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Abstract. We establish pointwise almost everywhere convergence for ergodic averages along poly-
nomial sequences in nilpotent groups of step two of measure-preserving transformations on σ-finite
measure spaces. We also establish corresponding maximal inequalities on Lp for 1 < p ≤ ∞
and ρ-variational inequalities on L2 for 2 < ρ < ∞. This gives an affirmative answer to the
Furstenberg–Bergelson–Leibman conjecture in the linear case for all polynomial ergodic averages in
discrete nilpotent groups of step two.

Our proof is based on almost-orthogonality techniques that go far beyond Fourier transform tools,
which are not available in the non-commutative, nilpotent setting. In particular, we develop what
we call a nilpotent circle method that allows us to adapt some of the ideas of the classical circle
method to the setting of nilpotent groups.
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1. Introduction

1.1. The Furstenberg–Bergelson–Leibman conjecture. Assume that (X,B(X), µ) denotes a
σ-finite measure space. Let Z[n] denote the space of all polynomials P (n) with one indetermi-
nate n and integer coefficients. Given any family of invertible measure-preserving transformations
T1, . . . , Td : X → X, d ≥ 1, a measurable function f ∈ Lp(X), p ≥ 1, polynomials P1, . . . , Pd ∈ Z[n],
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and an integer N ≥ 1, we define the polynomial ergodic averages

AP1,...,Pd
N ;X,T1,...,Td

(f)(x) :=
1

|[−N,N ] ∩ Z|
∑

n∈[−N,N ]∩Z

f(T
P1(n)
1 · · ·TPd(n)

d x), x ∈ X. (1.1)

A fundamental problem in ergodic theory is to establish convergence in norm and pointwise
almost everywhere for the polynomial ergodic averages (1.1) as N → ∞ for functions f ∈ Lp(X),
1 ≤ p ≤ ∞. The problem goes back to at least the early 1930’s with von Neumann’s mean ergodic
theorem [55] and Birkhoff’s pointwise ergodic theorem [10] and led to profound extensions such as
Bourgain’s polynomial pointwise ergodic theorem [11, 12, 13] and Furstenberg’s ergodic proof [24]
of Szemerédi’s theorem [53] in particular. Furstenberg’s proof was also the starting point of ergodic
Ramsey theory, which resulted in many natural generalizations of Szemerédi’s theorem, including
a polynomial Szemerédi theorem of Bergelson and Leibman [7] that motivates the following far
reaching conjecture:

Conjecture 1.1 (Furstenberg–Bergelson–Leibman conjecture [8, Section 5.5, p. 468]). Given
integers d, k,m,N ∈ Z+, let T1, . . . , Td : X → X be a family of invertible measure-preserving
transformations of a probability measure space (X,B(X), µ) that generates a nilpotent group of
step k. Assume that P1,1, . . . , Pi,j , . . . , Pd,m ∈ Z[n] are such that Pi,j(0) = 0. Then for any
f1, . . . , fm ∈ L∞(X), the non-conventional multiple polynomial averages

A
P1,1,...,Pd,m
N ;X,T1,...,Td

(f1, . . . , fm)(x) =
1

|[−N,N ] ∩ Z|
∑

n∈[−N,N ]∩Z

m∏
j=1

fj(T
P1,j(n)
1 · · ·TPd,j(n)

d x) (1.2)

converge for µ-almost every x ∈ X as N →∞.

Conjecture 1.1 is a major open problem in ergodic theory that was promoted in person by
Furstenberg, see [1, p. 6662] and [36], before being published in [8]. Bergelson–Leibman [8] showed
that convergence may fail if the transformations T1, . . . , Td generate a solvable group, so the nilpotent
setting is probably the appropriate setting for Conjecture 1.1. Our main goal in this paper is to
establish this conjecture in the linear m = 1 setting in the case when T1, . . . , Td generate a nilpotent
group of step two.

A few remarks about this conjecture and the current state of the art are in order.

1. The averages (1.2) are multilinear generalizations of the averages (1.1) in the case m = 1
and Pj,1 = Pj for all j ∈ {1, . . . , d}. The basic case d = k = m = 1 with P1,1(n) = n follows
from Birkhoff’s ergodic theorem [10].

2. The case d = k = m = 1 with an arbitrary polynomial P1,1 ∈ Z[n] was a famous open
problem of Bellow [3] and Furstenberg [25] solved by Bourgain in his breakthrough papers
[11, 12, 13].

3. Some particular examples of averages (1.2) with m = 1 and polynomial mappings with
degree at most two in the step two nilpotent setting were studied in [32, 43].

4. The multilinear theory, in contrast to the commutative linear theory, is widely open. Only
a few results in the bilinear m = 2 and commutative d = k = 1 setting are known. Bourgain
[14] proved pointwise convergence when P1,1(n) = an and P1,2(n) = bn, a, b ∈ Z. More
recently, the third author with Krause and Tao [38] established pointwise convergence for the
polynomial Furstenberg–Weiss averages [26, 27] corresponding to P1,1(n) = n and P1,2(n) =
P (n), degP ≥ 2.

5. Except for these few cases, there are no other results concerning pointwise convergence for
the averages (1.2). The situation is completely different, however, for the question of norm
convergence. A breakthrough paper of Walsh [56] (see also [1]) gives a complete picture of
L2(X) norm convergence of the averages (1.2) for any T1, . . . , Td ∈ G where G is a nilpotent
group of transformations of a probability space. Prior to this, there was an extensive body
of research towards establishing L2(X) norm convergence, including groundbreaking works
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of Host–Kra [28], Ziegler [57], Bergelson [4], and Leibman [40]. See also [2, 20, 23, 29, 54]
and the survey articles [5, 6, 22] for more details and references, including a comprehensive
historical background.

1.2. Statement of the main results. We can now state the main result of this paper.

Theorem 1.2 (Main result). Let d1 ∈ Z+ be given and let T1, . . . , Td1 : X → X be a family of
invertible measure-preserving transformations of a σ-finite measure space (X,B(X), µ) that gen-
erates a nilpotent group of step two. Assume that P1, . . . , Pd1 ∈ Z[n] are such that Pj(0) = 0,
1 ≤ j ≤ d1, and let d2 := max{degPj : j ∈ {1, . . . , d1}}. Assume f ∈ Lp(X), 1 ≤ p ≤ ∞, and let

A
P1,...,Pd1
N ;X (f) = A

P1,...,Pd1
N ;X,T1,...,Td1

(f) be the averages defined in (1.1).

(i) (Mean ergodic theorem) If 1 < p <∞, then the averages A
P1,...,Pd1
N ;X (f) converge in the Lp(X)

norm as N →∞.
(ii) (Pointwise ergodic theorem) If 1 < p <∞, then the averages A

P1,...,Pd1
N ;X (f) converge pointwise

almost everywhere as N →∞.
(iii) (Maximal ergodic theorem) If 1 < p ≤ ∞, then one has∥∥ sup

N∈Z+

|AP1,...,Pd1
N ;X (f)|

∥∥
Lp(X)

.d1,d2,p ‖f‖Lp(X). (1.3)

The implicit constant in (1.3) may depend on d1, d2, and p, but is independent of the coef-
ficients of the underlying polynomials.

The restriction p > 1 is necessary in the case of nonlinear polynomials as was shown in [15, 39].
We provide now a few remarks about Theorem 1.2.

1. Parts (ii) and (iii) of Theorem 1.2 are completely new even in the case p = 2 and extend Bour-
gain’s polynomial ergodic theorems [11, 12, 13] to the non-commutative nilpotent setting.
In particular, Theorem 1.2 (ii) gives an affirmative answer to Conjecture 1.1 for all polyno-
mials P1, . . . , Pd1 ∈ Z[n] and all measure-preserving transformations T1, . . . , Td1 : X → X
generating a nilpotent group of step two. Moreover, Theorem 1.2 gives affirmative answers
to [33, Problems 1, 2] for nilpotent groups of step two.

2. If (X,B(X), µ) is a probability space and the family of measure preserving transformations
(T1, . . . , Td1) is totally ergodic, then Theorem 1.2(ii) implies that

lim
N→∞

A
P1,...,Pd1
N ;X (f)(x) =

∫
X
f(y)dµ(y) (1.4)

µ-almost everywhere on X. We recall that a family of measure preserving transformations
(T1, . . . , Td1) is called ergodic on X if T−1

j (B) = B for all j ∈ {1, . . . , d1} implies µ(B) = 0

or µ(B) = 1 and is called totally ergodic if the family (Tn1 , . . . , T
n
d1

) is ergodic for all n ∈ Z+.
In view of (1.4), we see that the polynomial orbits

Ox :=
{
T
P1(n)
1 · · ·TPd1 (n)

d1
x : n ∈ Z

}
have a limiting distribution and, in fact, are uniformly distributed for µ-almost every x ∈ X
when the family (T1, . . . , Td1) is totally ergodic.

3. The conclusion of the mean ergodic Theorem 1.2(i) follows from [56] if (X,B(X), µ) has
finite measure, but our proof allows one to deal with the more general σ-finite setting.

1.3. The universal step-two group G0. The proof of Theorem 1.2 will follow from our second
main result, Theorem 1.3 below, for averages on universal nilpotent groups of step two. We start
with some definitions. For integers d ≥ 1, we define

Yd := {(l1, l2) ∈ Z× Z : 0 ≤ l2 < l1 ≤ d}
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and the “universal” step-two nilpotent Lie groups G#
0 = G#

0 (d)

G#
0 := {(xl1l2)(l1,l2)∈Yd : xl1l2 ∈ R}, (1.5)

with the group multiplication law

[x · y]l1l2 :=

{
xl10 + yl10 if l1 ∈ {1, . . . , d} and l2 = 0,

xl1l2 + yl1l2 + xl10yl20 if l1 ∈ {1, . . . , d} and l2 ∈ {1, . . . , l1 − 1}.
(1.6)

Alternatively, we can also define the group G#
0 as the set of elements

g = (g(1), g(2)), g(1) = (gl10)l1∈{1,...,d} ∈ Rd, g(2) = (gl1l2)(l1,l2)∈Y ′d ∈ Rd
′
, (1.7)

where d′ := d(d− 1)/2 and Y ′d := {(l1, l2) ∈ Yd : l2 ≥ 1}. Letting

R0 : Rd × Rd → Rd
′

denote the bilinear form [R0(x, y)]l1l2 := xl10yl20, (1.8)

we notice that the product rule in the group G#
0 is given by

[g · h](1) := g(1) + h(1), [g · h](2) := g(2) + h(2) +R0(g(1), h(1)) (1.9)

if g = (g(1), g(2)) and h = (h(1), h(2)). For any g = (g(1), g(2)) ∈ G#
0 , its inverse is given by

g−1 =
(
− g(1),−g(2) +R0(g(1), g(1))

)
.

The second variable of g = (g(1), g(2)) ∈ G#
0 is called the central variable. Based on the product

structure (1.9) of the group G#
0 , it is not difficult to see that g ·h = h ·g for any g = (g(1), g(2)) ∈ G#

0

and h = (0, h(2)) ∈ G#
0 .

Let G0 = G0(d) denote the discrete subgroup

G0 := G#
0 ∩ Z|Yd|. (1.10)

Let A0 : R→ G#
0 denote the canonical polynomial map (or the moment curve on G#

0 )

[A0(x)]l1l2 :=

{
xl1 if l2 = 0,

0 if l2 6= 0,
(1.11)

and notice that A0(Z) ⊆ G0. For x = (xl1l2)(l1,l2)∈Yd ∈ G#
0 and Λ ∈ (0,∞), we define

Λ ◦ x := (Λl1+l2xl1l2)(l1,l2)∈Yd ∈ G#
0 . (1.12)

Notice that the dilations Λ◦ are group homomorphisms on the group G0 that are compatible with
the map A0, i.e. Λ ◦A0(x) = A0(Λx).

Let χ : R→ [0, 1] be a smooth function supported on the interval [−2, 2]. Given any real number
N ≥ 1 and a finitely supported function f : G0 → C, we can define a smoothed average along the
moment curve A0 by the formula

Mχ
N (f)(x) :=

∑
n∈Z

N−1χ(N−1n)f(A0(n)−1 · x), x ∈ G0. (1.13)

The main advantage of working on the group G0 with the polynomial map A0 is the presence
of the compatible dilations Λ◦ defined in (1.12), which lead to a natural family of associated balls.
This can be efficiently exploited by noting that Mχ

N is a convolution operator on G0.
The convolution of functions on the group G0 is defined by the formula

(f ∗ g)(x) :=
∑
y∈G0

f(y−1 · x)g(y) =
∑
z∈G0

f(z)g(x · z−1). (1.14)
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Then it is not difficult to see that Mχ
N (f)(x) = f ∗GχN (x), where

GχN (x) :=
∑
n∈Z

N−1χ(N−1n)1{A0(n)}(x), x ∈ G0. (1.15)

We are now ready to state our second main result.

Theorem 1.3 (Boundedness on G0). Let G0 = G0(d), d ≥ 1, be the discrete nilpotent group defined
in (1.10). For any f ∈ `p(G0), 1 ≤ p ≤ ∞, let Mχ

N (f) be the average defined in (1.13) with a smooth
function χ : R→ [0, 1] supported on the interval [−2, 2].

(i) (Maximal estimates) If 1 < p ≤ ∞, then one has∥∥ sup
N≥1
|Mχ

N (f)|
∥∥
`p(G0)

.d,p,χ ‖f‖`p(G0). (1.16)

(ii) (Long variational estimates) If 1 < p <∞, ρ > max
{
p, p

p−1

}
, and τ ∈ (1, 2], then∥∥V ρ

(
Mχ
N (f) : N ∈ Dτ

)∥∥
`p(G0)

.d,p,ρ,τ,χ ‖f‖`p(G0), (1.17)

where Dτ := {τn : n ∈ N}. See (2.3) for the definition of the ρ-variation seminorms V ρ.

Some comments are in order.

1. Theorem 1.3 will be used to prove Theorem 1.2. The main tool in this reduction will be the
Calderón transference principle [16], and the details will be given in Section 3.

2. Theorem 1.3 extends the results of [44, 47] to the non-commutative, nilpotent setting. Its
conclusions remain true for rough averages, i.e. when χ = 1[−1,1] in (1.13), but it is more
convenient to work with smooth averages.

3. The restriction p > 1 in Theorem 1.3 is sharp due to [15, 39]. However, the range of
ρ > max

{
p, p

p−1

}
is only sharp when p = 2 due to Lépingle’s inequality [41]. One could

hope to improve this to the full range ρ > 2 for exponents p 6= 2, but only at the expense
of additional complexity in the proof. We do not address this here since the limited range
ρ > max

{
p, p

p−1

}
is already sufficient for us to establish Theorem 1.2.

1.4. Overview of the proof. We will show in Section 3 that Theorem 1.2 is a consequence of
Theorem 1.3 upon performing lifting arguments and adapting the Calderón transference principle.
Our main goal therefore is to prove Theorem 1.3, which takes up the bulk of this paper.

Bourgain’s seminal papers [11, 12, 13] generated a large amount of research and progress in the
field. Many other discrete operators have been analyzed by many authors motivated by problems
in Analysis and Ergodic Theory. See, for example, [15, 32, 34, 37, 38, 39, 43, 44, 46, 47, 49, 50, 52]
for some results of this type and more references. A common feature of all of these results, which
plays a crucial role in the proofs, is that one can use Fourier analysis techniques, in particular, the
powerful framework of the classical circle method, to perform the analysis.

Our situation in Theorem 1.3 is different as new difficulties arise. The main issue is that there is no
good Fourier transform on nilpotent groups that is compatible with the structure of the underlying
convolution operators and at the level of analytical precision of the classical circle method. The
second obstacle is the absence of a good delta function compatible with the group multiplication on
(G0, ·) (defined in (1.6)). This prevents us from using a naive implementation of the circle method.
The classical delta function

1{0}(x
−1 · y) =

∫
Td×Td′

e((y(1) − x(1)).θ(1))e((y(2) − x(2)).θ(2)) dθ(1)dθ(2), (1.18)

does not detect the group multiplication correctly, see Section 2 and (2.2) for notation.
These two issues lead to very significant difficulties in the proof and require substantial new ideas.

We developed the following tools to circumvent these problems:
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(i) Classical Fourier techniques will be replaced with almost-orthogonality methods based on
exploiting high order TT ∗ arguments for operators defined on the discrete group G0 which
arise in the proof of Theorem 1.3. Studying high powers of TT ∗ (i.e. (TT ∗)r for a large
r ∈ Z+) allows for a simple heuristic lying behind the proof of Waring-type problems to
be used efficiently (and rigorously) in the context of our proof. This heuristic says that,
the more variables that occur in the Waring-type equation, the easier is to find a solution.
Manipulating the parameter r (usually taking r to be very large), we can always decide how
many variables we have at our disposal, making the operators in our questions “smoother
and smoother”.

(ii) Our main new construction in this paper is what we call a nilpotent circle method, an
iterative procedure, starting from the center of the group and moving down along its central
series, that allows us to use some of the ideas of the classical circle method recursively at
every stage. In our case of nilpotent groups of step two, the procedure consists of two basic
iterations and one additional step corresponding to “major arcs”. The key feature of this
approach is that it is adapted to the classical delta function as in (1.18). The minor arcs
analysis needs two types of Weyl’s inequalities: the classical one as well as the nilpotent
one in the spirit of Davenport [21] and Birch [9], which was proved in [33]. The major arcs
analysis brings into play some tools that combine continuous harmonic analysis on groups

G#
0 with arithmetic harmonic analysis over finite integer rings modulo Q ∈ Z+.

We outline the argument in Subsection 1.4.1 below.

1.4.1. A nilpotent circle method and `2 theory. To illustrate our main iterative procedure, it suffices
to consider the boundedness of the maximal function Mχ

N on `2(G0). We would like to prove that∥∥ sup
k≥0
|f ∗Gχ

2k
|
∥∥
`2(G0)

. ‖f‖`2(G0). (1.19)

Inequality (1.19) involves a genuinely sublinear operator, preventing a naive implementation of
high order TT ∗ arguments. This contrasts sharply with the situation of singular integral operators
studied in [33]. We begin with a delicate decomposition of the kernels Gχ

2k
adjusted to the nilpotent

structure of the underlying group G0. Notice that these kernels have a product structure

Gχ
2k

(g) := Lk(g
(1))1{0}(g

(2)), Lk(g
(1)) :=

∑
n∈Z

2−kχ(2−kn)1{0}(g
(1) −A(1)

0 (n)), (1.20)

where A
(1)
0 (n) := (n, . . . , nd) ∈ Zd and g = (g(1), g(2)) ∈ G0 as in (1.7).

First stage. We start by decomposing the kernels Gχ
2k

in the central variable. For any integers
s ≥ 0 and m ≥ 1, we define the set of rational fractions

Rms := {a/q : a = (a1, . . . , am) ∈ Zm, q ∈ [2s, 2s+1 − 1] ∩ Z, gcd(a1, . . . , am, q) = 1}. (1.21)

We define also Rm≤a :=
⋃

0≤s≤aRms . For x(1) = (x
(1)
l10) ∈ Rd, x(2) = (x

(2)
l1l2

) ∈ Rd′ and Λ ∈ (0,∞), we
define the partial dilations

Λ ◦ x(1) = (Λl1x
(1)
l10)l1∈{1,...,d} ∈ Rd, Λ ◦ x(2) = (Λl1+l2x

(2)
l1l2

)(l1,l2)∈Y ′d ∈ Rd
′
, (1.22)

which are induced by the group-dilations defined in (1.12). We fix a small constant δ = δ(d) � 1,
a large constant D = D(d) � δ−8, and a smooth even cutoff function η0 : R → [0, 1] such that
1[−1,1] ≤ η0 ≤ 1[−2,2]. For k ≥ D2 and s ≤ δk, we define the periodic Fourier multipliers

Ξk,s(ξ
(2)) :=

∑
a/q∈Rd′s

η≤δk(2
k ◦ (ξ(2) − a/q)), Ξck := 1−

∑
s∈[0,δk]

Ξk,s, (1.23)
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where η≤Λ(x) := η0(|x|/2bΛc) and bΛc := max{n ∈ Z : n ≤ Λ}. Then we decompose

1{0}(g
(2)) =

∑
s∈[0,δk]

∫
Td′

e(g(2).ξ(2))Ξk,s(ξ
(2)) dξ(2) +

∫
Td′

e(g(2).ξ(2))Ξck(ξ
(2)) dξ(2), (1.24)

where g(2).ξ(2) denotes the usual scalar product of vectors in Rd′ and e(z) := e2πiz. This induces
our first stage decomposition Gχ

2k
= Kc

k +
∑

s∈[0,δk]Kk,s, where, with the notation in (1.20),

Kk,s(g) := Lk(g
(1))Nk,s(g

(2)), Kc
k(g) := Lk(g

(1))N c
k(g(2)), (1.25)

and

Nk,s(g
(2)) := η≤δk(2

−k ◦ g(2))

∫
Td′

e(g(2).ξ(2))Ξk,s(ξ
(2)) dξ(2),

N c
k(g(2)) := η≤δk(2

−k ◦ g(2))

∫
Td′

e(g(2).ξ(2))Ξck(ξ
(2)) dξ(2).

(1.26)

The main bounds we prove in the first stage are the first minor arcs estimate,

‖f ∗Kc
k‖`2(G0) . 2−k/D

2‖f‖`2(G0) (1.27)

for any k ≥ D2 and f ∈ `2(G0), and the first transition estimate,∥∥ sup
max(D2,s/δ)≤k≤κs

|f ∗Kk,s|
∥∥
`2(G0)

. 2−s/D
2‖f‖`2(G0) (1.28)

for any s ≥ 0 and f ∈ `2(G0), κs := 22D(s+1)2 .
In the commutative setting, minor arcs estimates such as (1.27) follow using Weyl estimates and

the Plancherel theorem. As we do not have a useful Fourier transform on the group G0, our main
tool to prove the bounds (1.27) is a high order T ∗T argument. More precisely, we analyze the kernel
of the convolution operator {(Kck)∗Kck}r, where Kckf := f ∗Kc

k and r is sufficiently large, and show

that its `1(G0) norm is . 2−k. The main ingredient in this proof is the non-commutative Weyl
estimate in Proposition 2.3 (i), which was proved earlier in [33].

To prove the transition estimates (1.28), we apply the Rademacher–Menshov inequality (2.7)
with a logarithmic loss to reduce to proving the inequality∥∥∥ ∑

k∈[J,2J ]

κk(f ∗Hk,s)
∥∥∥
`2(G0)

. 2−4s/D2∥∥f∥∥
`2(G0)

(1.29)

for any J ≥ max(D2, s/δ) and any coefficients κk ∈ [−1, 1], where Hk,s := Kk+1,s −Kk,s. For this,
we use a high order version of the Cotlar–Stein lemma, which relies again on precise analysis of the
kernel of the convolution operator {(Hk,s)∗Hk,s}r, where Hk,sf := f ∗Hk,s and r is sufficiently large.

The key exponential gain of 2−4s/D2
in (1.29) is due to a non-commutative Gauss sums estimate,

see Proposition 2.3 (ii).

Second stage. In view of (1.27)–(1.28) it remains to prove that∥∥ sup
k≥κs

|f ∗Kk,s|
∥∥
`2(G0)

. 2−s/D
2‖f‖`2(G0) (1.30)

for any fixed integer s ≥ 0. For this, we have to decompose the kernels Kk,s in the non-central

variables. We examine the kernels Lk(g
(1)) in (1.20) and rewrite them as

Lk(g
(1)) = η≤δk(2

−k ◦ g(1))

∫
Td

e(g(1).ξ(1))Sk(ξ
(1)) dξ(1) (1.31)

where g(1).ξ(1) denotes the usual scalar product of vectors in Rd and

Sk(ξ
(1)) :=

∑
n∈Z

2−kχ(2−kn)e(−A(1)
0 (n).ξ(1)). (1.32)
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For any integers Q ≥ 1 and m ≥ 1, we define the set of fractions

R̃mQ := {a/Q : a = (a1, . . . , am) ∈ Zm}. (1.33)

We fix a large denominator Qs := (2Ds+D)! = 1 · 2 · . . . · 2Ds+D and define the periodic multipliers

Ψlow
k,s (ξ(1)) :=

∑
a/q∈R̃dQs

η≤δ′k(2
k ◦ (ξ(1) − a/q)),

Ψk,s,t(ξ
(1)) :=

∑
a/q∈Rdt \R̃dQs

η≤δ′k(2
k ◦ (ξ(1) − a/q)),

Ψc
k(ξ

(1)) := 1−Ψlow
k,s −

∑
t∈[0,δ′k]

Ψk,s,t = 1−
∑

a/q∈Rd≤δ′k

η≤δ′k(2
k ◦ (ξ(1) − a/q)),

(1.34)

where δ′ > δ is a suitable constant and the sets Rdt are as in (1.21). Since k ≥ κs = 22D(s+1)2 ,

it is easy to see that the cutoff functions η≤δ′k(2
k ◦ (ξ(1) − a/q)) have disjoint supports and the

multipliers Ψlow
k,s ,Ψk,s,t,Ψ

c
k take values in the interval [0, 1].

We then define the kernels Llow
k,s , Lk,s,t, L

c
k : Zd → C by

L∗(g
(1)) = φ

(1)
k (g(1))

∫
Td

e(g(1).ξ(1))Sk(ξ
(1))Ψ∗(ξ

(1)) dξ(1), (1.35)

where Ψ∗ ∈ {Ψlow
k,s ,Ψk,s,t,Ψ

c
k}, and, finally, our main kernels Glow

k,s , Gk,s,t, G
c
k,s : Zd → C by

G∗(g) := L∗(g
(1))Nk,s(g

(2)). (1.36)

The estimates we prove at this stage are the second minor arcs estimate,

‖f ∗Gck,s‖`2(G0) . 2−k/D
2‖f‖`2(G0) (1.37)

for any s ≥ 0, k ≥ 22D(s+1)2 , and f ∈ `2(G0), and the second transition estimate,∥∥ sup
max(κs,t/δ)≤k≤κt

|f ∗Gk,s,t|
∥∥
`2(G0)

. 2−t/D
2‖f‖`2(G0) (1.38)

for any s ≥ 0, t ≥ Ds+D, and f ∈ `2(G0), where κt := 22D(t+1)2 .
The proofs of these estimates are similar to the proofs of the corresponding first stage estimates

(1.27)–(1.28), using high order T ∗T arguments. Surprisingly, instead of using the non-commutative
oscillatory sums estimates in Proposition 2.3, we only use the classical ones from Proposition 2.2
here. We emphasize, however, that the underlying nilpotent structure is very important and that
these estimates are only possible after performing the two reductions in the first stage, namely,
the restriction to major arcs corresponding to denominators ' 2s and the restriction to parameters
k ≥ κs. We finally remark that, if we applied the circle method simultaneously to both central
and non-central variables, we would encounter serious difficulties that do not allow for an efficient
control of the phase functions arising in the corresponding exponential sums and oscillatory integrals,
especially on major arcs.

Final stage. After these reductions, it remains to bound the contributions of the “major arcs” in
both the central and the non-central variables. More precisely, we prove the bounds∥∥ sup

k≥κs
|f ∗Glow

k,s |
∥∥
`2(G0)

. 2−s/D
2‖f‖`2(G0),∥∥ sup

k≥κt
|f ∗Gk,s,t|

∥∥
`2(G0)

. 2−t/D
2‖f‖`2(G0),

(1.39)

for any s ≥ 0, t ≥ Ds+D, and f ∈ `2(G0).
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The main idea here is different: we write the kernels Glow
k,s and Gk,s,t as tensor products of two

components up to acceptable errors. One of these components is essentially a maximal average
operator on a continuous group, which can be analyzed using the classical method of Christ [17].
The other component is an arithmetic operator-valued analogue of the classical Gauss sums, which

generates the key exponential factors 2−s/D
2

and 2−t/D
2

in (1.39).

1.4.2. `p theory and variation norms. The problem of passing from `2 estimates to `p estimates in
the context of discrete polynomial averages has been investigated extensively in recent years (see,
for example, [44] and the references therein), and we will be somewhat brief on this.

The full `p(G0) bounds in Theorem 1.3 rely on first proving `2(G0) bounds. In fact, we first
establish (1.17) for p = 2 and ρ > 2, by following essentially the steps described above. Then we
use the positivity of the operators Mχ

N (i.e. Mχ
N (f) ≥ 0 if f ≥ 0) to prove the maximal operator

bounds (1.16) for all p ∈ (1,∞]. Finally, we use vector-valued interpolation between the bounds
(1.17) with p = 2 and ρ > 2 and (1.16) with p ∈ (1,∞] to complete the proof of Theorem 1.3.

A new ingredient, which is interesting in its own right, is Proposition 9.4, which provides `p(HQ)
bounds for the so-called shifted maximal inequality, see [51, Section 5.10, p. 78] as well as [48,
Section 4.2.4, p. 148] for similar results in the commutative setting. Tools of these kinds are not
apparent in the commutative theory as the delta function (1.18) correctly detects the underlying
convolution structure. In our case, as we mentioned above, there is no delta function that would
be compatible with the convolution structure on G0. This is a serious obstruction, which forced us
to establish Proposition 9.4. This completes the outline of the proof of Theorem 1.3.

1.4.3. General nilpotent groups. The primary goal is, of course, to establish the full Conjecture 1.1
in the linear m = 1 case for arbitrary invertible measure-preserving transformations T1, . . . , Td that
generate a nilpotent group of any step k ≥ 2. The iterative argument we have outlined in Section
1.4.1 could, in principle, be extended to higher step groups, at least as long as the group and the
polynomial sequence have suitable “universal”-type structure, as one could try to go down along
the central series of the group and prove minor arcs and transition estimates at every stage.

However, this is only possible if one can prove suitable analogues of the nilpotent Weyl’s inequal-
ities in Proposition 2.3 on general nilpotent groups of step k ≥ 3. The point is to have a small
(not necessarily optimal, but nontrivial) gain for bounds on oscillatory sums over many variables,
corresponding to the kernels of high power (T ∗T )r operators, whenever frequencies are restricted to
the minor arcs. In our case, the formulas are explicit, see the identities (2.23), and we can use ideas
of Davenport [21] and Birch [9] for Diophantine forms in many variables to control the induced os-
cillatory sums, but the analysis seems to be more complicated for the higher step nilpotent groups.
This is an interesting problem in its own right, corresponding to Waring-type problems on nilpotent
groups, which may be interpreted as a question about solutions of suitable systems of Diophantine
equations induced by the moment curve on G0. A qualitative variant of the Waring problem in the
context of nilpotent groups was recently investigated in [30, 31], see also the references given there.

Nevertheless, we hope that the methods of the proof of Theorem 1.3 will be useful to establish a
quantitative variant of the Waring problem on G0 in the spirit of the asymptotic formula of Hardy
and Littlewood as in the classical Waring problem. We plan to investigate this question as well as
its connections with Conjecture 1.1 in the near future.

1.5. Acknowledgements. This work was started in collaboration with Steve Wainger. The au-
thors would like to thank him for his mentorship and friendship over many years and for many
inspiring discussions on this topic. We also thank Bartosz Langowski for reading the manuscript at
the very early stages of our work. Finally, we thank the referees for careful reading of the manuscript
and useful remarks that led to the improvement of the presentation.
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1.6. Organization. In Section 2, we summarize our main notation and collect some important
lemmas. In Section 3, we show how to use the conclusions of Theorem 1.3 to prove Theorem 1.2.
In Section 4, we outline the main `2(G0) argument in the proof of Theorem 1.3 and divide this
argument into five lemmas. In Sections 5, 6, 7, and 8, we prove these lemmas, starting with the
minor arcs estimates in Lemmas 4.2 and 4.4, the major arcs estimates in Lemma 4.5, and the (more
difficult) transition estimates in Lemmas 4.3 and 4.6. In Section 9, we prove the maximal `p(G0)
estimates (1.16), p ∈ (1,∞), using some of the more technical estimates in Appendices A and B.

2. Notation and preliminaries

In this section we set up most of our notation and state some important lemmas that will be
used in the rest of the paper.

2.1. Basic notation. The sets of positive integers and nonnegative integers will be denoted by
Z+ := {1, 2, . . .} and N := {0, 1, 2, . . .}. For d ∈ Z+ the sets Zd, Rd, Cd and Td := Rd/Zd have
standard meaning. We denote R+ := (0,∞) and Zq := {1, . . . , q} for q ∈ Z+.

For any x ∈ R we let bxc denote its integer part, bxc := max{n ∈ Z : n ≤ x}. For any a ∈ Cd
we will use the Japanese bracket notation 〈a〉 := (1 + |a|2)1/2. For any sequence (ak)k∈Z of complex
numbers we define the difference operator by

∆kak := ak+1 − ak. (2.1)

We use 1A to denote the indicator function of a set A. We let C > 0 denote general constants
which may change from occurrence to occurrence. For two nonnegative quantities A,B we write
A . B if there is an absolute constant C > 0 such that A ≤ CB. We will write A ' B when
A . B . A. For two quantities A,B we will use A� B to indicate that there is a small constant
C > 0 such that |A| ≤ CB. We will write .δ or 'δ or �δ to emphasize that the implicit constants
may depend on the parameter δ.

2.1.1. Function spaces. For an open set U ⊆ Rd let C(U) denote the space of continuous functions
f : U → C. Let Cn(U) ⊂ C(U) denote the space of continuous functions f on U whose partial
derivatives of order ≤ n ∈ Z+ all exist and are continuous, and C∞(U) :=

⋂
n∈Z+

Cn(U). The

partial derivatives of a function f : Rd → C will be denoted by ∂xjf = ∂jf ; for any multi-index

α ∈ Nd let ∂αf denote the derivative operator ∂α1
1 · · · ∂

αd
d f of total order |α| := α1 + . . .+ αd.

