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Abstract

We propose a new method for 5-axis flank computer numerically controlled (CNC) machining of screw
rotors using conical tools. The flanks of screw rotors consist of helical surfaces, which predetermines the
motion of the milling tool and reduces the search space for tool positioning to only 4-parametric family,
which allows a quick search for good initial positions of a given conical tool. We initialize the search by
looking at second order line contact between the tool and the helical flank of the rotor. Several positions
of the tool are found, covering major part of the flank of the rotor, followed by global optimization that
further reduces the tool-surface error and makes sure that there are no gaps between neighboring sweeps
of the tool. We demonstrate our approach on several benchmark screw rotors, showing that our approach
meets fine industrial tolerances with only few sweeps of the tool.
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1. Introduction and motivation

Inspired by industrial needs, efficient and highly accurate manufacturing of free-form objects has been
of interest for several decades [1–6]. Computer numerically controlled (CNC) machining is the leading
subtractive manufacturing technology and even though nowadays additive manufacturing is increasing its
share on the manufacturing market [7], certain types of mechanical components like turbine blades or engine
components are, due to the stiffness requirements, preferred to be manufactured from a single material block.

One such an object is a screw compressor, that is a two-piece gas/fluid transition mechanism, consisting
of two screw components, two parallel helical rotors, a male rotor and a female rotor, which are engaged
one with the other as they rotate, cf. Fig. 1 (a). The fluid captured in the cavity between the two parts
moves in a direction of the two parallel axes as the mechanism rotates. The geometry of screw rotors may
vary depending on the number of lobes in each rotor, the basic rotor profile, and relative proportions of
each rotor lobe segment, however, geometrically the boundaries of screw rotors are always helical surfaces.
Highly accurate manufacturing of screw rotors is essential as it increases lifespan of the mechanism as well
as it affects the quality of gas/fluid transition.

Our work aims at the final stage of the manufacturing process, called flank milling where the milling
tool moves tangentially along the to-be-manufactured surface, and is therefore required to be in a tangential
configuration not only at a single point, but along a whole 3D curve. It has been shown recently that screw
rotors can be well approximated by helical motions of a custom-shaped tool such that the tool touches
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Figure 1: (a) A screw rotor consisting of a female and a male part. (b) A typical conical tool for flank milling. The tool
contains several flutes, but under high spin it can be conceptualized as a truncated cone.

simultaneously both flanks of the rotor, resulting in double-flank milling [8]. However, such an approach
requires a special, custom-shaped, tool that has to be designed, and manufactured, for each particular
rotor individually. In contrast, we propose a path-planning algorithm for a given on-market tool. While
we demonstrate our algorithm on the case study of screw rotors, the proposed approach is general for an
arbitrary helical surface.

Our research focuses on traditional, on-market tools, that for flank milling are typically conical or
cylindrical. In such a case, double-flank milling is not possible, however, even highly accurate (single-) flank
milling is of interest without the need of a special tool.

Given a helical surface, the goal of this paper is to find, for a given conical tool T , a family of its milling
paths Ci such that the paths approximate the helical surface within fine machining tolerances (several
micrometers), and the helical surface can be flank-milled by a single conical tool.

Our main contributions contain:

• Local cutter-workpiece analysis and cutter selection (Section 4).

• Global optimization of the cutter-tool error (Sections 5.2 and 5.4), including the search for the optimal
conical cutting tool (Section 5.3).

• Comparison against [8], which is a theoretically exact method for symmetrical profiles, however, it
requires an expensive custom-shaped tool.

The rest of the paper is organized as follows. Section 2 surveys the state of the art on design and
manufacturing of screw rotors and Section 3 briefly discusses preliminaries on helical and conical surfaces,
and introduces the notion of envelope in the context of 5-axis CNC machining. Section 4 discusses the cutter
selection from the point of view of approximation quality and gives bounds on the tool parameters in order
to match the rotor geometry. Section 5 describes the three main optimization algorithms and Section 6
shows several examples on benchmark rotors. Finally, Section 7 draws a few directions for future research
and concludes the paper.

2. Previous work

Design and manufacturing of screw rotors is a well studied problem that has been investigated for
decades [9–12] and the theoretical grounds for good approximation of a helical surface by an envelope of a
cone/cylinder locally, close to a single contact point, have been laid down decades ago [13].
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Figure 2: (a) Helical surface X obtained by screwing the planar profile P and a generic position of the axis o determined by
the values (δ, β, φ). The corresponding line segment xS

1 ,x
S
2 of the axis is then given by parameters % and L. (b) Truncated

cone T given by the centers xS
i and radii rSi of its boundary inscribed spheres Si, i = 1, 2.

Since matching of the screw rotors can be conceptualized in the 2D plane perpendicular to the rotor
axis, many matching principles from the gear theory can be applied to rotors too [11, 14–16]. Explicit
formulae for the female rotor using analytic functions are given in [17]. The profile consists of straight lines,
circular and elliptical arcs, and trochoids, that depend on several parameters. These parameters in the
analytic expression are further optimized using sequential unconstrained minimization method and physical
experiments are conducted to validate the performance of the designed rotor.

An alternative approach for the rotor design is proposed in [18] where one starts with so called meshing
line, a locus of points along which the rotors touch in time, and computes the two profiles accordingly.

Manufacturing of screw rotors is typically realized using special machine tools via hobbing and/or grind-
ing [19]. An alternative manufacturing process is resin transfer molding (RTM) that uses a separable four-
piece mold [20], and the rotors are manufactured from composite materials consisting of chopped carbon
fibers.

