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ABSTRACT. We establish pointwise almost everywhere convergence for ergodic averages along poly-
nomial sequences in nilpotent groups of step two of measure-preserving transformations on o-finite
measure spaces. We also establish corresponding maximal inequalities on L? for 1 < p < oo
and p-variational inequalities on L? for 2 < p < oo. This gives an affirmative answer to the
Furstenberg—Bergelson—Leibman conjecture in the linear case for all polynomial ergodic averages in
discrete nilpotent groups of step two.

Our proof is based on almost-orthogonality techniques that go far beyond Fourier transform tools,
which are not available in the non-commutative, nilpotent setting. In particular, we develop what
we call a nilpotent circle method that allows us to adapt some of the ideas of the classical circle
method to the setting of nilpotent groups.
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1. INTRODUCTION

1.1. The Furstenberg—Bergelson-Leibman conjecture. Assume that (X, B(X), u) denotes a
o-finite measure space. Let Z[n] denote the space of all polynomials P(n) with one indetermi-
nate n and integer coefficients. Given any family of invertible measure-preserving transformations
Ti,...,T4: X — X, d> 1, ameasurable function f € LP(X), p > 1, polynomials P,..., Py € Z[n],
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and an integer N > 1, we define the polynomial ergodic averages

1 P1(n Py(n
Aﬁl;’x,gd,...jd(f)(ﬂ”) = =N, NNZ| Z f(T, 1) -Tdd( ):c), z e X. (1.1)
’ ne[—N,N|NZ

A fundamental problem in ergodic theory is to establish convergence in norm and pointwise
almost everywhere for the polynomial ergodic averages (1.1) as N — oo for functions f € LP(X),
1 < p < oo. The problem goes back to at least the early 1930’s with von Neumann’s mean ergodic
theorem [55] and Birkhofl’s pointwise ergodic theorem [10] and led to profound extensions such as
Bourgain’s polynomial pointwise ergodic theorem [11, 12, 13] and Furstenberg’s ergodic proof [24]
of Szemerédi’s theorem [53] in particular. Furstenberg’s proof was also the starting point of ergodic
Ramsey theory, which resulted in many natural generalizations of Szemerédi’s theorem, including
a polynomial Szemerédi theorem of Bergelson and Leibman [7] that motivates the following far
reaching conjecture:

Conjecture 1.1 (Furstenberg—Bergelson-Leibman conjecture [8, Section 5.5, p. 468]). Given
integers d,k,m,N € Z4, let T1,..., Ty : X — X be a family of invertible measure-preserving
transformations of a probability measure space (X,B(X),un) that generates a nilpotent group of
step k. Assume that Pi1,...,P;j,...,Pqm € Z[n] are such that P;;(0) = 0. Then for any
fis-oy fm € L°(X), the non-conventional multiple polynomial averages

P11,....Pgm . 1 - nP1,5(n) Py,j(n)
AN;X,Tl,...,Td (fla ce. ,fm)(l') = ‘—[—N, N} A Z| e[%:N]ijl;Il f] (Tl J L. Td J x) (1.2)

converge for p-almost every x € X as N — oo.

Conjecture 1.1 is a major open problem in ergodic theory that was promoted in person by
Furstenberg, see [1, p. 6662] and [36], before being published in [8]. Bergelson-Leibman [8] showed
that convergence may fail if the transformations T, . . ., T;; generate a solvable group, so the nilpotent
setting is probably the appropriate setting for Conjecture 1.1. Our main goal in this paper is to
establish this conjecture in the linear m = 1 setting in the case when 71, ..., T, generate a nilpotent
group of step two.

A few remarks about this conjecture and the current state of the art are in order.

1. The averages (1.2) are multilinear generalizations of the averages (1.1) in the case m =1
and Pj; = Pj for all j € {1,...,d}. The basic case d =k =m = 1 with P; ;(n) = n follows
from Birkhoff’s ergodic theorem [10].

2. The case d = k = m = 1 with an arbitrary polynomial P;; € Z[n| was a famous open
problem of Bellow [3] and Furstenberg [25] solved by Bourgain in his breakthrough papers
11, 12, 13].

3. Some particular examples of averages (1.2) with m = 1 and polynomial mappings with
degree at most two in the step two nilpotent setting were studied in [32, 43].

4. The multilinear theory, in contrast to the commutative linear theory, is widely open. Only
a few results in the bilinear m = 2 and commutative d = k = 1 setting are known. Bourgain
[14] proved pointwise convergence when Pj(n) = an and Pj2(n) = bn, a,b € Z. More
recently, the third author with Krause and Tao [38] established pointwise convergence for the
polynomial Furstenberg—Weiss averages [26, 27] corresponding to P ;(n) = n and P 2(n) =
P(n), deg P > 2.

5. Except for these few cases, there are no other results concerning pointwise convergence for
the averages (1.2). The situation is completely different, however, for the question of norm
convergence. A breakthrough paper of Walsh [56] (see also [1]) gives a complete picture of
L?(X) norm convergence of the averages (1.2) for any T, ...,T; € G where G is a nilpotent
group of transformations of a probability space. Prior to this, there was an extensive body
of research towards establishing L?(X) norm convergence, including groundbreaking works
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of Host-Kra [28], Ziegler [57], Bergelson [4], and Leibman [40]. See also [2, 20, 23, 29, 54]
and the survey articles [5, 6, 22] for more details and references, including a comprehensive
historical background.