Given a measure space Y we let Lp(Y ), p ∈ [1,∞], denote the standard Lebesgue spaces of
complex-valued functions on Y . These spaces can be extended to functions taking values in a finite
dimensional normed vector space (B, ‖ · ‖B),

Lp(Y ;B) :=
{
F : Y → B measurable : ‖F‖Lp(Y ;B) := ‖‖F‖B‖Lp(Y ) <∞

}
.

In our case we will usually have X = G#
0 or X = Rd or X = Td equipped with the Lebesgue

measure, and X = G0 or X = Zd endowed with the counting measure. If X is endowed with
counting measure we will shorten Lp(X) to `p(X) and Lp(X;B) to `p(X;B).

2.1.2. The Fourier transform. The standard inner product on Rm, m ≥ 1, is denoted by

x.ξ :=
m∑
k=1

xkξk (2.2)

for every x = (x1, . . . , xm), ξ = (ξ1, . . . , ξm) ∈ Rm. Letting e(z) := e2πiz, z ∈ C, the (Euclidean)
Fourier transform and inverse Fourier transform of functions f ∈ L1(Rm) will be denoted by

FRmf(ξ) :=

∫
Rm

f(x)e(−x.ξ) dx, F−1
Rmf(x) :=

∫
Rm

f(ξ)e(x.ξ) dξ.

We shall also abbreviate f̂ = FRmf .
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2.2. ρ-variations. For any family (at : t ∈ I) of elements of C indexed by a totally ordered set I,
and any exponent 1 ≤ ρ <∞, the ρ-variation seminorm is defined by

V ρ(at)t∈I = V ρ(at : t ∈ I) := sup
J∈Z+

sup
t0<···<tJ
tj∈I

( J−1∑
j=0

|a(tj+1)− a(tj)|ρ
)1/ρ

, (2.3)

where the supremum is taken over all finite increasing sequences in I.
It is easy to see that ρ 7→ V ρ is non-increasing, and for every t0 ∈ I one has

sup
t∈I
|at| ≤ |at0 |+ V ρ(at : t ∈ I) ≤ sup

t∈I
|at|+ V ρ(at : t ∈ I) =: Ṽ ρ(at : t ∈ I). (2.4)

Notice that Ṽ ρ clearly defines a norm on the space of functions from I to C. Moreover

Ṽ ρ(at : t ∈ I) . Ṽ ρ(at : t ∈ I1) + Ṽ ρ(at : t ∈ I2) (2.5)

whenever I = I1 ∪ I2 is an ordered partition of I, that is max I1 = min I2. Finally, if I is at most
countable, then

Ṽ ρ(at : t ∈ I) .
(∑
t∈I
|at|ρ

)1/ρ
. (2.6)

We also recall from [46, Lemma 2.5] the Rademacher–Menshov inequality, which asserts that for
any 2 ≤ ρ < ∞ and j0,m ∈ N so that j0 < 2m and any sequence of complex numbers (ak : k ∈ N)
we have

V ρ(aj : j0 ≤ j ≤ 2m) ≤
√

2
m∑
i=0

( ∑
j∈[j02−i,2m−i−1]∩Z

∣∣∣a(j+1)2i − aj2i)
∣∣∣2)1/2

. (2.7)

Finally, for every family of measurable functions (at : t ∈ I) ⊆ C by a slight abuse of notation we
continue to write

‖V ρ(at : t ∈ I)‖Lp(X) = ‖(at)t∈I‖Lp(X;V ρ).

2.3. Products and convolutions on the group G0. We now establish formulas that will be
repeatedly used in the proof of Theorem 1.3.

Many of our `2(G0) estimates will be based on high order T ∗T arguments. Let S1, T1, . . . , Sr, Tr :
`2(G0)→ `2(G0) be convolution operators defined by some `1(G0) kernels L1,K1, . . . , Lr,Kr : G0 →
C, i.e. Sjf = f ∗Lj and Tjf = f ∗Kj for j ∈ {1, . . . , r}. Then the adjoint operators S∗1 , . . . , S

∗
r are

also convolution operators, defined by the kernels L∗1, . . . , L
∗
r given by L∗j (g) := Lj(g−1). Moreover,

using (1.14), for any f ∈ `2(G0) and x ∈ G0, we have

(S∗1T1 . . . S
∗
rTrf)(x) =

∑
h1,g1,...,hr,gr∈G0

{ r∏
j=1

L∗j (hj)Kj(gj)
}
f(g−1

r · h−1
r · . . . · g−1

1 · h
−1
1 · x). (2.8)

In other words (S∗1T1 . . . S
∗
rTrf)(x) = (f ∗Ar)(x), where the kernel Ar is given by

Ar(y) :=
∑

h1,g1,...,hr,gr∈G0

{ r∏
j=1

Lj(hj)Kj(gj)
}
1{0}(g

−1
r · hr · . . . · g−1

1 · h1 · y). (2.9)

To use these formulas we decompose hj = (h
(1)
j , h

(2)
j ), gj = (g

(1)
j , g

(2)
j ) as in (1.7). Then

[h−1
1 · g1 · . . . · h−1

r · gr](1) =
∑

1≤j≤r
(−h(1)

j + g
(1)
j ), (2.10)
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[h−1
1 · g1 · . . . · h−1

r · gr](2) =
∑

1≤j≤r

{
− (h

(2)
j − g

(2)
j ) +R0(h

(1)
j , h

(1)
j − g

(1)
j )
}

+
∑

1≤l<j≤r
R0(−h(1)

l + g
(1)
l ,−h(1)

j + g
(1)
j ),

(2.11)

as a consequence of applying (1.9) inductively. In most of our applications the operators S1, T1, . . . , Sr, Tr
are equal and defined by a kernel K that has product structure, i.e.

S1f = T1f = . . . = Srf = Trf = f ∗K, K(g) = K(g(1), g(2)) = K(1)(g(1))K(2)(g(2)). (2.12)

In this case we can derive an additional formula for the kernel Ar. We use the identity

1{0}(x
−1 · y) =

∫
Td×Td′

e((y(1) − x(1)).θ(1))e((y(2) − x(2)).θ(2)) dθ(1)dθ(2)

and the formula (2.9) to write

Ar(y) =

∫
Td×Td′

e
(
y(1).θ(1)

)
e
(
y(2).θ(2)

)
Σr
(
θ(1), θ(2)

)
dθ(1)dθ(2), (2.13)

where

Σr
(
θ(1), θ(2)

)
:=

∑
hj ,gj∈G0

{ r∏
j=1

K(hj)K(gj)
} 2∏
i=1

e
(
− [h−1

1 · g1 · . . . · h−1
r · gr](i).θ(i)

)
.

Recalling the product formula (2.12) we can write

Σr
(
θ(1), θ(2)

)
= Πr

(
θ(1), θ(2)

)
Ωr
(
θ(2)
)
, (2.14)

for any (θ(1), θ(2)) ∈ Td × Td′ , where

Πr
(
θ(1), θ(2)

)
:=

∑
h
(1)
j ,g

(1)
j ∈Zd

{ r∏
j=1

K(1)(h
(1)
j )K(1)(g

(1)
j )
}
e
(
θ(1).

∑
1≤j≤r

(h
(1)
j − g

(1)
j )
)

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(h
(1)
j , h

(1)
j − g

(1)
j ) +

∑
1≤l<j≤r

R0(−h(1)
l + g

(1)
l ,−h(1)

j + g
(1)
j )
}) (2.15)

and

Ωr
(
θ(2)
)

:=
∑

h
(2)
j ,g

(2)
j ∈Zd

′

{ r∏
j=1

K(2)(h
(2)
j )K(2)(g

(2)
j )
}
e
(
θ(2).

∑
1≤j≤r

(h
(2)
j − g

(2)
j )
)

=
∣∣∣ ∑
g(2)∈Zd′

K(2)(g(2))e
(
− θ(2).g(2)

)∣∣∣2r. (2.16)

2.4. Exponential sums and oscillatory integrals. We will often use the following estimates,
which follow easily using the Poisson summation formula and integration by parts.

Lemma 2.1. Assume that m,M ∈ Z+ satisfy M ≥ m+ 1, and f : Rm → C is a CM (R) compactly
supported function. Then, for any ξ ∈ [−1/2, 1/2]m, we have∣∣∣ ∑

n∈Zm
f(n)e(n.ξ)−

∫
Rm

f(x)e(x.ξ) dx
∣∣∣ .M ∫

Rm

m∑
n=1

|∂Mn f(x)| dx. (2.17)

As a consequence, for any j ∈ {1, . . . ,m} we have∣∣∣ ∑
x∈Zm

f(x)e(x.ξ)
∣∣∣ .M |ξj |−M ∫

Rm
|∂Mj f(x)| dx+

∫
Rm

m∑
n=1

|∂Mn f(x)| dx. (2.18)
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Many of our arguments will rely on estimates of exponential sums and oscillatory integrals in-
volving polynomial phases. We record first some classical Weyl-type estimates, which are proved
for example in [52, Proposition 1]:

Proposition 2.2. (i) Assume that P ≥ 1 is an integer and φP : R → R is a C1(R) function
satisfying

|φP | ≤ 1[−P,P ],

∫
R

∣∣φ′P (x)
∣∣ dx ≤ 1. (2.19)

Assume that ε > 0 and θ = (θ1, . . . , θd) ∈ Rd has the property that there is l ∈ {1, . . . , d} and an
irreducible fraction a/q ∈ Q with q ∈ Z+, such that

|θl − a/q| ≤ 1/q2 and q ∈ [P ε, P l−ε]. (2.20)

Then there is a constant C = Cd ≥ 1 such that∣∣∣∑
n∈Z

φP (n)e
(
− (θ1n+ . . .+ θdn

d)
)∣∣∣ .ε P 1−ε/C . (2.21)

(ii) For any irreducible fraction θ = a/q ∈ (Z/q)d, a = (a1, . . . , ad) ∈ Zd, q ∈ Z+, we have∣∣∣q−1
∑
n∈Zq

e
(
− (θ1n+ . . .+ θdn

d)
)∣∣∣ . q−1/C . (2.22)

We will also need non-commutative versions of these Weyl estimates. With the notation in Section

1.3, for r ∈ Z+ let D, D̃ : Rr × Rr → G#
0 , given by

D((n1, . . . , nr), (m1, . . . ,mr)) := A0(n1)−1 ·A0(m1) · . . . ·A0(nr)
−1 ·A0(mr),

D̃((n1, . . . , nr), (m1, . . . ,mr)) := A0(n1) ·A0(m1)−1 · . . . ·A0(nr) ·A0(mr)
−1.

(2.23)

By definition, we have

[A0(n)]l1l2 =

{
nl1 if l2 = 0,

0 if l2 ≥ 1,
[A0(n)−1]l1l2 =

{
−nl1 if l2 = 0,

nl1+l2 if l2 ≥ 1.

Thus, using (2.10) and (2.11), for x = (x1, . . . , xr) ∈ Rr and y = (y1, . . . , yr) ∈ Rr one has

[D(x, y)]l1l2 =


r∑
j=1

(yl1j − x
l1
j ) if l2 = 0,∑

1≤j1<j2≤r
(yl1j1 − x

l1
j1

)(yl2j2 − x
l2
j2

) +
r∑
j=1

(xl1+l2
j − xl1j y

l2
j ) if l2 ≥ 1,

(2.24)

and

[D̃(x, y)]l1l2 =


r∑
j=1

(xl1j − y
l1
j ) if l2 = 0,∑

1≤j1<j2≤r
(xl1j1 − y

l1
j1

)(xl2j2 − y
l2
j2

) +
r∑
j=1

(yl1+l2
j − xl1j y

l2
j ) if l2 ≥ 1.

(2.25)

For P ∈ Z+ assume φ
(j)
P , ψ

(j)
P : R→ R, j ∈ {1, . . . , r}, are C1(R) functions with the properties

sup
1≤j≤r

[∣∣φ(j)
P

∣∣+
∣∣ψ(j)
P

∣∣] ≤ 1[−P,P ], sup
1≤j≤r

∫
R

∣∣[φ(j)
P ]′(x)

∣∣+
∣∣[ψ(j)

P ]′(x)
∣∣ dx ≤ 1. (2.26)

For θ = (θl1l2)(l1,l2)∈Yd ∈ R|Yd|, r ∈ Z+, and P ∈ Z+ let

SP,r(θ) =
∑

n,m∈Zr
e(−D(n,m).θ)

{ r∏
j=1

φ
(j)
P (nj)ψ

(j)
P (mj)

}
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and

S̃P,r(θ) =
∑

n,m∈Zr
e(−D̃(n,m).θ)

{ r∏
j=1

φ
(j)
P (nj)ψ

(j)
P (mj)

}
,

where D and D̃ are defined as in (2.24)–(2.25).
The following key estimates are proved in [33, Proposition 5.1 and Lemma 3.1]:

Proposition 2.3. (i) For any ε > 0 there is r = r(ε, d) ∈ Z+ sufficiently large such that for all
P ∈ Z+ we have

|SP,r(θ)|+ |S̃P,r(θ)| .ε P 2rP−1/ε, (2.27)

provided that there is (l1, l2) ∈ Yd and an irreducible fraction a/q ∈ Q, q ∈ Z+, such that

|θl1l2 − a/q| ≤ 1/q2 and q ∈ [P ε, P l1+l2−ε]. (2.28)

(ii) For any irreducible fraction a/q ∈ Q, a = (al1l2)(l1,l2)∈Yd ∈ Z|Yd|, q ∈ Z+, we define the
arithmetic coefficients

G(a/q) := q−2r
∑

v,w∈Zrq

e
(
−D(v, w).(a/q)

)
, G̃(a/q) := q−2r

∑
v,w∈Zrq

e
(
− D̃(v, w).(a/q)

)
. (2.29)

Then for any ε > 0 there is r = r(ε, d) ∈ Z+ sufficiently large such that

|G(a/q)|+ |G̃(a/q)| .ε q−1/ε. (2.30)

We will also use a related integral estimate, see Lemma 5.4 in [33]:

Proposition 2.4. Given ε > 0 there is r = r(ε, d) sufficiently large as in Proposition 2.3 such that∣∣∣ ∫
Rr×Rr

{ r∏
j=1

φj(xj)ψj(yj)
}
e(−D(x, y).β

)
dxdy

∣∣∣ . 〈β〉−1/ε,

∣∣∣ ∫
Rr×Rr

{ r∏
j=1

φj(xj)ψj(yj)
}
e(−D̃(x, y).β

)
dxdy

∣∣∣ . 〈β〉−1/ε,

(2.31)

for any β ∈ R|Yd| and for any C1(R) functions φ1, ψ1, . . . , φr, ψr : R → C satisfying, for any
j ∈ {1, . . . , r}, the following bound

|φj(x)|+ |∂xφj(x)|+ |ψj(x)|+ |∂xψj(x)| . 1[−1,1](x).

3. Ergodic theorems: Proof of Theorem 1.2

Assuming momentarily that Theorem 1.3 has been proved we will illustrate how to use it to
establish Theorem 1.2. For this purpose we introduce a smoothed variant of average (1.1).

Let d1 ∈ Z+. Given any family T1, . . . , Td1 : X → X of invertible measure-preserving transforma-
tions, a measurable function f ∈ Lp(X), p ∈ [1,∞], polynomials P1, . . . , Pd1 ∈ Z[n], a real number
N ≥ 1, and a smooth function χ : R → [0, 1] supported on the interval [−2, 2] we can define a

smoothed polynomial ergodic average A
P1,...,Pd1
N ;X,χ (f) ∈ Lp(X) by the formula

A
P1,...,Pd1
N ;X,χ (f)(x) :=

∑
n∈Z

N−1χ(N−1n)f(T
P1(n)
1 · · ·TPd1 (n)

d1
x), x ∈ X. (3.1)
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3.1. Calderón transference principle. We now establish a variant of the Calderón transference
principle [16], which will allow us to deduce maximal and ρ-variational estimates for smoothed
averages (3.1) from the corresponding estimates for the averages Mχ

N along the moment curve A0

on the group G0, see Theorem 1.3.

Proposition 3.1. Let d1 ∈ Z+ be given and let T1, . . . , Td1 : X → X be a family of invert-
ible measure-preserving transformations of a σ-finite measure space (X,B(X), µ) that generates a
nilpotent group of step two. Let P1, . . . , Pd1 ∈ Z[n] be such that Pj(0) = 0, 1 ≤ j ≤ d1, and let

d2 := max{degPj : j ∈ {1, . . . , d1}}. Assume f ∈ Lp(X) for some 1 ≤ p ≤ ∞, and let A
P1,...,Pd1
N ;X,χ (f)

be the average defined in (3.1) corresponding to a smooth function χ : R → [0, 1] supported on the
interval [−2, 2]. Let Mχ

N be the average from Theorem 1.3.

(i) If Mχ
N satisfies (1.16) for some 1 < p ≤ ∞ then∥∥ sup

N∈Z+

|AP1,...,Pd1
N ;X,χ (f)|

∥∥
Lp(X)

.d1,d2,p,χ ‖f‖Lp(X). (3.2)

(ii) If Mχ
N satisfies (1.17) for some 1 < p <∞, ρ > max

{
p, p

p−1

}
and τ ∈ (1, 2], then∥∥V ρ

(
A
P1,...,Pd1
N ;X,χ (f) : N ∈ Dτ

)∥∥
Lp(X)

.d1,d2,p,ρ,τ,χ ‖f‖Lp(X), (3.3)

where Dτ = {τn : n ∈ N}.

Proof. We proceed in two steps. We perform first a lifting procedure, which allows us to replace
the polynomials P1, . . . , Pd1 with the moment curve A0 from (1.11). Then we can employ the ideas
from the transference principle [16] to complete the proof.

Step 1. Let G := G[T1, . . . , Td1 ] be a nilpotent group of step two generated by T1, . . . , Td1 , so

[[Ti, Tj ], Tl] = Id, for all i, j, l ∈ {1, . . . , d1}, (3.4)

where [S, T ] := S−1T−1ST denotes the commutator of any two invertible maps S, T : X → X.
Define Sij := [Ti, Tj ] = T−1

i T−1
j TiTj , for i, j ∈ {1, . . . , d1}, then by (3.4) note that TiTj = TjTiSij ,

and TkSij = SijTk for all i, j, k ∈ {1, . . . , d1}. Hence

d1∏
i=1

Tmii

d1∏
j=1

T
nj
j =

d1∏
j=1

T
mj+nj
j

∏
1≤i<j≤d1

S
mjni
ji . (3.5)

Formula (3.5) gives rise to a homomorphism T : G0(d1)→ G defined by

T (g) :=

d1∏
l1=1

T
ml10
l1

∏
1≤l2<l1≤d1

S
ml1l2
l1l2

, for any g = (ml1l2)(l1,l2)∈Yd1 ∈ G0(d1).

Let A : Z→ G0(d1) be defined by A(n) := (P1(n), . . . , Pd1(n), 0, . . . , 0)−1 and note that

T (A(n)−1) = T
P1(n)
1 · · ·TPd1 (n)

d1
. (3.6)

In view of [33, Lemma 2.2] there exists d ∈ Z+ depending only on the integers d1, d2 ∈ Z+, and a

homomorphism Φ : G0(d)→ G#
0 (d1) such that for all n ∈ Z one has

A(n) = Φ(A0(n)). (3.7)

From the proof of [33, Lemma 2.2] one can easily deduce that for every g ∈ G0(d) we have Φ(g) ∈
Zd1 × (Z/2)d

′
1 . Combining (3.6) with (3.7) we see that the group Φ−1[G0(d1)] acts on X via

Φ−1[G0(d1)]×X 3 (g, x) 7→ g � x ∈ X defined by g � x = (T ◦ Φ(g))x, which allows us to write

A
P1,...,Pd1
N ;X,χ (f)(x) =

∑
n∈Z

N−1χ(N−1n)f(A0(n)−1 � x). (3.8)
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Step 2. We now prove (3.2) and (3.3). We will only prove (3.3), since the proof of (3.2) is
similar and we omit the details. Define fxL(g) := f(g�x)1[−1,1]d+d′ (L

−1 ◦g)1Φ−1[G0(d1)](g) for L > 0,

x ∈ X and g ∈ G0(d). Using (3.8) and the fact that g2 ∈ Φ−1[G0(d1)], g ∈ G0(d), observe that for

g ∈ G0(d) obeying L−1 ◦ g ∈ [−1, 1]d+d′ one has

V ρ
(
A
P1,...,Pd1
N ;X,χ (f)(g2 � x) : N ∈ Dτ ∩ [1, L]

)
= V ρ

(
Mχ
N (fxCL)(g2) : N ∈ Dτ ∩ [1, L]

)
for some large absolute constant C > 0 depending only on d.

Summing over all g ∈ G0(d) obeying L−1 ◦ g ∈ [−1, 1]d+d′ , and integrating over X, we have( ∏
(l1,l2)∈Yd

Ll1+l2
)∥∥V ρ

(
A
P1,...,Pd1
N ;X,χ (f) : N ∈ Dτ ∩ [1, L]

)∥∥p
Lp(X)

.
∫
X

∥∥V ρ
(
Mχ
N (fxCL) : N ∈ Dτ

)∥∥p
`p(G0)

dµ(x)

.
∫
X
‖fxCL‖

p
`p(G0)dµ(x)

.
( ∏

(l1,l2)∈Yd

Ll1+l2
)
‖f‖pLp(X),

(3.9)

using also (1.17) in the second estimate. Dividing both sides of (3.9) by
∏

(l1,l2)∈Yd L
l1+l2 and letting

L→∞ we obtain (3.3). �

Having proven estimates (3.2) and (3.3) we can easily complete the proof of Theorem 1.2.

3.2. Proof of Theorem 1.2(iii). Let χ : R→ [0, 1] be a smooth function such that 1[−1,1] ≤ χ ≤
1[−2,2]. Note that

sup
N∈Z+

|AP1,...,Pd1
N ;X (f)(x)| ≤ sup

N∈Z+

A
P1,...,Pd1
N ;X,χ (|f |)(x).

Appealing to (3.2) we conclude (1.3). �

3.3. Proof of Theorem 1.2(ii). By a simple density argument, using the maximal inequality
(1.3), it suffices to establish pointwise convergence for f ∈ Lp(X) ∩ L∞(X) with 1 < p < ∞.
Invoking ρ-variational inequality (3.3) one has

lim
Dτ3M,N→∞

|AP1,...,Pd1
N ;X,χ (f)(x)−AP1,...,Pd1

M ;X,χ (f)(x)| = 0

µ-almost everywhere on X. The same is true for the operators

Ã
P1,...,Pd1
N ;X,χ (f)(x) :=

1

|[−N,N ] ∩ Z|
∑
n∈Z

χ(N−1n)f(T
P1(n)
1 · · ·TPd1 (n)

d1
x), x ∈ X.

Let ε > 0 and pick a smooth function χ : R → [0, 1] such that ‖1[−1,1] − χ‖L1(R) < ε. Fix
f ∈ Lp(X) ∩ L∞(X) such that ‖f‖L∞(X) = 1 and f ≥ 0, and note that

lim sup
Dτ3M,N→∞

|AP1,...,Pd1
N ;X (f)(x)−AP1,...,Pd1

M ;X (f)(x)|

≤ 2 lim sup
Dτ3N→∞

|AP1,...,Pd1
N ;X (f)(x)− ÃP1,...,Pd1

N ;X,χ (f)(x)|

. lim sup
Dτ3N→∞

1

|[−N,N ] ∩ Z|
∑
n∈Z

∣∣χ(N−1n)− 1[−1,1](N
−1n)

∣∣
. ‖1[−1,1] − χ‖L1(R)

. ε,

(3.10)
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for µ-almost all x ∈ X. Letting ε→ 0+ we obtain that the limit

lim
Dτ3N→∞

A
P1,...,Pd1
N ;X (f)(x)

exists µ-almost everywhere on X for every τ ∈ (1, 2]. Using this with τ = 21/s for s ∈ Z+ we obtain
that there exists a function f∗s ∈ Lp(X) such that

lim
n→∞

A
P1,...,Pd1
2n/s;X

(f)(x) = f∗s (x) (3.11)

µ-almost everywhere on X for every s ∈ Z+. Since D2 ⊆ D21/s we conclude that f∗1 = f∗s for
all s ∈ Z+. Now for each s ∈ Z+ and each N ∈ Z+ let (nm)m∈N ⊆ N be a sequence such that

2nN/s ≤ N < 2(nN+1)/s. Then by (3.11) for f ≥ 0 we have

2−1/sf∗1 (x) ≤ lim inf
N→∞

A
P1,...,Pd1
N ;X (f)(x) ≤ lim sup

N→∞
A
P1,...,Pd1
N ;X (f)(x) ≤ 21/sf∗1 (x).

Letting s→∞ we obtain

lim
N→∞

A
P1,...,Pd1
N ;X (f)(x) = f∗1 (x)

µ-almost everywhere on X. This completes the proof of Theorem 1.2(ii). �

3.4. Proof of Theorem 1.2(i). Finally pointwise convergence from Theorem 1.2(ii) combined
with maximal inequality (1.3) and dominated convergence theorem gives norm convergence for any
f ∈ Lp(X) with 1 < p <∞ and the proof of Theorem 1.2 is completed. �

4. Maximal and variational estimates on G0: `
2 theory

In this section we discuss the nilpotent circle method on the discrete group G0, and outline the
proof of the key ρ-variational inequality (1.17) for p = 2 and 2 < ρ <∞.

Assume that τ ∈ (1, 2] is a fixed parameter. The basic case is τ = 2, but we need slightly stronger
bounds for the ergodic theory application, see (3.10). We also fix a smooth function χ : R→ [0, 1]
supported on [−2, 2]. For simplicity of notation, for k ∈ N and x ∈ G0, let

Mkf(x) := Mχ
τk
f(x) =

∑
n∈Z

τ−kχ(τ−kn)f(A0(n)−1 · x) = (f ∗Kk)(x),

Kk(x) := Gχ
τk

(x) =
∑
n∈Z

τ−kχ(τ−kn)1{A0(n)}(x),
(4.1)

see (1.13) and (1.15) for the definitions Mχ
N and GχN respectively.

Our aim is to establish (1.17) for p = 2 and 2 < ρ < ∞, which with the new notation can be
rewritten as follows:

Theorem 4.1. Let τ ∈ (1, 2] and 2 < ρ <∞ be given. Then for any f ∈ `2(G0) one has∥∥V ρ
(
Mk(f) : k ≥ 0

)∥∥
`2(G0)

.d,ρ,τ,χ ‖f‖`2(G0). (4.2)

In particular, one also has ∥∥ sup
k≥0
|Mkf |

∥∥
`2(G0)

.d,τ,χ ‖f‖`2(G0). (4.3)

The proof of Theorem 4.1 will take up Sections 4, 5, 6, 7, and 8. For simplicity of notation, all
the implied constants in this proof are allowed to depend on d, τ, χ, ρ.

We fix η0 : R → [0, 1] a smooth even function such that 1[−1,1] ≤ η0 ≤ 1[−2,2]. For t ∈ R and
integers j ≥ 1 we define

ηj(t) := η0(τ−jt)− η0(τ−j+1t), 1 =
∞∑
j=0

ηj . (4.4)
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For any A ∈ [0,∞) we define

η≤A :=
∑

j∈[0,A]∩Z

ηj . (4.5)

By a slight abuse of notation we also let ηj and η≤A denote the smooth radial functions on Rm,
m ∈ Z+, defined by ηj(x) = ηj(|x|) and η≤A(x) = η≤A(|x|)

To prove Theorem 4.1 we need to decompose the kernels defining the operatorsMk. The kernels
Kk have product structure

Kk(g) := Lk(g
(1))1{0}(g

(2)), Lk(g
(1)) :=

∑
n∈Z

τ−kχ(τ−kn)1{0}(g
(1) −A(1)

0 (n)), (4.6)

where A
(1)
0 (n) := (n, . . . , nd) ∈ Zd and g = (g(1), g(2)) ∈ G0 as in (1.7).

4.1. The main decomposition. We first decompose the singular kernel 1{0}(g
(2)) in the central

variable g(2) into smoother kernels. For any s ∈ N and m ∈ Z+ we define the set of rational fractions

Rms := {a/q : a = (a1, . . . , am) ∈ Zm, q ∈ [τ s, τ s+1) ∩ Z, gcd(a1, . . . , am, q) = 1}. (4.7)

We define also Rm≤a :=
⋃

0≤s≤aRms . For x(1) = (x
(1)
l10)l1∈{1,...,d} ∈ Rd, x(2) = (x

(2)
l1l2

)(l1,l2)∈Y ′d ∈ Rd′

and Λ ∈ (0,∞) we define the partial dilations

Λ ◦ x(1) = (Λl1x
(1)
l10)l1∈{1,...,d} ∈ Rd, Λ ◦ x(2) = (Λl1+l2x

(2)
l1l2

)(l1,l2)∈Y ′d ∈ Rd
′
, (4.8)

which are induced by the group-dilations defined in (1.12).

We fix two small constants δ = δ(d) � δ′ = δ′(d) such that δ′ ∈ (0, (10d)−10] and δ ∈ (0, (δ′)4],
and a large constant D = D(d) � δ−8. These constants depend on arithmetic properties of the
polynomial sequence A0, more precisely on the structural constants in Propositions 2.2–2.4. For
example, we could take δ′ = (10d)−10, then take δ = δ′/C1, where C1 is a large constant depending
on the constant C in Proposition 2.2. Then we fix an integer r = r(δ) ≥ δ−4 such that the bounds
in Propositions 2.3–2.4 hold with ε = δ4, and then take D := brδ−4c+ 1. To summarize

1� 1/δ′ � 1/δ � r � D. (4.9)

For k ≥ (D/ ln τ)2 we fix two cutoff functions φ
(1)
k : Rd → [0, 1], φ

(2)
k : Rd′ → [0, 1], such that

φ
(1)
k (g(1)) := η≤δk(τ

−k ◦ g(1)), φ
(2)
k (g(2)) := η≤δk(τ

−k ◦ g(2)). (4.10)

For k,w ∈ N so that k ≥ (D/ ln τ)2 and 0 ≤ w ≤ k and for any 1-periodic sets of rationals A ⊆ Qd,

B ⊆ Qd′ we define the periodic Fourier multipliers by

Ψk,w,A(ξ(1)) :=
∑
a/q∈A

η≤δ′w(τk ◦ (ξ(1) − a/q)), ξ(1) ∈ Td,

Ξk,w,B(ξ(2)) :=
∑
b/q∈B

η≤δw(τk ◦ (ξ(2) − b/q)), ξ(2) ∈ Td
′
.

(4.11)

For k ≥ (D/ ln τ)2 and s ∈ [0, δk] ∩ Z we define the periodic Fourier multipliers Ξk,s : Rd′ → [0, 1],

Ξk,s(ξ
(2)) := Ξk,k,Rd′s

(ξ(2)) =
∑

a/q∈Rd′s

η≤δk(τ
k ◦ (ξ(2) − a/q)). (4.12)

For k ≥ (D/ ln τ)2 we write

1{0}(g
(2)) =

∫
Td′

e(g(2).ξ(2)) dξ(2)

=
∑

s∈[0,δk]∩Z

∫
Td′

e(g(2).ξ(2))Ξk,s(ξ
(2)) dξ(2) +

∫
Td′

e(g(2).ξ(2))Ξck(ξ
(2)) dξ(2),

(4.13)
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where g(2).ξ(2) denotes the usual scalar product of vectors in Rd′ and

Ξck := 1−
∑

s∈[0,δk]∩Z

Ξk,s. (4.14)

Then we decompose Kk = Kc
k +

∑
s∈[0,δk]∩ZKk,s, where, with the notation in (4.6), we have

Kk,s(g) := Lk(g
(1))Nk,s(g

(2)), Kc
k(g) := Lk(g

(1))N c
k(g(2)), (4.15)

and

Nk,s(g
(2)) := φ

(2)
k (g(2))

∫
Td′

e(g(2).ξ(2))Ξk,s(ξ
(2)) dξ(2),

N c
k(g(2)) := φ

(2)
k (g(2))

∫
Td′

e(g(2).ξ(2))Ξck(ξ
(2)) dξ(2).