There are other physical factors that affect performance of the rotor like the temperature, the type of
fluid or gas that is being transferred, or the type of operation mode (oil-free or oil-lubricated), see e.g. [21]
and the references cited therein. In our work, we focus solely on the geometric aspects of rotor quality,
i.e., the approximation error between the designed shape and its approximation using a set of motions of a
conical tool.

3. Preliminaries

We now briefly recall basic notions of helical surfaces, conical milling tools, and basic principles of flank
milling.

3.1. Helical surfaces

The helical surface X is obtained by a helical motion on the planar profile P . The helical motion is
defined by its axis, w.l.o.g. we identify it with the axis z, handedness (it can be right-handed (+) or left-
handed (-)) and the value of pitch 2πv0, see Fig. 2 (a) Therefore, the right/left movement of the screw in
time t is given as follows:

S±t,z,v0 ◦ (px, py, pz) = (px cos t∓ py sin t, px sin t± py cos t, t v0 + pz). (1)

The profile P to define the shape of X typically lies in a plane perpendicular to the screw axis, z = 0 in
Fig. 2 (a). Another option is for P to lie in a plane that contains the axis. In such a case, we speak about a
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Figure 3: The helical flanks of male (a) and female (b) screw rotors are color-coded by the Gaussian curvature K. The elliptic
(hyperbolic) points with the positive (negative) Gaussian curvature are shown in red (blue).

meridian. The helical surface can of course be defined by any other curve (different from the corresponding
helices), see later Remark 4.2 on another convenient choice.

The shape of X, in terms of Gaussian curvature K, depends on the shape of P , that is, a helical surface
can contain all three types of points: elliptic (K > 0), parabolic (K = 0), and hyperbolic (K < 0). Since
we are interested in approximation of X by an envelope of a cone, highly accurate approximation is possible
only in the parts where K < 0. One can see that the female rotor consists of mainly hyperbolic points while
for the male part only the part of lobes closer to the axis meets this criterion, see Fig. 3.

3.2. Conical tools

The most commonly used tools for flank milling are conical tools, see Fig. 1 (b). To be precise, these
tools are provided by teeth/flutes that serve for material removal, so their meridians are not exactly straight
lines. However, assuming a much higher rotational speed of the tool about its axis compared to the motion
of the axis, these tools are usually considered as truncated cones for geometric modelling and path planning
purposes.

Consider a truncated cone T given by the centers xci and radii rci of its boundary circles ci, i = 1, 2, see
Fig. 2 (b). The inscribed spheres Si touching T along ci have centers and radii

xSi = xci + rci tanα a, rSi =
rci

cosα
, (2)

where α is the so called opening angle

α = arctan

(
rc2 − rc1
‖xc2 − xc1‖

)
= arcsin

(
rS2 − rS1
‖xS2 − xS1 ‖

)
(3)

and a is the unit vector in the direction of the tool’s axis o, i.e.,

a =
xc2 − xc1
‖xc2 − xc1‖

=
xS2 − xS1
‖xS2 − xS1 ‖

. (4)

The “c” terms relate α and a to the centers and radii of the circles, while the “S” terms give an equivalent
expression with respect to the sphere centers and radii, see Fig. 2 (b). We define the tool’s length h as the
distance of the boundary circles’ centers

h = ‖xc2 − xc1‖, (5)

whereas the distance between the centers xSi of the boundary spheres is denoted by L, i.e.,

L = ‖xS2 − xS1 ‖. (6)

The lengths h and L are related as follows:

L = h+ (rc2 − rc1) tanα = h+ (rS2 − rS1 ) sinα. (7)
4
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Figure 4: Envelope of a moving truncated cone. General characteristic (blue curve) depends on the instantaneous motion and
therefore changes dynamically in time (a). For a helical motion, this curve is constant in time (b).

The shape of the truncated cone is determined by a triplet of independent parameters; we select the opening
angle and the radii of the boundary circles, i.e., (α, rc1, r

c
2).

Further, we employ the following generic parametrization of the particular segment of length L of the
axis o of T

o(s) = Rφ,z ◦ ((δ, 0, 0) + (%+ Ls) (0, cosβ, sinβ))

= (δ cosφ− (%+ Ls) cosβ sinφ, (%+ Ls) cosβ cosφ+ δ sinφ, (%+ Ls) sinβ) , s ∈ [0, 1], (8)

where β is the angle between o and the plane z = 0, φ is the angle that controls the rotation of o around
the z-axis, δ is the distance of o and the z-axis and % is the distance between xS1 = o(0) and the intersection
of o with the plane z = 0, see Fig. 2 (a). Finally, we employ the corresponding radial function describing
the radii of the spheres inscribed into T

r(s) = (1− s)rS1 + s rS2 , s ∈ [0, 1]. (9)

Using parameterization of the tool axis (8) and radial function (9), we have

xS1 = o(0), xS2 = o(1), rS1 = r(0), rS2 = r(1). (10)

3.3. Flank milling

Flank (aka side) milling is typically used as a final stage of the manufacturing process where the milling
tool moves tangentially along the reference geometry. Geometrically, flank milling can be interpreted as an
approximation problem that takes the reference surface X and approximates it by an envelope of a moving
tool T . The tool touches the envelope along a 3D curve ch, called characteristic. This curve is in general
not static; its shape depends on the instantaneous motion of the tool and therefore changes in time as the
instantaneous motion changes, see Fig. 4 (a). For screw motions, however, the characteristic is constant in
time, see Fig. 4 (b). For a moving (infinite) cone, the characteristic is an algebraic curve of degree four that
passes through the cones’ vertex [22]. For a truncated cone it is its corresponding segment.