1.2. Statement of the main results. We can now state the main result of this paper.

Theorem 1.2 (Main result). Let di € Z4 be given and let Ty,...,Ty3 : X — X be a family of
invertible measure-preserving transformations of a o-finite measure space (X,B(X),u) that gen-

erates a nilpotent group of step two. Assume that Py,..., P € Z[n] are such that P;(0) = 0,

1 <j <di, and let dy := max{deg P; : j € {1,...,d1}}. Assume f € LP(X), 1 < p < oo, and let
Ay () = A?’Xidl T, (f) be the averages defined in (1.1).

(i) (Mean ergodic theorem) If 1 < p < oo, then the averages Ay 1’ oFa (f) converge in the LP(X)
norm as N — oo.
(ii) (Pointwise ergodic theorem) If 1 < p < oo, then the averages A s ’Pdl (f) converge pointwise
almost everywhere as N — 00.
(i1i) (Mazimal ergodic theorem) If 1 < p < oo, then one has

| sup 40"

‘HLP(X) Sdl,d%p Hf”LP(X)- (1'3)
The implicit constant in (1.3) may depend on dy,ds, and p, but is independent of the coef-
ficients of the underlying polynomials.

The restriction p > 1 is necessary in the case of nonlinear polynomials as was shown in [15, 39].
We provide now a few remarks about Theorem 1.2.

1. Parts (ii) and (iii) of Theorem 1.2 are completely new even in the case p = 2 and extend Bour-
gain’s polynomial ergodic theorems [11, 12, 13] to the non-commutative nilpotent setting.
In particular, Theorem 1.2 (ii) gives an affirmative answer to Conjecture 1.1 for all polyno-
mials Pi,..., Py, € Z[n] and all measure-preserving transformations T1,..., Ty, : X — X
generating a nilpotent group of step two. Moreover, Theorem 1.2 gives affirmative answers
to [33, Problems 1, 2] for nilpotent groups of step two.

2. If (X, B(X), i) is a probability space and the family of measure preserving transformations
(Th,...,Tq,) is totally ergodic, then Theorem 1.2(ii) implies that

lim AZl’X’Pdl /f Ydu(y (1.4)

N—oo

p-almost everywhere on X. We recall that a family of measure preserving transformations
(Th,...,Tq,) is called ergodic on X if Tj_l(B) = Bforall j € {1,...,d;} implies u(B) =0
or u(B) = 1 and is called totally ergodic if the family (77", ..., T} ) is ergodic for all n € Z..
In view of (1.4), we see that the polynomial orbits

O, = {1 ..y ez}
have a limiting distribution and, in fact, are uniformly distributed for py-almost every x € X
when the family (71,...,Ty,) is totally ergodic.
3. The conclusion of the mean ergodic Theorem 1.2(i) follows from [56] if (X,B(X),u) has
finite measure, but our proof allows one to deal with the more general o-finite setting.

1.3. The universal step-two group Gg. The proof of Theorem 1.2 will follow from our second
main result, Theorem 1.3 below, for averages on universal nilpotent groups of step two. We start
with some definitions. For integers d > 1, we define

Yd::{(ll,lz)GZXZ:OSZ2<Z1§d}
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and the “universal” step-two nilpotent Lie groups G# = GO# (d)

Gl = A{(aun) @ myevs * Tut, € R}, (1.5)
with the group multiplication law
if [y € {1,...,d dly =0,
[yl = 4 10 Yo ifh et yand by (1.6)
Tty + Yiyls T T10Yi50 if [ € {1, - ,d} and [y € {1, e l1 — 1}.

Alternatively, we can also define the group GZ)éé as the set of elements
9="0" 9", ¢ =(go)netay ERY 9P = (9u1) @ 1m)evy € RY, (1.7)
where d' :=d(d —1)/2 and Y] := {(l1,l2) € Yq : l > 1}. Letting
Ry :RYx RY - RY  denote the bilinear form  [Ro(x,9)]i1, := 1,010, (1.8)
we notice that the product rule in the group G# is given by
[g- R =g 4+ pM), [g-h]® = ¢@ + h® 1 Ry(g™, V) (1.9)
if g = (¢gM,¢®) and h = (hV, h?). For any g = (¢(V),¢?) e G#, its inverse is given by
g = (=9, =g + Ro(¢',gV)).

The second variable of g = (g(l), g?) € G# is called the central variable. Based on the product
structure (1.9) of the group G#, it is not difficult to see that g-h = h-g for any g = (g1, g(@) € G#
and h = (0,h?) € G

Let Gy = Go(d) denote the discrete subgroup

Go := G nzlYdl, (1.10)

Let Ag: R — G# denote the canonical polynomial map (or the moment curve on G# )

zh ifly =0
A = ' 1.11
[Ao(@)i1, {0 1, 20, (1.11)
and notice that Ag(Z) C Go. For = = (21,1,) (1, 12)ey, € G# and A € (0,00), we define
Aox:= (All+l2x1112)(l1’12)€yd € G#. (1.12)

Notice that the dilations Ao are group homomorphisms on the group Gg that are compatible with
the map Ay, i.e. Ao Ap(z) = Ap(Ax).