(4.16)

We first show that we can bound the contributions of the minor arcs in the central variables:

Lemma 4.2. For any integer k ≥ (D/ ln τ)2 and f ∈ `2(G0) we have

‖f ∗Kc
k‖`2(G0) . τ

−k/D2‖f‖`2(G0). (4.17)

This is proved in Section 5.1 below.
We now turn to the operators Kk,s, and show first that we can bound the contributions corre-

sponding to scales k ≥ 0 being not very large. More precisely, for any s ≥ 0 we define

κs := 2(D/ ln τ)(s+1)2 . (4.18)

Lemma 4.3. For any integer s ≥ 0 and f ∈ `2(G0) we have∥∥V ρ(f ∗Kk,s : max((D/ ln τ)2, s/δ) ≤ k < 2κs)
∥∥
`2(G0)

. τ−s/D
2‖f‖`2(G0) (4.19)

and ∥∥ sup
max((D/ ln τ)2,s/δ)≤k<2κs

|f ∗Kk,s|
∥∥
`2(G0)

. τ−s/D
2‖f‖`2(G0). (4.20)

This is proved in Section 7 below.
After these reductions, it remains to prove that∥∥V ρ(f ∗Kk,s : k ≥ κs)

∥∥
`2(G0)

. τ−s/D
2‖f‖`2(G0) for any integer s ≥ 0. (4.21)

The kernels Kk,s are now reasonably well adapted to a natural family of non-isotropic balls in
the central variables, at least when τ s ' 1, and we need to start decomposing in the non-central
variables. We examine the kernels Lk(g

(1)) defined in (4.6), and rewrite them in the form

Lk(g
(1)) =

∑
n∈Z

τ−kχ(τ−kn)1{0}(−A
(1)
0 (n) + g(1))

= φ
(1)
k (g(1))

∫
Td

e(g(1).ξ(1))Sk(ξ
(1)) dξ(1),

(4.22)

where g(1).ξ(1) denotes the usual scalar product of vectors in Rd, and

Sk(ξ
(1)) :=

∑
n∈Z

τ−kχ(τ−kn)e(−A(1)
0 (n).ξ(1)). (4.23)

For any integers Q ∈ Z+ and m ∈ Z+ we define the set of fractions

R̃mQ := {a/Q : a = (a1, . . . , am) ∈ Zm}. (4.24)

For any integer s ≥ 0 we fix a large denominator

Qs :=
(⌊
τD(s+1)

⌋)
! = 1 · 2 · . . . ·

⌊
τD(s+1)

⌋
, (4.25)
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and using (4.11) define the periodic multipliers

Ψlow
k,s (ξ(1)) := Ψ

k,k,R̃dQs
(ξ(1)) =

∑
a/q∈R̃dQs

η≤δ′k(τ
k ◦ (ξ(1) − a/q)),

Ψk,s,t(ξ
(1)) := Ψ

k,k,Rdt \R̃dQs
(ξ(1)) =

∑
a/q∈Rdt \R̃dQs

η≤δ′k(τ
k ◦ (ξ(1) − a/q)), (4.26)

Ψc
k(ξ

(1)) := 1−Ψlow
k,s (ξ(1))−

∑
t∈[0,δ′k]∩Z

Ψk,s,t(ξ
(1)) = 1−

∑
a/q∈Rd≤δ′k

η≤δ′k(τ
k ◦ (ξ(1) − a/q)).

Since k ≥ κs = 2(D/ ln τ)(s+1)2 we see that Qs ≤ τ δ
2k. Therefore the supports of the cutoff functions

η≤δ′k(τ
k ◦ (ξ(1)− a/q)) are all disjoint and the multipliers Ψlow

k,s ,Ψk,s,t,Ψ
c
k take values in the interval

[0, 1]. Notice also that Ψk,s,t ≡ 0 unless t ≥ D(s+ 1), and that the cutoffs used in these definitions
depend on δ′k not on δk as in the case of the central variables.

We examine the formula (4.22) and define the kernels Llow
k,s , Lk,s,t, L

c
k : Zd → C by

L∗(g
(1)) = φ

(1)
k (g(1))

∫
Td

e(g(1).ξ(1))Sk(ξ
(1))Ψ∗(ξ

(1)) dξ(1), (4.27)

where (L∗,Ψ∗) ∈ {(Llow
k,s ,Ψ

low
k,s ), (Lk,s,t,Ψk,s,t), (L

c
k,Ψ

c
k)}. For any k ≥ κs we obtain Kk,s = Glow

k,s +∑
t≤δ′kGk,s,t +Gck,s, where the kernels Glow

k,s , Gk,s,t, G
c
k,s : Z|Yd| → C are defined by

Glow
k,s (g) := Llow

k,s (g(1))Nk,s(g
(2)),

Gk,s,t(g) := Lk,s,t(g
(1))Nk,s(g

(2)),

Gck,s(g) := Lck(g
(1))Nk,s(g

(2)).

(4.28)

To prove (4.21) we need to establish Lemmas 4.4–4.6.
Our next lemma shows that the contribution of the minor arcs can be suitably bounded:

Lemma 4.4. For any integers s ≥ 0 and k ≥ κs, and for any f ∈ `2(G0) we have

‖f ∗Gck,s‖`2(G0) . τ
−k/D2‖f‖`2(G0). (4.29)

It remains to bound the contributions of the major arcs in both the central and the non-central
variables. We start with the contributions corresponding to averages over large k.

Lemma 4.5. (i) For any integer s ≥ 0 and f ∈ `2(G0) we have∥∥V ρ(f ∗Glow
k,s : k ≥ κs)

∥∥
`2(G0)

. τ−s/D
2‖f‖`2(G0). (4.30)

In particular, we have ∥∥ sup
k≥κs

|f ∗Glow
k,s |
∥∥
`2(G0)

. τ−s/D
2‖f‖`2(G0). (4.31)

(ii) For any integers s ≥ 0, t ≥ D(s+ 1), and f ∈ `2(G0) we have∥∥V ρ(f ∗Gk,s,t : k ≥ κt)
∥∥
`2(G0)

. τ−t/D
2‖f‖`2(G0). (4.32)

where κt := 2(D/ ln τ)(t+1)2 as in (4.18). In particular, we have∥∥ sup
k≥κt
|f ∗Gk,s,t|

∥∥
`2(G0)

. τ−t/D
2‖f‖`2(G0). (4.33)

Finally, we deal with the operators defined by the kernels Gk,s,t for intermediate values of k.
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Lemma 4.6. For any integers s ≥ 0, and t ≥ D(s+ 1), and f ∈ `2(G0) we have∥∥V ρ(f ∗Gk,s,t : max(κs, t/δ
′) ≤ k < 2κt)

∥∥
`2(G0)

. τ−t/D
2‖f‖`2(G0). (4.34)

In particular, we have∥∥ sup
max(κs,t/δ′)≤k<2κt

|f ∗Gk,s,t|
∥∥
`2(G0)

. τ−t/D
2‖f‖`2(G0). (4.35)

We will prove these lemmas in Sections 5–8. Theorem 4.1 follows from Lemmas 4.2–4.6.
For later use in the `p theory, we will sometimes need to work with slightly more general kernels

on G0. Given two 1-periodic sets of rationals A ⊆ Qd and B ⊆ Qd′ , we define

Kk,w,A,B(g) :=Lk,w,A(g(1))Nk,w,B(g(2)),

K ′k,w,A,B(g) :=L′k,w,A(g(1))Nk,w,B(g(2)),
(4.36)

where

Lk,w,A(g(1)) := φ
(1)
k (g(1))

∫
Td

e(g(1).ξ(1))Ψk,w,A(ξ(1))Sk(ξ
(1)) dξ(1),

L′k,w,A(g(1)) := φ
(1)
k (g(1))

∫
Td

e(g(1).ξ(1))Ψk,w,A(ξ(1))[∆kSk](ξ
(1)) dξ(1),

Nk,w,B(g(2)) := φ
(2)
k (g(2))

∫
Td′

e(g(2).ξ(2))Ξk,w,B(ξ(2)) dξ(2).

(4.37)

The multipliers Ψk,w,A and Ξk,w,B are defined in (4.11) and ∆kSk = Sk+1 − Sk as in (2.1). Us-

ing the definitions, it is easy to see, for example, that Llow
k,s (g(1)) = L

k,k,R̃dQs
(g(1)), Lk,s,t(g

(1)) =

L
k,k,Rdt \R̃dQs

(g(1)), and Nk,s(g
(2)) = Nk,k,Rd′s

(g(2)) as in (4.28).

5. Minor arcs contributions: Proofs of Lemma 4.2 and Lemma 4.4

In this section we use high order T ∗T arguments to bound the minor arcs contributions.

5.1. Proof of Lemma 4.2. We proceed in two steps:
Step 1. We define the operators Kckf := f ∗Kc

k. Set ε = δ4 and fix a positive integer r = r(d)
large enough such that the bounds as in Propositions 2.3 and 2.4 hold. Then

{(Kck)∗Kck}rf(x) = (f ∗Ac,rk )(x),

where, using the formulas (2.13)–(2.16) and (4.15), one has

Ac,rk (y) = η≤3δk(τ
−k ◦ y)

∫
Td×Td′

e
(
y.θ
)
Πc,r
k

(
θ(1), θ(2)

)
Ωc,r
k

(
θ(2)
)
dθ(1)dθ(2), (5.1)

where

Πc,r
k

(
θ(1),θ(2)

)
:=

∑
h
(1)
j ,g

(1)
j ∈Zd

{ r∏
j=1

Lk(h
(1)
j )Lk(g

(1)
j )
}
e
(
θ(1).

∑
1≤j≤r

(h
(1)
j − g

(1)
j )
)

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(h
(1)
j , h

(1)
j − g

(1)
j ) +

∑
1≤l<j≤r

R0(−h(1)
l + g

(1)
l ,−h(1)

j + g
(1)
j )
})

and

Ωc,r
k

(
θ(2)
)

:=
∣∣∣ ∑
g(2)∈Zd′

N c
k(g(2))e

(
− θ(2).g(2)

)∣∣∣2r.
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Using the defining formula (4.6) we can write

Πc,r
k

(
θ
)

= τ−2rk
∑

nj ,mj∈Z

{ r∏
j=1

χ(τ−knj)χ(τ−kmj)
}
e
(
− θ(1).

∑
1≤j≤r

(A
(1)
0 (mj)−A(1)

0 (nj))
)

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(A
(1)
0 (nj), A

(1)
0 (nj)−A(1)

0 (mj))
})

× e
(
− θ(2).

{ ∑
1≤l<j≤r

R0(A
(1)
0 (nl)−A

(1)
0 (ml), A

(1)
0 (nj)−A(1)

0 (mj))
})
.

Using (2.24) it is easy to see that

θ(1).
∑

1≤j≤r
(A

(1)
0 (mj)−A(1)

0 (nj)) + θ(2).
{ ∑

1≤j≤r
R0(A

(1)
0 (nj), A

(1)
0 (nj)−A(1)

0 (mj))
}

+ θ(2).
{ ∑

1≤l<j≤r
R0(A

(1)
0 (nl)−A

(1)
0 (ml), A

(1)
0 (nj)−A(1)

0 (mj))
}

= θ.D(n,m).

Therefore

Πc,r
k

(
θ
)

= τ−2kr
∑

n,m∈Zr

{ r∏
j=1

χ(τ−knj)χ(τ−kmj)
}
e
(
− θ.D(n,m)

)
. (5.2)

We can also derive a good formula for the kernel Ωc,r
k . Letting

Fk(β
(2)) :=

∑
g(2)∈Zd′

η≤δk(τ
−k ◦ g(2))e(−g(2).β(2)) (5.3)

and recalling the definition in (4.16), we have

Ωc,r
k (θ(2)) =

∣∣∣ ∫
Td′

Fk(θ
(2) − ξ(2))Ξck(ξ

(2)) dξ(2)
∣∣∣2r. (5.4)

Step 2. We now prove that ‖Ac,rk ‖`1(G0) . τ−k. Using also the formula (5.1) for this it suffices

to prove that if k ≥ (D/ ln τ)2 then∣∣Πc,r
k

(
θ(1), θ(2)

)
Ωc,r
k

(
θ(2)
)∣∣ . τ−k/δ for any (θ(1), θ(2)) ∈ Td × Td

′
. (5.5)

We examine the formula (5.3) and apply Lemma 2.1 with M ∈ Z+ sufficiently large to conclude

that, for any β(2) ∈ [−1/2, 1/2]d
′
, we have

|Fk(β(2))| .M
∏

(l1,l2)∈Y ′d

{
τk(l1+l2+δ)

(
1 +

∣∣β(2)
l1l2

∣∣τk(l1+l2+δ)
)−M}

. (5.6)

To prove (5.5) we use the formulas (5.2) and (5.4), and consider two cases depending on the

location of θ(2). Assume first that θ(2) is far from the support of Ξck, i.e.

there is an irreducible fraction a/q with q ≤ τ δk−4 and a = (al1l2)(l1,l2)∈Y ′d

such that |θ(2)
l1l2
− al1l2/q| ≤ τ δk/2τ−k(l1+l2) for any (l1, l2) ∈ Y ′d.

(5.7)

In view of the definitions (4.12) and (4.14) it follows that for any ξ(2) in the support of the function

Ξck there is (l1, l2) ∈ Y ′d such that |ξ(2)
l1l2
− θ(2)

l1l2
| ≥ τ δk/2τ−k(l1+l2). Then |Fk(θ(2) − ξ(2))| . τ−2k/δ if

ξ(2) is in the support of Ξck, as a consequence of (5.6). The bounds (5.5) follow using (5.4) if θ(2)

satisfies (5.7).
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On the other hand, assume that θ(2) does not satisfy (5.7). By the Dirichlet principle, for any
(l1, l2) ∈ Y ′d there is an irreducible fraction al1l2/ql1l2 such that∣∣∣θ(2)

l1l2
− al1l2
ql1l2

∣∣∣ ≤ 1

ql1l2τ
k(l1+l2)−δ2k and ql1l2 ∈ [1, τk(l1+l2)−δ2k] ∩ Z.

Since θ(2) does not satisfy the property (5.7), it follows that at least one of the denominators ql1l2
is larger than τ δ

2k. In particular, the property (2.28) is verified if P ' τk. Recalling the formula

(5.2), we can apply Proposition 2.3 (i) to conclude that
∣∣Πc,r

k (θ(1), θ(2))
∣∣ . τ−2k/δ. Moreover,

‖Fk‖L1(Td′ ) . 1 due to (5.6), therefore
∣∣Ωc,r

k (θ(2))
∣∣ . 1 as a consequence of (5.4). The desired

bounds (5.5) follow in this case as well, which completes the proof of Lemma 4.2. �

5.2. Proof of Lemma 4.4. For later use we prove a slightly more general version of Lemma 4.4.
For 1-periodic set of rationals B ⊆ Rd′≤δk, we define new kernels

Gck,B(g) := Lck(g
(1))Nk,k,B(g(2)), (5.8)

where Nk,k,B is defined in (4.37). We now prove the following lemma:

Lemma 5.1. For any 1-periodic set of rationals B ⊆ Rd′≤δk, k ≥ (D/ ln τ)2, and any f ∈ `2(G0) we
have

‖f ∗Gck,B‖`2(G0) . τ
−k/D2‖f‖`2(G0). (5.9)

Since Gc
k,Rd′s

= Gck,s, see (4.28), Lemma 4.4 follows from Lemma 5.1.

Proof of Lemma 5.1. As before, we shall proceed in several steps.
Step 1. We define the operators Gck,Bf := f ∗Gck,B. Since Gck,B(x) = Lck(x

(1))Nk,k,B(x(2)) we have

{(Gck,B)∗Gck,B}rf(x) = (f ∗Ark,B)(x),

where

Ark,B(y) = η≤3δk(τ
−k ◦ y)

∫
Td×Td′

e
(
y.θ
)
Πr
k

(
θ(1), θ(2)

)
Ωr
k,B
(
θ(2)
)
dθ(1)dθ(2),

Πr
k

(
θ(1), θ(2)

)
:=

∑
h
(1)
j ,g

(1)
j ∈Zd

{ r∏
j=1

Lck(h
(1)
j )Lck(g

(1)
j )
}
e
(
θ(1).

∑
1≤j≤r

(h
(1)
j − g

(1)
j )
)

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(h
(1)
j , h

(1)
j − g

(1)
j ) +

∑
1≤l<j≤r

R0(−h(1)
l + g

(1)
l ,−h(1)

j + g
(1)
j )
}) (5.10)

and, with Fk defined as in (5.3), we may write

Ωr
k,B
(
θ(2)
)

:=
∣∣∣ ∫

Td′
Fk(θ

(2) − ξ(2))Ξk,k,B(ξ(2)) dξ(2)
∣∣∣2r. (5.11)

To prove Lemma 5.1 it suffices to show that for any (θ(1), θ(2)) ∈ Td × Td′ we have∣∣∣Πr
k

(
θ(1), θ(2)

)
Ωr
k,B
(
θ(2)
)∣∣∣ . τ−k/δ′ . (5.12)

Step 2. Assume first that θ(2) is far from the support of Ξk,k,B, in the sense that

|τk ◦ (θ(2) − a/Q)| ≥ τ2δk for any a/Q ∈ B ⊆ Rd′≤δk.

Using (5.6) it follows that
∣∣Ωr

k,B
(
θ(2)
)∣∣ . τ−2r2k. Moreover∣∣Πr

k

(
θ(1), θ(2)

)∣∣ . ‖Lck‖2r`1(Zd) .
{ ∏

1≤l≤d
τk(l+δ)

}2r
,

and the desired bounds (5.12) follow in this case.
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Step 3. On the other hand, assume that

|τk ◦ (θ(2) − a/Q)| ≤ τ2δk for some irreducible fraction a/Q ∈ B ⊆ Rd′≤δk. (5.13)

In this case we prove the stronger bounds∣∣∣Πr
k

(
θ(1), θ(2)

)∣∣∣ . τ−k/δ′ for any θ(1) ∈ Td
′
. (5.14)

We examine the formulas (5.10) and (4.27) to rewrite

Πr
k

(
θ(1), θ(2)

)
=

∫
(Td)2r

Vrk(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

×
∏

1≤j≤r

{
Sk(ζ

(1)
j ) Ψc

k(ζ
(1)
j )Sk(ξ

(1)
j )Ψc

k(ξ
(1)
j )
}
dζ

(1)
1 dξ

(1)
1 . . . dζ(1)

r dξ(1)
r ,

(5.15)

where ζ
(1)
1 , ξ

(1)
1 , . . . , ζ

(1)
r , ξ

(1)
r ∈ Td and

Vrk(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

:=
∑

hj ,gj∈Zd

∏
1≤j≤r

{
φ

(1)
k (hj)e

(
(θ(1) − ζ(1)

j ).hj
)
φ

(1)
k (gj)e

(
− (θ(1) − ξ(1)

j ).gj
)}

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(hj , hj − gj) +
∑

1≤l<j≤r
R0(−hl + gl,−hj + gj)

})
.

(5.16)

We will show below that∣∣Sk(β(1))Ψc
k(β

(1))
∣∣ . τ−kδ′/(2dC) for any β(1) ∈ Td, (5.17)

where C is a constant from Proposition 2.2. We will also show that∣∣Vrk(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )
∣∣

.
{ ∏

1≤l≤d
τk(l+δ)

}2r
min

1≤j≤r
1≤l≤d

[
1 + τk(l−8δ)‖θ(1)

l − ζ
(1)
j,l ‖Q + τk(l−8δ)‖θ(1)

l − ξ
(1)
j,l ‖Q

]−D2

,
(5.18)

for any θ(1) = (θ
(1)
l )l∈{1,...,d} ∈ Td, ζ(1)

j = (ζ
(1)
j,l )l∈{1,...,d} ∈ Td, and ξ

(1)
j = (ξ

(1)
j,l )l∈{1,...,d} ∈ Td. Here

Q ≤ τ δk+1 and θ(2) are as in (5.13), and

‖µ‖Q := inf
m∈Z
|µ−m/Q| for any µ ∈ R. (5.19)

The desired estimates (5.14) would clearly follow from these bounds and the identity in (5.15). Here
the assumption δ � δ′ in (4.9) plays an important role.

Step 4. The bound in (5.18) follows from the more precise formulas in Lemma 5.2 below, using
repeated integration by parts in the variables xj , yj to prove bounds on the function Zrk defined in
(5.25) and using the trivial bound |Wr

Q| ≤ 1 for the function defined in (5.24). We prove now the

bounds (5.17). Assume β(1) = (β
(1)
l )l∈{1,...,d}. By the Dirichlet principle for any l ∈ {1, . . . , d} there

is an irreducible fraction al/ql such that∣∣β(1)
l − al/ql

∣∣ ≤ 1

qlτ lk−δ
′k/2

and ql ∈ [1, τ lk−δ
′k/2] ∩ Z. (5.20)

If ql ≤ τ δ
′k/(2d) for all l ∈ {1, . . . , d} then Ψc

k(β
(1)) = 0 due to the definition (4.26). On the other

hand, if ql ∈ [τ δ
′k/(2d), τ lk−δ

′k/2] ∩ Z for some l ∈ {1, . . . , d} then we apply Proposition 2.2 with

P ' τk and ε = δ′/(2d). Recalling the definition (4.23) it follows that
∣∣Sk(β(1))

∣∣ . τ−kδ′/(2dC), and
the desired bound in (5.17) follow. �

For later use, in Section 8, we prove an approximate formula for the multiplier Vrk .
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Lemma 5.2. Assume that k ≥ D/ ln τ and 1 ≤ Q ≤ τ2δk. Assume also that

θ(2) = a(2)/Q+ α(2), a(2) ∈ Zd
′
, |τk ◦ α(2)| ≤ τ4δk (5.21)

and

θ(1) − ξ(1)
j = bj/Q+ βj , θ

(1) − ζ(1)
j = cj/Q+ γj , bj , cj ∈ Zd, Qβj , Qγj ∈ [−1/2, 1/2]d, (5.22)

for any j ∈ {1, . . . , r}. Then we have the approximate identity

Vrk(θ(1), θ(2);ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

=Wr
Q(a(2); b1, c1, . . . , br, cr) · Zrk(α(2);β1, γ1, . . . , βr, γr) +O(τ−D

3k),
(5.23)

where

Wr
Q(a(2);b1, c1, . . . , br, cr) :=

{
Q−2rd

∑
µj ,νj∈ZdQ

( ∏
1≤j≤r

e
(
− (bj/Q).µj

)
e
(
(cj/Q).νj

))
× e
(
− (a(2)/Q).

{ ∑
1≤j≤r

R0(νj , νj − µj) +
∑

1≤l<j≤r
R0(−νl + µl,−νj + µj)

})}
,

(5.24)

and

Zrk(α(2);β1, γ1, . . . , βr, γr) :=

∫
R2rd

{ ∏
1≤l≤d

τkl
}2r

×
∏

1≤j≤r

{
η≤δk(xj)e

(
− (τk ◦ βj).xj

)
η≤δk(yj)e

(
(τk ◦ γj).yj

)}
× e
(
− (τk ◦ α(2)).

{ ∑
1≤j≤r

R0(yj , yj − xj) +
∑

1≤l<j≤r
R0(−yl + xl,−yj + xj)

})
dxjdyj .

(5.25)

Proof. We decompose gj = Qmj + µj , hj = Qnj + νj , mj , nj ∈ Zd, µj , νj ∈ ZdQ and then rewrite

the formula (5.16) in the form

Vrk(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

=
∑

µj ,νj∈ZdQ

∑
nj ,mj∈Zd

∏
1≤j≤r

{
η≤δk(τ

−k ◦ (Qnj + νj))e
(
γj .(Qnj + νj)

)
e
(
(cj/Q).νj

)
× η≤δk(τ−k ◦ (Qmj + µj))e

(
− βj .(Qmj + µj)

)
e
(
− (bj/Q).µj

)}
× e
(
− α(2).

{ ∑
1≤j≤r

R0(hj , hj − gj) +
∑

1≤l<j≤r
R0(−hl + gl,−hj + gj)

})
× e
(
− (a(2)/Q).

{ ∑
1≤j≤r

R0(νj , νj − µj) +
∑

1≤l<j≤r
R0(−νl + µl,−νj + µj)

})
.

We fix the variables µj , νj and use the Poisson summation formula to replace the sum over mj , nj
with integrals. Using (2.17) with ξ = (−Qβ,Qγ) and M large we see that the difference is rapidly
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decreasing in τk, due to the assumptions (5.21)–(5.22). Therefore

Vrk(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r ) =

∑
µj ,νj∈ZdQ

{ ∏
1≤j≤r

e
(
− (bj/Q).µj

)
e
(
(cj/Q).νj

)}
× e
(
− (a(2)/Q).

{ ∑
1≤j≤r

R0(νj , νj − µj) +
∑

1≤l<j≤r
R0(−νl + µl,−νj + µj)

})
×
∫
R2rd

∏
1≤j≤r

{
η≤δk(τ

−k ◦ (Qnj + νj))e
(
γj .(Qnj + νj)

)
× η≤δk(τ−k ◦ (Qmj + µj))e

(
− βj .(Qmj + µj)

)}
× e
(
− α(2).

{ ∑
1≤j≤r

R0(hj , hj − gj) +
∑

1≤l<j≤r
R0(−hl + gl,−hj + gj)

})
dmjdnj +O(τ−D

2k),

where hj = Qnj + νj and gj = Qmj + µj in the last line. We make the changes of variables

xj = τ−k ◦ (Qmj + µj), yj = τ−k ◦ (Qnj + νj), and the desired formulas (5.23)–(5.25) follow. �

6. Major arcs contributions: Proof of Lemma 4.5

Our primary goal in this section is to prove the bounds (4.30)–(4.33). For later use in the `p

theory, we will prove in fact slightly stronger bounds at several stages.

6.1. Arithmetic decompositions. We will write the kernels Glow
k,s and Gk,s,t as tensor products

plus error terms. For any integer Q ∈ Z+ we define the subgroup

HQ := {h = (Qhl1l2)(l1,l2)∈Yd ∈ G0 : hl1,l2 ∈ Z}. (6.1)

Clearly HQ ⊆ G0 is a normal subgroup. Let JQ denote the coset

JQ := {b = (bl1l2)(l1,l2)∈Yd ∈ G0 : bl1,l2 ∈ Z ∩ [0, Q− 1]}, (6.2)

with the natural induced group structure. Notice that

the map (b, h) 7→ b · h defines a bijection from JQ ×HQ to G0. (6.3)

Assume that Q ∈ Z+ and τk ≥ Q. For any a ∈ Zd and ξ ∈ Rd let

Jk(ξ) := τ−k
∫
R
χ(τ−kx)e[−A(1)

0 (x).ξ] dx =

∫
R
χ(y)e[−A(1)

0 (y).(τk ◦ ξ)] dy,

J ′k(ξ) := τ−k
∫
R
χ′(τ−kx)e[−A(1)

0 (x).ξ] dx =

∫
R
χ′(y)e[−A(1)

0 (y).(τk ◦ ξ)] dy,

S(a/Q) := Q−1
∑
n∈ZQ

e[−A(1)
0 (n).a/Q],

(6.4)

where χ′(x) := (1/τ)χ(x/τ)− χ(x). For any ι ∈ {0, 1} we also let

Sιk :=

{
Sk if ι = 0,

∆kSk if ι = 1,
χι :=

{
χ if ι = 0,

χ′ if ι = 1,
J ιk :=

{
Jk if ι = 0,

J ′k if ι = 1.
(6.5)

where Sk : Rd → R are defined as in (4.23). We first prove an approximation formula for the
functions Sιk.

Lemma 6.1. If k ≥ D/ ln τ , |τk ◦ ξ| ≤ τk/4, 1 ≤ Q ≤ τk/4, a ∈ Zd, and ι ∈ {0, 1} then

|Sιk(a/Q+ ξ)− S(a/Q)J ιk(ξ)| . τ−Dk. (6.6)
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Proof. We write

Sιk(a/Q+ ξ) =
∑

n∈Z,m∈ZQ

τ−kχι(τ−k(Qn+m))e[−A(1)
0 (Qn+m).(a/Q+ ξ)]

=
∑
m∈ZQ

e[−A(1)
0 (m).a/Q]

{∑
n∈Z

τ−kχι(τ−k(Qn+m))e[−A(1)
0 (Qn+m).ξ]

}
.

For any m ∈ ZQ we apply the estimates (2.17) (with m = 1, ξ = 0, and M large) to replace the
sum over n with the corresponding integral, at the expense of an acceptable error. The desired
approximate identity (6.6) follows by a linear change of variables. �

We now prove an approximate formula for the kernels Kk,w,A,B from (4.36).

Lemma 6.2. Assume that k,w ∈ N, k ≥ D/ ln τ , 0 ≤ w ≤ k and let 1 ≤ Q ≤ τ δk. Let A ⊆ R̃dQ
and B ⊆ R̃d′Q be 1-periodic sets of rationals. If h ∈ HQ and b1, b2 ∈ G0 satisfy |bj | ≤ Q4, j ∈ {1, 2},
then we can decompose

Kk,w,A,B(b1 · h · b2) = Wk,w,Q(h)VA,B,Q(b1 · b2) + Ek,w,A,B(h, b1, b2), (6.7)

where, for any h = (h(1), h(2)) ∈ HQ and b = (b(1), b(2)) ∈ G0, one has

Wk,w,Q(h) := Qd+d′φk(h)

∫
Rd×Rd′

η≤δ′w(τk ◦ ξ)η≤δw(τk ◦ θ)e(h.(ξ, θ))Jk(ξ) dξdθ, (6.8)

VA,B,Q(b) := Q−d−d
′
{ ∑
σ(1)∈A∩[0,1)d

S(σ(1))e[b(1).(σ(1))]
}{ ∑

σ(2)∈B∩[0,1)d′

e[b(2).(σ(2))]
}
. (6.9)

Here φk(h) := φ
(1)
k (h(1))φ

(2)
k (h(2)) and the error terms Ek,A,B satisfy the bounds∣∣Ek,w,A,B(h, b1, b2)

∣∣ . τ−k/2{ ∏
(l1,l2)∈Yd

τ−(l1+l2)k
}
η≤2δk(τ

−k ◦ h(1))η≤2δk(τ
−k ◦ h(2)). (6.10)

Proof. We start from the formula Kk,w,A,B(g) = Lk,w,A(g(1))Nk,w,B(g(2)), and recall the definitions

(4.11) and (4.37). Letting b1 = (b
(1)
1 , b

(2)
1 ), b2 = (b

(1)
2 , b

(2)
2 ), h = (h(1), h(2)) we have

b1 · h · b2 = (g(1), g(2)),

g(1) := h(1) + b
(1)
1 + b

(1)
2 ,

g(2) := h(2) + b
(2)
1 + b

(2)
2 +R0(b

(1)
1 , h(1)) +R0(h(1) + b

(1)
1 , b

(1)
2 ).

(6.11)

Using (4.11) and (4.37) we have

Lk,w,A(g(1)) = φ
(1)
k (g(1))

∫
Td

e(g(1).ξ(1))Sk(ξ
(1))Ψk,w,A(ξ(1)) dξ(1)

= η≤δk(τ
−k ◦ g(1))

∑
σ(1)∈A∩[0,1)d

∫
Rd
η≤δ′w(τk ◦ ξ)Sk(σ(1) + ξ)

× e[(h(1) + b
(1)
1 + b

(1)
2 ).(σ(1) + ξ)] dξ,

and

Nk,w,B(g(2)) = φ
(2)
k (g(2))

∫
Td′

e(g(2).ξ(2))Ξk,w,B(ξ(2)) dξ(2)

= η≤δk(τ
−k ◦ g(2))

∑
σ(2)∈B∩[0,1)d′

∫
Rd′

η≤δw(τk ◦ θ)

× e
{

[h(2) + b
(2)
1 + b

(2)
2 +R0(b

(1)
1 , h(1)) +R0(h(1) + b

(1)
1 , b

(1)
2 )].(σ(2) + θ)

}
dθ.
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We notice that if h(1) ∈ (QZ)d, b
(1)
1 , b

(1)
2 ∈ Zd, σ(1) ∈ A ⊆ R̃dQ, |τ−k◦h(1)| . τ δk, |b(1)

1 |+|b
(1)
2 | . Q4,

Q ≤ τ δk, ξ ∈ Rd, and |τk ◦ ξ| . τ δ′k then

η≤δk(τ
−k ◦ g(1)) = η≤δk(τ

−k ◦ h(1)) +O(τ−3k/4), (6.12)

e[(h(1) + b
(1)
1 + b

(1)
2 ).(σ(1) + ξ)] = e[(b

(1)
1 + b

(1)
2 ).(σ(1))]e[(h(1) + b

(1)
1 + b

(1)
2 ).ξ]

= e[(b
(1)
1 + b

(1)
2 ).(σ(1))]e(h(1).ξ) +O(τ−3k/4).

(6.13)

Using also Lemma 6.1 we have∣∣∣Lk,w,A(g(1))− η≤δk(τ−k ◦ h(1))
∑

σ(1)∈A∩[0,1)d

S(σ(1))e[(b
(1)
1 + b

(1)
2 ).(σ(1))]

×
∫
Rd
η≤δ′w(τk ◦ ξ)Jk(ξ)e(h(1).ξ) dξ

∣∣∣ . τ−2k/3
∏

1≤l1≤d
τ−l1k.

(6.14)

Moreover, assuming also that h(2) ∈ (QZ)d
′
, b

(2)
1 , b

(2)
2 ∈ Zd′ , σ(2) ∈ B ⊆ R̃d′Q, |τ−k ◦ h(2)| . τ δk,

|b(2)
1 |+ |b

(2)
2 | . Q4, θ ∈ Rd′ , and |τk ◦ θ| . τ δk, we have

η≤δk(τ
−k ◦ g(2)) = η≤δk(τ

−k ◦ h(2)) +O(τ−3k/4), (6.15)

e
{

[h(2) + b
(2)
1 + b

(2)
2 +R0(b

(1)
1 , h(1)) +R0(h(1) + b

(1)
1 , b

(1)
2 )].(σ(2) + θ)

}
= e
{

[b
(2)
1 + b

(2)
2 +R0(b

(1)
1 , b

(1)
2 )].(σ(2))

}
e(h(2).θ) +O(τ−3k/4).