Applying screw motion (1) to the tool axis (8) we obtain medial surface y(s, t) which together with radial
function (9) yields the Medial Axis Transform (y(s, t), r(s)) describing all the spheres inscribed into T in
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time. Then using the envelope formula [23] to y(s, t) and r(s) we obtain the following parameterization of
the envelope surface

x± = y − r
r′(Gys − Fyt)± (ys × yt)

√
(E − r′2)G− F 2

EG− F 2
, (11)

where ys and yt denote the partial derivative of y with respect to s and t, respectively, and E,F,G are
the components of the first fundamental form of y(s, t). In our specific setting and for right-handed screw
motion (which corresponds to our testing surfaces from Section 6), we have

y(s, t) = (cos s(δ cosφ)− cosβ sinφ(%+ Lt))− sin s(cos(β) cosφ(%+ Lt) + δ sinφ),

cos s(cosβ cosφ(%+ Lt) + δ sinφ) + sin s(δ cosφ− cosβ sinφ(%+ Lt)), sinβ(%+ Lt) + sv0) . (12)

Since the characteristic in screw motion is constant in time we can, w.l.o.g, set t = 0 and then x±(s, 0)
describes the characteristic where

yt = (−L cosβ sinφ,L cosβ cosφ,L sinβ) ;
ys(s) = (−(cosβ cosφ(%+ Ls))− δ sinφ, δ cosφ− cosβ sinφ(%+ Ls), v0) ;

r′ = rS2 − rS1
(13)

and
E = L2;
F = L(δ cosβ + v0 sinβ);

G(s) = cos2 β(%+ Ls)2 + δ2 + v20 .
(14)

In general, there are two branches of the envelope, the upper envelope x+ and the lower envelope x−.
As our motivation is the CNC application, we are interested only in that branch that is closer to the the
reference surface X. Therefore, if there is no danger of confusion, we omit the superscript and write only x,
which is assumed to be the desired branch.

For a general motion of a cone, its envelope is a surface with non-positive Gaussian curvature. The
vanishing Gaussian curvature occurs in situations with trivial instantaneous motions as translations or
rotations, where the characteristic can be a ruling of the cone, which results in a (developable) ruled surface
as the envelope. Excluding these motions from our considerations, for a helical instantaneous motion, at
every real1 point of the characteristic, there is a ruling contained inside the envelope which implies the
point’s hyperbolic nature as a point of the envelope. Consequently flank milling using conical tools can be
highly accurate only for hyperbolic surfaces.

4. Local analysis and cutter selection

Given a hyperbolic helical surface X, we aim to find a conical cutting tool T that can be used for flank
milling of X. For flank milling, X and T have to be in good alignment along a whole curve (characteristic)
hence a necessary condition is a good local alignment at a single point. Therefore, we start our discussion
locally, at a specific contact point q, q ∈ X ∩ T . We aim at second order contact of X and T in a certain
tangent direction d, so called second order line contact, see [24] for more details. It is well known that this
contact corresponds to a tangential contact between the Dupin indicatrix of the tool, iT , and the surface,
iX , at q, see Fig. 5 (a). Let us emphasize that points on different circles of T possess different curvatures –
for the sake of symmetry, we consider a point q on the middle circle of T . Due to the helical nature of X, it
is sufficient to perform this local contact analysis along a single curve, e.g., a profile curve P of X. Such an
analysis gives a one-parameter family of constraints on the tool orientations. We also use this analysis to
derive the necessary conditions on second order line contact and estimate the size and shape of admissible
conical tools.

1For certain positions of the cone w.r.t the helical axis, the characteristic can have only complex points.
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Figure 5: (a) A line contact of X and T at point q. In the common tangent plane Tq(X), the Dupin indicatrices of X, iX ,
and T , iT , touch along a common diameter (green) in the direction d. In this common tangent direction, X and T match up
to second order. (b) Custom-shaped tool (magenta), designed by the method [8] for the double-flank milling of X = X1 ∪X2,
corresponds to the maximal tool which can be placed into the rotor valley. The boundary circles c1 and c2 define a truncated
cone (yellow) which restrict our search space for a conical tool. (c) A subset of the (rc1, r

c
2, α)-space corresponding to the

possible conical tools of the male rotor from Example 6.1.

4.1. Necessary local conditions for second order line contact

We consider only hyperbolic parts of X here, so the Dupin indicatrix is a hyperbola. The Dupin indicatrix
of T is a pair of straight lines, whose distance depends on the shape of the conical tool and a position of
the contact point. Therefore, second order line contact between X and T at q is possible if and only if a
pair of lines can touch the hyperbola, see Fig. 5 (a). The case of the elliptic parts of X is discussed later in
Section 6.1.

Remark 4.1. Note that the Dupin indicatrix is typically a pair conic sections, the intersections of the
osculating paraboloid with a pair of planes parallel to the tangent plane at the point of interest. At a
hyperbolic point, for example, the Dupin indicatrix is a pair of hyperbolas. However, as we are interested
in CNC machining applications, we speak about the Dupin indicatrix as a single conic section; again, the
one that is related to the surface from the machining side.

We discretize the profile curve P of X by a set of points q1, . . . ,qn, uniformly arc-length distributed
samples, at which the Dupin indicatrices are hyperbolas H1, . . . ,Hn. Let us denote by ai and bi the lengths
of the hyperbola’s major and minor semi-axis, respectively, i = 1, . . . , n.

Remark 4.2. The profile curve P is just a particular instance of a curve defining the helical surface X and
any other curve on X can be used instead. In particular using and sampling an orthogonal trajectory of the
helical paths provides more uniform distribution of the points on X.