Let x : R — [0, 1] be a smooth function supported on the interval [-2,2]. Given any real number
N > 1 and a finitely supported function f : Gg — C, we can define a smoothed average along the
moment curve Ag by the formula

= N7'x n)f(Ao(n)~t-x),  xeGy. (1.13)
nel

The main advantage of working on the group Gg with the polynomial map A is the presence
of the compatible dilations Ao defined in (1.12), which lead to a natural family of associated balls.
This can be efficiently exploited by noting that MY is a convolution operator on Gy.

The convolution of functions on the group Gg is defined by the formula

(frg)@):= Y fly™ -2)gly) = Y f(2)gla-=7"). (1.14)

yeGo z€Go
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Then it is not difficult to see that MY (f)(z) = f * G (x), where

ZN N n ]l{Ao(n)}( ) z € Gy. (1.15)
nez

We are now ready to state our second main result.

Theorem 1.3 (Boundedness on Gg). Let Go = Go(d), d > 1, be the discrete nilpotent group defined
n (1.10). For any f € fP(Gy), 1 < p < oo, let M(f) be the average defined in (1.13) with a smooth
function x : R — [0, 1] supported on the interval [—2,2].

(1) (Mazimal estimates) If 1 < p < oo, then one has

50 M (N)lllr 0y St 1 llercco) (1.16)

(it) (Long variational estimates) If 1 < p < o0, p > max {p, %}, and T € (1,2], then

HVP(M])\CI(]() :N € DT)ng((GO) gd,p,pmx Hf”éP(GO)a (1-17)
where Dy := {7™ : n € N}. See (2.3) for the definition of the p-variation seminorms V?.

Some comments are in order.

1. Theorem 1.3 will be used to prove Theorem 1.2. The main tool in this reduction will be the
Calderén transference principle [16], and the details will be given in Section 3.

2. Theorem 1.3 extends the results of [44, 47] to the non-commutative, nilpotent setting. Its
conclusions remain true for rough averages, i.e. when x = 1;_; 1} in (1.13), but it is more
convenient to work with smooth averages.

3. The restriction p > 1 in Theorem 1.3 is sharp due to [15, 39]. However, the range of
p > max {p, 1} is only sharp when p = 2 due to Lépingle’s inequality [41] One could
hope to improve this to the full range p > 2 for exponents p # 2, but only at the expense
of additional complexity in the proof. We do not address this here since the limited range
p > max {p, 1} is already sufficient for us to establish Theorem 1.2.

1.4. Overview of the proof. We will show in Section 3 that Theorem 1.2 is a consequence of
Theorem 1.3 upon performing lifting arguments and adapting the Calderén transference principle.
Our main goal therefore is to prove Theorem 1.3, which takes up the bulk of this paper.

Bourgain’s seminal papers [11, 12, 13] generated a large amount of research and progress in the
field. Many other discrete operators have been analyzed by many authors motivated by problems
in Analysis and Ergodic Theory. See, for example, [15, 32, 34, 37, 38, 39, 43, 44, 46, 47, 49, 50, 52]
for some results of this type and more references. A common feature of all of these results, which
plays a crucial role in the proofs, is that one can use Fourier analysis techniques, in particular, the
powerful framework of the classical circle method, to perform the analysis.

Our situation in Theorem 1.3 is different as new difficulties arise. The main issue is that there is no
good Fourier transform on nilpotent groups that is compatible with the structure of the underlying
convolution operators and at the level of analytical precision of the classical circle method. The
second obstacle is the absence of a good delta function compatible with the group multiplication on
(Go, -) (defined in (1.6)). This prevents us from using a naive implementation of the circle method.
The classical delta function

toa™ ) = [ el =a W) 0)e((u® — a0 gV, (11
X

does not detect the group multiplication correctly, see Section 2 and (2.2) for notation.
These two issues lead to very significant difficulties in the proof and require substantial new ideas.
We developed the following tools to circumvent these problems:
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(i) Classical Fourier techniques will be replaced with almost-orthogonality methods based on
exploiting high order T'T™ arguments for operators defined on the discrete group Gg which
arise in the proof of Theorem 1.3. Studying high powers of TT* (i.e. (TT*)" for a large
r € Z4) allows for a simple heuristic lying behind the proof of Waring-type problems to
be used efficiently (and rigorously) in the context of our proof. This heuristic says that,
the more variables that occur in the Waring-type equation, the easier is to find a solution.
Manipulating the parameter r (usually taking r to be very large), we can always decide how
many variables we have at our disposal, making the operators in our questions “smoother
and smoother”.

(ii) Our main new construction in this paper is what we call a nilpotent circle method, an
iterative procedure, starting from the center of the group and moving down along its central
series, that allows us to use some of the ideas of the classical circle method recursively at
every stage. In our case of nilpotent groups of step two, the procedure consists of two basic
iterations and one additional step corresponding to “major arcs”. The key feature of this
approach is that it is adapted to the classical delta function as in (1.18). The minor arcs
analysis needs two types of Weyl’s inequalities: the classical one as well as the nilpotent
one in the spirit of Davenport [21] and Birch [9], which was proved in [33]. The major arcs
analysis brings into play some tools that combine continuous harmonic analysis on groups
G# with arithmetic harmonic analysis over finite integer rings modulo @ € Z.

We outline the argument in Subsection 1.4.1 below.