(6.16)

Therefore∣∣∣Nk,w,B(g(2))− η≤δk(τ−k ◦ h(2))
∑

σ(2)∈B∩[0,1)d′

e
{

[b
(2)
1 + b

(2)
2 +R0(b

(1)
1 , b

(1)
2 )].(σ(2))

}
×
∫
Rd′

η≤δw(τk ◦ θ)e(h(2).θ) dθ
∣∣∣ . τ−2k/3

∏
(l1,l2)∈Y ′d

τ−(l1+l2)k.
(6.17)

The conclusion of the lemma follows from (6.14) and (6.17). �

6.2. Gauss sums operators. We consider now the convolution operators defined by the kernels
VA,B,Q on the quotient groups JQ (see (6.2)). The convolution of two functions on the group JQ is
defined by a formula similar to (1.14), namely

(f ∗JQ g)(x) :=
∑
y∈JQ

g(y)f(y−1 · x) =
∑
y∈JQ

g(x · y−1)f(y). (6.18)

Lemma 6.3. Assume that Q ∈ Z+ and A ⊆ R̃dQ and B ⊆ R̃d′Q are 1-periodic sets of rationals and

let VA,B,Q be the kernels defined in (6.9).
(i) Let qB := min{q ∈ Z+ : a/q ∈ B and gcd(a1, . . . , ad′ , q) = 1}, then for f ∈ `2(JQ) we have∥∥f ∗JQ VR̃dQ,B,Q∥∥`2(JQ)

. q−1/D
B ‖f‖`2(JQ). (6.19)

In particular, if s ≥ 0 then for V low
s := VR̃dQs ,R

d′
s ,Qs

inequality (6.19) ensures∥∥f ∗JQs V low
s

∥∥
`2(JQs )

. τ−s/D‖f‖`2(JQs ). (6.20)

(ii) Let qA := min{q ∈ Z+ : a/q ∈ A and gcd(a1, . . . , ad, q) = 1}. If q1 ' qA for every a1/q1 ∈ A,

and 1 ≤ q2 . q
1/D
A for every a2/q2 ∈ B, then for f ∈ `2(JQ) we have∥∥f ∗JQ VA,B,Q∥∥`2(JQ)

. q−1/D
A ‖f‖`2(JQ). (6.21)
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In particular, if s ≥ 0, t ≥ D(s+ 1), then for Vs,t := VRdt \R̃dQs ,R
d′
s ,Qt

we have∥∥f ∗JQt Vs,t∥∥`2(JQt )
. τ−t/D‖f‖`2(JQt ). (6.22)

Proof. As in Section 5 we will use a high order T ∗T argument.
Step 1. Define the operator VA,B,Qf := f ∗JQ VA,B,Q. For the integer r = r(d) as before we have

{(VA,B,Q)∗VA,B,Q}rf(x) = (f ∗JQ V
r
A,B,Q)(x),

where, as in Section 5, we have

V r
A,B,Q(y) :=

∑
h1,g1,...,hr,gr∈JQ

{ r∏
j=1

VA,B,Q(hj)VA,B,Q(gj)
}
1{0}(g

−1
r · hr · . . . · g−1

1 · h1 · y). (6.23)

Using the formula

1{0}(x
−1 · y) = Q−(d+d′)

∑
a∈ZdQ×Z

d′
Q

e
[
(y(1) − x(1)).(a(1)/Q)

]
e
[
(y(2) − x(2)).(a(2)/Q)

]
and the definition (6.23) we obtain

V r
A,B,Q(y) = Q−(d+d′)

∑
a∈ZdQ×Z

d′
Q

e
[
y(1).(a(1)/Q)

]
e
[
y(2).(a(2)/Q)

]
Υr
A,B,Q

(
a(1)/Q, a(2)/Q

)
,

where

Υr
A,B,Q

(
θ(1), θ(2)

)
:=

∑
h1,g1,...,hr,gr∈JQ

{ r∏
j=1

VA,B,Q(hj)VA,B,Q(gj)
}

× e
(
− [h−1

1 · g1 · . . . · h−1
r · gr](1).θ(1)

)
e
(
− [h−1

1 · g1 · . . . · h−1
r · gr](2).θ(2)

)
.

(6.24)

Step 2. Taking into account (6.9) we may write

VA,B,Q(y(1), y(2)) := Q−(d+d′)
∑

α(1)∈(ZQ/Q)d, α(2)∈(ZQ/Q)d′

mA(α(1))mB(α(2))e[y(1).α(1)]e[y(2).α(2)],

where mA(α(1)) := S(α(1))1A∩[0,1)d(α
(1)) and mB(α(2)) := 1B∩[0,1)d′ (α

(2)). Using formulas (2.10)–

(2.11) we may simplify (6.24). We notice that the sum over the variables h
(2)
j , g

(2)
j , j ∈ {1, . . . , r}

leads to δ-functions in the variables θ(2) − β(2)
j and θ(2) − α(2)

j . Thus

Υr
A,B,Q

(
θ(1), θ(2)

)
=
∣∣mB(θ(2))

∣∣2rQ−2rd
{ ∑
β
(1)
1 ,α

(1)
1 ,...,β

(1)
r ,α

(1)
r ∈(ZQ/Q)d

∑
h
(1)
1 ,g

(1)
1 ,...,h

(1)
r ,g

(1)
r ∈ZdQ

×
r∏
j=1

{
mA(β

(1)
j )e

[
h

(1)
j .(θ(1) − β(1)

j )
]
·mA(α

(1)
j )e

[
− g(1)

j .(θ(1) − α(1)
j )
]}

× e
[
− θ(2).

( ∑
1≤j≤r

R0(h
(1)
j , h

(1)
j − g

(1)
j ) +

∑
1≤l<j≤r

R0(−h(1)
l + g

(1)
l ,−h(1)

j + g
(1)
j )
)]}

.

(6.25)

Step 3. Our aim now is to show that∥∥V r
R̃dQ,B,Q

∥∥
`1(JQ)

. q−1
B . (6.26)

This will establish (6.19) and (6.20), by taking Q = Qs and B = Rd′s . To prove (6.26) it suffices to
show ∣∣Υr

R̃dQ,B,Q

(
θ(1), θ(2)

)∣∣ . (q1 + q2)−1/δ41B∩[0,1)d′ (θ
(2)), (6.27)
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where q1|Q, q2|Q are the denominators of the irreducible representation of the fractions θ(1) and

θ(2) respectively.

Inserting the formula S(γ(1)) = Q−1
∑

n∈ZQ e[−A(1)
0 (n).γ(1)], see (6.4), into the identity (6.25)

with A = R̃dQ, we notice that the sums over the variables α
(1)
j and β

(1)
j lead to δ-functions. More

precisely,

Υr
R̃dQ,B,Q

(
θ(1), θ(2)

)
= 1B∩[0,1)d′ (θ

(2))Q−2r
{ ∑
nj ,mj∈ZQ

e
[
θ(1).

( ∑
1≤j≤r

A
(1)
0 (nj)−A(1)

0 (mj)
)]

× e
[
− θ(2).

( ∑
1≤j≤r

R0

(
A

(1)
0 (nj), A

(1)
0 (nj)−A(1)

0 (mj)
)

+
∑

1≤l<j≤r
R0

(
A

(1)
0 (ml)−A

(1)
0 (nl), A

(1)
0 (mj)−A(1)

0 (nj)
))]}

= 1B∩[0,1)d′ (θ
(2))Q−2r

∑
n,m∈ZrQ

e
[
−D(n,m).(θ(1), θ(2))

]
,

where D(n,m) is defined in (2.24). Using Proposition 2.3 (ii) we obtain (6.27) as desired.

Step 4. To prove (6.21) as well as (6.22) with Q = Qt and A = Rdt \ R̃dQs , B = Rd′s we show∥∥V r
A,B,Q

∥∥
`1(JQ)

. q−1
A . (6.28)

We still use the formula (6.25), with A ⊆ R̃dQ and B ⊆ R̃d′Q satisfying q1 ' qA for every a1/q1 ∈ A,

and 1 ≤ q2 . q
1/D
A for every a2/q2 ∈ B. We would like to first evaluate the sums over the variables

h
(1)
j and g

(1)
j ; these sums would lead to δ-functions if θ(2) = 0, but there is an obstruction for

other values of θ(2). However, we can exploit the fact that the denominators of fractions θ(2) are
small. Indeed, assume that a(2)/q2 = θ(2) is the irreducible representation of the fraction θ(2), where

1 ≤ q2 . q
1/D
A and q2 divides Q. For j ∈ {1, . . . , r} we decompose h

(1)
j = q2yj + y′j , g

(1)
j = q2xj +x′j ,

y′j , x
′
j ∈ Zdq2 , yj , xj ∈ ZdQ/q2 . Then we notice that

(Q/q2)−2rd
∑

y1,x1,...,yr,xr∈ZdQ/q2

r∏
j=1

e
[
q2yj .(θ

(1) − β(1)
j )
]
e
[
− q2xj .(θ

(1) − α(1)
j )
]

=
r∏
j=1

1Zd
[
q2(θ(1) − β(1)

j )
]
1Zd
[
q2(θ(1) − α(1)

j )
]
.

Therefore, using formula (6.25), one sees∣∣Υr
A,B,Q

(
θ(1), θ(2)

)∣∣ ≤1B∩[0,1)d′ (θ
(2))
{ ∑
β
(1)
1 ,α

(1)
1 ,...,β

(1)
r ,α

(1)
r ∈(ZQ/Q)d

r∏
j=1

1Zd
[
q2(θ(1) − β(1)

j )
]
1Zd
[
q2(θ(1) − α(1)

j )
]
|mA(β

(1)
j )||mA(α

(1)
j )|

}
.

Recall that mA(γ) = S(γ)1A∩[0,1)d(γ). It follows from Proposition 2.2 (ii) that for any γ ∈ A we

have |mA(γ)| . q−1/C
A , since q1 ' qA for every a1/q1 ∈ A. Therefore∣∣Υr
A,B,Q

(
θ(1), θ(2)

)∣∣ . 1B∩[0,1)d′ (θ
(2))1(A+(Z/q2)d)∩[0,1)d(θ

(1))q
−2r/C
A q2dr

2 ,

where A + (Z/q2)d := {a/q2 + θ : θ ∈ A, a ∈ Zd}. The desired bound (6.28) follows since

1 ≤ q2 . q
1/D
A for every a2/q2 ∈ B, and r ∈ Z+ is sufficiently large. �
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6.3. Maximal and variational operators on the group HQ. The main result of this subsection
is the following lemma:

Lemma 6.4. Assume that 2 < ρ < ∞, τ ∈ (1, 2], and k, k0, w ∈ N satisfy 0 ≤ w ≤ k and
k ≥ k0 ≥ D/ ln τ . Assume that 1 ≤ Q ≤ τ δk and let Wk,w,Q : HQ → C be defined as in (6.8). Then,
for any f ∈ `2(HQ) and D ⊆ N one has∥∥V ρ(f ∗HQ Wk,k,Q : k ∈ Dk0,Q)

∥∥
`2(HQ)

. ‖f‖`2(HQ), (6.29)

uniformly in Q, where Dk0,Q := {k ∈ D : k ≥ k0, τ
δk ≥ Q}.

Moreover, for every w ∈ N and every sequence {κk}k∈N ⊆ C satisfying supk∈N |κk| ≤ 1,∥∥∥ ∑
k∈Dk0,Q, k>w

κkf ∗HQ (Wk,w+1,Q −Wk,w,Q)
∥∥∥
`2(HQ)

. τ−w/D
2‖f‖`2(HQ), (6.30)

for any f ∈ `2(HQ), uniformly in Q.

The main idea to prove (6.29)–(6.30) is to compare our operators with suitable operators on the

Lie group G#
0 . More precisely for 0 ≤ w ≤ k we define the kernels W̃k,w : G#

0 → C by

W̃k,w(x) := φk(x)

∫
Rd×Rd′

η≤δ′w(τk ◦ ξ)η≤δw(τk ◦ θ)e(x.(ξ, θ))Jk(ξ) dξdθ, (6.31)

where x = (x(1), x(2)) ∈ Rd × Rd′ = G#
0 and φk(x) = φ

(1)
k (x(1))φ

(2)
k (x(2)).

Then we have a continuous version of Lemma 6.4:

Proposition 6.5. Assume that 2 < ρ < ∞, τ ∈ (1, 2], and k,w ∈ N satisfy 0 ≤ w ≤ k. With

W̃k,w : G#
0 → C defined as in (6.31), for any f ∈ L2(G#

0 ) one has∥∥V ρ(f ∗G#
0
W̃k,k : k ≥ 0)

∥∥
L2(G#

0 )
. ‖f‖

L2(G#
0 )
. (6.32)

In particular, one has ∥∥ sup
k≥0
|f ∗G#

0
W̃k,k|

∥∥
L2(G#

0 )
. ‖f‖

L2(G#
0 )
. (6.33)

Moreover, for any w ∈ N, any sequence {κk}k∈N ⊆ C satisfying supk∈N |κk| ≤ 1, and any

f ∈ L2(G#
0 ) one has∥∥∥∑

k>w

κkf ∗G#
0

(W̃k,w+1 − W̃k,w)
∥∥∥
L2(G#

0 )
. τ−w/D‖f‖

L2(G#
0 )
. (6.34)

Continuous maximal operators such as (6.33) have been extensively studied, see for example
the conclusive work of Christ–Nagel–Stein–Wainger [19]. However, the variational estimates in the
nilpotent setting in the spirit of [19] appear to be new. For the convenience of the reader we provide
a self-contained proof of Proposition 6.5 in Appendix A. Assuming that Proposition 6.5 holds, we
show how to use it to deduce Lemma 6.4.

Proof of Lemma 6.4. We define the Q-cubes

CQ := [0, Q)d × [0, Q)d
′ ⊆ G#

0 , (6.35)

and notice that the map (µ, h) 7→ µ ·h defines a measure-preserving bijection from CQ×HQ to G#
0 .

Let 1 ≤ p <∞. Given f ∈ `p(HQ) we define

f#(µ · h) := f(h) for any (µ, h) ∈ CQ ×HQ,

f# ∈ Lp(G#
0 ), ‖f#‖

Lp(G#
0 )

= Q(d+d′)/p‖f‖`p(HQ).
(6.36)
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We now prove the following bounds: for any 1 ≤ p <∞ and 2 < ρ <∞ we have∥∥V ρ(f ∗HQ Wk,k,Q : k ∈ Dk0,Q)
∥∥
`p(HQ)

. Q−(d+d′)/p
∥∥V ρ(f# ∗G#

0
W̃k,k : k ≥ 0)

∥∥
Lp(G#

0 )
+ ‖f‖`p(HQ),

(6.37)

and∥∥∥ ∑
k∈Dk0,Q, k>w

κkf ∗HQ (Wk,w+1,Q −Wk,w,Q)
∥∥∥
`p(HQ)

. Q−(d+d′)/p
∥∥∥ ∑
k∈Dk0,Q, k>w

κkf# ∗G#
0

(W̃k,w+1 − W̃k,w)
∥∥∥
Lp(G#

0 )
+ τ−w/8‖f‖`p(HQ).

(6.38)

It is easy to see that the inequalities (6.37)–(6.38) with p = 2 can be combined with (6.32), (6.34),
and (6.36) to complete the proof of Lemma 6.4.

It remains to prove the bounds (6.37)–(6.38). For this we compare the functions f ∗HQ Wk,w,Q :

HQ → C and f# ∗G#
0
W̃k,w : G#

0 → C. By (6.8) and (6.31), we have Qd+d′W̃k,w(h) = Wk,w,Q(h) for

any h ∈ HQ. Moreover, by (6.31) notice that∣∣W̃k,w(µ1 · h · µ2)− W̃k,w(h)
∣∣ . Ek(h), (6.39)

where

Ek(h) := τ−k/2
{ ∏

(l1,l2)∈Yd

τ−(l1+l2)k
}
η≤2δk(τ

−k ◦ h(1))η≤2δk(τ
−k ◦ h(2)),

for any h, µ1, µ2 ∈ G#
0 with |µ1|+ |µ2| . Q4, provided that k ≥ D/ ln τ , 0 ≤ w ≤ k and 1 ≤ Q ≤ τ δk.

Thus

(f# ∗G#
0
W̃k,w)(µ · h) =

∑
h1∈HQ

∫
CQ
f#(µ1 · h1)W̃k,w(µ · h · h−1

1 · µ
−1
1 ) dµ1

=
∑

h1∈HQ

f(h1)

∫
CQ
W̃k,w(µ · h · h−1

1 · µ
−1
1 ) dµ1,

for any (µ, h) ∈ CQ ×HQ. Using (6.39) we have∣∣∣ ∫
CQ
W̃k,w(µ · h · h−1

1 · µ
−1
1 ) dµ1 −Wk,w,Q(h · h−1

1 )
∣∣∣ . Ek(h · h−1

1 )Qd+d′ .

Therefore, for any f ∈ `p(HQ), h ∈ HQ and µ ∈ CQ, one has

(f ∗HQ Wk,w,Q)(h) = (f# ∗G#
0
W̃k,w)(µ · h) +O

(
τk/4(|f | ∗HQ Ek)(h)

)
,

provided that k ≥ D/ ln τ , 0 ≤ w ≤ k and 1 ≤ Q ≤ τ δk. The desired bounds (6.37) and (6.38) follow

from the last identity and the observation that
∑

k≥w τ
k/4‖Ek‖`1(HQ) . τ

−w/8 for any w ∈ N. �

6.4. Proof of Lemma 4.5. We begin with a transference lemma which will be used repeatedly.

Lemma 6.6. As in Lemma 6.4, assume that 2 < ρ < ∞, τ ∈ (1, 2], k ≥ k0, and 1 ≤ Q ≤ τ δk.

Assume that KG0
k : G0 → C are given kernels such that

KG0
k (b1 · h · b2) := W

HQ
k (h)V JQ(b1 · b2) + Ek(h, b1, b2), (6.40)

for any h ∈ HQ and b1, b2 ∈ G0 satisfying |bj | ≤ Q4, j ∈ {1, 2}, for some kernels W
HQ
k : HQ → C

and V JQ : JQ → C, where the error terms satisfy the estimates

sup
|b1|,|b2|≤Q4

‖Ek(·, b1, b2)‖`1(HQ) . τ
−k/3. (6.41)
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Let D ⊆ N and Dk0,Q = {k ∈ D : k ≥ k0, τ
δk ≥ Q} as in Lemma 6.4. Let also KG0

k f := f ∗G0 K
G0
k ,

and WHQ
k g := g ∗HQ W

HQ
k , and VJQh := h ∗JQ V JQ denote the convolution operators corresponding

to the kernels KG0
k , W

HQ
k , and V JQ.

Then for any 1 ≤ p <∞ and either B = V ρ or B = `∞∥∥(KG0
k

)
k∈Dk0,Q

∥∥
`p(G0)→`p(G0;B)

.
∥∥(WHQ

k

)
k∈Dk0,Q

∥∥
`p(HQ)→`p(HQ;B)

∥∥VJQ∥∥
`p(JQ)→`p(JQ)

+ τ−k0/8Q−1/(8δ).
(6.42)

Moreover, for any sequence {κk}k∈N ⊆ C satisfying supk∈N |κk| ≤ 1∥∥ ∑
k∈Dk0,Q

κkKG0
k

∥∥
`p(G0)→`p(G0)

.
∥∥ ∑
k∈Dk0,Q

κkW
HQ
k

∥∥
`p(HQ)→`p(HQ)

∥∥VJQ∥∥
`p(JQ)→`p(JQ)

+ τ−k0/8Q−1/(8δ).

(6.43)

Proof. Using (6.40) for b ∈ JQ and h ∈ HQ we may write

(f∗KG0
k )(b · h) =

∑
h1∈HQ, b1∈JQ

f(b1 · h1)KG0
k (b · h · h−1

1 · b
−1
1 )

=
∑

h1∈HQ, b1∈JQ

f(b1 · h1)
{
W

HQ
k (h · h−1

1 )V JQ(b · b−1
1 ) + Ek(h · h−1

1 , b, b−1
1 )
}
.

(6.44)

For any h′ ∈ HQ and b ∈ JQ let FJQ(b, h′) :=
∑

b1∈JQ f(b1 · h′)V JQ(b · b−1
1 ). We also take

Fk(h, b) :=
∑

h1∈HQ

FJQ(b, h1)W
HQ
k (h · h−1

1 )

Gk(h, b, b1) :=
∑

h1∈HQ

|f(b1 · h1)Ek(h · h−1
1 , b, b−1

1 )|.

Then by (6.44) we have∥∥V ρ(f ∗KG0
k : k ∈ Dk0,Q)

∥∥
`p(G0)

≤
( ∑
h∈HQ, b∈JQ

V ρ
(
Fk(h, b) : k ∈ Dk0,Q

)p)1/p

+2
∑

b,b1∈JQ

( ∑
h∈HQ

( ∑
k∈Dk0,Q

|Gk(h, b, b1)|ρ
)p/ρ)1/p

=: I1 + I2.

(6.45)

For the first sum in (6.45) we now see that

I1 ≤
∥∥(WHQ

k

)
k∈Dk0,Q

∥∥
`p(HQ)→`p(HQ;V ρ)

∥∥VJQ∥∥
`p(JQ)→`p(JQ)

‖f‖`p(G0),

whereas for the second one we use (6.41) to conclude that I2 . τ−k0/8Q−1/(8δ)‖f‖`p(G0). This proves
(6.42) when B = V ρ. The remaining conclusions of the lemma follow in a similar way. �

We now establish a slightly more general result for the kernels Kk,w,A,B : G0 → C as in (6.7). Let
VA,B,Qf := f∗JQVA,B,Q denote the convolution operator corresponding to the kernel VA,B,Q : JQ → C
from (6.9).

Lemma 6.7. As in Lemma 6.4, assume that ρ ∈ (2,∞), τ ∈ (1, 2], and k, k0, w,Q ∈ N satisfy

0 ≤ w ≤ k, k ≥ k0 ≥ D/ ln τ , and 1 ≤ Q ≤ τ δk. Assume that A ⊆ R̃dQ and B ⊆ R̃d′Q are 1-periodic

sets of rationals. Then, for any f ∈ `2(G0) and D ⊆ N we have∥∥V ρ(f ∗Kk,k,A,B : k ∈ Dk0,Q)
∥∥
`2(G0)

.
(
‖VA,B,Q‖`2(JQ)→`2(JQ) + τ−k0/8Q−1/(8δ)

)
‖f‖`2(G0), (6.46)
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uniformly in Q and k0 ≥ D/ ln τ , where as before Dk0,Q = {k ∈ D : k ≥ k0, τ
δk ≥ Q}. Moreover

for any sequence {κk}k∈N ⊆ C satisfying supk∈N |κk| ≤ 1, any f ∈ `2(G0), and any Q ∈ Z+, w ∈ N
we have∥∥∥ ∑

k∈Dk0,Q, k>w
κkf ∗ (Kk,w+1,A,B −Kk,w,A,B)

∥∥∥
`2(G0)

.
(
τ−w/D

2‖VA,B,Q‖`2(JQ)→`2(JQ) + τ−max(k0,w)/8Q−1/(8δ)
)
‖f‖`2(G0).

(6.47)

Proof. To prove (6.46) we use Lemma 6.6 with KG0
k = Kk,k,A,B, W

HQ
k = Wk,k,Q and V JQ = VA,B,Q

as in Lemma 6.2. The assumptions (6.40)–(6.41) in Lemma 6.6 follow from (6.7) and (6.10). The
bounds (6.46) follow from (6.42) with p = 2 and (6.29).

On the other hand, taking KG0
k = Kk,w+1,A,B − Kk,w,A,B, W

HQ
k = Wk,w+1,Q − Wk,w,Q, and

V JQ = VA,B,Q, the bounds (6.47) follow from (6.43) and (6.30). �

We are now finally ready to complete the proof of Lemma 4.5.

Proof of Lemma 4.5. Notice that Glow
k,s = K

k,k,R̃dQs ,R
d′
s

. We use (6.46) with Q = Qs and k0 = κs; in

view of (6.20) we have ‖VR̃dQs ,Rd
′
s ,Qs
‖`2(JQs )→`2(JQs ) . τ−s/D, and the bounds (4.30)–(4.31) follow

from (6.46).

Assuming that s ≥ 0, t ≥ D(s + 1) and taking A ⊆ Rdt \ R̃dQs and B ⊆ Rd′≤s we conclude, using

(6.21) and (6.46) with Q = Qt and k0 = κt, that∥∥V ρ(f ∗Kk,k,A,B : k ≥ κt)
∥∥
`2(G0)

. τ−t/D‖f‖`2(G0) (6.48)

for any 2 < ρ <∞, as well as∥∥ sup
k≥κt
|f ∗Kk,k,A,B|

∥∥
`2(G0)

. τ−t/D‖f‖`2(G0), (6.49)

The desired bounds (4.32)–(4.33) follow since Gk,s,t = K
k,k,Rdt \R̃dQs ,R

d′
s

. �

7. Transition estimates I: Proof of Lemma 4.3

In this section we prove the bounds (4.19)–(4.20). Let Hk,s := Kk+1,s − Kk,s for k ≥ j0 :=
max((D/ ln τ)2, s/δ) and apply the Rademacher–Menshov inequality (2.7) with m = b(D/ ln τ)(s+
1)2c+ 4. For (4.19) it suffices to prove for any fixed i ∈ [0,m] that∥∥∥∥( ∑

j∈[j02−i,2m−i−1]

∣∣ ∑
k∈[j2i,(j+1)2i−1]

f ∗Hk,s

∣∣2)1/2
∥∥∥∥
`2(G0)

. τ−2s/D2∥∥f∥∥
`2(G0)

.

Using Khintchine’s inequality and dividing again dyadically, for (4.19) it suffices to prove that∥∥∥ ∑
k∈[J,2J ]

κk(f ∗Hk,s)
∥∥∥
`2(G0)

. τ−4s/D2∥∥f∥∥
`2(G0)

(7.1)

for any J ≥ max((D/ ln τ)2, s/δ) and any coefficients κk ∈ [−1, 1].
To prove (7.1) we examine the definition (4.15) and the further decompose

Hk,s = H1
k,s +H2

k,s +H3
k,s,

H1
k,s(g) := [∆kLk](g

(1))φ
(2)
k (g(2))

∫
Td′

e(g(2).ξ(2))Ξk,s(ξ
(2)) dξ(2),

H2
k,s(g) := Lk+1(g(1))∆k[φ

(2)
k ](g(2))

}∫
Td′

e(g(2).ξ(2))Ξk,s(ξ
(2)) dξ(2),

H3
k,s(g) := Lk+1(g(1))φ

(2)
k+1(g(2))

∫
Td′

e(g(2).ξ(2))[∆kΞk,s](ξ
(2)) dξ(2).

(7.2)
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We will prove that, for any k ≥ max((D/ ln τ)2, s/δ) and ι ∈ {2, 3},∥∥f ∗Hι
k,s

∥∥
`2(G0)

. τ−k/D
∥∥f∥∥

`2(G0)
. (7.3)

We will also prove that ∥∥∥ ∑
k∈[J,2J ]

κk(f ∗H1
k,s)
∥∥∥
`2(G0)

. τ−s/D
∥∥f∥∥

`2(G0)
(7.4)

for any J ≥ max((D/ ln τ)2, s/δ) and any coefficients κk ∈ [−1, 1]. These two bounds would clearly
imply the bounds (7.1).

7.1. Proof of (7.3). Step 1. Assume first that ι = 2 and recall the definition of the functions φ
(2)
k

in (4.10). Notice that if g = (g(1), g(2)) is in the support of the kernel H2
k,s then there is (l1, l2) ∈ Y ′d

such that |g(2)
l1l2
| & τk(l1+l2). Therefore we can integrate by parts many times in the variable ξ

(2)
l1l2

(recall the definition (4.12)) to prove that the kernels H2
k,s decay rapidly in k, i.e. |H2

k,s(g)| . τ−k/δ
for any g ∈ G0. The desired bounds (7.3) follow.

Step 2. Assume now that ι = 3. In this case we use a high order T ∗T argument as in Section 5.
Notice that the kernels H3

k,s have product structure, so we can apply the identities (2.13)–(2.16).
With r being a sufficiently large integer such that the bounds in Propositions 2.3 and 2.4 hold with
ε = δ4, it suffices to prove that∣∣Πc,r

k+1

(
θ(1), θ(2)

)
Γrk,s

(
θ(2)
)∣∣ . τ−k/δ for any (θ(1), θ(2)) ∈ Td × Td

′
, k ≥ (D/ ln τ)2, (7.5)

where Πc,r
k is as in (5.2) and

Γrk,s(θ
(2)) =

∣∣∣ ∫
Td′

Fk+1(θ(2) − ξ(2)){Ξk+1,s(ξ
(2))− Ξk,s(ξ

(2))} dξ(2)
∣∣∣2r. (7.6)

The functions Fk : Td′ → C are defined in (5.3) and satisfy the bounds (5.6).

The proof of (7.5) is similar to the proof of (5.5). Indeed, if θ(2) is close to a fraction with small

denominator, in the sense of (5.7), then |Fk+1(θ(2) − ξ(2))| . τ−2k/δ if ξ(2) is in the support of

Ξk+1,s − Ξk,s, due to (5.6). The bounds (7.5) follow in this case. Otherwise, if θ(2) does not satisfy
(5.7), then there is (l1, l2) ∈ Y ′d and an irreducible fraction al1l2/ql1l2 such that∣∣∣θ(2)

l1l2
− al1l2
ql1l2

∣∣∣ ≤ 1

ql1l2τ
k(l1+l2)−δ2k and ql1l2 ∈ [τ δ

2k, τk(l1+l2)−δ2k] ∩ Z.

Using Proposition 2.3 with P ' τk we conclude that
∣∣Πc,r

k+1(θ(1), θ(2))
∣∣ . τ−2k/δ. The desired bounds

(7.5) follow in this case as well.

7.2. Proof of (7.4). To prove the more difficult bounds (7.4) we will use a high order almost
orthogonality argument. For this we need a good description of the operators {(H1

k,s)
∗H1

k,s}r and

{H1
k,s(H1

k,s)
∗}r, where H1

k,sf := f ∗H1
k,s and, as before, r ∈ Z+ is a sufficiently large integer such

that the bounds in Propositions 2.3 and 2.4 hold with ε = δ4. More precisely:

Lemma 7.1. For any k ≥ max((D/ ln τ)2, s/δ) and f ∈ `2(G0) we have

{(H1
k,s)
∗H1

k,s}rf = f ∗ {Br
k + Erk}, {H1

k,s(H1
k,s)
∗}rf = f ∗ {B̃r

k + Ẽrk}, (7.7)

where

Br
k(h) :=

{ ∏
(l1,l2)∈Yd

τ−k(l1+l2)
}{ ∑

a/Q=(a(1)/q1,a(2)/q2)∈Rd≤δk×Rd
′
s ∩[0,1)d+d′

e(h.a/Q)G(a/Q)
}

× η≤3δk(τ
−k ◦ h)

∫
Rd×Rd′

η≤δk/2(ζ(1))η≤δk/2(ζ(2))P ′(ζ)e[(τ−k ◦ h).ζ] dζ,

(7.8)
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B̃r
k(h) :=

{ ∏
(l1,l2)∈Yd

τ−k(l1+l2)
}{ ∑

a/Q=(a(1)/q1,a(2)/q2)∈Rd≤δk×Rd
′
s ∩[0,1)d+d′

e(h.a/Q)G̃(a/Q)
}

× η≤3δk(τ
−k ◦ h)

∫
Rd×Rd′

η≤δk/2(ζ(1))η≤δk/2(ζ(2))P̃ ′(ζ)e[(τ−k ◦ h).ζ] dζ,

(7.9)

and
‖Erk‖`1(G0) + ‖Ẽrk‖`1(G0) . τ

−k/4. (7.10)

Here G(a/Q) and G̃(a/Q) are as in (2.29), χ′(x) = (1/τ)χ(x/τ)− χ(x), and

P ′(ζ) :=

∫
Rr×Rr

{ ∏
1≤j≤r

χ′(wj)χ
′(yj)

}
e[−ζ.D(w, y)] dwdy,

P̃ ′(ζ) :=

∫
Rr×Rr

{ ∏
1≤j≤r

χ′(wj)χ
′(yj)

}
e[−ζ.D̃(w, y)] dwdy.

(7.11)

For later use we also define the functions P (ζ) and P̃ (ζ) as in (7.11), using however the cutoff
function χ(wj)χ(yj) instead of χ′(wj)χ

′(yj). For ι ∈ {0, 1} we also let

P ι :=

{
P if ι = 0,

P ′ if ι = 1,
P̃ ι :=

{
P̃ if ι = 0,

P̃ ′ if ι = 1.
(7.12)

Using Proposition 2.4 we may estimate∣∣Dα
ζ P

ι(ζ)
∣∣+
∣∣Dα

ζ P̃
ι(ζ)

∣∣ .|α| 〈ζ〉−1/δ2 (7.13)

for any ζ ∈ Rd × Rd′ , any multi-index α ∈ Nd+d′ , and any ι ∈ {0, 1}.