Then the principal curvature radii of the tool at the boundary points, i.e., points of the boundary of the
truncated cone, are (

∞, rS1
)

and
(
∞, rS2

)
, (15)

where the infinite values correspond to the principal directions aligned with the rulings, and the second
values correspond to the directions perpendicular to the tool’s axis. Therefore the (second) curvature radius
of the tool ranges between [

rS1 , r
S
2

]
. (16)

Consider now the discrete set of hyperbolas Hi, i = 1, . . . , n and the corresponding set of the major
semi-axes, ai, i = 1, . . . , n and let us define its minimum as

a = min
i=1,...,n

ai. (17)

Observe that for an arbitrary (hyperbolic) point q, X can be always approximated by T in second order
line contact; the tool (its middle circle) just need to be sufficiently small. This is a fact that can be seen
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in terms of Dupin indicatrices as follows: an arbitrary hyperbola can be in tangential contact with a pair
of lines, if the lines have the freedom to move arbitrarily close one to another. This “arbitrarily close”
corresponds to a sufficiently small radius of the tool.

Therefore, the condition that T can access X in second order line contact everywhere (up to the accuracy
of the dicretization) is expressed by

Ω1 :

√
rS1 + rS2

2
≤ a. (18)

4.2. Cutter selection

We explore the three-parameter family of truncated cones and look for those whose helical motions can
well approximate X. We want to restrict the search space as much as possible. In addition to (18), there
are constraints on the triplet of parameters (α, rc1, r

c
2) that come from the specific geometry of the screw

rotor as well as from the specific (helical) motion. The “valley” that needs to be machined has its upper
and lower distance bound on the opposite faces.

We employ the method for double-flank milling of screw rotors using properly designed, custom-shaped,
tools [8]. Such a custom-shaped tool, Tcustom, corresponds to the maximal tool which can be placed into
the rotor valley, see Fig. 5 (b). Hence we restrict our search space by conditions reflecting the constraints
that the tool fits into that part of the valley:

rc1 ≤ cDmin, and rc2 ≤ cDmax, (19)

where Dmin and Dmax correspond to the radii of the boundary circles of Tcustom. The parameter c controls
the buffer around the tool, that gives some extra space that is used, e.g., for the coolant. This parameter is
set to 0.9 in our implementation.

Another constraint that comes from the depth of the valley is the constraint on the length h of the tool
see Fig. 5 (b). Let Ddepth be the depth of the valley corresponding to the length of Tcustom, then one obtains

Ω2 : Ddepth ≥ h =
rc2 − rc1
tanα

(20)

Finally, we constraint the opening angle of the tool by

α ≤ Dangle (21)

and Dangle = π/4 in our implementation.
The constraints (19) and (21) define a cube in the (α, rc1, r

c
2)-parameter space and two constraints (18) and

(20) are two surfaces (plane Ω1 and curved surface Ω2) that further trim the cube, see Fig. 5 (c). Therefore,
putting together the inequalities (18) - (21) we obtain a region in the (α, rc1, r

c
2)-space of truncated cones

that defines a domain of conical tools that can well approximate the given rotor geometry.

5. Flank milling of helical surfaces by conical tools

Let us assume now that both a helical surface X (to be milled) and a conical tool T are given. Due to
the helical shape of X, it is natural to constraint the motion of T as the corresponding helical motion. We
therefore look only for the position of the axis o, i.e., for the values of (δ, %, β, φ), recall Fig. 2 (a) and the
meaning of the parameters: δ and β control the position of the (infinite) axis w.r.t. the helical axis z, φ
controls the rotation around z, and % (together with the length L) determines the position of the finite axis.

5.1. Initial positions computation

To initialize the position of a cone for flank milling, we follow the initialization approach introduced in
[25]. The linear meridian gives a simple constraint on the behavior of the distance function d between points
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Figure 6: (a) Admissible orientation of the tool – the orientation of the tool satisfies the condition (24), which requires that
the tool tip xS

1 is in the rotor cavity (closer to the z-axis) than the bottom point xS
2 . (b) Optimization from Section 5.2 of the

tool orientation minimizes the difference between the distances di of the tool axis and the reference surface X and radii ri of
the tool T . (c) Optimization from Section 5.4 of the tool orientation minimizes the distances fi of the tool characteristic ch
(w.r.t. the given helical motion) and the reference surface X.

in 3D and the reference surface X. Consider all 3D lines ` passing through a fixed point p. One seeks unit
directional vectors v of ` such that the second directional derivative of d at p in a direction v vanishes, i.e.,

∇v(∇vd) = ∇2
vd = 0, (22)

which corresponds to directions in which the distance function changes linearly as we move from p in the
direction v. Consequently it is a local constraint for an axis direction of a conical tool.

At a generic point p, there are at most four directions v that satisfy (22) which give a multi-valued
vector field of “good directions”, see [25]. These directions correspond to positions of the conical axis such
that the distance d to X changes linearly according to the linear slope of the radial function, which is a
second order match. However, this matching is a good fit only locally, at a point of contact (the footpoint
p⊥ of p on X) and one intends to get a good initial guess over a whole domain (corresponding to the length
of the tool’s axis). Therefore one integrates such multi-valued vector field to construct a family of integral
curves, and, among them, linear segments are sought for. The segments extracted by [25] are not completely
straight, but almost-straight up to some numerical tolerance, and therefore a straight line is fitted and the
very end. Such a line then serves as our initial guess of a conical axis.