1.4.1. A nilpotent circle method and ¢? theory. To illustrate our main iterative procedure, it suffices
to consider the boundedness of the maximal function M7 on ¢*(Gg). We would like to prove that

X
H 2‘;13 |f * G2k|H52(GO) S HfHKQ(GO)' (1'19)

Inequality (1.19) involves a genuinely sublinear operator, preventing a naive implementation of
high order TT™ arguments. This contrasts sharply with the situation of singular integral operators
studied in [33]. We begin with a delicate decomposition of the kernels G;‘k adjusted to the nilpotent
structure of the underlying group Gg. Notice that these kernels have a product structure

GY(9) = LilgM 1 (9@),  Li(gW) ==Y 27 x @ Fn) 1y (¢ — A (), (1.20)
nez

where A((Jl)(n) = (n,...,nY) € 2% and g = (¢, g?) € Gy as in (1.7).
First stage. We start by decomposing the kernels G%‘k in the central variable. For any integers
s >0 and m > 1, we define the set of rational fractions

R™:={a/q: a=(a1,...,am) € Z™, q € [2°,2°T —1]NZ, ged(ar,. .., am,q) = 1}. (1.21)

We define also R, := Jyc,cy RT. For z1) = (a;l(ll())) e R?, 2? = (a;l(fl)Q) € R? and A € (0,00), we
define the partial dilations

Aol = Az )eqr,.ap ERY, Aoa® = (AW ), peyy € RY, (1.22)

which are induced by the group-dilations defined in (1.12). We fix a small constant § = §(d) < 1,
a large constant D = D(d) > 6~%, and a smooth even cutoff function 19 : R — [0,1] such that
L1 <no < 1j_g9. For k> D? and s < 0k, we define the periodic Fourier multipliers

Ers(€®) = > nea(@ 0 (P —a/q),  Epii=1- ) Eis (1.23)

a/qeRY s€[0,8K]
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where n<p (x ) = no(|z|/2M) and LAJ :=max{n € Z:n < A}. Then we decompose
SCIGOEEDY / #)2k.s(6) de® + /T L elg®eME e ae®, (1.29)
s€[0,0k]

where ¢ .£3) denotes the usual scalar product of vectors in R? and e(z) := ¢?™#. This induces
our first stage decomposition G2k = K} + 256[0 o) Kk,s where, with the notation in (1.20),

Kis(9) = Le(gM)Nes(9®),  Ki(g) = Li(g"W)NE(g?), (1.25)

and

Nis(9?) = n<s(27 0 g®) /T L e(g®.eP)Ep () dg®

(1.26)
Ni(9®) = nean(27F 09(2))/ e(g?.¢?NEf(EP) dg®
Td
The main bounds we prove in the first stage are the first minor arcs estimate,
c _ 2
I1f * Kille@o) S 27271 flle,) (1.27)
for any k > D? and f € (?(Gy), and the first transition estimate,
_s/D?
H sSup ’f * Kk,s‘H@(GO) S; 2 /D ||f||£2((Go) (1'28)

max(D?2,s/8)<k<ks

for any s > 0 and f € £2(Gy), kg := 22P(+1)?

In the commutative setting, minor arcs estimates such as (1.27) follow using Weyl estimates and
the Plancherel theorem. As we do not have a useful Fourier transform on the group Gg, our main
tool to prove the bounds (1.27) is a high order T*T" argument. More precisely, we analyze the kernel
of the convolution operator {(KCf)*Kf}", where Kf f := f * K} and r is sufficiently large, and show
that its ¢1(Gg) norm is < 27%. The main ingredient in this proof is the non-commutative Weyl
estimate in Proposition 2.3 (i), which was proved earlier in [33].

To prove the transition estimates (1.28), we apply the Rademacher—Menshov inequality (2.7)
with a logarithmic loss to reduce to proving the inequality

H > sa(f * Hyy) . S 2_48/D2HfH£2(G0) (1.29)
ke[J2J]

for any J > max(D?, s/d) and any coefficients », € [—1,1], where Hy, s := Kj11,5 — Ky 5. For this,
we use a high order version of the Cotlar—Stein lemma, which relies again on precise analysis of the
kernel of the convolution operator {(Hy s)*H, s}, where Hy, s f := f+Hj, s and r is sufficiently large.
The key exponential gain of 2745/ D? 4
see Proposition 2.3 (ii).

n (1.29) is due to a non-commutative Gauss sums estimate,

Second stage. In view of (1.27)—(1.28) it remains to prove that
2
| sup 17+ Kislll ey S 27 1 lerce (1.30)

for any fixed integer s > 0. For this, we have to decompose the kernels Kj , in the non-central
variables. We examine the kernels Lj(g™")) in (1.20) and rewrite them as

Li(g™M) = ness(27* 0 g0 /Td e(gM.£M) 5, (eDY ge® (1.31)

where g™ .£€() denotes the usual scalar product of vectors in R? and

)= 3" 27k y (2 Fn)e(— A5 (n).£D). (1.32)

neE”Z
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For any integers Q > 1 and m > 1, we define the set of fractions

N’Zj ={a/Q: a=(a1,...,am) €Z™}. (1.33)
We fix a large denominator Qg := (2P5+P)! =1-2.....2P5tD and define the periodic multipliers
v (EW) == Y nesn(2t o (€W —a/q)),

S5d
a/qERQS

Vst €M)= Y nesw(@0 (6 —a/q)),

a/qeRf\ﬁd .