Proof of Lemma 7.1. We only prove in detail the claims for the operators {(H1
k,s)
∗H1

k,s}r, since the

claims for the operators {H1
k,s(H1

k,s)
∗}r follow by analogous arguments. In view of (2.13)–(2.16) we

have
{(H1

k,s)
∗H1

k,s}r = f ∗Hr
k,s

where

Hr
k,s(y) := η≤3δk(τ

−k ◦ y)

∫
Td×Td′

e
(
y.θ
)
Πr,1
k

(
θ(1), θ(2)

)
Ωr,2
k,s

(
θ(2)
)
dθ(1)dθ(2). (7.14)

The multipliers Πr,1
k and Ωr,2

k,s can be calculated as in the proof of Lemma 4.2. Namely,

Πr,1
k

(
θ
)

= τ−2kr
∑

n,m∈Zr

{ ∏
1≤j≤r

χ′(τ−knj)χ
′(τ−kmj)

}
e
(
− θ.D(n,m)

)
, (7.15)

and, with Fk defined as in (5.3), one has

Ωr,2
k,s(θ

(2)) =
∣∣∣ ∫

Td′
Fk(θ

(2) − ξ(2))Ξk,s(ξ
(2)) dξ(2)

∣∣∣2r. (7.16)

We now show that the kernels Hr
k,s are equivalent to the kernels Br

k defined in (7.8) up to

acceptable `1 errors satisfying (7.10). We accomplish this in several steps:

Step 1. We first replace the multiplier Ωr,2
k,s(θ

(2)) with Ξk,s(θ
(2)), at the expense of acceptable `1

errors. For this we show that∣∣Ωr,2
k,s(θ

(2))− Ξk,s(θ
(2))
∣∣

.

{
1 if there is a/q ∈ Rd′s such that |τk ◦ (θ(2) − a/q)| ∈ [τ δk/2, τ2δk],

τ−k/δ otherwise.

(7.17)

Indeed, since the functions Fk satisfy the bounds (5.6), we have ‖Fk‖L1(Td′ ) . 1, so
∣∣Ωr,2

k,s(θ
(2))
∣∣ +∣∣Ξk,s(θ(2))

∣∣ . 1 for any θ(2) ∈ Td′ . On the other hand, if |τk◦(θ(2)−a/q)| ≤ τ δk/2 for some a/q ∈ Rd′s
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then Ξk,s(θ
(2)) = 1 and, in fact, Ξk,s(ξ

(2)) = 1 for all ξ(2) ∈ Td′ with |τk ◦ (θ(2) − ξ(2))| ≤ τ δk/2.
Therefore, using (5.6) with M large enough and the definition (5.3) we have∣∣∣ ∫

Td′
Fk(θ

(2) − ξ(2))Ξk,s(ξ
(2)) dξ(2) − 1

∣∣∣ . τ−k/δ +
∣∣∣ ∫

Td′
Fk(θ

(2) − ξ(2)) dξ(2) − 1
∣∣∣ = τ−k/δ.

Thus
∣∣Ωr,2

k,s(θ
(2))− Ξk,s(θ

(2))
∣∣ . τ−k/δ, as claimed in (7.17).

Finally, if |τk ◦(θ(2)−a/q)| & τ2δk for all a/q ∈ Rd′s then Ξk,s(θ
(2)) = 0 and, in fact, Ξk,s(ξ

(2)) = 0

for all ξ(2) ∈ Td′ with |τk ◦ (θ(2) − ξ(2))| ≤ τ δk/2. The desired bounds (7.17) follow as before in this
case.

Given (7.17) we can define

Hr,1
k,s(y) := η≤3δk(τ

−k ◦ y)

∫
Td×Td′

e
(
y.θ
)
Πr,1
k

(
θ(1), θ(2)

)
Ξk,s

(
θ(2)
)
dθ(1)dθ(2), (7.18)

and the difference Hr
k,s −H

r,1
k,s is an acceptable `1 error.

Step 2. We now restrict to major arcs in the variable θ(1), so we define

Hr,2
k,s(y) := η≤3δk(τ

−k ◦ y)

∫
Td×Td′

e
(
y.θ
)
Πr,1
k

(
θ(1), θ(2)

)
Ψk,≤δk

(
θ(1)
)
Ξk,s

(
θ(2)
)
dθ(1)dθ(2), (7.19)

where
Ψk,≤δk

(
θ(1)
)

:=
∑

a/q∈Rd≤δk

η≤δk(τ
k ◦ (θ(1) − a/q)). (7.20)

We will show that ‖Hr,1
k,s −H

r,2
k,s‖`1(G0) . τ

−k. Indeed, if θ(1) is in the support of 1−Ψk,≤δk then we

apply Dirichlet’s principle to find an irreducible fraction (al0/ql0)l∈{1,...,d} such that∣∣∣θ(1)
l0 −

al0
ql0

∣∣∣ ≤ 1

ql0τkl−δ
2k

and ql0 ∈ [1, τkl−δ
2k] ∩ Z,

and at least one of the denominators ql0 is larger than τ δ
2k. But then we examine the definition

(7.15) and apply Proposition 2.3 (i) to conclude that
∣∣Πr,1

k

(
θ(1), θ(2)

)∣∣ . τ−k/δ. The desired error
bounds follow.

Step 3. We now approximate the sum in the definition of Πr,1
k . Assume that θ =

(
θ(1), θ(2)

)
is a

point in R|Yd| and a/Q ∈ Q|Yd| is an irreducible fraction such that∣∣τk ◦ (θ − a/Q)∣∣ ≤ 2τ δk+4, Q ≤ τ2δk+2. (7.21)

We examine the sum in the formula (7.15). For any j ∈ {1, . . . , r} we decompose nj = Qwj + xj ,
mj = Qyj + zj , xj , zj ∈ {0, . . . , Q− 1}, wj , yj ∈ Z. Letting β = θ − a/Q we notice that

e
(
− θ.D(n,m)

)
= e
(
− β.D(Qw + x,Qy + z)

)
e
(
− (a/Q).D(x, z)

)
.

Moreover, if
∣∣τk ◦ β∣∣ . τ δk and |Qw|+ |Qy| . τk then

β.D(Qw + x,Qy + z) = β.D(Qw,Qy) +O(Qτ−k+δk) = (Q ◦ β).D(w, y) +O(Qτ−k+δk),

as one can see easily from the formula (2.24). In addition∏
1≤j≤r

χ′(τ−knj)χ
′(τ−kmj) =

∏
1≤j≤r

χ′(τ−kQwj)χ
′(τ−kQyj) +O(Qτ−k).

Therefore

Πr,1
k (θ) = τ−2kr

{ ∑
|w|,|y|.τk/Q

{ ∏
1≤j≤r

χ′(τ−kQwj)χ
′(τ−kQyj)

}
e
[
− (Q ◦ β).D(w, y)

]}
×
{ ∑
x,z∈ZrQ

e
(
− (a/Q).D(x, z)

)}
+O(Qτ−k+δk).

(7.22)
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Recall the definition (2.29). Using the Poisson summation formula we may replace the sum
over w, y ∈ Zr with the corresponding integral, at the expense of O(τ−2k) errors, and then change
variables to reach the formula (7.11). Therefore

Πr,1
k (θ) = P ′(τk ◦ β)G(a/Q) +O(τ−k+8δk). (7.23)

The contribution of the error term can be incorporated into the kernel Erk, while the main term can
be substituted into the formula (7.19), leading to the desired formula (7.8) after changes of variables.

We have established (7.8) and (7.9) with η≤δk(ζ
(1))η≤δk(ζ

(2)) in place of η≤δk/2(ζ(1))η≤δk/2(ζ(2)). Fi-

nally we can use (7.13) to replace cutoff functions η≤δk(ζ
(1))η≤δk(ζ

(2)) with η≤δk/2(ζ(1))η≤δk/2(ζ(2)).
This completes the proof of the lemma. �

We return now to the proof of the main bounds (7.4). In view of the Cotlar–Stein lemma it
suffices to prove the following:

Lemma 7.2. If k, j ≥ max((D/ ln τ)2, s/δ) and j ∈ [k/2, k] then

‖H1
j,s(H1

k,s)
∗‖`2(G0)→`2(G0) + ‖(H1

j,s)
∗H1

k,s‖`2(G0)→`2(G0) . τ
−2s/Dτ−2|j−k|/D. (7.24)

Proof. Step 1. We prove these bounds first when j = k, so we prove that the operators H1
k,s are

suitably bounded on `2(G0). In view of Lemma 7.1, it suffices to prove that

‖Br
k‖`1(G0) . τ

−2rs/D. (7.25)

We notice that ∣∣∣ ∑
a/Q=(a(1)/q1,a(2)/q2)∈Rd≤δk×Rd

′
s ∩[0,1)d+d′

e(h.a/Q)G(a/Q)
∣∣∣ . τ−s

for any h ∈ G0, as a consequence of Proposition 2.3 (ii). For ι ∈ {0, 1} we let

Xι,r
k (h) :=

{ ∏
(l1,l2)∈Yd

τ−k(l1+l2)
}
η≤3δk(τ

−k ◦ h)

×
∫
Rd×Rd′

η≤δk/2(ζ(1))η≤δk/2(ζ(2))P ι(ζ)e[(τ−k ◦ h).ζ] dζ.

(7.26)

Notice that

‖Xι,r
k ‖`1(G0) . 1 for any k ∈ N. (7.27)

Indeed, invoking (7.13) and integrating by parts in (7.26) we conclude that∣∣Xι,r
k (h)

∣∣ . { ∏
(l1,l2)∈Yd

τ−k(l1+l2)
}

(1 + |τ−k ◦ h|)−1/δ

for any h ∈ G0. Now we see that inequality (7.25) follows from (7.27) with ι = 1.

Step 2. Since we have already proved that ‖(H1
j,s)
∗‖`2→`2 . τ−s/D . 1, we can estimate

‖H1
j,s(H1

k,s)
∗‖`2→`2 = ‖H1

j,s(H1
k,s)
∗H1

k,s(H1
j,s)
∗‖1/2
`2→`2 . ‖H

1
j,s[(H1

k,s)
∗H1

k,s]‖
1/2
`2→`2

. ‖H1
j,s[(H1

k,s)
∗H1

k,s]
2‖1/4
`2→`2 . . . . . ‖H

1
j,s[(H1

k,s)
∗H1

k,s]
2a‖1/2

a+1

`2→`2 ,
(7.28)

for any j ≤ k, where 2a is the smallest dyadic number ≥ r. The norm ‖(H1
j,s)
∗H1

k,s‖`2→`2 can

be estimated in the same way, so it suffices to prove that for any j ∈ [k/2, k] such that k, j ≥
max((D/ ln τ)2, s/δ) we have

‖H1
j,s[(H1

k,s)
∗H1

k,s]
r‖`2→`2 + ‖(H1

j,s)
∗[H1

k,s(H1
k,s)
∗]r‖`2→`2 . τ−8rs/Dτ−8r|j−k|/D. (7.29)
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The bounds on the two terms in the left-hand side of (7.29) are similar, and we only provide the
proof for the first term. We use Lemma 7.1. The contribution of the error kernel Erk is bounded by

Cτ−k/4, due to (7.10), which is better than needed. It remains to prove that∥∥Br
k ∗H1

j,s

∥∥
`1(G0)

. τ−8rs/Dτ−8r|j−k|/D. (7.30)

We examine the formula (7.8) and decompose the kernel Br
k

Br
k =

∑
a/Q=(a(1)/q1,a(2)/q2)∈Rd≤δk×Rd

′
s ∩[0,1)d+d′

G(a/Q)Xr
k,a/Q,

Xr
k,a/Q(h) := Xr

k(h)e(h.a/Q),

(7.31)

where the kernels Xr
k := X1,r

k have been defined in (7.26). In view of the rapid decay of the
coefficients G(a/Q) (see (2.30)), for (7.30) it suffices to prove that∥∥Xr

k,a/Q ∗H
1
j,s

∥∥
`1(G0)

. Q8/δτ−8r|j−k|/D (7.32)

for any irreducible fraction a/Q ∈ Q|Yd| with denominator Q ∈ [τ s, τ2δk+2].
We examine now the definition (7.2) and decompose

H1
j,s(g) =

∑
b(2)/q2∈Rd′s ∩[0,1)d′

H
1,b(2)/q2
j (g) =

∑
b(2)/q2∈Rd′s ∩[0,1)d′

[∆jLj ](g
(1))e(g(2).b(2)/q2)Yj(g

(2)),

Yj(g
(2)) := φ

(2)
j (g(2))

∫
Rd′

e(g(2).β(2))η≤δj(τ
j ◦ β(2)) dβ(2),

(7.33)

For (7.32) it suffices to prove that∥∥Xr
k,a/Q ∗H

1,b(2)/q2
j

∥∥
`1(G0)

. Q4/δτ−8r|j−k|/D (7.34)

for any b(2)/q2 ∈ Rd
′
s , as the sum over b(2)/q2 contains at most τ s/δ terms and Q ≥ τ s.

Step 3. Using the definitions we estimate∥∥Xr
k,a/Q ∗H

1,b(2)/q2
j

∥∥
`1(G0)

=
∑

h=(h(1),h(2))∈G0

∣∣∣ ∑
g=(g(1),g(2))∈G0

H
1,b(2)/q2
j (g)Xr

k,a/Q(g−1 · h)
∣∣∣

≤
∑

h=(h(1),h(2))∈G0, g(2)∈Zd′
|Yj(g(2))|

∣∣∣ ∑
g(1)∈Zd

[∆jLj ](g
(1))Xr

k(g−1 · h)e
[
(g−1 · h).(a/Q)

]∣∣∣. (7.35)

To get decay in |k − j| the main point is to bound efficiently the sum over g(1) in the expression
above, using the cancellation of the kernel ∆jLj . We rewrite this sum in the form∣∣∣∑

n∈Z
τ−jχ′(τ−jn)Xr

k

(
(A

(1)
0 (n), g(2))−1 · h

)
× e
[
−A(1)

0 (n).(a(1)/Q) +R0(A
(1)
0 (n), A

(1)
0 (n)− h(1)).(a(2)/Q)

]∣∣∣,
for any h = (h(1), h(2)) ∈ G0 and g(2) ∈ Zd′ , where χ′(x) = (1/τ)χ(x/τ)− χ(x) as before. It follows
easily from the definition (7.33) that ‖Yj‖`1(Zd′ ) . 1 uniformly in j ∈ Z. Therefore, for (7.34) it

suffices to prove that∑
h=(h(1),h(2))∈G0

∣∣∣∑
n∈Z

τ−jχ′(τ−jn)Xr
k

(
h(1) −A(1)

0 (n), h(2) +R0(A
(1)
0 (n), A

(1)
0 (n)− h(1))

)
×e
[
−A(1)

0 (n).(a(1)/Q) +R0(A
(1)
0 (n), A

(1)
0 (n)− h(1)).(a(2)/Q)

]∣∣∣ . Q4/δτ−8r|j−k|/D.

(7.36)
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We further decompose n = mQ + ρ, m ∈ Z, ρ ∈ [0, Q − 1] ∩ Z, and notice that the oscillatory
factor in the sum above does not depend on m. For (7.36) it suffices to prove that∑

h∈G0

∣∣∣ ∑
m∈Z

τ−jχ′(τ−j(mQ+ ρ))Xr
k

(
A0(mQ+ ρ)−1 · h

)∣∣∣ . τ−8r|j−k|/D (7.37)

for any Q ∈ [1, τ2δk+2] and ρ ∈ [0, Q− 1] ∩ Z, as the sum over ρ contains only Q terms.
Finally, we examine the kernels Xr

k . These kernels can be extended to the continuous Lie group

G#
0 ' R|Yd|, according to the defining formula (7.26). Using (7.13) and integration by parts it

follows that

|Xr
k(h)|+

∑
(l1,l2)∈Yd

τk(l1+l2)
∣∣(∂hl1l2Xr

k)(h)
∣∣ . { ∏

(l1,l2)∈Yd

τ−k(l1+l2)
}

(1 + |τ−k ◦ h|)−2/δ (7.38)

for any h ∈ R|Yd|. Therefore, for any g ∈ G#
0 with |τ−j ◦ g| . 1, we have

|Xr
k(h)−Xr

k(g−1 · h)| . τ j−k
{ ∏

(l1,l2)∈Yd

τ−k(l1+l2)
}

(1 + |τ−k ◦ h|)−1/δ. (7.39)

Therefore ∑
h∈G0

∣∣∣ ∑
m∈Z

τ−jχ′(τ−j(mQ+ ρ))
[
Xr
k

(
A0(mQ+ ρ)−1 · h

)
−Xr

k

(
h
)]∣∣∣ . τ j−k.

Moreover, since
∫
R χ
′(x) dx = 0, we have∑

h∈G0

∣∣∣ ∑
m∈Z

τ−jχ′(τ−j(mQ+ ρ))Xr
k

(
h
)∣∣∣ =

( ∑
h∈G0

∣∣Xr
k

(
h
)∣∣)∣∣∣ ∑

m∈Z
τ−jχ′(τ−j(mQ+ ρ))

∣∣∣ . Qτ−j .
The desired bounds (7.37) follow since j ∈ [k/2, k] and Q ≤ τ2δk+2. This completes the proof of the
lemma. �

7.3. Proof of (4.20). Given that we already proved the variational inequality (4.19), in view of
(2.4) it suffices to prove that

‖f ∗Kk0,s‖`2(G0) . τ
−s/D2‖f‖`2(G0), (7.40)

where k0 in an integer satisfying |k0 − 3κs/2| ≤ 1. We decompose Kk0,s = Glow
k0,s

+
∑

t≤δ′k0 Gk0,s,t +

Gck0,s as in (4.28). The contributions of the operators defined by the kernels Glow
k0,s

and Gck0,s are

suitably bounded due to Lemma 4.4 and Lemma 4.5 (i) proved in the previous sections. The
contributions of the operators defined by the kernels Gk0,s,t are bounded due to Lemma 4.5 (ii) and
Lemma 4.6 proved in Section 8 below. The bounds (7.40) follow.

8. Transition estimates II: Proof of Lemma 4.6

In this section we prove bounds (4.34) and (4.35). In fact we establish a stronger result which
will be used in `p(G0) theory in Section 9.

Lemma 8.1. Assume that s ≥ 0, and t ≥ D(s+ 1), and let A ⊆ Rdt \ R̃dQs, B ⊆ R
d′
≤s be 1-periodic

sets of rationals. Then for any 2 < ρ <∞ and for any f ∈ `2(G0) we have∥∥V ρ(f ∗Kk,k,A,B : max(κs, t/δ
′) ≤ k < 2κt)

∥∥
`2(G0)

. τ−t/D
2‖f‖`2(G0), (8.1)

where Kk,w,A,B is the kernel defined in (4.36). In particular, we have∥∥ sup
max(κs,t/δ′)≤k<2κt

|f ∗Kk,k,A,B|
∥∥
`2(G0)

. τ−t/D
2‖f‖`2(G0). (8.2)
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The estimates (8.1)–(8.2) imply (4.34)–(4.35), since Gk,s,t = K
k,k,Rdt \R̃dQs ,R

d′
s

. Moreover, the

bounds (8.2) follow from (4.35) and (6.49). Thus our main goal is to prove the bounds (8.1).
As in Section 7 we let Gk,k,A,B := ∆kKk,k,A,B = Kk+1,k+1,A,B −Kk,k,A,B for k ≥ max(κs, t/δ

′),
apply the Rademacher–Menshov inequality (2.7) and then Khintchine’s inequality. As in Section 7,
for (8.1) it suffices to prove that∥∥∥ ∑

k∈[J,2J ]

κk(f ∗Gk,k,A,B)
∥∥∥
`2(G0)

. τ−4t/D2∥∥f∥∥
`2(G0)

(8.3)

for any J ≥ max(κs, t/δ
′) and any coefficients κk ∈ [−1, 1].

We examine the definitions (4.36) and (4.37), and further decompose

Gk,k,A,B = G1
k,k,A,B +G2

k,k,A,B +G3
k,k,A,B +G4

k,k,A,B,

G1
k,k,A,B(g) := φk(g)

∫
Td×Td′

e(g.ξ)Ψk,k,A(ξ(1))Ξk,k,B(ξ(2))[∆kSk](ξ
(1)) dξ(1)dξ(2),

G2
k,k,A,B(g) := [∆kφk](g)

∫
Td×Td′

e(g.ξ)Ψk,k,A(ξ(1))Ξk,k,B(ξ(2))Sk+1(ξ(1)) dξ(1)dξ(2),

G3
k,k,A,B(g) := φk+1(g)

∫
Td×Td′

e(g.ξ)Ψk,k,A(ξ(1))[∆kΞk,k,B](ξ(2))]Sk+1(ξ(1)) dξ(1)dξ(2),

G4
k,k,A,B(g) := φk+1(g)

∫
Td×Td′

e(g.ξ)[∆kΨk,k,A](ξ(1))Ξk+1,k+1,B(ξ(2))Sk+1(ξ(1)) dξ(1)dξ(2),

(8.4)

where φk(g) = φ
(1)
k (g(1))φ

(2)
k (g(2)) as before. As in Section 7 we will prove that∥∥∥ ∑
k∈[J,2J ]

κk(f ∗G1
k,k,A,B)

∥∥∥
`2(G0)

. τ−t/D
∥∥f∥∥

`2(G0)
, (8.5)

for any J ≥ max(κs, t/δ
′) and any coefficients κk ∈ [−1, 1]. We will also prove that∥∥f ∗Gιk,k,A,B∥∥`2(G0)

. τ−k/D
∥∥f∥∥

`2(G0)
, (8.6)

for any k ≥ max(κs, t/δ
′) and ι ∈ {2, 3, 4}. These two estimates would clearly imply the bounds

(8.3), thus completing the proof of Lemma 8.1.

8.1. Proof of the bounds (8.5). As in Section 7, we will use a high order almost orthogonality
argument. For this purpose we need a good description of the operators

{
(G1
k,k,A,B)∗G1

k,k,A,B
}r

and{
G1
k,k,A,B(G1

k,k,A,B)∗
}r

, where G1
k,k,A,Bf := f ∗ G1

k,k,A,B. We note that G1
k,k,A,B = K ′k,k,A,B, see the

definitions in (4.36) and (4.37). For ι ∈ {0, 1} let

Kι
k,w,A,B :=

{
Kk,w,A,B if ι = 0,

K ′k,w,A,B if ι = 1,
Lιk,w,A :=

{
Lk,w,A if ι = 0,

L′k,w,A if ι = 1.
(8.7)

For later use we consider both operators Kιk,k,A,Bf := f ∗Kι
k,k,A,B, ι ∈ {0, 1}.

Lemma 8.2. Assume that A ⊆ Qd, B ⊆ Qd′ are 1-periodic sets and assume that {q ∈ Z+ : a/q ∈
A and gcd(a1, . . . , ad, q) = 1} ⊆ [qA, 4qA] for some qA ∈ Z+. Assume that qA ≥ QD for any

irreducible fraction a/Q ∈ B, and k ≥ (D/ ln τ)2 satisfies τ δ
′k ≥ qA. If r ∈ Z+ is sufficiently large

then for every f ∈ `2(G0) we have{
(Kιk,k,A,B)∗Kιk,k,A,B

}r
f = f ∗ {F ι,rk +Oι,rk },{

Kιk,k,A,B(Kιk,k,A,B)∗
}r
f = f ∗ {F̃ ι,rk + Õι,rk },

(8.8)
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where

F ι,rk (h) :=
{ ∑
a(2)/Q∈B∩[0,1)d′

∑
σ∈[A+(Z/Q)d]∩[0,1)d

C(a(2)/Q, σ)e(h(1).σ)e
(
h(2).(a(2)/Q)

)}

×
{ ∏

(l1,l2)∈Yd

τ−k(l1+l2)
}
η≤3δk(τ

−k ◦ h)

∫
Rd×Rd′

{ 2∏
i=1

η≤δk/2(ζ(i))
}
P ι(ζ)e[(τ−k ◦ h).ζ] dζ,

(8.9)

F̃ ι,rk (h) :=
{ ∑
a(2)/Q∈B∩[0,1)d′

∑
σ∈[A+(Z/Q)d]∩[0,1)d

C̃(a(2)/Q, σ)e(h(1).σ)e
(
h(2).(a(2)/Q)

)}

×
{ ∏

(l1,l2)∈Yd

τ−k(l1+l2)
}
η≤3δk(τ

−k ◦ h)

∫
Rd×Rd′

{ 2∏
i=1

η≤δk/2(ζ(i))
}
P̃ ι(ζ)e[(τ−k ◦ h).ζ] dζ,

(8.10)

and

‖Oι,rk ‖`1(G0) + ‖Õι,rk ‖`1(G0) . τ
−k. (8.11)

The functions P ι and P̃ ι are as in (7.12) (see also (7.11)), and the coefficients C and C̃ satisfy

|C(a(2)/Q, σ)|+ |C̃(a(2)/Q, σ)| . q−1/δ
A (8.12)

for any a(2)/Q ∈ B ∩ [0, 1)d
′

and σ ∈ [A+ (Z/Q)d] ∩ [0, 1)d.

Proof. We only prove in detail the claims for the operators
{

(Kιk,k,A,B)∗Kιk,k,A,B
}r

, since the claims

for the operators
{
Kιk,k,A,B(Kιk,k,A,B)∗

}r
, follow by analogous arguments.

Step 1. By (4.36) notice that the kernels Kι
k,k,A,B have product structure. Thus in view of

(2.13)–(2.16) we have {
(Kιk,k,A,B)∗Kιk,k,A,B

}r
f = f ∗Kι,r

k,k,A,B,

where

Kι,r
k,k,A,B(y) := η≤3δk(τ

−k ◦ y)

∫
Td×Td′

e
(
y.θ
)
Πι,r
k,k,A

(
θ(1), θ(2)

)
Ωr
k,k,B

(
θ(2)
)
dθ(1)dθ(2), (8.13)

and the multipliers Πι,r
k,k,A and Ωr

k,k,B are given by

Πι,r
k,k,A

(
θ(1), θ(2)

)
:=

∑
h
(1)
j ,g

(1)
j ∈Zd

{ r∏
j=1

Lιk,k,A(h
(1)
j )Lιk,k,A(g

(1)
j )
}
e
(
θ(1).

∑
1≤j≤r

(h
(1)
j − g

(1)
j )
)

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(h
(1)
j , h

(1)
j − g

(1)
j ) +

∑
1≤l<j≤r

R0(−h(1)
l + g

(1)
l ,−h(1)

j + g
(1)
j )
}) (8.14)

and, with Fk defined as in (5.3),

Ωr
k,k,B

(
θ(2)
)

:=
∣∣∣ ∫

Td′
Fk(θ

(2) − ξ(2))Ξk,k,B(ξ(2)) dξ(2)
∣∣∣2r. (8.15)

As in the proof of Lemma 7.1, our goal is to show that the kernels Kι,r
k,k,A,B are equivalent to

the kernels F ι,rk in (8.9), up to acceptable `1 errors. For this we need to replace the multipliers

Πι,r
k,k,A

(
θ(1), θ(2)

)
Ωr
k,k,B

(
θ(2)
)

with more explicit multipliers, at the expense of acceptable errors.

Step 2. We will follow the ides from Sections 5-7. As in (5.15) we may write

Πι,r
k,k,A

(
θ(1), θ(2)

)
=

∫
(Td)2r

Vrk(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

×
∏

1≤j≤r

{
Sιk(ζ

(1)
j ) Ψk,k,A(ζ

(1)
j )Sιk(ξ

(1)
j )Ψk,k,A(ξ

(1)
j )
}
dξ

(1)
1 dζ

(1)
1 . . . dξ(1)

r dζ(1)
r ,

(8.16)
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where (see also in (5.16)) we have

Vrk(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

=
∑

hj ,gj∈Zd

∏
1≤j≤r

{
φ

(1)
k (hj)e

(
(θ(1) − ζ(1)

j ).hj
)
φ

(1)
k (gj)e

(
− (θ(1) − ξ(1)

j ).gj
)}

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(hj , hj − gj) +
∑

1≤l<j≤r
R0(−hl + gl,−hj + gj)

})
.

In view of (5.6) we have a rapid decay |Ωr
k,k,B(θ(2))| . τ−Dk unless |τk ◦ (θ(2) − a(2)/Q)| ≤ τ2δk

for some a(2)/Q ∈ B. Hence, we may assume that θ(2) = α(2) + a(2)/Q for some a(2)/Q ∈ B and

|τk ◦ α(2)| ≤ τ2δk. The condition (5.21) is then verified so we can use Lemma 5.2.
We now define new projections

Φk,A+(Z/Q)d(θ
(1)) :=

∑
σ∈A+(Z/Q)d

η≤2δ′k(τ
k ◦ (θ(1) − σ)),

where A + (Z/Q)d := {σ + a/Q : σ ∈ A, a ∈ Zd}. Examining (5.18) we conclude that Vrk decays

rapidly unless τkl‖θ(1)
l − ξ

(1)
j,l ‖Q ≤ τ10δk and τkl‖θ(1)

l − ζ
(1)
j,l ‖Q ≤ τ10δk for all j ∈ {1, . . . , r} and

l ∈ {1, . . . , d}, thus we may replace Πι,r
k,k,A

(
θ(1), θ(2)

)
with Πι,r

k,k,A
(
θ(1), θ(2)

)
Φk,A+(Z/Q)d

(
θ(1)
)

at the

expense of O(τ−Dk) error term.
Expanding the cutoff functions Ψk,k,A, invoking rapid decay from (5.18) of Vrk as above and using

Lemma 5.2 we may replace Πι,r
k,k,A

(
θ(1), θ(2)

)
Φk,A+(Z/Q)d

(
θ(1)
)

with

∑
σ∈A+(Z/Q)d

∑
b,c∈(ZdQ)r

ιQ(σ; b, c)Wr
Q(a(2), b1, c1, . . . , br, cr)η≤2δ′k(τ

k ◦ (θ(1) − σ))

×
∫

(Rd)2r

{ r∏
j=1

η≤δ′k(τ
k ◦ (ξ

(1)
j − σ + bj/Q))η≤δ′k(τ

k ◦ (ζ
(1)
j − σ + cj/Q))

}
×Zrk(α(2); θ(1) − ξ(1)

1 − b1/Q, θ(1) − ζ(1)
1 − c1/Q, . . . , θ

(1) − ξ(1)
r − br/Q, θ(1) − ζ(1)

r − cr/Q)

×
∏

1≤j≤r

{
Sιk(ζ

(1)
j )Sιk(ξ

(1)
j )
}
dξ

(1)
1 dζ

(1)
1 . . . dξ(1)

r dζ(1)
r

at the expenses of O(τ−Dk/2) errors, where Zrk and Wr
Q have been defined in (5.24)–(5.25), b =

(b1, . . . , br) ∈ (ZdQ)r, c = (c1, . . . , cr) ∈ (ZdQ)r, and the coefficients ιQ are defined by

ιQ(σ; b, c) :=

{
1 if σ − bj/Q, σ − cj/Q ∈ A for any j ∈ {1, . . . , r};
0 otherwise.

(8.17)

We make the changes of variables ξ
(1)
j = βj + σ − bj/Q and ζ

(1)
j = γj + σ − cj/Q in the latter

integral. In view of Lemma 6.1 we can also replace Sιk(ξ
(1)
j ) and Sιk(ζ

(1)
j ) with S(σ − bj/Q)J ιk(βj)

and S(σ − cj/Q)J ιk(γj), at the expense of acceptable errors. Therefore, the integral formula above
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shows that if θ(2) = α(2) + a(2)/Q for some a(2)/Q ∈ B and |τk ◦ α(2)| ≤ 2τ2δk, then

Πι,r
k,k,A

(
θ(1), θ(2)

)
=

∑
σ∈A+(Z/Q)d

∑
b,c∈(ZdQ)r

ιQ(σ; b, c)Wr
Q(a(2), b, c)η≤2δ′k(τ

k ◦ (θ(1) − σ))

×
∏

1≤j≤r

{
S(σ − bj/Q)S(σ − cj/Q)

}∫
R2rd

{ ∏
1≤j≤r

η≤δ′k(τ
k ◦ βj)η≤δ′k(τk ◦ γj)J ιk(βj)J ιk(γj)

}
×Zrk(α(2); θ(1) − σ − β1, θ

(1) − σ − γ1, . . . , θ
(1) − σ − βr, θ(1) − σ − γr) dβ1dγ1 . . . dβrdγr

+O(τ−Dk/3), (8.18)

where Wr
Q(a(2), b, c) =Wr

Q(a(2), b1, c1, . . . , br, cr).

Step 3. Using the definitions (6.4)–(6.5) and (5.25), the integral over βj , γj in (8.18) is equal to∫
R2rd

∫
R2r

e
(
− (τk ◦ α(2)).

{ ∑
1≤j≤r

R0(yj , yj − xj) +
∑

1≤l<j≤r
R0(−yl + xl,−yj + xj)

})
×
∏

1≤j≤r

{
η≤δk(xj)e

(
− (τk ◦ α(1)).xj

)
η≤δk(yj)e

(
(τk ◦ α(1)).yj

)
× χι(uj)χι(vj)η̂≤δ′k(A

(1)
0 (uj)− xj)η̂≤δ′k(−A

(1)
0 (vj) + yj)

}
dujdvjdxjdyj ,

(8.19)

where η̂≤δ′k denotes the Euclidean Fourier transform of η≤δ′k and α(1) := θ(1) − σ.
We notice that we may replace the factors η≤δk(xj) and η≤δk(yj) with 1 in the formula (8.19), at

the expense of O(τ−Dk) errors, due to the stronger localizations induced by the factors in the last

line. Then we make the changes of variables xj = A
(1)
0 (uj) + x′j , yj = A

(1)
0 (vj) + y′j to rewrite the

remaining integral in the form

Iιk(α
(1), α(2)) :=

∫
R2rd

∏
1≤j≤r

{
η̂≤δ′k(−x′j)η̂≤δ′k(y′j)e

(
− (τk ◦ α(1)).(x′j − y′j)

)}
(8.20)

×
{∫

R2r

e
(
− (τk ◦ α(2)).T (x′, y′, u, v)

) ∏
1≤j≤r

{
χι(uj)χ

ι(vj)
}
e
(
− (τk ◦ α).D(v, u)

)
dudv

}
dx′dy′,

where α = (α(1), α(2)), the function D : Rr × Rr → R is defined as in (2.24), and

T (x′, y′, u, v) := T1(x′, y′, u, v) + T2(x′, y′),

T1(x′, y′, u, v) :=
∑

1≤j≤r

[
R0(A

(1)
0 (vj), y

′
j − x′j) +R0(y′j , A

(1)
0 (vj)−A(1)

0 (uj))
]

+
∑

1≤l<j≤r

[
R0(A

(1)
0 (ul)−A

(1)
0 (vl), x

′
j − y′j) +R0(x′l − y′l, A

(1)
0 (uj)−A(1)

0 (vj))
]
,

T2(x′, y′) :=
∑

1≤j≤r
R0(y′j , y

′
j − x′j) +

∑
1≤l<j≤r

R0(x′l − y′l, x′j − y′j).