The axis, and the associated conical tool, should move tangentially to X, however, at the same time
it should undergo the helical motion (defined by the rotor geometry). Therefore we use the known helical
motion S±t,z,v0 , normalize the velocity vector at the midpoint of the axis, and compute

F (`) =
1

n

n∑
i=1

〈vi,
pi − p⊥i
‖pi − p⊥i ‖

〉
2

, (23)

where n is the number of sampled points pi on `, p⊥i are their orthogonal projections onto X, and vi
are instantaneous velocities after the normalization (‖vm‖ = 1). The value F (`) is used as a tangential
movability measure and lines ` with small values of F are kept in the list, while those with large values are
pruned away.

Note that a typical conical tool has a larger radius closer to the handler/shank and smaller radius closer
to the tool tip. Due to the geometry of a screw rotor, this means that the tool tip should point towards
that helical valley, and therefore be closer to the helical axis than the point closer to the shank, see Fig. 6
(a). Let z be the helical axis, xS1 and xS2 be the boundary points on the tool axis o, and rS1 and rS2 be the
corresponding candidate tool radii (the distances to the reference surface). To find admissible positions of
the axis that point towards z, we simply test:

∆1 = dist(xS1 , z) < dist(xS2 , z) = ∆2 (24)
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and if rS1 < rS2 , we keep the candidate line, otherwise we prune it away from our list.

5.2. Optimization of the initial positions

To further improve the tangential contact position between the tool and the surface, we optimize the
position of the tool axis by minimizing the differences between the radial function r(s) and distance d(s) of
o and the target surface X. In particular, for a given position of the axis o we compute the foot points p⊥i
of the points pi = o(si), si = i/(n − 1), i = 0, . . . , n − 1, sampled on the axis o, see Fig. 6, (b). Then we
define the objective function Φ1 as the sum of differences between di = ‖p⊥i − pi‖ and ri = r(si), where
r(s) is a prescribed radial function of a given tool, cf. (9)

Φ1(δ, %, β, φ) =
∑
i∈I1

(di − ri) + w
∑
i∈I2

(ri − di) , (25)

where di ≥ ri for i ∈ I1 and di < ri for i ∈ I2. Minimizing Φ1 yields the values (δ, %, β, φ), determining the
optimized position of the tool T . Finally, by applying a screw motion on T we obtain its flank milling path.

Remark 5.1. To penalize the parts with the over-cutting index set (I2) we set the weight w = 100. In all our
examples we choose the number of samples n = 100 as a suitable compromise between accuracy and speed of
computation. For minimizing Φ1 we employ the gradient descent method, where the gradient is approximated
using the finite differences. As a termination criterion, we check the two subsequent values in the optimization
process, and if they do not differ by more than a prescribed value, i.e., ‖xi+1−xi‖ < ε = 10−5, we stop the
optimization.

One could eventually use more advanced optimization techniques than gradient descent, e.g. the
Levenberg-Marquardt algorithm, however, the impact of a good initial guess, in our case constructed as
described in Section 5.1, turned out to be more important than the particular optimization method in
similar problems [26].

The designed method yields a position of the conical tool T (its axis o) and an array {di}n−1i=0 describing
the distances of o and X, i.e.,

di = ‖p⊥i − pi‖ i = 0, . . . , n− 1, (26)

such that
∑
|ri − di| is minimal. The error of the approximate flank machining (along the axis o of T ) is

measured as the distances between T and X which corresponds to

ei = di − ri. (27)

Since the tool is moved in the same helical motion as the profile curve (and the characteristic) error function
(27) (along o) remains exactly the same as the tool moves in time.

5.3. Optimization of the tool and its initial positions

Employing small modifications of the optimization approach from Section 5.2, we can simultaneously
look for the optimal conical tool and its initial positions. In particular, we optimize the tool axis that
minimizes the tool-surface error and simultaneously provide a linear radial function.

More precisely, for a given position of the axis o we compute the foot points p⊥i of pi = o(si), uniformly
sampled on the axis o and construct the objective function Φ2 demanding di = ‖p⊥i −pi‖ to be as linear as
possible:

Φ2(δ, %, β, φ) =

n−1∑
i=0

di+2 − 2di+1 + di. (28)

Minimizing Φ2 yields the values (δ, %, β, φ), determining the optimized position and the ”almost” conical
shape of the tool T . Since distances di are not distributed exactly linearly we fit di by a linear function r(s)
in the least squares sense, i.e.,

n−1∑
i=0

|di − r(si)| → min . (29)

10



Figure 7: Fitting of the distances di (green dots) by a linear function r(s) (blue line) corresponding to the non-overcutting
positions of the tool axis w.r.t. (from left to right) surfaces X1 and X2 of the male rotor and X1 and X2 of the female rotor
from Example 6.1.

(a) (b)

Figure 8: Global collision test. Footpoints passing the distance check (green) and those that fail (red) are shown. When all
points pass the check (a), the position is marked as non-colliding. If at least one point fails the check, the position is marked
as colliding (b) and is eliminated from the list.

In our implementation of the least squares method, we also employ the constraints

di ≥ r(si), i = 0, . . . , n− 1, (30)

which reflects our wish that the tool is globally non-overcutting, see Fig. 7. Again, the final step is to apply
a screw motion on T which gives the sought-after flank milling path.

5.4. Optimization of the initial positions based on velocity motion

The optimization technique described in section 5.2 is independent of the specific helical motion – it only
minimizes the distance between the tool and the reference surface. In addition, it can also be adapted to
design an optimal conical tool by making minor modifications, see Section 5.3.

In this section, however, we introduce another optimization method that incorporates directly the specific
(and given) helical motion. Specifically, we minimize the distance between the tool characteristic (with
respect to the prescribed helical motion) and the helical surface. The advantage of incorporating the helical
motion into the optimization is faster convergence to the minimum.