UeED) = 1-0y — N W=1— > nesn(@ o (€W —a/q)),

t€[0,6'k] a/qeRL,,,

(1.34)

where §' > § is a suitable constant and the sets R¢ are as in (1.21). Since k > k, = 92D(s+1)
it is easy to see that the cutoff functions n<sp (2% o (€M) — a/q)) have disjoint supports and the
multipliers \I/}f‘;v, WUy .1, U5 take values in the interval [0, 1].

We then define the kernels L}g‘;v, Ly s, LS : 7% — C by

Li(g") = 61 (g) /T Lelg" £ 56w (€M) ag, (1.35)

where U, € {\II}COYSV, Uy o, UL}, and, finally, our main kernels G}f::, Ghosits G g 7% — C by
Gu(9) == Lu(gW) Nis(g®). (1.36)

The estimates we prove at this stage are the second minor arcs estimate,
c _ 2
I1f % G5 llegoy S 2752 fllea o) (1.37)
for any s > 0, k > 22D(5+1)2, and f € (?(Gy), and the second transition estimate,
- 2

H sup |f * Gk,s,t’”gQ(GO) 5 2 t/D Hf”fQ(Go) (138)

max(ks,t/0)<k<k¢

for any s > 0,t > Ds+ D, and f € £*(Gy), where x; := 22D(t41)?

The proofs of these estimates are similar to the proofs of the corresponding first stage estimates
(1.27)—(1.28), using high order T*T arguments. Surprisingly, instead of using the non-commutative
oscillatory sums estimates in Proposition 2.3, we only use the classical ones from Proposition 2.2
here. We emphasize, however, that the underlying nilpotent structure is very important and that
these estimates are only possible after performing the two reductions in the first stage, namely,
the restriction to major arcs corresponding to denominators ~ 2° and the restriction to parameters
k > ks. We finally remark that, if we applied the circle method simultaneously to both central
and non-central variables, we would encounter serious difficulties that do not allow for an efficient
control of the phase functions arising in the corresponding exponential sums and oscillatory integrals,
especially on major arcs.

Final stage. After these reductions, it remains to bound the contributions of the “major arcs” in

both the central and the non-central variables. More precisely, we prove the bounds

low

—s/D2
| o |J o+ Ges ‘HEZ(GO) s27/P 11l 2(Go)
- —t/D? (1.39)
| Sup |f * Grsilll o) < 2 1flle2(o).
ZKt

for any s > 0,t > Ds+ D, and f € 3(Gy).
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The main idea here is different: we write the kernels G}CO‘;V and G}, s+ as tensor products of two
components up to acceptable errors. One of these compohents is essentially a maximal average
operator on a continuous group, which can be analyzed using the classical method of Christ [17].
The other component is an arithmetic operator-valued analogue of the classical Gauss sums, which
generates the key exponential factors 2-5/D* and 2-4/P? in (1.39).

1.4.2. (P theory and variation norms. The problem of passing from ¢? estimates to /P estimates in
the context of discrete polynomial averages has been investigated extensively in recent years (see,
for example, [44] and the references therein), and we will be somewhat brief on this.

The full #7(Gp) bounds in Theorem 1.3 rely on first proving ¢?(Gg) bounds. In fact, we first
establish (1.17) for p = 2 and p > 2, by following essentially the steps described above. Then we
use the positivity of the operators MY (i.e. MN(f) > 01if f > 0) to prove the maximal operator
bounds (1.16) for all p € (1,00]. Finally, we use vector-valued interpolation between the bounds
(1.17) with p =2 and p > 2 and (1.16) with p € (1, 00] to complete the proof of Theorem 1.3.

A new ingredient, which is interesting in its own right, is Proposition 9.4, which provides ¢’ (Hg)
bounds for the so-called shifted maximal inequality, see [51, Section 5.10, p. 78] as well as [48,
Section 4.2.4, p. 148] for similar results in the commutative setting. Tools of these kinds are not
apparent in the commutative theory as the delta function (1.18) correctly detects the underlying
convolution structure. In our case, as we mentioned above, there is no delta function that would
be compatible with the convolution structure on Gg. This is a serious obstruction, which forced us
to establish Proposition 9.4. This completes the outline of the proof of Theorem 1.3.

1.4.3. General nilpotent groups. The primary goal is, of course, to establish the full Conjecture 1.1
in the linear m = 1 case for arbitrary invertible measure-preserving transformations 77, ..., 7Ty that
generate a nilpotent group of any step k > 2. The iterative argument we have outlined in Section
1.4.1 could, in principle, be extended to higher step groups, at least as long as the group and the
polynomial sequence have suitable “universal”-type structure, as one could try to go down along
the central series of the group and prove minor arcs and transition estimates at every stage.

However, this is only possible if one can prove suitable analogues of the nilpotent Weyl’s inequal-
ities in Proposition 2.3 on general nilpotent groups of step & > 3. The point is to have a small
(not necessarily optimal, but nontrivial) gain for bounds on oscillatory sums over many variables,
corresponding to the kernels of high power (T*T)" operators, whenever frequencies are restricted to
the minor arcs. In our case, the formulas are explicit, see the identities (2.23), and we can use ideas
of Davenport [21] and Birch [9] for Diophantine forms in many variables to control the induced os-
cillatory sums, but the analysis seems to be more complicated for the higher step nilpotent groups.
This is an interesting problem in its own right, corresponding to Waring-type problems on nilpotent
groups, which may be interpreted as a question about solutions of suitable systems of Diophantine
equations induced by the moment curve on Gg. A qualitative variant of the Waring problem in the
context of nilpotent groups was recently investigated in [30, 31], see also the references given there.