(8.21)

To summarize, we have proved that if θ(2) = α(2) + a(2)/Q for some a(2)/Q ∈ B and |τk ◦ α(2)| ≤
2τ2δk, then ∣∣∣Πι,r

k,k,A
(
θ(1), θ(2)

)
−

∑
σ∈A+(Z/Q)d

C(a(2)/Q, σ)η≤2δ′k(τ
k ◦ (θ(1) − σ))

× Iιk(θ(1) − σ, α(2))
∣∣∣ . τ−Dk/3, (8.22)
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where the multipliers Iιk are defined as in (8.20), and

C(a(2)/Q, σ) :=
∑

b,c∈(ZdQ)r

ιQ(σ; b, c)Wr
Q(a(2), b, c)

∏
1≤j≤r

{
S(σ − bj/Q)S(σ − cj/Q)

}
. (8.23)

Notice that the coefficients C(a(2)/Q, σ) satisfy the desired bounds (8.12) because QD ≤ qA, and∣∣S(%)
∣∣ . q−δA for any % ∈ A, as a consequence of (2.22).

Step 4. We now show that if |τk ◦ α(1)|+ |τk ◦ α(2)| ≥ τ δk/2 then

|Iιk(α(1), α(2))| . τ−k/δ. (8.24)

We shall apply Proposition 2.4. For this we rewrite

e
(
− (τk ◦ α(2)).T1(x′, y′, u, v)

) ∏
1≤j≤r

{
χι(uj)χ

ι(vj)
}

=
∏

1≤j≤r

{
ψj(uj)φj(vj)

}
,

where, using the formulas (8.21), we obtain

ψj(uj) := χι(uj)e
{
− (τk ◦ α(2)).

[
−R0(y′j , A

(1)
0 (uj))

+
∑
j<l≤r

R0(A
(1)
0 (uj), x

′
l − y′l) +

∑
1≤l<j

R0(x′l − y′l, A
(1)
0 (uj))

]}
,

φj(vj) := χι(vj)e
{
− (τk ◦ α(2)).

[
R0(A

(1)
0 (vj), y

′
j − x′j) +R0(y′j , A

(1)
0 (vj))

−
∑
j<l≤r

R0(A
(1)
0 (vj), x

′
l − y′l)−

∑
1≤l<j

R0(x′l − y′l, A
(1)
0 (vj))

]}
.

Then we notice that the contribution to the integral in (8.20) coming from the points (x′, y′) outside

the ball Br := {(x′, y′) ∈ Rdr × Rdr : |x′| + |y′| ≤ τ−δ
′k/2} is negligible, due to the rapid decay of

the function η̂≤δ′k. On the other hand, if |x′| + |y′| ≤ τ−δ
′k/2 and |τk ◦ α(2)| ≤ 2τ2δk, then the

functions ψj and φj defined above have bounded C1(R) norms, ‖ψj‖C1 + ‖φj‖C1 . 1, so we can
apply Proposition 2.4 for any (x′, y′) ∈ Br. The desired bounds (8.24) follow.

On the other hand, if |τk ◦ α(1)|+ |τk ◦ α(2)| . τ δk/2 then we observe that∫
Rd
η̂≤δ′k(z)z

β dz = 0, (8.25)

for any multi-index β = (β1, . . . , βd) ∈ Nd \ {0}. Since T (x′, y′, u, v) is a polynomial in the variables
xj , yj , we can use a Taylor expansion to see that∣∣∣ ∫

R2rd

∏
1≤j≤r

{
η̂≤δ′k(−x′j)η̂≤δ′k(y′j)

}[
e
(
− (τk ◦ α(1)).

∑
1≤j≤r

(x′j − y′j)
)

× e
(
− (τk ◦ α(2)).T (x′, y′, u, v)

)
− 1
]
dx′dy′

∣∣∣ . τ−Dk,
provided that |τk ◦ α(1)|+ |τk ◦ α(2)| . τ δk/2 and |u|+ |v| . 1. Recalling also the definition (7.11),
we have the approximate identity

Iιk(α) = P ι(τk ◦ α)η≤δk/2(τk ◦ α(1))η≤δk/2(τk ◦ α(2)) +O(τ−k/δ). (8.26)

Step 5. We examine the functions Ωr
k,k,B defined in (8.15). Using (5.6) it is easy to see that∣∣Ωr

k,k,B(a(2)/Q+ α(2))− 1
∣∣ . τ−Dk if |τk ◦ α(2)| ≤ 2τ δk/2 and a(2)/Q ∈ B. (8.27)
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Compare (8.27) with the bounds from (7.17). Combining this with (8.22), (8.24), and (8.26) we
derive our main approximate identity for multipliers,∣∣∣Πι,r

k,k,A
(
θ(1), θ(2)

)
Ωr
k,k,B(θ(2))−

∑
a(2)/Q∈B

∑
σ∈A+(Z/Q)d

C(a(2)/Q, σ) (8.28)

× η≤δk/2(τk ◦ (θ(1) − σ))η≤δk/2(τk ◦ (θ(2) − a(2)/Q))P ι(τk ◦ (θ(1) − σ, θ(2) − a(2)/Q))
∣∣∣ . τ−k/δ.

The desired conclusions (8.8)–(8.9) follow using the identity (8.13). �

We now return to the proof of the bounds (8.5). In view of the Cotlar–Stein lemma it suffices to
prove the following:

Lemma 8.3. Assume that s ≥ 0, t ≥ D(s+ 1), and let A ⊆ Rdt \ R̃dQs, B ⊆ R
d′
≤s be 1-periodic sets

of rationals. If k, j ≥ max(κs, t/δ
′) and j ∈ [k/2, k], then

‖G1
j,j,A,B(G1

k,k,A,B)∗‖`2(G0)→`2(G0) + ‖(G1
j,j,A,B)∗G1

k,k,A,B‖`2(G0)→`2(G0) . τ
−2t/Dτ−2|j−k|/D. (8.29)

Proof. We will use Lemma 8.2 with ι = 1, since G1
k,k,A,B = K ′k,k,A,B. The proof will proceed in

several steps as the proof of Lemma 7.2.
Step 1. We will abbreviate F 1,r

k (h) to F rk (h), where

F rk (h) :=
{ ∑
a(2)/Q∈B∩[0,1)d′

∑
σ∈[A+(Z/Q)d]∩[0,1)d

C(a(2)/Q, σ)e(h(1).σ)e
(
h(2).(a(2)/Q)

)}
Xr
k(h),

where Xr
k := X1,r

k are the kernels defined in (7.26). In view of (7.27) and (8.12) we have

‖F rk ‖`1(G0) . τ
−t/(2δ).

This shows that ‖G1
k,k,A,B‖`2(G0)→`2(G0) . τ

−t/r, and bound (8.29) follows if j = k.

To prove the bounds (8.29) in the general case j ≤ k we use first a high order T ∗T argument, as
in (7.28), so it suffices to prove that

‖G1
j,j,A,B[(G1

k,k,A,B)∗G1
k,k,A,B]r‖`2→`2 + ‖(G1

j,j,A,B)∗[G1
k,k,A,B(G1

k,k,A,B)∗]r‖`2→`2

. τ−8rt/Dτ−8r|j−k|/D,
(8.30)

for any j ∈ [k/2, k] such that k, j ≥ max(κs, t/δ
′). The two bounds are similar, so we will focus on

bounding the first term. We use Lemma 8.2, and notice that the contribution of the error kernel
O1,r
k is controlled by O(τ−k), which is better than needed. It remains to prove that∥∥F rk ∗G1

j,j,A,B
∥∥
`1(G0)

. τ−8rt/Dτ−8r|j−k|/D. (8.31)

Step 2. Using Lemma 6.1 the kernels G1
j,j,A,B = K ′j,j,A,B = L′j,j,ANj,j,B, can be rewritten as∑

b(1)/q1∈A∩[0,1)d, b(2)/q2∈B∩[0,1)d
′

S(b(1)/q1)e(g(1).(b(1)/q1))e(g(2).(b(2)/q2))Yj(g),

Yj(g) := φj(g)

∫
Rd×Rd′

e(g.ζ)J ′j(ζ
(1))η≤δ′j(τ

j ◦ ζ(1))η≤δj(τ
j ◦ ζ(2)) dζ(1)dζ(2),

(8.32)

up to rapidly decreasing errors. Here φj(g) = φ
(1)
j (g(1))φ

(2)
j (g(2)) as before, and the functions J ′j are

defined as in (6.4).
As in (7.31), we define Xr

k,a/q(h) = Xr
k(h)e(h.a/q). We define also Yj,a/q(g) = Yj(g)e(g.a/q), with

Yj as in (8.32). By the definition of F rk and the rapid exponential decay |C(a(2)/Q, σ)| . τ−t/δ (see

(8.12) with A ⊆ Rdt \ R̃dQs and B ⊆ Rd′≤s), for (8.31) it suffices to prove that∥∥Xr
k,a/q ∗ Yj,a′/q′

∥∥
`1(G0)

. τ−8r|j−k|/D (8.33)



POLYNOMIAL AVERAGES AND POINTWISE ERGODIC THEOREMS 47

for any irreducible fractions a/q, a′/q′ ∈ Qd+d′ with denominators q, q′ ≤ τ2t+2.
Step 3. Let Q = qq′ ∈ [1, τ4t+4] and recall the definitions (6.1)–(6.2). Since e((g · h · g′).a/q) =

e((g · g′).a/q) and e((g · h · g′).a′/q′) = e((g · g′).a′/q′) if h ∈ HQ and g, g′ ∈ G0, we have∥∥Xr
k,a/q ∗ Yj,a′/q′

∥∥
`1(G0)

=
∑

µ∈JQ, h∈HQ

∣∣∣ ∑
µ1∈JQ, h1∈HQ

Xr
k,a/q(µ

−1
1 · h

−1
1 · h · µ)Yj,a′/q′(h1 · µ1)

∣∣∣
≤

∑
µ,µ1∈JQ, h∈HQ

∣∣∣ ∑
h1∈HQ

Xr
k(µ−1

1 · h
−1
1 · h · µ)Yj(h1 · µ1)

∣∣∣.
Therefore∥∥Xr

k,a/q ∗ Yj,a′/q′
∥∥
`1(G0)

.
∑

µ,µ1∈JQ, h,h1∈HQ

∣∣Xr
k(µ−1

1 · h
−1
1 · h · µ)−Xr

k(h · µ)
∣∣∣∣Yj(h1 · µ1)

∣∣
+

∑
µ,µ1∈JQ, h∈HQ

|Xr
k(h · µ)|

∣∣∣ ∑
h1∈HQ

Yj(h1 · µ1)
∣∣∣. (8.34)

Using (7.38), for any g, g1 ∈ G0 we have

|Xr
k(g−1

1 · g)−Xr
k(g)

∣∣ . τ j−k(1 + |τ−j ◦ g1|)2/δ+2
{ ∏

(l1,l2)∈Yd

τ−k(l1+l2)
}

(1 + |τ−k ◦ g|)−1/δ+1,

which is a stronger version of (7.39). Moreover, using the definition of the kernel Yj in (8.32),

|Yj(g1)| .
{ ∏

(l1,l2)∈Yd

τ−j(l1+l2−δl1l2 )
}∫

R
|χ′(u)|

(
1 +

∣∣τ δ̃j(A0(u)− τ−j ◦ g1

)∣∣)−4/δ
du,

uniformly in g1 ∈ G0. Here δ̃ = (δl1l2)(l1,l2)∈Yd and δl1l2 = δ if (l1, l2) ∈ Y ′d and δl1l2 = δ′ otherwise.
Since

1 + |τ−j ◦ g1| . 1 +
∣∣τ δ̃j(A0(u)− τ−j ◦ g1

)∣∣,
we obtain the desired bound for the first term in the right-hand side of (8.34).

Next, we focus on the second term in the right-hand side of (8.34). Notice that using (2.17) we
are able to prove that∣∣∣ ∑

h1∈HQ

φj(h1 · µ1)e
(
(h1 · µ1).ζ

)∣∣∣ . Q−d−d′{ ∏
(l1,l2)∈Yd

τ j(l1+l2+δ)
}(

1 + τ δj |τ j ◦ ζ|
)−D

,

uniformly in |τ j ◦ ζ| . τ j/4, Q . τ j/8 and µ1 ∈ JQ. Further, since J ′j(0) = 0, it follows from the

definition of J ′j (see (6.4)) that |J ′j(ζ(1))| . min(1, |τ j ◦ ζ(1)|) for any ζ(1) ∈ Rd. Combining the

above with (7.38) we bound the second term in the right-hand side of (8.34) by∑
µ1∈JQ

∣∣∣ ∑
h1∈HQ

Yj(h1 · µ1)
∣∣∣ ≤ ∑

µ1∈JQ

∫
Rd×Rd′

∣∣∣ ∑
h1∈HQ

φj(h1 · µ1)e
(
(h1 · µ1).ζ

)∣∣∣∣∣J ′j(ζ(1))
∣∣

×
∣∣η≤δ′j(τ j ◦ ζ(1))η≤δj(τ

j ◦ ζ(2))
∣∣ dζ(1)dζ(2)

.
∫
Rd×Rd′

{ ∏
(l1,l2)∈Yd

τ j(l1+l2+δ)
}(

1 + τ δj |τ j ◦ ζ|
)−D∣∣τ j ◦ ζ(1)

∣∣ dζ(1)dζ(2)

. τ−δj .

Recalling that j ∈ [k/2, k] we see that the desired estimates (8.33) follow. �
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8.2. Proof of the bounds (8.6) for ι = 2. Notice that if g is in the support of the kernel

G2
k,k,A,B then there is (l1, l2) ∈ Yd such that |gl1l2 | & τ δkτk(l1+l2). Therefore we can integrate by

parts many times in the variable ξl1l2 to prove that the kernels G2
k,k,A,B have rapid decay, i.e.

|G2
k,k,A,B(g)| . τ−k/δ for any g ∈ G0. The desired bounds (8.6) follow. �

8.3. Proofs of the bounds (8.6) for ι = 3 and ι = 4. As before, we use a high order T ∗T
argument. Notice that the kernels G3

k,k,A,B and G4
k,k,A,B defined in (8.4) have product structure

G3
k,k,A,B(g) = I3

k,k,A(g(1))J3
k,k,B(g(2)),

I3
k,k,A(g(1)) := φ

(1)
k+1(g(1))

∫
Td

e(g(1).ξ(1))Ψk,k,A(ξ(1))Sk+1(ξ(1)) dξ(1),

J3
k,k,B(g(2)) := φ

(2)
k+1(g(2))

∫
Td′

e(g(2).ξ(2))[∆kΞk,k,B](ξ(2)) dξ(2),

(8.35)

and

G4
k,k,A,B(g) = I4

k,k,A(g(1))J4
k,k,B(g(2)),

I4
k,k,A(g(1)) := φ

(1)
k+1(g(1))

∫
Td

e(g(1).ξ(1))[∆kΨk,k,A](ξ(1))Sk+1(ξ(1)) dξ(1),

J4
k,k,B(g(2)) := φ

(2)
k+1(g(2))

∫
Td′

e(g(2).ξ(2))Ξk+1,k+1,B(ξ(2)) dξ(2).

(8.36)

We define the operators Gιk,k,A,B by Gιk,k,A,Bf := f ∗Gιk,k,A,B, ι ∈ {3, 4}. Using (2.13)–(2.16) we have{
(Gιk,k,A,B)∗Gιk,k,A,B

}r
f = f ∗Gι,rk,k,A,B,

for a sufficiently large integer r ∈ Z+ and ι ∈ {3, 4}, where the kernels Gι,rk,k,A,B are given by

Gι,rk,k,A,B(y) := η≤3δk(τ
−k ◦ y)

∫
Td×Td′

e
(
y.θ
)
Πι,r
k,k,A

(
θ(1), θ(2)

)
Ωι,r
k,k,B

(
θ(2)
)
dθ(1)dθ(2).

The multipliers Πι,r
k,k,A are given by

Πι,r
k,k,A

(
θ(1), θ(2)

)
:=

∑
h
(1)
j ,g

(1)
j ∈Zd

{ r∏
j=1

Iιk,k,A(h
(1)
j )Iιk,k,A(g

(1)
j )
}
e
(
θ(1).

∑
1≤j≤r

(h
(1)
j − g

(1)
j )
)

(8.37)

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(h
(1)
j , h

(1)
j − g

(1)
j ) +

∑
1≤l<j≤r

R0(−h(1)
l + g

(1)
l ,−h(1)

j + g
(1)
j )
})
.

Moreover, with Fk+1 defined as in (5.3), the multipliers Ωι,r
k,k,B are given by

Ω3,r
k,k,B

(
θ(2)
)

:=
∣∣∣ ∫

Td′
Fk+1(θ(2) − ξ(2))[∆kΞk,k,B](ξ(2)) dξ(2)

∣∣∣2r,
Ω4,r
k,k,B

(
θ(2)
)

:=
∣∣∣ ∫

Td′
Fk+1(θ(2) − ξ(2))Ξk+1,k+1,B(ξ(2)) dξ(2)

∣∣∣2r. (8.38)

For (8.6) it suffices to prove that for ι ∈ {3, 4} we have the multiplier bounds∣∣∣Πι,r
k,k,A

(
θ(1), θ(2)

)
Ωι,r
k,k,B

(
θ(2)
)∣∣∣ . τ−k/δ for any (θ(1), θ(2)) ∈ Td × Td

′
. (8.39)

The proof of (8.39) follows by similar arguments as in Lemma 8.2. We consider two cases:

Case 1. Assume first that ι = 3. Notice that we have rapid decay |Ω3,r
k,k,B(θ(2))| . τ−Dk unless

|τk ◦ (θ(2) − a(2)/Q)| ≤ τ2δk for some a(2)/Q ∈ B. In this case the symbols Π3,r
k,k,A satisfy similar



POLYNOMIAL AVERAGES AND POINTWISE ERGODIC THEOREMS 49

bounds as the symbols Π0,r
k,k,A analyzed in the proof of Lemma 8.2. In particular, we have∣∣∣Π3,r

k,k,A
(
θ(1), θ(2)

)
−

∑
σ∈A+(Z/Q)d

C(a(2)/Q, σ)η≤2δ′k(τ
k ◦ (θ(1) − σ))

× I3
k(θ(1) − σ, α(2))

∣∣∣ . τ−Dk/3,
which is analogous to the approximate identity (8.22). The coefficients C(a(2)/Q, σ) are as in (8.23),
while the functions I3

k are similar to the functions Iιk defined in (8.20) (with the factor χι(uj)χ
ι(vj)

replaced by χ(uj/2)χ(vj/2)/4). We still have the key bounds

|I3
k(α(1), α(2))| . τ−k/δ if |τk ◦ α(1)|+ |τk ◦ α(2)| ≥ τ δk/2,

which are similar to (8.24). The main difference is that the bounds (8.27) are replaced by∣∣Ω3,r
k,k,B(a(2)/Q+ α(2))

∣∣ . τ−Dk if |τk ◦ α(2)| ≤ 2τ δk/2 and a(2)/Q ∈ B,

due to the presence of the difference factor [∆kΞk,k,B](ξ(2)) in the definition (8.38) of the multipliers

Ω3,r
k,k,B. The desired estimate (8.39) for ι = 3 follows from the last three bounds.

Case 2. Assume now that ι = 4. As in (8.16) we rewrite

Π4,r
k,k,A

(
θ(1), θ(2)

)
=

∫
(Td)2r

Vrk+1(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r ) (8.40)

×
∏

1≤j≤r

{
Sk+1(ζ

(1)
j ) [∆kΨk,k,A](ζ

(1)
j )Sk+1(ξ

(1)
j )[∆kΨk,k,A](ξ

(1)
j )
}
dξ

(1)
1 dζ

(1)
1 . . . dξ(1)

r dζ(1)
r ,

where Vrk+1(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ

(1)
r , ξ

(1)
r ) is as in (5.16).

In view of (5.6) we have a rapid decay |Ω4,r
k,k,B(θ(2))| . τ−Dk unless |τk ◦ (θ(2) − a(2)/Q)| ≤ τ2δk

for some a(2)/Q ∈ B. On the other hand, in this case we can use similar arguments as in the proof

of Lemma 8.2 to simplify the multipliers Π4,r
k,k,A, at the expense of acceptable errors. After several

reductions we derive an approximate formula similar to (8.22), namely∣∣∣Π4,r
k,k,A

(
θ(1), θ(2)

)
−

∑
σ∈A+(Z/Q)d

C(a(2)/Q, σ)η≤2δ′k(τ
k ◦ (θ(1) − σ))

× I4
k(θ(1) − σ, α(2))

∣∣∣ . τ−Dk/3, (8.41)

provided that θ(2) = α(2) + a(2)/Q for some a(2)/Q ∈ B and |τk ◦ α(2)| ≤ τ2δk. The coefficients

C(a(2)/Q, σ) are the same as in (8.23), and I4
k is defined as in (8.20), namely

I4
k(α(1), α(2)) :=

∫
R2rd

∏
1≤j≤r

{
η̂′≤δ′k(−x

′
j)η̂
′
≤δ′k(y

′
j)e
(
− (τk ◦ α(1)).(x′j − y′j)

)}
(8.42)

{∫
R2r

e
(
− (τk ◦ α(2)).T (x′, y′, u, v)

) ∏
1≤j≤r

{
χ(uj)χ(vj)

}
e
(
− (τk ◦ α).D(2v, 2u)

)
dudv

}
dx′dy′,

where η′≤δ′k(z) := η≤δ′(k+1)(τ ◦z)−η≤δ′k(z), and η̂′≤δ′k denotes the Fourier transform of the function

η′≤δ′k, and the function T is defined as in (8.21).

The functions I4
k still satisfy the bounds |I4

k(α(1), α(2))| . τ−k/δ if |τk ◦α(1)|+ |τk ◦α(2)| ≥ τ δk/2,
which are similar to (8.24). The main difference is that the identities (8.25) are replaced by the
stronger identities ∫

Rd
η̂′≤δ′k(z)z

β dz = 0,
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for any multi-index β, including β = 0. Therefore we can use a Taylor expansion (as in the proof

of (8.26)) to see that |I4
k(α(1), α(2))| . τ−Dk if |τk ◦ α(1)| + |τk ◦ α(2)| . τ δk/2. The desired bound

in (8.39) follows for ι = 4. �

9. Maximal estimates on `p(G0): Proof of Theorem 1.3

In this section we complete the proof of the `p theory in Theorem 1.3.

Theorem 9.1. With Mk defined as in (4.1) for τ = 2, and for any p ∈ (1,∞]we have∥∥ sup
k≥0
|Mkf |

∥∥
`p(G0)

.p ‖f‖`p(G0), f ∈ `p(G0). (9.1)

Notice that the maximal inequality (9.1) for τ = 2 implies the full maximal inequality for any
τ > 1. By interpolation with the variational `2 estimates in Theorem 4.1, this completes the proof
of the main Theorem 1.3.

To prove Theorem 9.1 we will use Lemma 9.2 and Propositions 9.3 and 9.4 below.

Lemma 9.2. Assume that there is a constant γ > 0 such that for every u ∈ (1, 2], ρ ∈ (0, 1), and

λ > 0 there is a sequence of linear operators (Aλ,ρk )k≥0 such that∥∥sup
k≥0
|Aλ,ρk f |

∥∥
`u(G0)

.ρ,u λ
ρ‖f‖`u(G0), for any f ∈ `u(G0), (9.2)

and ∥∥sup
k≥0
|Mkf −Aλ,ρk f |

∥∥
`2(G0)

.ρ λ
−γ‖f‖`2(G0), for any f ∈ `2(G0). (9.3)

Then the estimate (9.1) holds true for every p > 1.

Proof. This is a general interpolation result. See for example [34, Lemma 7.1] or [32, Lemma 4.4]
for proofs of such results. �

We will need the following logarithmic maximal estimates.

Proposition 9.3. For every p ∈ (1,∞), f ∈ `p(G0), and J ∈ N we have∥∥ sup
j∈[J+1,2J ]

|Mjf |
∥∥
`p(G0)

.p log(J + 2)‖f‖`p(G0).

Proposition 9.3 will be proved in Subsection 9.2. The idea of using restricted `p(G0) estimates as
in Proposition 9.3 together with `2(G0) bounds to prove the full `p(G0) estimates (9.1) originates
in Bourgain’s paper [13].

Finally, we will also need the following shifted maximal inequality for the kernels Wk,w,Q with
0 ≤ w ≤ k defined in (6.8).

Proposition 9.4. For any p ∈ (1,∞), Q ≥ 1, and w ∈ N we have∥∥ sup
2k/4≥Q, k≥w

∣∣f ∗HQ Wk,w,Q

∣∣∥∥
`p(HQ)

.p (w + 1)‖f‖`p(HQ), f ∈ `p(HQ).

We prove Proposition 9.4 in Appendix B. For now we show how to use the conclusions of
Propositions 9.3 and 9.4 to complete the proof of Theorem 9.1.
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9.1. Proof of Theorem 9.1. We divide the proof in several steps:
Step 1. In view Lemma 9.2, in order to prove (9.1) it suffices to find a sequence of linear

operators (Aλ,ρk )k∈N, ρ ∈ (0, 1) and λ > 0 satisfying (9.2) and (9.3). For λ ≤ eD we can just set

Aλ,ρk ≡ 0 and the bounds (9.3) follow from the already established `2(G0) theory for the maximal
operator supk≥0 |Mkf | .

Therefore from now on we may focus only on λ ≥ eD. Let us define

S := blnλc ≥ D. (9.4)

Recall from (4.18) and (4.25) that for S as in (9.4) we have respectively

κS = 2(D/ ln 2)(S+1)2 . and QS = (2D(S+1))!.

If λ ≥ eD and k ≤ κS then we just define Aλ,ρk = Mk. The bounds (9.3) are trivial, whereas the
bounds (9.2) follow from Proposition 9.3. Indeed, since S4 ' (lnλ)4 we have

∥∥ sup
1≤k≤κS

|Mkf |
∥∥
`u(G0)

≤
2D(S+1)2∑

j=1

∥∥ sup
2j−1≤k≤2j

|Mkf |
∥∥
`u(G0)

.
2D(S+1)2∑

j=0

(j + 1)‖f‖`u(G0) . (log λ)4‖f‖`u(G0).

Step 2. Assume now that λ ≥ eD and k ≥ κS . We set Aλ,ρk f = f ∗ K
k,S,R̃dQS ,R̃

d′
QS

, where the

kernels Kk,w,A,B are defined as in (4.36). In view of Lemma 9.2 it suffices to show that∥∥ sup
k≥κS
|f ∗K

k,S,R̃dQS ,R̃
d′
QS

|
∥∥
`p(G0)

.p (lnλ)‖f‖`p(G0), f ∈ `p(G0) (9.5)∥∥ sup
k≥κS
|Mkf − f ∗Kk,S,R̃dQS ,R̃

d′
QS

|
∥∥
`2(G0)

. λ−δ/D
3‖f‖`2(G0), f ∈ `2(G0). (9.6)

for every p ∈ (1, 2].
Let Kk,w,A,B, Wk,w,Q and VA,B,Q denote the convolution operators corresponding respectively to

the kernels Kk,w,A,B, Wk,w,Q and VA,B,Q defined in Lemma 6.2. Let Q = QS , A = R̃dQS , B = R̃d′QS ,

k0 = bκSc, and w = S. Notice that 1 ≤ QS ≤ 2δk0 , so the decomposition (6.7) and the error term
estimate (6.10) of Lemma 6.2 hold.

We prove first the bounds (9.5). We apply Lemma 6.6 with KG0
k = K

k,S,R̃dQS ,R̃
d′
QS

, WHQS
k =

Wk,S,QS and VJQS = VR̃dQS ,R̃
d′
QS

,QS
and conclude from (6.42) (with B = `∞) that∥∥ sup

k≥κS
|f ∗K

k,S,R̃dQS ,R̃
d′
QS

|
∥∥
`p(G0)

. ‖(Wk,S,QS )k≥κS‖`p(HQS )→`p(HQS ;`∞)

× ‖VR̃dQS ,R̃
d′
QS

,QS
‖`p(JQS )→`p(JQS )‖f‖`p(G0) + 2−κS/8‖f‖`p(G0).

(9.7)

From Proposition 9.4 we know that

‖(Wk,S,QS )k≥κS‖`p(HQS )→`p(HQS ;`∞) . S. (9.8)

We also know that

‖VR̃dQS ,R̃
d′
QS

,QS
‖`p(JQS )→`p(JQS ) ≤

∥∥VR̃dQS ,R̃d′QS ,QS∥∥`1(JQS )
. 1, (9.9)
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which follows from the direct computation

VR̃dQS ,R̃
d′
QS

,QS
(b) = Q−d−d

′

S

{ ∑
a∈ZdQS

S(a/QS)e(b(1).a/QS)
}{ ∑

c∈Zd′QS

e(b(2).c/QS)
}

= Q−1
S

∑
n∈ZQS

1{A0(n)}(b).

The bounds (9.5) follow from (9.7)–(9.9).
Step 3. Finally, we prove the bounds (9.6). Observe that for k ≥ κS we have the following

decomposition, with the notation in Section 4,

Mkf − f ∗Kk,S,R̃dQS ,R̃
d′
QS

=Mkf − f ∗
[ ∑
s∈[0,δk]

Kk,s

]
+ f ∗

[ ∑
s∈(δS,δk]

Kk,s

]
+ f ∗

[ ∑
s∈[0,δS]

Gck,s

]
+ f ∗K

k,k,Rd≤δ′k\R̃
d
QS

,Rd′≤δS
− f ∗K

k,k,R̃dQS ,R̃
d′
QS
\Rd′≤δS

+ f ∗
[
K
k,k,R̃dQS ,R̃

d′
QS

−K
k,S,R̃dQS ,R̃

d′
QS

]
.

Therefore, to prove (9.6) it is enough to show that for every λ ≥ eD and f ∈ `2(G0)∥∥∥ sup
k≥κS

∣∣∣Mkf − f ∗
[ ∑
s∈[0,δk]

Kk,s

]∣∣∣∥∥∥
`2(G0)

. λ−1‖f‖`2(G0), (9.10)

∥∥∥ sup
k≥κS

∣∣∣f ∗ [ ∑
s∈(δS,δk]

Kk,s

]∣∣∣∥∥∥
`2(G0)

. λ−δ/D
3‖f‖`2(G0), (9.11)

∥∥∥ sup
k≥κS

∣∣∣f ∗ [ ∑
s∈[0,δS]

Gck,s

]∣∣∣∥∥∥
`2(G0)

. λ−1‖f‖`2(G0), (9.12)

∥∥ sup
k≥κS
|f ∗K

k,k,Rd≤δ′k\R̃
d
QS

,Rd′≤δS
|
∥∥
`2(G0)

. λ−1/D2‖f‖`2(G0), (9.13)∥∥ sup
k≥κS
|f ∗K

k,k,R̃dQS ,R̃
d′
QS
\Rd′≤δS

|
∥∥
`2(G0)

. λ−δ/D
2‖f‖`2(G0), (9.14)∥∥∥ sup

k≥κS

∣∣∣f ∗ [Kk,k,R̃dQS ,R̃
d′
QS

−K
k,S,R̃dQS ,R̃

d′
QS

]∣∣∣∥∥∥
`2(G0)

. λ−δ/D
2‖f‖`2(G0). (9.15)

Step 4. We now establish inequalities (9.10)–(9.15). Notice that Mkf − f ∗
[∑

s∈[0,δk]Kk,s

]
=

f ∗ Kc
k, and the bounds (9.10) follow from Lemma 4.2. Similarly, the bounds (9.12) follow from

Lemma 5.1 with B = Rd′≤δS . In addition, combining (4.20) with (4.21) we obtain∥∥∥ sup
k≥κS

∣∣∣f ∗ [ ∑
s∈(δS,δk]

Kk,s

]∣∣∣∥∥∥
`2(G0)

≤
∑
s>δS

∥∥ sup
k≥max(κS ,s/δ)

|f ∗Kk,s|
∥∥
`2(G0)

.
∑
s>δS

2−s/D
2‖f‖`2(G0) . λ

−δ/D3‖f‖`2(G0).

This proves (9.11). Moreover, using (6.49) and (8.2) with A = Rdt \ R̃dQS and B = Rd′≤δS ,∥∥ sup
k≥κS
|f ∗K

k,k,Rd≤δ′k\R̃
d
QS

,Rd′≤δS
|
∥∥
`2(G0)

≤
∑

t≥D(S+1)

∥∥ sup
k≥max(κS ,t/δ′)

|f ∗K
k,k,Rdt \R̃dQS ,R

d′
≤δS
|
∥∥
`2(G0)

.
∑

t≥D(S+1)

2−t/D
2‖f‖`2(G0) . λ

−1/D2‖f‖`2(G0).