Let us discuss the approach in more detail, for a given position of the axis o, helical motion (given by
z axis and value of the pitch 2πv0) and radial function r(s), cf. (9), we compute the characteristic ch(s)
(11). Now sampling the axis pi = o(si), characteristic ci = ch(si), si = i/(n − 1), i = 0, . . . , n − 1, and
computing the corresponding foot points c⊥i ∈ X we define the objective function Φ3 as the sum of distances
fi = ‖c⊥i − ci‖, recall Fig. 6 (c)

Φ3(δ, %, β, φ) =
∑
i∈I1

fi + w
∑
i∈I2

fi. (31)

Analogously as in Section 5.2, ‖pi − c⊥i ‖ ≥ ‖pi − ci‖ for i ∈ I1 and ‖pi − c⊥i ‖ < ‖pi − ci‖ for i ∈ I2.
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Figure 9: Top: Particular positions of four different optimized conical tools on (from left to right) surfaces X1 and X2 of the
male rotor and X1 and X2 of the female rotor from Example 6.1. The optimized linear radial functions are shown in Eqns. (32)
and (33). Bottom: The corresponding error functions (27) (along the axis o).

Remark 5.2. In our tests, see Section 6, the optimization techniques described in Sections 5.2 and 5.4
provide comparable results in terms of the accuracy of the final tool orientation relative to the target
geometry. However, the method described in this section (based on a specific helical motion) generally
converges to the minimum faster, and therefore fewer iterations are needed to achieve a fine machining
tolerance.

5.5. Global collision detection

To return physically feasible paths, one has to consider also the global collision of the cutter T with the
whole object O, not just the flank surface X. The analysis described in the previous sections takes care of
local collisions. To control global collisions, we perform a simple collision test as follows. The cutting part
of the tool is conceptualized as a truncated cone T while the shank is represented as a cylinder, see Fig. 8.
The real shank is a more complex object, so similarly to [24], its cylindrical bound is taken for the sake of
simplicity in our collision test.

Either the tool or the shank can collide with O globally. To detect a collision of T , we sample the axis
o and compute the footpoints on O. For a sample point pi, the projection algorithm returns its footpoint
p⊥i , see Fig. 8, and we perform a distance check ‖pi − p⊥i ‖ < ri, ri being the corresponding radius of the
inscribed sphere that corresponds to the position pi. For the cylindrical shank, we proceed analogously with
the difference of the constant (cylindrical) radius. If the collision is realized at some point, the collision
routine is terminated, and the corresponding position of the tool is labeled as colliding.

6. Examples

In this section, we present several examples of how our algorithms perform on industrial benchmarks
– namely on all helical surfaces of the screw rotor with the ‘N’ profile (Stosic, 1996). The screw rotors
geometries have mostly non-symmetric profiles which makes them difficult to get machined using double-
flank machining with custom-shaped tool [8]. For these geometries, each flank has to be machined separately,
and our approach looks for fine approximation by a few sweeps of a single conical tool.

Example 6.1 (One sweep – tool optimization). We start with the initial tool with α = 0.25, rc1 = 0.25, rc2 =
0.5. We demonstrate the computation of particular optimal tool’s radial functions (Section 5.3) and positions
for each of the helical surfaces X1 and X2 (two parts of each rotor) of the well-known male and female screw
rotors with asymmetric ‘N’ profiles.

In the case of the male rotor, we end up with the tools having the radial functions described by

r1(s) = 0.150s+ 0.149, and r2(s) = 0.150s+ 0.151, s ∈ [0, 1] (32)
12



(a) (b)

Figure 10: Globally collision-free flank milling of the male (a) and female (b) screw rotors with the asymmetric profiles (‘N’
profile, Stosic, 1996) from Example 6.1. On each rotor, we use two different conical tools and visualize the motion by several
positions, including the shank (blue cylinders), to demonstrate the collision-free motion.

(a) (b) (c)

error functions

Figure 11: Approximation of the first helical surface of the screw rotor (‘N’ profile, Stosic, 1996) from Example 6.2. (a) 15
optimized positions of a single conical tool (magenta) and the corresponding envelope strips (yellow). (b) A zoom in of the
helical flank and the envelopes. (c) The approximation errors using optimization from Sections 5.2 (blue) and 5.4 (green)
between the envelopes and the helical surface measured along a profile curve.

for surfaces X1 and X2, respectively, see Fig 7. For female rotor we obtained

r1(s) = 0.138s+ 0.143, and r2(s) = 0.134s+ 0.205, s ∈ [0, 1]. (33)

The tools and their particular positions are shown in Figs. 9 and 10. The maximal distances between the
tool and the surfaces X1 and X2 of the male rotor are less than 0.00346 and 0.01051, respectively. For the
female rotor we obtain 0.01653 and 0.01446. These values are relative to the radius R = 1 of the cylindrical
body of both rotors.

The approximation errors in Example 6.1 do not meet the machining tolerances yet, but these errors are
coming from a single sweep of the tool and can be significantly reduced by using multiple milling paths.

Example 6.2 (More sweeps – female rotor X1). When using only one envelope strip with a tool from
Example 6.1 to the helical surface X1 of the female rotor, we obtained the maximal error equal to 0.01653.
To reduce this error, we employ smaller tool and perform machining simulations with several strips. In this
experiment, we set α = sin(0.3), rc1 = 0.1, rc2 = 0.18.

