
= T−(0)(1− a〈ξ〉) exp(−a〈ξ〉x0)

+〈τ〉
{
− 1

〈ξ〉 +
(1 + 〈ξ〉)(1− a〈ξ〉) exp(−a〈ξ〉x0)

〈ξ〉

}
> 0 , ∀ x0 ∈ R

+ ,(A.18)

which implies

T−(0) > 〈τ〉
[
exp(a〈ξ〉x0)
〈ξ〉(1− a〈ξ〉) −

1 + 〈ξ〉
〈ξ〉

]
, ∀ x0 ∈ R

+ , (A.19)

where (1− a〈ξ〉) ≥ 0 as it follows from (A.2). Hence, since it holds that

sup
x0∈R

+

{
〈τ〉

[
exp(a〈ξ〉x0)
〈ξ〉(1− a〈ξ〉) −

1 + 〈ξ〉
〈ξ〉

]}
=





∞ , if 〈ξ〉 ≥ 0 ,

−〈τ〉1 + 〈ξ〉
〈ξ〉 , if 〈ξ〉 < 0 ,

(A.20)

inequality (A.18), and then condition (A.16), is fulfilled if

T−(0) = −〈τ〉1 + 〈ξ〉
〈ξ〉 + c , ∀ c ∈ R

+
0 , 〈ξ〉 ∈ R

− . (A.21)
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When formula (A.21) is plugged into (A.13), we have that for x0 ∈ R+, c ∈ R
+
0 , 〈ξ〉 ∈ R−,

T+(x0) = −〈τ〉
〈ξ〉 (1 + x0) +

c

a〈ξ〉 [1− (1− a〈ξ〉) exp(−a〈ξ〉x0)] , (A.22)

which fulfils condition (A.17), too. Regarding constant c, we observe that formula (A.22)

meets the asymptotic linear growing with respect to x0 (12) when it holds c = 0. To

conclude, the MFPT of CTRW models in continuous-space is

T+(x0) = −〈τ〉
〈ξ〉 (1 + x0) , ∀ x0 ∈ R

+ , 〈ξ〉 ∈ R
− , 〈τ〉 ∈ R

+ , (A.23)

that is formula (37).

Appendix B.

In figure 1, formula (41) is tested against the corresponding CTRWmodel. In particular,

the trajectories of the CTRW are generated by the iterative procedure



Xn = Xn−1 + ξn , X0 = x0 > 0 , n ∈ N ,

tn = tn−1 + τn , t0 = 0 , n ∈ N ,

(B.1)

with the random jump-sizes drawn according to distribution (24) with ℓ = 1, i.e.,

ξn =





ln(1− u
(1)
1 ) , if u2 > b ,

χm

m
, m ∈ [1, ..., 10] , otherwise ,

(B.2)

where χm is a Poisson distributed random variable with mean m/a,

χm = χm−1 − ln(1− u
(m)
1 )

a
, χ0 = 0 , m ∈ [1, ..., 10] , (B.3)

and the random waiting-times are drawn from one of the following three distributions

τn = −〈τ〉 ln(1− u3) , exponential distribution , (B.4)

τn = 2〈τ〉 u4 , uniformdistribution , (B.5)

τn = 〈τ〉 , delta distribution , (B.6)

such that u
(j)
1 , u2 , u3 , u4 ∼ U(0, 1) , ∀ j ∈ [1, ..., m], b ∈ [0, 1] and a ∈ R+. We obtain

the same results with all the distributions of waiting-times and all the distributions of

jump-sizes in the opposite direction to the boundary as expected from formula (41).

The absorbing boundary located in x = 0 can be passed only by a jump-event and,

thus, the first passage-time (FPT) can be numerically computed by

FPT = tn , provided that Xn < 0 and Xi > 0 , ∀i = 1, ..., n− 1 . (B.7)

The MFPT T+(x0) is

T+(x0) =
1

N

N∑

j=1

FPTj , N ∈ N , (B.8)

where N is the number of independent realizations of the iteration procedure (B.1).
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[54] E.W. Montroll. Random walks on lattices. Proc. Symp. Appl. Math. (Am. Math. Soc.), 16:193–

220, 1964.

[55] A. V. Chechkin, R. Metzler, V. Y. Gonchar, J. Klafter, and L. V. Tanatarov. First passage and
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Figure 1: Comparison of the MFPT T (x0) computed by formula (41) (solid line) and

by the corresponding CTRW model (cross symbols). Panel a) T vsx0 with 〈τ〉 = 1

and varying 〈ξ〉; Panel b) T vsx0 with 〈ξ〉 = −1 and varying 〈τ〉; Panel c) T vs b with

x0 = 〈τ〉 = 1 and varying a.