Nevertheless, we hope that the methods of the proof of Theorem 1.3 will be useful to establish a
quantitative variant of the Waring problem on Gg in the spirit of the asymptotic formula of Hardy
and Littlewood as in the classical Waring problem. We plan to investigate this question as well as
its connections with Conjecture 1.1 in the near future.

1.5. Acknowledgements. This work was started in collaboration with Steve Wainger. The au-
thors would like to thank him for his mentorship and friendship over many years and for many
inspiring discussions on this topic. We also thank Bartosz Langowski for reading the manuscript at
the very early stages of our work. Finally, we thank the referees for careful reading of the manuscript
and useful remarks that led to the improvement of the presentation.
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1.6. Organization. In Section 2, we summarize our main notation and collect some important
lemmas. In Section 3, we show how to use the conclusions of Theorem 1.3 to prove Theorem 1.2.
In Section 4, we outline the main ¢?(Gg) argument in the proof of Theorem 1.3 and divide this
argument into five lemmas. In Sections 5, 6, 7, and 8, we prove these lemmas, starting with the
minor arcs estimates in Lemmas 4.2 and 4.4, the major arcs estimates in Lemma 4.5, and the (more
difficult) transition estimates in Lemmas 4.3 and 4.6. In Section 9, we prove the maximal /P(Gy)
estimates (1.16), p € (1,00), using some of the more technical estimates in Appendices A and B.

2. NOTATION AND PRELIMINARIES

In this section we set up most of our notation and state some important lemmas that will be
used in the rest of the paper.

2.1. Basic notation. The sets of positive integers and nonnegative integers will be denoted by
Z, :={1,2,...} and N := {0,1,2,...}. For d € Z, the sets Z¢, R?, C? and T? := R?/Z? have
standard meaning. We denote R, := (0,00) and Z, := {1,...,q} for ¢ € Z.

For any € R we let |x| denote its integer part, |2| := max{n € Z : n < z}. For any a € C?
we will use the Japanese bracket notation (a) := (14 |a|?)'/2. For any sequence (ay)rez of complex
numbers we define the difference operator by

Apag = api1 — ag. (2.1)

We use 14 to denote the indicator function of a set A. We let C' > 0 denote general constants
which may change from occurrence to occurrence. For two nonnegative quantities A, B we write
A < B if there is an absolute constant C' > 0 such that A < CB. We will write A ~ B when
A < B < A. For two quantities A, B we will use A < B to indicate that there is a small constant
C > 0 such that |A] < CB. We will write <s or ~s or < to emphasize that the implicit constants
may depend on the parameter 9.

2.1.1. Function spaces. For an open set U C R? let C'(U) denote the space of continuous functions
f:U — C. Let C"(U) C C(U) denote the space of continuous functions f on U whose partial
derivatives of order < n € Z, all exist and are continuous, and C*(U) := [,¢z, C"(U). The
partial derivatives of a function f : R¢ — C will be denoted by Oz; [ = 0;f; for any multi-index

o € N? let 0° f denote the derivative operator 9" - -- 97 f of total order |a| := a1 + ...+ aq.

Given a measure space Y we let LP(Y), p € [1,00], denote the standard Lebesgue spaces of
complex-valued functions on Y. These spaces can be extended to functions taking values in a finite
dimensional normed vector space (B, || - || ),

LP(Y;B) := {F : Y — B measurable : ||F||1sy.p) = Bl e vy < 00}

In our case we will usually have X = G# or X = R% or X = T? equipped with the Lebesgue
measure, and X = Gg or X = Z% endowed with the counting measure. If X is endowed with
counting measure we will shorten LP(X) to /?(X) and LP(X; B) to ¢P(X; B).

2.1.2. The Fourier transform. The standard inner product on R, m > 1, is denoted by
m
ij = Zxkgk (2.2)
k=1

for every @ = (z1,...,7m), & = (&1,...,&m) € R™. Letting ¢(z) := €?™* 2 € C, the (Euclidean)
Fourier transform and inverse Fourier transform of functions f € L'(R™) will be denoted by

Fam f(€) = (@)e(~z.8) dv,  Fpuf(x):= [ f(E)e(x.£) de.

RrR™ Rm
We shall also abbreviate f: Frm f.
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2.2. p-variations. For any family (a; : ¢t € I) of elements of C indexed by a totally ordered set I,
and any exponent 1 < p < 0o, the p-variation seminorm is defined by

p p o\
VP(ar)ier = VP(ar :t €1) := sup sup ( E la(tj+1) — a(ty)] ) , (2.3)
J€Z+t0< <tJ
t;€l

where the supremum is taken over all finite increasing sequences in I.
It is easy to see that p — V* is non-increasing, and for every ty € I one has

sup]at\ <ag| +VP(ar : t €1) < suplag) + VP(ar : t € 1) =: VP(ay : t €1). (2.4)
tel