We start with 18 different initial positions initialized by the approach described in Section 5.1, using
uniformly sampled points along the profile curve. We optimize the position and impose two constraints: (1)
the distance of the tool (in the optimized position) can not be larger that error threshold ε = 0.002. (2)
the tool (including the shank) cannot penetrate the screw rotor. That is, each cone is globally collsion-free
with both sides of the helical cavity. We employed the two optimization methods from Sections 5.2 and
5.4. In both cases conditions (1) and (2) were satisfied by 15 optimized tool positions, see Fig. 11 (a). The
whole error behavior along a profile curve based on minimizing Φ1 (resp. Φ3) is shown in blue (resp. green)
in Fig. 11 (c).
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(a) (b) (c)

error functions

Figure 12: Approximation of the second helical surface of the screw rotor (‘N’ profile, Stosic, 1996) from Example 6.3. (a) 14
out of 18 optimized positions met the requirements. (b) A zoom in of the flank and the envelopes. (c) The approximation
errors using optimization from Sections 5.2 (blue) and 5.4 (green) between the envelopes and the helical surface measured
along a profile curve.

initial

optimized

initial error optimized error

Figure 13: Approximate flank milling of the helical surface X2 on the female screw rotors (‘N’ profile, Stosic, 1996) from
Example 6.4.

Example 6.3 (More sweeps – female rotor X2). When using only one envelope strip with a tool from
Example 6.1 to the helical surface X2 of the female rotor, we obtained the maximal error equal to 0.01446.
To reduce this error, we employ smaller tool and apply our path-planning algorithm with several strips. In
this test we set α = sin(0.1), rc1 = 0.129, rc2 = 0.18, and we set the error threshold to 0.004.

We started with 18 initial positions sampled uniformly along the profile curve. We optimized the posi-
tions, prescribing the same two constraints as in Example 6.2.

We again employed the two optimization methods from Sections 5.2 and 5.4. In both cases conditions
were satisfied by 14 optimized tool positions, see Fig. 12 (a). All positions of the axis are globally collision-
free with the whole rotor geometry and meet the error threshold, see Fig. 12 (c), for the error functions.

Example 6.4 (Larger tool – female rotor X2). Another experiment we run is the machining of the helical
surface X2 of the female rotor (‘N’ profile, Stosic, 1996) with a large conical tool. Here we employed the
tool with α = sin(0.2), rc1 = 0.07, rc2 = 0.2 and used path-planning algorithm from Section 5.2. The error
threshold was set to 0.01. We started with 6 initial positions and after optimization and collision tests we
ended up with three optimized positions of the tool, see Fig. 13.

Example 6.5 (More sweeps – male rotor X1). When using only one envelope strip with a tool from
Example 6.1 to the helical surface X1 of the male rotor we obtained the maximal error equal to 0.00346.
Now, we employ a smaller tool and apply our path-planning algorithm from Section 5.2 with several strips.
In this test we set α = sin(0.1), rc1 = 0.12, rc2 = 0.14, and we set the error threshold to 0.003.

We started with 12 initial positions sampled uniformly along the profile curve. We optimized the posi-
tions, prescribing the same two constraints as in Example 6.2. The conditions were satisfied by 7 optimized
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(d)
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Figure 14: Approximation of helical surfaces X1 (a,c) and X2 (b,d) of the male screw rotor (‘N’ profile, Stosic, 1996) from
Example 6.5. (a,b) The approximation of the hyperbolic part. 7 out of 12 optimized positions met the requirements (a).
All 11 optimized positions met the requirements (b). (c,d) The approximation of the elliptic part, where we employed the
initialization using the tangential contact. 7 out of 12 optimized positions met the requirements (c) and 5 out of 6 optimized
positions met the requirements (d). The approximation errors between the envelopes and the helical surface measured along a
profile curve are also shown.

(a) (b)

Figure 15: Approximate double-flank milling of male (a) and female (b) screw rotors with asymmetric profiles (‘N’ profile,
Stosic, 1996) with custom-shaped tool [8]. Several positions of two custom-shaped tools are shown.

tool positions, see Fig. 14 (a). The optimized positions are collision-free with the whole rotor geometry and
meet the error threshold, see Fig. 14 (a-framed) also for the error function.

In the elliptic part, one cannot achieve higher than first order contact hence we align the axis of the tool
with the principal direction that corresponds to the minimal curvature as this minimizes the error of the
tangential contact, see Fig. 14 (c).

Example 6.6 (More sweeps – male rotor X2). When using only one envelope strip with a tool from
Example 6.1 to the helical surface X2 of the male rotor we obtained the maximal error equal to 0.01051.
To reduce this error, we employ smaller tool and apply our path-planning algorithm from Section 5.2 with
several strips. In this test we set α = sin(0.1), rc1 = 0.11, rc2 = 0.13, and we set the error threshold to 0.002.

We started with 11 initial positions sampled uniformly along the profile curve and again optimized the
positions under the same two constraints as in Example 6.2. The conditions were satisfied by all 11 optimized
tool positions, see Fig. 14 (b). The optimized positions are collision-free with the whole rotor geometry and
meet the error threshold, see Fig. 14 (b-framed) also for the error function. In the elliptic part, one can aim
only at the first order contact and we again aligned the axis of the tool with the principal direction that
corresponds to the minimal curvature. The results are shown in Fig. 14 (d).

Example 6.7 (Comparison against double-flank milling using custom-shaped tools). We compare the
method for flank milling of screw rotors by conical tools from Section 5.2 with approach presented in
[8], where the entire helical valley of the rotor is approximated by a single sweep of a custom-shaped tool.
That approach uses only one sweep, however, it requires a special, custom-shaped, tool, see Fig. 15. In
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Figure 16: Conical vs. custom-shaped. A comparison of the errors using flank milling by conical tools (blue) and double-flank
milling using a custom-shaped tool (red) [8], tested on the asymmetric screw rotor (‘N’ profile, Stosic, 1996). Four helical
surfaces were tested: surfaces X1 and X2 of the male rotor and X1 and X2 of the female rotor (from left to right).