This completes the proof of (9.13).
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We prove now the bounds (9.14). We apply Lemma 6.2 with Q = QS , A = R̃dQS , B = R̃d′QS \R
d′
≤δS ,

k0 = bκSc and w = k. Then we apply Lemma 6.6 and conclude from (6.42) that∥∥ sup
k≥κS
|f∗K

k,k,R̃dQS ,R̃
d′
QS
\Rd′≤δS

|
∥∥
`2(G0)

. ‖(Wk,k,QS )k≥κS‖`2(HQS )→`2(HQS ;`∞)

×
∥∥VR̃dQS ,R̃d′QS \Rd′≤δS ,QS∥∥`2(JQS )→`2(JQS )

‖f‖`2(G0) + 2−λ/8‖f‖`2(G0).

By (6.19) we may conclude that∥∥VR̃dQS ,R̃d′QS \Rd′≤δS ,QS∥∥`2(JQS )→`2(JQS )
. 2−δS/D‖f‖`2(JQS ).

The bounds (9.14) follow using also Lemma 6.4.
Finally, we prove the bounds (9.15). By a simple square function argument and Khinchine’s

inequality it suffices to prove that for every w ≥ S, every sequence (κk)k∈N ⊆ [−1, 1] and any
f ∈ `2(G0) we have∥∥∥ ∑

k≥max{κS ,w+1}

κkf ∗
[
K
k,w+1,R̃dQS ,R̃

d′
QS

−K
k,w,R̃dQS ,R̃

d′
QS

]∥∥∥
`2(G0)

. 2−w/D
2‖f‖`2(G0). (9.16)

We apply again Lemma 6.2 with Q = QS , A = R̃dQS , B = R̃d′QS and w ≥ S. Then we apply Lemma

6.6 with k0 = max{κS , w + 1}, KG0
k = K

k,w+1,R̃dQS ,R̃
d′
QS

− K
k,w,R̃dQS ,R̃

d′
QS

, W
HQS
k = Wk,w+1,QS −

Wk,w,QS and V JQS = VR̃dQS ,R̃
d′
QS

,QS
and conclude from (6.43) that the left-hand side of (9.16) is

controlled by∥∥∥ ∑
k≥max{κS ,w+1}

κk
[
Wk,w+1,QS −Wk,w,QS

]∥∥∥
`2(HQS )→`2(HQS )

‖f‖`2(G0) + 2−w/8‖f‖`2(G0),

since ‖VR̃dQS ,R̃
d′
QS

,QS
‖`2(JQS )→`2(JQS ) . 1 by (9.9). Finally, using (6.30) we obtain∥∥∥ ∑

k≥max{κS ,w+1}

κk
[
Wk,w+1,QS −Wk,w,QS

]∥∥∥
`2(HQS )→`2(HQS )

. 2−w/D
2

as desired and the proof of (9.15) is finished. This also completes the proof of Theorem 9.1.

9.2. Proof of Proposition 9.3. To prove Proposition 9.3 we exploit the positivity of the operator
Mkf , i.e., Mkf ≥ 0 whenever f ≥ 0. We will extend the ideas of Bourgain [13, Lemma 7.32] (see
also [32, Lemmas 4.2 and 4.3]) to the nilpotent setting. We will need the following technical result,
to approximate the original operator.

Lemma 9.5. For every µ ∈ Z+ there is a constant Cµ > 0 such that for every f ∈ `2(G0) the
following inequality ∥∥Mkf − f ∗ Uk,J,S,µ

∥∥
`2(G0)

≤ CµS−1/D2‖f‖`2(G0),

holds uniformly in 1 ≤ J ≤ k ≤ 2J , 1 ≤ S ≤ 2δk satisfying SD ≤ 2δ
′k and S ≤ Jµ. Here

Uk,J,S,µ(g) := φk(g)
∑

σ(1)∈Rd≤D log2 S
∩[0,1)d

∑
σ(2)∈Rd′≤log2 S

∩[0,1)d′

e
(
g.(σ(1), σ(2))

)
S(σ(1))

×
{ ∏

(l1,l2)∈Yd

2−k(l1+l2)
}∫

Rd+d′
η≤δ′Dµblog2 Jc(ξ

(1))η≤δDµblog2 Jc(ξ
(2))Jk(2

−k ◦ ξ(1))e[(2−k ◦ g).ξ] dξ.

(9.17)
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We show first how to use Lemma 9.5 to prove Proposition 9.3. We proceed in several steps.
Step 1. Since the result is clear for p =∞ it suffices to consider only p ∈ (1, 2] and nonnegative

functions f : G0 → [0,∞). Let K̃j(x) = Kj(x
−1). By a general abstract argument, involving duality

and a separation in scales j (see [13] and [32, Lemma 4.2]), it suffices to show that∥∥∑
j∈S

hj ∗ K̃j

∥∥
`R(G0)

.R |F |1/R, (9.18)

for any even integer R ≥ 2, any subset F ⊆ G0, any functions hj satisfying

hj = gj1F , gj : G0 → [0, 1],
∑
j∈S

gj(x) ≤ 1 for any x ∈ G0, (9.19)

and any subset S ⊆ [J + 1, 2J ] satisfying the sparseness property |l − l′| ≥ Dµ log2 J if l 6= l′ ∈ S.
Here µ = µ(R) is a sufficiently large constant to be determined later (in (9.22)).

Indeed, by a duality argument there are functions 0 ≤ gj ≤ 1 for J < j ≤ 2J , such that∑
J<j≤2J gj(x) = 1, x ∈ G0, and

sup
J<j≤2J

|f ∗Kj(x)| =
∑

J<j≤2J

f ∗Kj(x)gj(x), x ∈ G0, J ≥ 1.

Then, we have∥∥ sup
J<j≤2J

|f ∗Kj |
∥∥
`p(G0)

=
∥∥ ∑
J<j≤2J

(f ∗Kj)gj
∥∥
`p(G0)

≤ sup
‖h‖

`p
′
(G0)
≤1

∥∥ ∑
J<j≤2J

(hgj) ∗ K̃j

∥∥
`p′ (G0)

‖f‖`p(G0).

Using interpolation it suffices to show that the latter operator is of restricted weak type (R,R) for
any integer R ≥ 2, with norm .R log(J + 2). This means that we need to show that for every fixed
integer R ≥ 2, every finite subset F ⊆ G0 and every J ≥ 1 we have∥∥ ∑

J<j≤2J

hj ∗ K̃j

∥∥
`R(G0)

.R log(J + 2)|F |1/R,

where hj = gj1F for every J < j ≤ 2J . Finally, we partition the set (J, 2J ] into at most Dµ log2 J+1
subsets S with the sparseness property mentioned above. Therefore, we reduced our task to showing
(9.18). We prove (9.18) by induction over R. The case R = 2 follows from the `2(G0) boundedness
of the maximal function supj≥0 |Mj |. The case of general R can be reduced to proving that∥∥∥( R∏

n=2

hjn ∗ K̃jn

)
∗ (Kj1 −Kj0)

∥∥∥
`2(G0)

.R J
−R|F |1/2, (9.20)

uniformly in J = j0 < j1 < . . . < jR ≤ 2J satisfying

jn+1 − jn ≥ Dµ log2 J, 1 ≤ n ≤ R− 1. (9.21)

See [32, Lemma 4.2] for the details of this reduction, which apply in our case as well.
Step 2. To prove (9.20) we first define some constants

A := D4 +R, µ := D2AR +R, Sn := JA
n
, 1 ≤ n ≤ R. (9.22)

We may assume that J &µ 1, so 1 ≤ Sn ≤ 2δJ/2, SDn ≤ 2δ
′J/2 and Sn ≤ Jµ, 1 ≤ n ≤ R. For

simplicity of notation, in the rest of this subsection the implicit constants are allowed to depend on
R. Using Lemma 9.5 we obtain for every f ∈ `2(G0) that∥∥f ∗ K̃jn − f ∗ Ũn,J,µ

∥∥
`2(G0)

. S−1/D2

n ‖f‖`2(G0), 1 ≤ n ≤ R, J ≥ J0, (9.23)
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where Ũn,J,µ(x) := Ujn,J,Sn,µ(x−1), see (9.17). Here we use the fact that if Tf = f ∗ K and

T̃ f = f ∗ K̃, then ‖T‖`2(G0)→`2(G0) = ‖T̃‖`2(G0)→`2(G0).
We show that ∥∥∥ R∏

n=2

hjn ∗ K̃jn −
R∏
n=2

hjn ∗ Ũn,J,µ
∥∥∥
`2(G0)

. J−R|F |1/2, (9.24)

uniformly in J = j0 < j1 < . . . < jR ≤ 2J satisfying (9.21). Indeed, notice that

‖hjn ∗ Ũn,J,µ‖`∞(G0) ≤ ‖Ũn,J,µ‖`1(G0)‖hjn‖`∞(G0) . S
2D(d+d′)
n , 1 ≤ n ≤ R. (9.25)

Since Un,J,µ = Ujn,J,Sn,µ, see (9.17), this follows from the identity

Un,J,µ(g) = φjn(g)
∑

σ(1)∈Rd≤D log2 Sn
∩[0,1)d

∑
σ(2)∈Rd′≤log2 Sn

∩[0,1)d′

e
(
g.(σ(1), σ(2))

)
S(σ(1))

×
∫
R
χ(u)

{ ∏
(l1,l2)∈Yd

2−jn(l1+l2)
}
η≤δ′Dµblog2 Jc
∧(

A
(1)
0 (u)− 2−jn ◦ g(1)

)
× η≤δDµblog2 Jc
∧(

− 2−jn ◦ g(2)
)
du,

(9.26)

see also (6.4). Using (9.23) and (9.25) we can estimate the left-hand side of (9.24) by

C

R∑
n=2

( n−1∏
k=2

‖hjk ∗ Ũk,J,µ‖`∞(G0)

)( R∏
k=n+1

‖hjk ∗ K̃jk‖`∞(G0)

)∥∥hjn ∗ K̃jn − hjn ∗ Ũn,J,µ
∥∥
`2(G0)

.
R∑
n=2

( n−1∏
k=2

S
2D(d+d′)
k

)
S−1/D2

n |F |1/2 .
R∑
n=2

J4D(d+d′)An−1−AnD−2 |F |1/2 . J−R|F |1/2,

since 4D(d+ d′)An−1 −AnD−2 ≤ −An−1 ≤ −R, see (9.22). The bounds (9.24) follow.
Step 3. In view of (9.24), for (9.20) it is enough to prove that∥∥∥( R∏

n=2

hjn ∗ Ũn,J,µ
)
∗ (Kj1 −Kj0)

∥∥∥
`2(G0)

. J−R|F |1/2, (9.27)

uniformly in J = j0 < j1 < . . . < jR ≤ 2J satisfying (9.21). Let us define

Xn,J,µ(g) := φjn(g)

∫
R
χ(u)

{ ∏
(l1,l2)∈Yd

2−jn(l1+l2)
}
η≤δ′Dµblog2 Jc
∧(

A
(1)
0 (u)− 2−jn ◦ g(1)

)
(9.28)

× η≤δDµblog2 Jc
∧(

− 2−jn ◦ g(2)
)
du,

Xn,J,µ,σ(g) := Xn,J,µ(g)e(g.σ). (9.29)

Using (9.26) we have

hjn ∗ Ũn,J,µ =
∑

σ
(1)
n ∈Rd≤D log2 Sn

∩[0,1)d, σ
(2)
n ∈Rd

′
≤log2 Sn

∩[0,1)d′

S(σ(1)
n ) · hjn ∗ X̃n,J,µ,σn .

In view of (9.22), for (9.27) it suffices to show that∥∥∥( R∏
n=2

hjn ∗ X̃n,J,µ,σn

)
∗ (Kj1 −Kj0)

∥∥∥
`2(G0)

. J−2µ|F |1/2, (9.30)

for any σ
(1)
n ∈ Rd≤D log2 Sn

∩ [0, 1)d, σ
(2)
n ∈ Rd

′
≤log2 Sn

∩ [0, 1)d
′
, 2 ≤ n ≤ R.
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Observe that

f ∗ (Kj1 −Kj0)(g) =
∑
u∈Z

χj0,j1(u)f(A0(u)−1 · g),

where χj0,j1(v) = 2−j1χ(2−j1v)− 2−j0χ(2−j0v). Notice that∣∣∣∑
v∈Z

χj0,j1(Qv + b)
∣∣∣ . 2−j0 , Q ∈ Z+, b ∈ ZQ. (9.31)

Therefore we have( R∏
n=2

hjn ∗ X̃n,J,µ,σn

)
∗ (Kj1 −Kj0)(g)

=
∑
v∈Z

χj0,j1(v)
∑

y2,...,yR∈G0

( R∏
n=2

Xn,J,µ,σn

(
yn · g−1 ·A0(v)

)
hjn(yn)

)

=
∑

y2,...,yR∈G0

( R∏
n=2

hjn(yn)
)
H(y2 · g−1, . . . , yR · g−1),

(9.32)

where

H(y2, . . . , yR) :=
∑
v∈Z

χj0,j1(v)
( R∏
n=2

Xn,J,µ,σn

(
yn ·A0(v)

))
. (9.33)

For (9.30) it suffices to show that there are functions Hn = Hn,J,µ ≥ 0, 2 ≤ n ≤ R, such that

‖Hn‖`1(G0) . 1 for 2 ≤ n ≤ R and |H(y2, . . . , yR)| . J−2µ
R∏
n=2

Hn(yn). (9.34)

Indeed, assuming (9.34) and using (9.32) we can bound the left-hand side of (9.30) by

CJ−2µ
∥∥∥ R∏
n=2

hjn ∗ H̃n

∥∥∥
`2(G0)

≤ J−2µ
R∏
n=2

‖hjn ∗ H̃n‖`2(R−1)(G0) . J
−2µ|F |1/2.

Step 4. It remains to prove (9.34). Let qn be the denominator of σn. By (9.22) one has

Q :=
R∏
n=2

qn .
R∏
n=2

S2Dd′
n ≤ Jµ. (9.35)

Splitting the summation in v in (9.33) into classes modulo Q and using (9.29) we obtain

|H(y2, . . . , yR)| ≤
∑
b∈ZQ

∣∣∣∑
v∈Z

χj0,j1(Qv + b)
( R∏
n=2

Xn,J,µ

(
yn ·A0(Qv + b)

))∣∣∣
.
∑
b∈ZQ

∣∣∣∑
v∈Z

χj0,j1(Qv + b)
( R∏
n=2

Xn,J,µ

(
yn ·A0(Qv + b)

)
−

R∏
n=2

Xn,J,µ(yn)
)∣∣∣

+
∑
b∈ZQ

∣∣∣∑
v∈Z

χj0,j1(Qv + b)
( R∏
n=2

Xn,J,µ(yn)
)∣∣∣ =: I1 + I2.

(9.36)
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Using the definition (9.28) it is easy to see that for every y ∈ G#
0 and 2 ≤ n ≤ R one has

|Xn,J,µ(y)|+
∑

(l1,l2)∈Yd

2jn(l1+l2)J−δl1l2Dµ
∣∣(∂yl1l2Xn,J,µ)(y)

∣∣
.
{ ∏

(l1,l2)∈Yd

2−jn(l1+l2)Jδl1l2Dµ
}∫

R
χ(u)

〈
J δ̃Dµ

(
A0(u)− 2−jn ◦ y

)〉−2D
du,

(9.37)

where δ̃ = (δl1l2)(l1,l2)∈Yd and δl1l2 = δ if (l1, l2) ∈ Y ′d and δl1l2 = δ′ otherwise. Since 2j1−jn . J−Dµ

(the separation condition (9.21)), for every y, h ∈ G0 satisfying |2−j1 ◦ h| . 1 we have

|Xn,J,µ(y · h)−Xn,J,µ(y)|

. J−3µ
{ ∏

(l1,l2)∈Yd

2−jn(l1+l2)Jδl1l2Dµ
}∫

R
χ(u)

〈
J δ̃Dµ

(
A0(u)− 2−jn ◦ y

)〉−D
du. (9.38)

Using (9.37)–(9.38) if |Qv + b| . 2j1 then we have∣∣∣ R∏
n=2

Xn,J,µ

(
yn ·A0(Qv + b)

)
−

R∏
n=2

Xn,J,µ(yn)
∣∣∣

. J−3µ
R∏
n=2

(∫
R
χ(un)

{ ∏
(l1,l2)∈Yd

2−jn(l1+l2)Jδl1l2Dµ
}〈
J δ̃Dµ

(
A0(un)− 2−jn ◦ yn

)〉−D
dun

)
.

Since
∑

b∈ZQ
∑

v∈Z|χj0,j1(Qv + b)| . 1, we see that the required decomposition (9.34) for the first

term I1 in (9.36) follows. The decomposition for I2 also follows using (9.31), (9.35) and (9.37). This
completes the proof of Proposition 9.3.

9.3. Proof of Lemma 9.5. Observe that we may assume that k ≥ D2µ, otherwise the conclusion
is trivial. Observe that we have a decomposition

Mkf − f ∗ Uk,J,S,µ =Mkf − f ∗
[ ∑
s∈[0,δk]

Kk,s

]
+ f ∗

[ ∑
s∈(log2 S,δk]

Kk,s

]
+ f ∗

[ ∑
s∈[0,log2 S]

Gck,s

]
+ f ∗K

k,k,Rd≤δ′k\R
d
≤D log2 S

,Rd′≤log2 S
+ f ∗

[
K
k,k,Rd≤D log2 S

,Rd′≤log2 S
− Uk,J,S,µ

]
.

To prove Lemma 9.5 it remains to show that for any f ∈ `2(G0), k ≥ D2µ, J ≤ k ≤ 2J , and S ≤ Jµ
we have the following estimates∥∥∥Mkf − f ∗

[ ∑
s∈[0,δk]

Kk,s

]∥∥∥
`2(G0)

. 2−k/D
2‖f‖`2(G0), (9.39)

∥∥∥f ∗ [ ∑
s∈(log2 S,δk]

Kk,s

]∥∥∥
`2(G0)

. S−1/D2‖f‖`2(G0), (9.40)

∥∥f ∗Gc
k,Rd′≤log2 S

∥∥
`2(G0)

. 2−k/D
2‖f‖`2(G0), (9.41)∥∥f ∗K

k,k,Rd≤δ′k\R
d
≤D log2 S

,Rd′≤log2 S

∥∥
`2(G0)

. S−1/D‖f‖`2(G0), (9.42)∥∥∥f ∗ [Kk,k,Rd≤D log2 S
,Rd′≤log2 S

− Uk,J,S,µ
]∥∥∥

`2(G0)
. S−1‖f‖`2(G0). (9.43)

Here and in the rest of this subsection the implicit constants are allowed to depend on µ. The
bounds (9.39) follow from Lemma 4.2. The bounds (9.40) follow from (4.20)–(4.21). The bounds

(9.41) follow from Lemma 5.1 with B = Rd′≤log2 S
.
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To prove the bounds (9.42) we use Lemma 8.2 with ι = 0, so we have the decomposition

{(K
k,k,Rdp\Rd≤D log2 S

,Rd′≤log2 S
)∗K

k,k,Rdp\Rd≤D log2 S
,Rd′≤log2 S

}rf = f ∗ {F 0,r
k +O0,r

k }, (9.44)

for any p ∈ (D log2 S, δ
′k]. Here ‖O0,r

k ‖`1(G0) . 2−k, A = Rdp \ Rd≤D log2 S
, B = Rd′≤log2 S

, and

F 0,r
k (h) :=

{ ∑
a(2)/Q∈B∩[0,1)d′

∑
σ∈[A+(ZQ/Q)d]∩[0,1)d

C(a(2)/Q, σ)e(h(1).σ)e
(
h(2).(a(2)/Q)

)}
×
{ ∏

(l1,l2)∈Yd

2−k(l1+l2)
}
η≤3δk(2

−k ◦ h)

∫
Rd×Rd′

η≤δk/2(ζ(1))η≤δk/2(ζ(2))P (ζ)e[(2−k ◦ h).ζ] dζ.

The function P was defined in (7.12), and the coefficients C satisfy the bounds

|C(a(2)/Q, σ)| . 2−p/δ,

for any a(2)/Q ∈ Rd′≤log2 S
∩ [0, 1)d

′
and σ ∈ [Rdp \Rd≤D log2 S

+ (ZQ/Q)d]∩ [0, 1)d. Using this estimate

and (7.27) (with ι = 0), we see that ‖F 0,r
k ‖`1(G0) . 2−p/(2δ). The desired bounds (9.42) follow by

summation over p ≥ D log2 S.
Finally, to prove the bounds (9.43) we use first Lemma 6.1 to see that

‖K
k,Dµblog2 Jc,Rd≤D log2 S

,Rd′≤log2 S
− Uk,J,S,µ‖`1(G0) . 2−k.

Therefore it remains to establish the following:

Lemma 9.6. Assume µ ≥ 1, k ≥ D2µ, J ≤ k ≤ 2J , and S ≤ Jµ. Then for any f ∈ `2(G0),∥∥∥f ∗ [Kk,k,Rd≤D log2 S
,Rd′≤log2 S

−K
k,Dµblog2 Jc,Rd≤D log2 S

,Rd′≤log2 S

]∥∥∥
`2(G0)

. S−1‖f‖`2(G0). (9.45)

Proof. For w ∈ N and I ⊆ {1, 2} we define the auxiliary functions

Υ
(1)
w,I =

{
η≤δ′(w+1) − η≤δ′w if 1 ∈ I,
η≤δ′w if 1 /∈ I,

Υ
(2)
w,I =

{
η≤δ(w+1) − η≤δw if 2 ∈ I,
η≤δw if 2 /∈ I.

(9.46)

Then we define the projections Ψk,w,A,I and Ξk,w,B,I as in (4.11),

Ψk,w,A,I(ξ
(1)) :=

∑
a/q∈A

Υ
(1)
w,I(τ

k ◦ (ξ(1) − a/q)), Ξk,w,B,I(ξ
(2)) :=

∑
b/q∈B

Υ
(1)
w,I(τ

k ◦ (ξ(2) − b/q)),

where A ⊆ Qd and B ⊆ Qd′ are 1-periodic sets. Then we define the associated kernels

Kk,w,A,B,I(g) = Lk,w,A,I(g
(1))Nk,w,B,I(g

(2)),

Lk,w,A,I(g
(1)) := φ

(1)
k (g(1))

∫
Td

e(g(1).ξ(1))Ψk,w,A,I(ξ
(1))Sk(ξ

(1)) dξ(1),

Nk,w,B,I(g
(2)) := φ

(2)
k (g(2))

∫
Td′

e(g(2).ξ(2))Ξk,w,B,I(ξ
(2)) dξ(2).

Let w0 := Dµblog2 Jc and observe that

K
k,k,Rd≤D log2 S

,Rd′≤log2 S
−K

k,w0,Rd≤D log2 S
,Rd′≤log2 S

=

k−1∑
w=w0

(K
k,w+1,Rd≤D log2 S

,Rd′≤log2 S
−K

k,w,Rd≤D log2 S
,Rd′≤log2 S

)

=
k−1∑
w=w0

∑
∅6=I⊆{1,2}

K
k,w,Rd≤D log2 S

,Rd′≤log2 S
,I .
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Therefore (9.45) is reduced to prove that for any w ∈ [w0, k − 1] and I 6= ∅

‖f ∗K
k,w,Rd≤D log2 S

,Rd′≤log2 S
,I‖`2(G0) . 2−w/D‖f‖`2(G0). (9.47)

We examine the definition of the kernels K
k,w,Rd≤D log2 S

,Rd′≤log2 S
,I and notice that we can replace

the cutoff function φk by the cutoff function

φk,0(g) = η≤D(2−k ◦ g(1))η≤D(2−k ◦ g(2)).

Indeed, letting Kk,w,S,I denote the corresponding kernel we have

K
k,w,Rd≤D log2 S

,Rd′≤log2 S
,I(g)−Kk,w,S,I(g) =

(
φk(g)− φk,0(g)

) ∑
σ∈Rd≤D log2 S

∩[0,1)d×Rd′≤log2 S
∩[0,1)d′

× e(g.σ)2−k
∑
n∈Z

e
(
−A0(n).σ

)
χ(2−kn)

{ ∏
(l1,l2)∈Yd

2−k(l1+l2)
}

× Υ̂
(1)
w,I(A

(1)
0 (2−kn)− 2−k ◦ g(1))Υ̂

(2)
w,I(−2−k ◦ g(2)),

which shows that

‖K
k,w,Rd≤D log2 S

,Rd′≤log2 S
,I −Kk,w,S,I‖`1(G0) . S

D2
2−D

2w . 2−w.

To bound the operators defined by the kernels Kk,w,S,I we use again a high order T ∗T argument,
so it suffices to prove that

‖{(Kk,w,S,I)∗Kk,w,S,I}rf‖`2(G0) . 2−w‖f‖`2(G0). (9.48)

The proof of (9.48) proceeds along the same lines as the proof of Lemma 8.2. However, there are
some subtle differences arising from the fact that we can only hope for a rapid decay with respect
to w, which might be much smaller than k. In particular, this is the reason why we had to replace
the function φk by φk,0. For the convenience of the reader we shall provide the details.

In view of (2.13)–(2.16) we have

{(Kk,w,S,I)∗Kk,w,S,I}rf = f ∗Kr
k,w,S,I ,

where

Kr
k,w,S,I(y) := 1|2−k◦y|.1

∫
Td×Td′

e
(
y.θ
)
Πr
k,w,S,I

(
θ
)
Ωr
k,w,S,I

(
θ(2)
)
dθ(1)dθ(2),

and the multipliers Πr
k,w,S,I and Ωr

k,w,S,I are given by

Πr
k,w,S,I

(
θ
)

:=
∑

h
(1)
j ,g

(1)
j ∈Zd

{ r∏
j=1

Lk,w,Rd≤D log2 S
,I,0(h

(1)
j )Lk,w,Rd≤D log2 S

,I,0(g
(1)
j )
}

× e
(
θ(1).

∑
1≤j≤r

(h
(1)
j − g

(1)
j )
)

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(h
(1)
j , h

(1)
j − g

(1)
j ) +

∑
1≤l<j≤r

R0(−h(1)
l + g

(1)
l ,−h(1)

j + g
(1)
j )
})
,

where Lk,w,A,I,0 is defined as Lk,w,A,I except that we replace φ
(1)
k by φ

(1)
k,0. With Fk,0 defined in a

similar way as in (5.3) (we replace η≤δk by η≤D) we have

Ωr
k,w,S,I

(
θ(2)
)

:=
∣∣∣ ∫

Td′
Fk,0(θ(2) − ξ(2))Ξ

k,w,Rd′≤log2 S
,I(ξ

(2)) dξ(2)
∣∣∣2r.
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We first analyze the kernel Ωr
k,w,S,I . Note that∫

Td′
Fk,0(θ(2) − ξ(2))Ξ

k,w,Rd′≤log2 S
,I(ξ

(2)) dξ(2)

=
∑

a(2)/Q∈Rd′≤log2 S
∩[0,1)d′

∑
g(2)∈Zd′

η≤D(2−k ◦ g(2))e
(
− g(2).(θ(2) − a(2)/Q)

)
×
{ ∏

(l1,l2)∈Y ′d

2−k(l1+l2)
}

Υ̂
(2)
w,I(−2−k ◦ g(2)).

Notice that we may replace the factor η≤D(2−k ◦ g(2)) by 1 above, at the expence of `1 error term

O(S2rD2
2−D

2w) . 2−w (here we have used the fact that integration with respect to θ produces a
delta and trivializes summation in y). After this replacement we can use the Poisson summation
formula and we end up with∑

a(2)/Q∈Rd′≤log2 S
∩[0,1)d′

∑
M∈Zd′

Υ
(2)
w,I
(
2k ◦ (θ(2) − a(2)/Q−M)

)
.

This means that we can deal with a simpler kernel

Kr,1
k,w,S,I(y) := 1|2−k◦y|.1

∑
a(2)/Q∈Rd′≤log2 S

∩[0,1)d′

e
(
y(2).a(2)/Q

) ∫
Td×Rd′

e
(
y.θ
)

×Πr
k,w,S,I

(
θ(1), θ(2) + a(2)/Q

)(
Υ

(2)
w,I
(
2k ◦ θ(2)

))2r
dθ(1)dθ(2).

We now focus on Πr
k,w,S,I . As in (5.15)–(5.16) we may write

Πr
k,w,S,I

(
θ(1), θ(2)

)
=

∫
(Td)2r

Vrk,0(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

×
∏

1≤j≤r

{
Sk(ζ

(1)
j ) Ψk,w,Rd≤D log2 S

,I(ζ
(1)
j )Sk(ξ

(1)
j )Ψk,w,Rd≤D log2 S

,I(ξ
(1)
j )
}

× dξ(1)
1 dζ

(1)
1 . . . dξ(1)

r dζ(1)
r ,

(9.49)

where

Vrk,0(θ(1), θ(2); ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

=
∑

hj ,gj∈Zd

∏
1≤j≤r

{
φ

(1)
k,0(hj)e

(
(θ(1) − ζ(1)

j ).hj
)
φ

(1)
k,0(gj)e

(
− (θ(1) − ξ(1)

j ).gj
)}

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(hj , hj − gj) +
∑

1≤l<j≤r
R0(−hl + gl,−hj + gj)

})
.

Further, proceeding as in the proof of Lemma 5.2 we see that for |2k ◦ θ(2)| . 2δw and a(2)/Q ∈
Rd′≤log2 S

∩ [0, 1)d
′

we have

Vrk,0(θ(1), θ(2) + a(2)/Q; ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )

=Wr
Q(a(2); b, c)Zrk,0(θ(2);β1, γ1, . . . , βr, γr) +O(2−D

3k),



POLYNOMIAL AVERAGES AND POINTWISE ERGODIC THEOREMS 61

where b, c ∈ Zrd and βj , γj ∈ [−1/(2Q), 1/(2Q)]d are defined in (5.22). HereWr
Q(a(2); b, c) is defined

in (5.24) and Zrk,0 is a modification of (5.25), i.e.

Zrk,0(θ(2);β1, γ1, . . . , βr, γr) :=

∫
R2rd

{ d∏
l=1

2kl
}2r

×
∏

1≤j≤r

{
η≤D(xj)e

(
− (2k ◦ βj).xj

)
η≤D(yj)e

(
(2k ◦ γj).yj

)}
× e
(
− (2k ◦ θ(2)).

{ ∑
1≤j≤r

R0(yj , yj − xj) +
∑

1≤l<j≤r
R0(−yl + xl,−yj + xj)

})
dxjdyj .

Further, we have an analogue of (5.18), namely∣∣Vrk,0(θ(1), θ(2) + a(2)/Q; ζ
(1)
1 , ξ

(1)
1 , . . . , ζ(1)

r , ξ(1)
r )
∣∣

.
{ ∏

1≤l≤d
2kl
}2r

min
1≤j≤r
1≤l≤d

[
1 + 2kl−δw‖θ(1)

l − ζ
(1)
j,l ‖Q + 2kl−δw‖θ(1)

l − ξ
(1)
j,l ‖Q

]−D
,

for any θ(1) = (θ
(1)
l )l∈{1,...,d} ∈ Td, ζ(1)

j = (ζ
(1)
j,l )l∈{1,...,d} ∈ Td, and ξ

(1)
j = (ξ

(1)
j,l )l∈{1,...,d} ∈ Td.

Using this we proceed as in Step 2 of the proof of Lemma 8.2. Having a rapid decay unless

2kl‖θ(1)
l − ξ

(1)
j,l ‖Q ≤ 22δw and 2kl‖θ(1)

l − ζ
(1)
j,l ‖Q ≤ 22δw for all j ∈ {1, . . . , r} and l ∈ {1, . . . , d} we

expand the cutoff functions Ψk,w,Rd≤D log2 S
,I in (9.49) and we use Lemma 6.1 to obtain

‖Kr,1
k,w,S,I −K

r,2
k,w,S,I‖`1(G0) . S

4rD(d+d′)2−Dw/4 . 2−w,

where

Kr,2
k,w,S,I(y) := 1|2−k◦y|.1

∑
a(2)/Q∈Rd′≤log2 S

∩[0,1)d′

∑
σ∈[Rd≤D log2 S

+(ZQ/Q)d]∩[0,1)d

C(a(2)/Q, σ)

× e
(
y(2).a(2)/Q

) ∫
Rd+d′

e
(
y.θ
)
η≤2δ′w+D(2k ◦ (θ(1) − σ))

×
∫
R2rd

Zrk,0
(
θ(2); θ(1) − ξ(1)

j − σ, θ
(1) − ζ(1)

j − σ
)

×
{ r∏
j=1

Υ
(1)
w,I(2

k ◦ ξ(1)
j )Υ

(1)
w,I(2

k ◦ ζ(1)
j )Jk(ξ

(1)
j )Jk(ζ

(1)
j )
}
dξ

(1)
1 dζ

(1)
1 . . . dξ(1)

r dζ(1)
r

×
(
Υ

(2)
w,I
(
2k ◦ θ(2)

))2r
dθ(1)dθ(2).

Here C(a(2)/Q, σ) is defined as in (8.23) with

ιQ(σ; b, c) :=

{
1 if σ − bj/Q, σ − cj/Q ∈ Rd≤D log2 S

for any j ∈ {1, . . . , r};
0 otherwise.