Notice that V? clearly defines a norm on the space of functions from I to C. Moreover
VP(ar it €l) SVP(ar:t €ly) + VP(ay : t € I) (2.5)

whenever I = I; Ul is an ordered partition of I, that is max; = minly. Finally, if I is at most
countable, then

VP(ag:tel) (}:mwﬁ/p (2.6)
tel

We also recall from [46, Lemma 2.5] the Rademacher—Menshov inequality, which asserts that for
any 2 < p < oo and jog,m € N so that jo < 2™ and any sequence of complex numbers (a; : k € N)

we have
9\ 1/2
) . (2.7)

Finally, for every family of measurable functions (a; : t € I) C C by a slight abuse of notation we
continue to write

VP(aj:jo<j<2™)< \/iz ( Z ’a(j+1)2i — ajoi)

i=0 N jefjo2—i,2m—i—1]NZ

|VP(as = t € Dlrxy = l(ae)tetll e (x;ve)-

2.3. Products and convolutions on the group Gg. We now establish formulas that will be
repeatedly used in the proof of Theorem 1.3.

Many of our £?(Gg) estimates will be based on high order T*T arguments. Let S1,T1,...,S, Ty :
02(Gg) — £?(Gy) be convolution operators defined by some ¢!(Gg) kernels L1, K1, ..., L., K, : Gg —
C,ie. Sjf=fxLjand T;f = f* K for j € {1,...,r}. Then the adjoint operators Sj,...,S; are
also convolution operators, defined by the kernels L7,..., L} given by L3(g) := L; Li(g71). Moreover
using (1.14), for any f € £2(Gyp) and x € Gy, we have

(SiTy...S8 T, f)(z) = Z { H L;f(hj)Kj(gj)}f(g;l hite o ogrt bt x). (2.8)

hi,91,hr,gr€Go  j=1

In other words (S771...S T, f)(x) = (f x A")(x), where the kernel A" is given by

A=Y {HL (9) Mgoplort b g7 By, (2.9)

h1,91,--,hr,gr€Go  j=1

(1 (2

To use these formulas we decompose hj = (hgl), h;z)) 9; =(g;",9;”) asin (1.7). Then
W g bt g ] = 3 (=R 4 g, (2.10)

1<j<r



12 ALEXANDRU D. IONESCU, AKOS MAGYAR, MARIUSZ MIREK, AND TOMASZ 7. SZAREK

[hl_l g1 (2) _ Z { h(2) (2) +R (hgl) h(l) g§1))}
1<5<r (2 11)
1 1 :
©S RNl n )
1<l<j<r
as a consequence of applying (1.9) inductively. In most of our applications the operators Sy, 11, ..., Sy, Tr
are equal and defined by a kernel K that has product structure, i.e.
Sif=Tif=...=Sf=Tf=f+K,  K(g)=K(g" g?)=KVgK® ). (212
In this case we can derive an additional formula for the kernel A”. We use the identity
]1{0}(35*1 y) = / / e((y™ — M) .0MWYe((y@ — 22)).02)) agM dp?
TdxTd
and the formula (2.9) to write
A(y) = / (500 )e (5.0 )5 (90, 92 dpD g ), (2.13)
Tdx T4’

where

<

2
K(gj)} He( bt gy g )@ ),
=1

Recalling the product formula (2.12) we can write
(W, 0@ =1 (6M, 0 (6?)), (2.14)
for any (01),0)) € T¢ x T where

I (9(1)79(2)) — Z {HK(l)(hgl))K(l)(g](.l))}e(H(l). Z (h§~1) _g](;)))

CONICIFEEY {

hj,ngGo j=1

n.gent I s (2.15)
(0L X RO ) T R 0 )
1<5<r 1<i<j<r
and
r d 2 2 2 2
0 e?)= > {TIEOOEA G e, 3 0 o)
W gPega =1 1<j<r (2.16)
:’ S KO (g)e( - 6 ) o
gD end

2.4. Exponential sums and oscillatory integrals. We will often use the following estimates,
which follow easily using the Poisson summation formula and integration by parts.

Lemma 2.1. Assume that m, M € Z, satisfy M > m+1, and f : R™ — C is a CM(R) compactly
supported function. Then, for any § € [—1/2,1/2]™, we have

[ et - /f (2.6) dz <M/ Z|8Mf )| da. (2.17)

nezm
As a consequence, for any j € {1,...,m} we have
Y fseo| Sulol ™ [ ol r@laes [ S iol @l @)
TEL™ " n=1
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Many of our arguments will rely on estimates of exponential sums and oscillatory integrals in-
volving polynomial phases. We record first some classical Weyl-type estimates, which are proved
for example in [52, Proposition 1]:

Proposition 2.2. (i) Assume that P > 1 is an integer and ¢p : R — R is a C*(R) function
satisfying

60l < 1p_pp) /R 6p(2)] dz < 1. (2.19)

Assume that € > 0 and 0 = (01,...,04) € R? has the property that there is | € {1,...,d} and an
irreducible fraction a/q € Q with q € Z4, such that

0, —a/q| <1/¢* and q € [P, P (2.20)
Then there is a constant C = Cgq > 1 such that
’ S ép(n)e( — (Gin+ ...+ 0n%) ‘ <. p1=e/C, (2.21)

nez
(ii) For any irreducible fraction @ = a/q € (Z/q)?, a = (a1,...,aq) € Z%, q € Z,, we have

qil Z 6( - (91714— oot and))