Example # vertices diam emax time-ini time-opt

Fig. 10 female X1 16K 6.25 0.00437 2.2s 0.73s
Fig. 10 female X2 14K 6.25 0.01128 2.1s 0.82s
Fig. 10 male X1 17K 6.25 0.01689 3.4s 1.17s
Fig. 10 male X2 16K 6.25 0.01070 2.8s 0.45s
Fig. 11 female X1 16K 6.25 0.00143 410s 24.34s
Fig. 12 female X2 14K 6.25 0.00357 220s 22.06s
Fig. 13 female X2 16K 6.25 0.00489 1010s 11.01s
Fig. 14 male X1 17K 6.25 0.00294 45s 24.14s
Fig. 14 male X2 16K 6.25 0.00136 85s 18.52s

Table 1: The statistics of our algorithm. In turn, we report the number of the mesh vertices (X1 ∪X2), the diameter of the
bounding box of the whole rotor, the maximum error, and the computation time (in secs) of the initialization and optimization
stages.

contrast, our approach uses a standard conical tool and, with the option of several milling paths, overall
provides a better approximation, see Fig. 16.

The initialization stage (Section 5.1) was implemented in C++ language and ran on a desktop with CPU
i7-10700K 3.80 GHz and 16G RAM. The optimization stage ( Sections 5.2, 5.3 and 5.4) was implemented
in Mathematica and ran on a desktop with CPU i7-10510U 2.30 GHz and 16G RAM. The statistics of our
algorithm on all the rotor examples shown in the paper are listed in Table 1.

6.1. Discussion & limitations

General helical surfaces. Recently, a method for double-flank milling of helical rotors has been introduced
in [8]. Therefore, we demonstrate our general approach on the case of helical rotors, since we can compare
the method with the method from [8]. However, the presented approach can be directly applied to any
helical surface.

Elliptical parts. The proposed approach focuses on the use of conical tools and for the elliptical parts of
the screw rotors, recall Fig. 3, one cannot achieve higher than first order contact. Therefore, our initialization
strategy proposed in Section 5.1 cannot find any good positions (as it aims at higher order of contact). In
these parts, one has no better option but to use any tangential configuration [13].

Global collision. In our implementation, the global collision is tested as a post-process, i.e., the computed
tools’ positions are tested at the very end of our algorithm and the colliding positions are filtered out.
Conceptually a better solution would incorporate the collision avoidance as a part of the optimization
algorithm. However, such an approach would require a special datastructure for fast computation of the
footpoints, see e.g. [27, 28], and also an efficient approximation of the point-surface distance, which goes
beyond the scope of this paper.

Gaps between strips. The samples on the profile curve were selected sufficiently dense to end up with
a solution that does not contain gaps between neighboring strips. One could derive a bound on such a
sampling density based on the curvature of the tool and the rotor, however, such a bound would very likely
require excessive number of positions. Another point is that we sampled the contact points uniformly along
the profile curve, which led to lower errors in some parts and larger errors in the others. An alternative
strategy would be to start with a coarse set of sampling points and insert adaptively new samples in places
where the approximation error is the worst. This could eventually reduce the number of the milling paths.
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(a) (b) (c) (d)

Figure 17: Hyperosculation. For a fixed cone of the opening angle of 10◦, the hyperosculating cones [29] are computed. The
view is upside down, i.e., we look at the rotor flank from the material side. While at some points (yellow) of the profile curve
(light grey) there are hyperosculating cones (green) on the machining side (a-c), at some points (d), there exist hyperosculating
positions (transparent) only on the material side.

Custom-shaped vs. on-market tools. Results shown in Fig. 16 bring a qualitative comparison between
the use of a single sweep of a custom-shaped tool vs. several paths of a given (on-market) conical tool. One
can use these results for consideration of the trade-off between the machining time (higher for conical tools)
and the manufacturing cost (higher for custom-shaped tools).

Initialiazation using hyperosculating cones. We also experimented with the initialization using hyper-
osculating (3rd order contact in the isotropic model of the Laguerre geometry) positions of a given conical
tool and the reference surface [29], see Fig. 17. In general, there exist up to 6 real hyperosculating cones at
a given point of contact. However, the distance between the cone’s vertex and the contact point may vary
throughout the surface. This fact makes the selection of the tool problematic as one needs to find a range
for the vertex-contact point distance such that there is a hyperosculating position for every (sample) point
on the profile curve. Moreover, there might be points where all the hyperosculating cones appear only on
the material side, see Fig. 17(d), therefore being useless for our CNC machining application. One would
need to look also for a suitable opening angle of the cone, which goes beyond the current paper.

7. Conclusion

A new path-planning algorithm for 5-axis flank CNC machining of screw rotors has been proposed. For
a given conical tool, the search for good initial positions is accomplished by looking at second order contact
of the rotor geometry and the tool. The initialization stage returns a set of discrete tool positions that
consequently undergo a global optimization that further reduces the error between the tool and the rotor
geometry.

In the case of no given conical tool, we look for the best tools’ shape by considering a linear radial function
and by optimizing the tool axis that minimizes the tool-surface error, and the tool-surface engagement is
non-overcutting. The proposed algorithm has been validated on several benchmark industrial datasets,
demonstrating to meet fine machining tolerances with only a few sweeps of a conical tool.

As a future research, we aim at physical validations of the proposed path-planning algorithm. Another
future research direction is that the current solution is a union of milling paths that overlap. Even though
the approximation errors are under a given threshold, this overlapping can introduce artifacts in the real
machining. Therefore, we aim to look at milling paths such that the neighboring envelops are non-overlapping
and joined in a G1 fashion.
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