Note that C(a(2)/Q, σ) satisfies the estimate

|C(a(2)/Q, σ)| . Q3rdQ
−2r/C
1 . Q3rd . S3rd, (9.50)

for any a(2)/Q ∈ Rd′≤log2 S
∩[0, 1)d

′
and σ ∈ [Rd≤D log2 S

+(ZQ/Q)d]∩[0, 1)d, where Q1 is a denominator

of the first component of σ and C is the constant from Proposition 2.2. Therefore it suffices to deal

with the kernel Kr,2
k,w,S,I . Next, we focus on the integral over ξ

(1)
j , ζ

(1)
j above. Proceeding as in Step
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3 of the proof of Lemma 8.2 we are able to prove that up to an error term O(2−Dw) this integral is

equal to Ik,w(θ(1) − σ, θ(2)), where

Ik,w(θ(1), θ(2)) :=

∫
R2rd

∏
1≤j≤r

{
Υ̂

(1)
w,I(−x

′
j)Υ̂

(1)
w,I(y

′
j)e
(
− (2k ◦ θ(1)).(x′j − y′j)

)}
×
{∫

R2r

e
(
− (2k ◦ θ(2)).T (x′, y′, u, v)

) ∏
1≤j≤r

{
χ(uj)χ(vj)

}
e
(
− (2k ◦ θ).D(v, u)

)
dudv

}
dx′dy′.

Therefore we have

‖Kr,2
k,w,S,I −K

r,3
k,w,S,I‖`1(G0) . S

4rD(d+d′)2−Dw/2 . 2−w,

where

Kr,3
k,w,S,I(y) := 1|2−k◦y|.1

∑
a(2)/Q∈Rd′≤log2 S

∩[0,1)d′

∑
σ∈[Rd≤D log2 S

+(ZQ/Q)d]∩[0,1)d

C(a(2)/Q, σ)

× e
(
y.(σ, a(2)/Q)

) ∫
Rd+d′

e
(
y.θ
)
η≤2δ′w+D(2k ◦ θ(1))

(
Υ

(2)
w,I
(
2k ◦ θ(2)

))2r
Ik,w(θ) dθ(1)dθ(2).

Next, proceeding as in Step 4 of the proof of Lemma 8.2 we conclude

η≤2δ′w+D(2k ◦ θ(1))
(
Υ

(2)
w,I
(
2k ◦ θ(2)

))2r
Ik,w(θ)

= η≤δw/2(2k ◦ θ(1))η≤δw/2(2k ◦ θ(2))
(
Υ

(2)
w,I
(
2k ◦ θ(2)

))2r(
Υ

(1)
w,I(0)

)2r
P (2k ◦ θ) +O(2−w/δ),

where P is defined in (7.12). Therefore using (9.50) we obtain

‖Kr,3
k,w,S,I −K

r,4
k,w,S,I‖`1(G0) . 2−w/(2δ)S4r(d+d′) . 2−w,

where

Kr,4
k,w,S,I(y) := 1|2−k◦y|.1

∑
a(2)/Q∈Rd′≤log2 S

∩[0,1)d′

∑
σ∈[Rd≤D log2 S

+(ZQ/Q)d]∩[0,1)d

C(a(2)/Q, σ)

× e
(
y.(σ, a(2)/Q)

){ ∏
(l1,l2)∈Yd

2−k(l1+l2)
}∫

Rd+d′
e
[
(2−k ◦ y).θ

]
η≤δw/2(θ(1))η≤δw/2(θ(2))

×
(
Υ

(2)
w,I(θ

(2))
)2r(

Υ
(1)
w,I(0)

)2r
P (θ) dθ(1)dθ(2).

Finally, to prove (9.48) it suffices to show that

‖Kr,4
k,w,S,I‖`1(G0) . 2−w.

If 1 ∈ I, then Υ
(1)
w,I(0) = 0 and there is nothing to prove. Otherwise, since I 6= ∅ we need to have

2 ∈ I. This means that |θ(2)| & 2δw and using (7.13) with ι = 0 together with (9.50) we have

‖Kr,4
k,w,S,I‖`1(G0) . S

4r(d+d′)2−w/(2δ) . 2−w.

This proves (9.48) and consequently the proof of Lemma 9.6 is completed.
�

Appendix A. Proof of Proposition 6.5

In this section we prove the estimates (6.32) and (6.34). We begin with proving (6.34), which
will be needed in the proof of (6.32).
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A.1. Proof of inequality (6.34). We examine the definitions (6.31) and (6.4), and rewrite

W̃k,w+1(x)− W̃k,w(x) = φk(x)
∑

∅6=I⊆{1,2}

Sk,w,I(x),

where for I ⊆ {1, 2} we define

Sk,w,I(x) := S
(1)
k,w,I(x

(1))S
(2)
k,w,I(x

(2)),

S
(1)
k,w,I(x

(1)) :=
{ ∏
l∈{1,...,d}

τ−kl
}∫

R
χ(u)Υ̂

(1)
w,I(A

(1)
0 (u)− τ−k ◦ x(1)) du,

S
(2)
k,w,I(x

(2)) :=
{ ∏

(l1,l2)∈Y ′d

τ−k(l1+l2)
}

Υ̂
(2)
w,I(−τ

−k ◦ x(2)),

(A.1)

and Υ
(1)
w,I and Υ

(2)
w,I are defined in (9.46). Let Sk,w,If := f ∗G#

0
Sk,w,I . Notice that

‖φkSk,w,I − Sk,w,I‖L1(G#
0 )
. τ−Dk, I 6= ∅, 0 ≤ w < k.

Therefore, to prove (6.34) it suffices to show that if w ≥ 0 and I 6= ∅ then∥∥∥∑
k>w

κkSk,w,If
∥∥∥
L2(G#

0 )
. τ−w/D‖f‖

L2(G#
0 )
,

provided that |κk| ≤ 1. In view of the Cotlar-Stein lemma it suffices to prove that

‖Sj,w,IS∗k,w,I‖L2(G#
0 )→L2(G#

0 )
+ ‖S∗j,w,ISk,w,I‖L2(G#

0 )→L2(G#
0 )
. τ−2w/Dτ−|k−j|/D, (A.2)

uniformly in 0 ≤ w < j ≤ k and I 6= ∅. We will prove the estimates only for the first term in the
left-hand side above, since the second term can be treated in a similar way.

With δ̃ = (δl1l2)(l1,l2)∈Yd , δl1l2 = δ if (l1, l2) ∈ Y ′d and δl10 = δ′ as before, it is easy to see that

|Sk,w,I(x)|+
∑

(l1,l2)∈Yd

τk(l1+l2)−δl1l2w
∣∣(∂xl1l2Sk,w,I)(x)

∣∣
.
{ ∏

(l1,l2)∈Yd

τ−k(l1+l2)+δl1l2w
}∫

R
χ(u)

〈
τ δ̃w
(
A0(u)− τ−k ◦ x

)〉−D
du,

(A.3)

uniformly in x ∈ G#
0 , 0 ≤ w < k. Observe that for every θ ∈ Rd+d′ we also have

Ŝk,w,I(θ) = Υ
(1)
w,I(τ

k ◦ θ(1))Υ
(2)
w,I(τ

k ◦ θ(2))

∫
R
χ(u)e

(
− θ.A0(τku)

)
du. (A.4)

Step 1. We prove first the bounds (A.2) when k−j ≥ w. Using (A.4) we have
∫
G#

0
Sk,w,I(x) dx = 0

for I 6= ∅. Therefore the kernels Kk,j of Sj,w,IS∗k,w,I satisfy the bounds

‖Kk,j‖L1(G#
0 )
≤
∫
G#

0

|Sj,w,I(y)|
∫
G#

0

|Sk,w,I(x · y)− Sk,w,I(x)| dx dy. (A.5)

Using now the bounds (A.3) we obtain

|Sk,w,I(x · y)− Sk,w,I(x)| . τ−(k−j)/2
{ ∏

(l1,l2)∈Yd

τ−k(l1+l2)+δl1l2w
}
〈τ−j ◦ y〉

×
∫
R
χ(u)

〈
τ δ̃w
(
A0(u)− τ−k ◦ x

)〉−D/8+1
du
〈
τ δ̃w
(
τ−k ◦ y

)〉D/4
,
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for any x, y ∈ G#
0 , provided that k − j ≥ w. Therefore, using (A.5),

‖Kk,j‖L1(G#
0 )
. τ−(k−j)/2

∫
G#

0

{ ∏
(l1,l2)∈Yd

τ−j(l1+l2)+δl1l2w
}

×
∫
R
χ(v)

〈
τ δ̃w
(
A0(v)− τ−j ◦ y

)〉−D/4
dv dy . τ−(k−j)/2.

This proves (A.2) provided that k − j ≥ w.
Step 2. Assume now that k− j ≤ w. Using a high order T ∗T argument it suffices to prove that

if 0 ≤ w < k and I 6= ∅ then

‖(S∗k,w,ISk,w,I)r‖L2(G#
0 )→L2(G#

0 )
. τ−w. (A.6)

Using the formulas (2.13)–(2.16) we see that (S∗k,w,ISk,w,I)rf = f ∗G#
0
Kr
k, where

Kr
k(z) =

∫
Rd×Rd′

e
(
θ.z
)(

Υ
(2)
w,I(τ

k ◦ θ(2))
)2r
Irk,w,I(θ

(1), θ(2)) dθ, (A.7)

and

Irk,w,I(θ) :=

∫
R2rd

{ r∏
i=1

S
(1)
k,w,I(h

(1)
i )S

(1)
k,w,I(g

(1)
i )
}
e
(
θ(1).

∑
1≤i≤r

(h
(1)
i − g

(1)
i )
)

× e
(
− θ(2).

{ ∑
1≤i≤r

R0(h
(1)
i , h

(1)
i − g

(1)
i ) +

∑
1≤p<i≤r

R0(−h(1)
p + g(1)

p ,−h(1)
i + g

(1)
i )
})

dh
(1)
i dg

(1)
i .

Using the definitions (A.1), (8.21), and (2.24), and making the changes of variables h
(1)
i = τk ◦

(A
(1)
0 (vi) + yi), g

(1)
i = τk ◦ (A

(1)
0 (ui) + xi) we rewrite

Irk,w,I(θ) =

∫
R2rd

r∏
i=1

{
Υ̂

(1)
w,I(yi)Υ̂

(1)
w,I(−xi)e

(
− (τk ◦ θ(1)).(xi − yi)

)}
×
{∫

R2r

e
(
− (τk ◦ θ(2)).T (x, y, u, v)

) r∏
i=1

{χ(uj)χ(vj)}e
(
− (τk ◦ θ).D(v, u)

)
dudv

}
dxdy.

(A.8)

In view of (A.3) we have

‖Sk,w,I(x)1|τ−k◦x|≥10dd10‖L1(G#
0 )
. τ−δDw/2.

To prove (A.6) it suffices to show that for a large fixed constant Cr � 1 we have

‖Kr
k(x)1|τ−k◦x|≤Cr‖L1(G#

0 )
. τ−w.

In view of (A.7), for this is suffices to show that for any (θ(1), θ(2)) ∈ Rd × Rd′ we have∣∣(Υ(2)
w,I(τ

k ◦ θ(2))
)2r
Irk,w,I(θ

(1), θ(2))
∣∣ . ∣∣Υ(2)

w,I(τ
k ◦ θ(2))

∣∣2rτ−4w(1 + τ−2δ′w|τk ◦ θ(1)|)−1/δ. (A.9)

This is similar to the proof in Steps 3 and 4 of Lemma 8.2. Indeed, first we integrate by parts
many times in xi (or in yi) in the identity (A.8) to see that∣∣(Υ(2)

w,I(τ
k ◦ θ(2))

)2r
Irk,w,I(θ

(1), θ(2))
∣∣ . ∣∣Υ(2)

w,I(τ
k ◦ θ(2))

∣∣2r(1 + τ−2δ′w|τk ◦ θ(1)|)−D

for any (θ(1), θ(2)) ∈ Rd×Rd′ . It remains to prove (A.9) if |τk ◦θ(2)| ≤ 2τ δw+4 and |τk ◦θ(1)| ≤ τ3δ′w.
In this case we can use Proposition 2.4 as in Step 4 in Lemma 8.2 to prove a suitable decay if
|τk ◦ θ| ≥ τ δw−4. Finally, if |τk ◦ θ| ≤ τ δw−4 then we may assume that 1 ∈ I, so∫

Rd
Υ̂

(1)
w,I(x)xβ = 0
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for any multi-index β = (β1, . . . , βd) ∈ Nd. This is similar to (8.25) and can be used to show that∣∣Irk,I(θ)∣∣ . τ−Dw if |τk ◦ θ| ≤ τ δw−4. This finishes the proof of inequality (6.34). �

A.2. Proof of inequality (6.32). The space X = G#
0 endowed with the Lebesgue measure µG#

0
=

| · | and the quasi-metric

qG#
0

(x, y) := sup
(l1,l2)∈Yd

(∣∣[x · y−1]l1l2
∣∣1/(l1+l2)

)
, x, y ∈ G#

0 (A.10)

defines a space of homogeneous type (G#
0 ,B(G#

0 ), µG#
0
, qG#

0
). This in turn allows us to associate a

system of dyadic cubes for X in the sense of Christ [18, Theorem 11].
Following [35, Section 3 and 4, pp. 6721–6726] we can define the martingale sequence Ekf(x) =

E[f |Fk](x) for k ∈ Z, x ∈ G#
0 , and f ∈ L1

loc(G
#
0 ), where Fk is the filtration corresponding to the

system of Christ’s dyadic cubes, see [35, formula (27), p. 6721] and [35, Lemma 3.1, p. 6721].
An important ingredient in the proof of inequality (6.32) will be Lépingle’s inequality [41, 45],

which asserts that for every 1 < p <∞ and 2 < ρ <∞ and every f ∈ Lp(G#
0 ) one has

‖V ρ(Ekf : k ∈ Z)‖
Lp(G#

0 )
.p,ρ ‖f‖Lp(G#

0 )
. (A.11)

We now establish certain variational estimates necessary to prove (6.32). In a similar way as in

(6.31), let us define new kernels on G#
0 by setting

Wk(x) :=

∫
Rd×Rd′

η0(τk ◦ ξ(1))η0(τk ◦ ξ(2))e(x.ξ)Jk(ξ
(1)) dξ, x ∈ G#

0 , τ > 1.

Observe that

Wk(x) =

∫
R
τ−kχ(τ−ku)ψk(x−A0(u)) du, x ∈ G#

0 ,

where for k ∈ Z and x ∈ G#
0 we set

ψk(x) :=
{ ∏

(l1,l2)∈Yd

τ−k(l1+l2)
}
ψ(τ−k ◦ x), ψ(x) := η̂0(−x(1))η̂0(−x(2)).

The main result of this subsection is stated below.

Lemma A.1. Let 2 < ρ <∞ be given. Then for any g ∈ L2(G#
0 ) one has

‖V ρ(g ∗G#
0
Wk : k ∈ Z)‖

L2(G#
0 )
.ρ,τ ‖g‖L2(G#

0 )
. (A.12)

Proof. We reduce the matters to Lépingle’s inequality for bounded martingales (A.11).
Step 1. Let µ0 :=

∫
R χ(x)dx and define

Tkg(x) := g ∗G#
0
Wk(x)− g ∗G#

0
(µ0ψk)(x) =: g ∗G#

0
Kk(x), x ∈ G#

0 .

Observe that

‖V ρ(g ∗G#
0
Wk : k ∈ Z)‖

L2(G#
0 )
. ‖V ρ(g ∗G#

0
ψk : k ∈ Z)‖

L2(G#
0 )

+
∥∥∥(∑

k∈Z
|Tkg|2

)1/2∥∥∥
L2(G#

0 )
.

(A.13)

As in the Jones–Seeger–Wright paper [35] we can conclude that

‖V ρ(g ∗G#
0
ψk : k ∈ Z)‖

L2(G#
0 )
.ρ,τ ‖g‖L2(G#

0 )
. (A.14)
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Indeed, let Ekf denote the martingale sequence, as above, and define the martingale difference
operator Dk = Ek −Ek−1 and proceeding as in the proof of [35, Lemma 3.2, p. 6722] we are able to

prove that there is a constant γ > 0 such that for any f ∈ L2(G#
0 ) the estimate

‖(Dmf) ∗G#
0
ψM0(k+m)+b − Ek+mDmf‖L2(G#

0 )
. τ−γ|k|‖Dmf‖L2(G#

0 )
,

holds uniformly in k,m ∈ Z, and b ∈ ZM0 ; here M0 ∈ N is fixed but large constant such that
δ = 2−M0 in the construction of Christ’s dyadic cubes, see [18, Theorem 11]. This estimate and a
simple square function argument (see [35, Section 4, p. 6724]) reduces (A.14) to Lépingle’s inequality
(A.11) and the claim follows.

Step 2. The proof will be completed if we estimate the square function from (A.13). By

Khintchine’s inequality it suffices to show that for every f ∈ L2(G#
0 ) one has∥∥∥∑

k∈Z
κkTkg

∥∥∥
L2(G#

0 )
. ‖g‖

L2(G#
0 )
,

for any coefficients κk ∈ [−1, 1]. Using the Cotlar-Stein lemma it remains to prove that

‖K∗k ∗G#
0
Kj‖L1(G#

0 )
+ ‖Kj ∗G#

0
K∗k‖L1(G#

0 )
. τ−|k−j|, k ≥ j. (A.15)

We prove only the first estimate since the second one is analogous. Note that

|K∗k ∗G#
0
Kj(x)| ≤

∫
G#

0

|Kj(y)|
∣∣Kk(x

−1 · y)−Kk(x
−1)
∣∣ dy, (A.16)

since we have
∫
G#

0
Kj(x)dx = 0. Further, using the estimate

|ψk(x · y − z)− ψk(x− z)| . τ−|k−j|
{ ∏

(l1,l2)∈Yd

τ−k(l1+l2)
}
〈τ−j ◦ y〉D+1〈τ−k ◦ x〉−D/2+1,

which holds uniformly in k ≥ j, |τ−k ◦ z| . 1, and x, y ∈ G#
0 , we obtain∣∣Kk(x · y)−Kk(x)

∣∣ . τ−|k−j|{ ∏
(l1,l2)∈Yd

τ−k(l1+l2)
}
〈τ−j ◦ y〉D+1〈τ−k ◦ x〉−D/2+1.

Combining this with (A.16) and a simple estimate

|Kj(y)| .
{ ∏

(l1,l2)∈Yd

τ−j(l1+l2)
}
〈τ−j ◦ y〉−4D,

we conclude

|K∗k ∗G#
0
Kj(x)| . τ−|k−j|

{ ∏
(l1,l2)∈Yd

τ−k(l1+l2)
}
〈τ−k ◦ x〉−D/8, x ∈ G#

0 .

This shows (A.15) and the proof of Lemma A.1 is completed. �

We now prove inequality (6.32). Note that∥∥V ρ(f ∗G#
0
W̃k,k : k ≥ 0)

∥∥
L2(G#

0 )
≤
∥∥V ρ(f ∗G#

0
Wk : k ∈ Z)

∥∥
L2(G#

0 )

+
∥∥∥(∑

k≥0

|f ∗G#
0

(W̃k,0 −Wk)|2
)1/2∥∥∥

L2(G#
0 )

+
∑
w∈N

∥∥∥(∑
k>w

|f ∗G#
0

(W̃k,w+1 − W̃k,w)|2
)1/2∥∥∥

L2(G#
0 )
.
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The ρ-variations are bounded due to Lemma A.1. The first square function is bounded due to the
following pointwise bound

|f ∗G#
0

(W̃k,0 −Wk)(x)| . τ−k/2|f | ∗G#
0
Ek(x),

where

Ek(h) :=
{ ∏

(l1,l2)∈Yd

2−k(l1+l2)
}
〈2−k ◦ h〉−D, h ∈ G#

0 .

Appealing to Khintchine’s inequality and (6.34) we conclude that the second square function is

bounded by a constant multiple of 2−w/D‖f‖
L2(G#

0 )
, which completes the proof of (6.32). �

Appendix B. Proof of Proposition 9.4: Shifted maximal function

Using the definition of Jk(ξ), (see (6.4)), and (6.8) we obtain

Wk,w,Q(h) = φk(h)
( ∏

(l1,l2)∈Yd

Qβl1l22−k(l1+l2)
)∫

R
χ(x)η̂0

(
β(1)

(
2−k ◦ h(1) −A(1)

0 (x)
))

× η̂0

(
β(2)(2−k ◦ h(2))

)
dx,

where β = (β(1), β(2)) = (βl1l2) ∈ Rd+d′ , βl1l2 = 2bδwc if l2 6= 0, βl1l2 = 2bδ
′wc if l2 = 0. We define

the quasi-norm on qβ : RYd → [0,∞) by

qβ(x) = sup
(l1,l2)∈Yd

(βl1l2 |xl1l2 |)1/(l1+l2). (B.1)

Since qβ(λ ◦ x) = λqβ(x), we have

|Wk,w,Q(h)| .
∫
R
χ(u)

( ∏
(l1,l2)∈Yd

Qβl1l22−k(l1+l2)
)(

1 + 2−kqβ(h−A0(2ku))
)−D

du. (B.2)

For Q ∈ Z+, h ∈ HQ, and u ∈ [−2, 2] we define

MQ,w,uf(h) := sup
k∈N, 2k/2≥8Q2w/8

( ∏
(l1,l2)∈Yd

Qβl1l22−k(l1+l2)
) ∑
{y∈HQ : qβ(h·y−1−A0(2ku))<2k}

|f(y)|, (B.3)

and notice that, as a consequence of (B.2),∣∣f ∗HQ Wk,w,Q(h)
∣∣ . ∞∑

n=0

2−nD/2
∫ 2

−2
MQ,w,2−nuf(h) du,

for any h ∈ HQ, integer k satisfying 2k/2 ≥ 8Q2w/8, and f ∈ `p(HQ), uniformly in Q and w.
Therefore, for Proposition 9.4 it suffices to prove the following:

Theorem B.1. For any Q ∈ Z+, w ∈ N, and u ∈ [−2, 2] we have

‖MQ,w,u‖`1(HQ)→`1,∞(HQ) . (w + 1),

‖MQ,w,u‖`p(HQ)→`p(HQ) .p (w + 1), p ∈ (1,∞].
(B.4)

B.1. Proof of Theorem B.1. We begin with some simple observations related to the quasi-

distance qβ and the associated quasi-balls Bβ,HQ(x, r) defined for any x ∈ G#
0 and r > 0 by

Bβ(x, r) = {y ∈ G#
0 : qβ(x · y−1) < r},

Bβ,HQ(x, r) = {y ∈ HQ : qβ(x · y−1) < r} = Bβ(x, r) ∩HQ.
(B.5)

We record first several simple properties, which follow directly from the definition (B.1) and the
observation that 1 ≤ βl1l2 ≤ βl′10 for any (l1, l2) ∈ Yd and l′1 ∈ {1, . . . , d}.
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Lemma B.2. The following relations holds uniformly for any x, y ∈ G#
0 :

(a) qβ(x) ≥ 0 for every x ∈ G#
0 and qβ(x) = 0 if and only if x = 0,

(b) qβ(x+ y) + qβ(x · y) . qβ(x) + qβ(y),
(c) qβ(x−1) ' qβ(x),

(d) 1 + qβ(x) . 1 + |βx| . (1 + qβ(x))2d, where βx := (βl1l2xl1l2)l1l2.

We start with a simple lemma concerning the cardinality of the quasi-balls Bβ,HQ(x, r).

Lemma B.3. For any x ∈ G#
0 and r ≥ 2Q2δ

′w we have

|Bβ,HQ(x, r)| '
∏

(l1,l2)∈Yd

rl1+l2

Qβl1l2
.

Proof. Observe that for x, y ∈ G#
0 we have

(x · y−1)(1) = x(1) − y(1), (x · y−1)(2) = x(2) − y(2) +R0(y(1) − x(1), y(1)). (B.6)

Therefore

Bβ,HQ(x, r) =
{
y(1) ∈ (QZ)d, y(2) ∈ (QZ)d

′
: βl0|xl0 − yl0| < rl for any l ∈ {1, . . . , d}

and βl1l2 |xl1l2 − yl1l2 +R0(y(1) − x(1), y(1))l1l2 | < rl1+l2 for any (l1, l2) ∈ Y ′d
}
.

(B.7)

This desired volume bounds follow. �

Next, we prove two facts concerning the quasi-norm qβ and shifted balls.

Lemma B.4. There exists a universal constant C0 ≥ 1 such that for any x ∈ HQ, u ∈ [−2, 2], and

any k ∈ N satisfying 2k/2 ≥ 2Q2δ
′w, there is z ∈ HQ such that{

y ∈ HQ : qβ
(
x · y−1 −A0(2ku)

)
< 2k

}
⊆ Bβ,HQ(z, C02k). (B.8)

Proof. We choose z ∈ HQ satisfying the inequalities

βl10|zl10 − xl10 + (2ku)l1 | ≤ 2kl1 , l1 ∈ {1, . . . , d}, (B.9)

βl1l2 |zl1l2 − xl1l2 +R0(x(1) − z(1), x(1) −A(1)
0 (2ku))l1l2 | ≤ 2k(l1+l2), (l1, l2) ∈ Y ′d. (B.10)

This is indeed possible due to the assumption Q2δ
′w+1 ≤ 2k/2. Using (B.6) we see that for any

y ∈ HQ satisfying qβ
(
x · y−1 −A0(2ku)

)
< 2k we have

βl10|xl10 − yl10 − (2ku)l1 | < 2kl1 , l1 ∈ {1, . . . , d}, (B.11)

βl1l2 |xl1l2 − yl1l2 +R0(y(1) − x(1), y(1))l1l2 | < 2k(l1+l2), (l1, l2) ∈ Y ′d. (B.12)

We want to show that y ∈ Bβ,HQ(z, C02k) for some large constant C0. Using (B.9) and (B.11)

βl10|zl10 − yl10| ≤ 2kl1+1, 1 ≤ l1 ≤ d.
To finish the proof of Lemma B.4 it is enough to show that

βl1l2 |zl1l2 − yl1l2 +R0(y(1) − z(1), y(1))l1l2 | . 2k(l1+l2), (l1, l2) ∈ Y ′d. (B.13)

This follows by combining the bounds (B.9)–(B.12) and the identity

zl1l2 − yl1l2 +R0(y(1) − z(1), y(1))l1l2 = xl1l2 − yl1l2 +R0(y(1) − x(1), y(1))l1l2

+ zl1l2 − xl1l2 +R0(x(1) − z(1), x(1) −A(1)
0 (2ku))l1l2

+R0

(
x(1) − z(1) −A(1)

0 (2ku) +A
(1)
0 (2ku), y(1) − x(1) +A

(1)
0 (2ku)

)
l1l2
.

This completes the proof of the lemma. �



POLYNOMIAL AVERAGES AND POINTWISE ERGODIC THEOREMS 69

Lemma B.5. There is a constant C1 ≥ 1 such that for any u ∈ [−2, 2], x ∈ HQ, and n ∈ Z
satisfying 2n/2 ≥ Q2δ

′w+3 there is a sequence of points {x0, x1, . . . , xw+10} ⊆ HQ, x = xw+10, with

the following property: if z ∈ HQ, k ≤ n satisfies 2k/2 ≥ Q2δ
′w+1, and{

y ∈ HQ : qβ
(
z · y−1 −A0(2ku)

)
< 2k

}
⊆ Bβ,HQ(x, 2n), (B.14)

then

Bβ,HQ(z, 2k) ⊆
⋃

j∈{0,...,w+10}

Bβ,HQ(xj , C12n). (B.15)

Proof. For any s ≥ 0 we define a point xs = x̃ ∈ HQ such that the inequalities

βl0|x̃l0 − xl0 − (2n−su)l| ≤ 2nl,

βl1l2
∣∣x̃l1l2 − xl1l2 +R0

(
x(1) − x̃(1), x(1) +A

(1)
0 (2n−su)

)
l1l2

+ (2n−su)l1+l2
∣∣ ≤ 2n(l1+l2),

(B.16)

for any l ∈ {1, . . . , d} and any (l1, l2) ∈ Y ′d. Such a choice is possible because of the assumption

2n/2 ≥ Q2δ
′w+4, and, in fact, we can set xs = x if s ≥ 10 + w.

Given these points {x0, . . . , xw+10}, assume now that k = n − s, s ≥ 0, is an integer and
z ∈ HQ is a point such that the inclusion (B.14) holds. With x̃ = xs we would like to show that

Bβ,HQ(z, 2k) ⊆ Bβ,HQ(x̃, C12n). In view of Lemma B.2 it suffices to show that

qβ(z · x̃−1) . 2n. (B.17)

To see this we fix a point y ∈ HQ such that qβ
(
z ·y−1−A0(2ku)

)
≤ 2k, and notice that z ·x̃−1 = E+I,

where qβ(E) . 2n and I = A0(2ku) · y · x̃−1 satisfies

I(1) = y(1) − x̃(1) +A
(1)
0 (2ku),

I(2) = y(2) − x̃(2) +R0(x̃(1), x̃(1)) +R0(A
(1)
0 (2ku), y(1))−R0(A

(1)
0 (2ku) + y(1), x̃(1)).

We would like to see that qβ(I) . 2n. Since y ∈ Bβ,HQ(x, 2n) we have

βl0|xl0 − yl0| < 2nl l ∈ {1, . . . , d}

βl1l2 |xl1l2 − yl1l2 +R0(y(1) − x(1), y(1))l1l2 | < 2n(l1+l2) (l1, l2) ∈ Y ′d,
see (B.7). Combining these inequalities with (B.16) and recalling that βl0 & βl1l2 ≥ 1 it follows
easily that qβ(I) . 2n, as desired. �

Now we are ready to complete the proof of Theorem B.1.

Proof of Theorem B.1. Step 1. We define an auxiliary maximal function

M̃Q,wf(h) := sup
h∈Bβ,HQ (g,2k), 2k/2≥Q2w/8

|Bβ,HQ(g, 2k)|−1
∑

y∈Bβ,HQ (g,2k)

|f(y)|, h ∈ HQ,

where the supremum is taken over all the quasi-balls Bβ,HQ(g, 2k) that contain h. For any f ∈ `1(HQ)
and λ > 0 we define the set

Oλ := {h ∈ HQ : M̃Q,wf(h) ≥ λ}. (B.18)

By a standard Vitali covering argument (using also Lemma B.2 (b)) we can select a maximal finite

family of disjoint balls Bj
β,HQ = Bβ,HQ(gj , 2

kj ), 2kj/2 ≥ Q2w/8, j ∈ J(λ, f), such that

|Bj
β,HQ |

−1
∑

y∈Bjβ,HQ

|f(y)| ≥ λ for any j ∈ J(λ, f),

⋃
j∈J(λ,f)

Bj
β,HQ ⊆ Oλ ⊆

⋃
j∈J(λ,f)

B̃j
β,HQ ,

(B.19)
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where B̃j
β,HQ = Bj

β,HQ(gj , C22kj ) is a fixed multiple of the quasi-ball Bj
β,HQ for a suitable constant

C2 ≥ 1. In particular,

|Oλ| '
∑

j∈J(λ,f)

|B̃j
β,HQ | '

∑
j∈J(λ,f)

|Bj
β,HQ | . ‖f‖`1(HQ)/λ, (B.20)

so the operator M̃Q,w is a bounded operator from `1(HQ) to `1,∞(HQ), uniformly in Q and w.
Step 2. To complete the proof of the theorem it suffices to show that there is a constant C3 ≥ 1

sufficiently large such that

|{h ∈ HQ : MQ,w,uf(h) ≥ C3λ}| . (1 + w)|{h ∈ HQ : M̃Q,wf(h) ≥ λ}|, (B.21)

for every λ > 0. Using the definition (B.3), we see that if MQ,w,uf(z) ≥ C3λ then there is an integer

k satisfying 2k/2 ≥ 8Q2w/8 such that( ∏
(l1,l2)∈Yd

Qβl1l22−k(l1+l2)
) ∑
{y∈HQ : qβ(z·y−1−A0(2ku))<2k}

|f(y)| ≥ C3λ. (B.22)

Using Lemma B.4 we know that there is z̃ ∈ HQ such that{
y ∈ HQ : qβ(z · y−1 −A0(2ku)) < 2k

}
⊆ Bβ,HQ(z̃, C02k). (B.23)

Using Lemma B.3 and (B.22), and assuming that C3 is sufficiently large it follows that

|Bβ,HQ(z̃, 2k+a)|−1
∑

y∈Bβ,HQ (z̃,2k+a)

|f(y)| ≥ 2λ, (B.24)

where a is the smallest integer with the property that 2a ≥ C0. Therefore Bβ,HQ(z̃, 2k+a) ⊆ Oλ (see

the definition (B.18)), so the ball Bβ,HQ(z̃, 2k+a) intersects one of the selected balls Bj
β,HQ for some

j ∈ J(λ, f). Therefore

Bβ,HQ(z̃, 2k+a) ⊆ B̃j
β,HQ ⊆ Bβ,HQ(gj , 2

kj+b) for some j ∈ J(λ, f), (B.25)

where b ∈ N is a universal constant such that C2 ≤ 2b and k + a ≤ kj + b.
On the other hand, we use Lemma B.5 (with n = kj + b and x = gj), starting from the inclusion

(B.23), and (B.15), so

z ∈
⋃

i∈{0,...,w+10}

Bβ,HQ(gij , C12kj+b),

for suitable points gij ∈ HQ (that do not depend on k). Consequently we get

{z ∈ HQ : MQ,w,uf(z) ≥ C3λ} ⊆
⋃

j∈J(λ,f)

⋃
i∈{0,...,w+10}

Bβ,HQ(gij , C12kj+b),

The desired estimate (B.21) follows using also (B.20), which completes the proof of the theorem. �
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