Nn€Lq

<q Ve (2.22)

We will also need non-commutative versions of these Weyl estimates. With the notation in Section
1.3, forr€Z, let D,D:R" x R" — G#, given by

D((nl, ey nr), (ml, e ,mT)) = A()(?’Ll)_l . Ao(ml) et Ao(nT)_l . AO(TI’LT),

- (2.23)
D((n1, ..., nr), (ma,...,my)) := Ag(n1) - Ag(m1) ™" - ... - Ao(n,) - Ag(m,) ™"
By definition, we have
n't ifly =0 —nltifly =0
A - L [Ao(m) M, = ’
[ 0(”)]lll2 {0 if Iy > 1, [ 0(”) ]1112 nlitle i Iy > 1.
Thus, using (2.10) and (2.11), for x = (z1,...,2,) € R" and y = (y1,...,yr) € R" one has
;(yé-l — xél) if lp =0,
[D(ﬁ?,y)]llb =<7" I ; ; ] r bt L . (224)
2y = w ) — @) + 2 (@ — ) il > 1,
1<ji<j2<r j=1
and
N ;(fv? —yH) if Iy = 0,
D@y =47 ! iyl I ol I, 1 : (2.25)
>z —yi)@l —yn) + >y —ay) il > 1
1<ji<ja<r j=1

For P € Z, assume ¢§£), g) ‘R —R,je{l,...,7}, are C*(R) functions with the properties
sup [[of)|+ v ] <1 pp,  sup / [162) @) + [[F) (@) de < 1. (2:26)
1<5<r 1<j<r JR

For 0 = (01,1,) (11 1n)ey, € RV, r € Zy, and P € Z; let

Spr(0) = Z e(—D {qu (n; 1/)P m])}

n,mez"
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and
Spr(0) = Y e(=D(n,m).0){ [T 6% (n)v (my)}.
n,mezr 7j=1

where D and D are defined as in (2.24)—(2.25).
The following key estimates are proved in [33, Proposition 5.1 and Lemma 3.1]:

Proposition 2.3. (i) For any € > 0 there is r = r(e,d) € Z+ sufficiently large such that for all
P e Z, we have

|Sp(0)] + 1S, (8)] S PP PTY7, (2.27)
provided that there is (11,12) € Yyq and an irreducible fraction a/q € Q, q € Z+, such that
1011, — a/q| <1/¢* and q € [P®, PhF27e], (2.28)

(i4) For any irreducible fraction a/q € Q, a = (ai1,)q, 1)ey, € Zld | q € 7., we define the
arithmetic coefficients

Gla/q)==q " Y ¢(-Dw).(a/q), Gla/g):=q > Y e(—D(v,w).(a/g)). (2.29)

v,wELY VWEZLY
Then for any € > 0 there is r = r(e,d) € Z4 sufficiently large such that
G(a/q)| + |Gla/q)] S g7 '=. (2.30)
We will also use a related integral estimate, see Lemma 5.4 in [33]:

Proposition 2.4. Given ¢ > 0 there is r = r(e,d) sufficiently large as in Proposition 2.3 such that

)/T . { ﬁ%(:cj)%(yj)}e(—D(x,y).,B) dxdy’ <8V,
s (2.31)
’/T R { H¢j(xj)¢j(yj)}e(—l~?(a:,y).ﬂ) dxdy’ < (B)~ Ve,
X paie)

for any B € RYd and for any CIR) functions ¢1,%1,...,¢r,%. : R — C satisfying, for any
je{l,...,r}, the following bound

|65 (@)] + 10205 ()] + |95 ()] + 10215 (2)| S Tj—19) ().

3. ERGODIC THEOREMS: PROOF OF THEOREM 1.2

Assuming momentarily that Theorem 1.3 has been proved we will illustrate how to use it to
establish Theorem 1.2. For this purpose we introduce a smoothed variant of average (1.1).

Let di € Z4. Given any family T1,...,Ty, : X — X of invertible measure-preserving transforma-
tions, a measurable function f € LP(X), p € [1, 00|, polynomials P, ..., P;, € Z[n], a real number
N > 1, and a smooth function x : R — [0, 1] supported on the interval [-2,2] we can define a

smoothed polynomial ergodic average A?}gfdl (f) € LP(X) by the formula

At () (@) = SN TN ) p oy M) re X (3.1)

neE”L



POLYNOMIAL AVERAGES AND POINTWISE ERGODIC THEOREMS 15

3.1. Calderodn transference principle. We now establish a variant of the Calderén transference
principle [16], which will allow us to deduce maximal and p-variational estimates for smoothed
averages (3.1) from the corresponding estimates for the averages My along the moment curve Ay
on the group Gg, see Theorem 1.3.

Proposition 3.1. Let dy € Zy be given and let Th,..., Ty, : X — X be a family of invert-
ible measure-preserving transformations of a o-finite measure space (X,B(X),p) that generates a
nilpotent group of step two. Let Pi,..., Py € Zn] be such that P;(0) =0, 1 < j < di, and let
dy = max{degP; : j € {1,...,d1}}. Assume f € LP(X) for some 1 < p < oo, and let A?&;’fdl (f)
be the average defined in (3.1) corresponding to a smooth function x : R — [0,1] supported on the
interval [—2,2]. Let My be the average from Theorem 1.3.

(i) If MY satisfies (1.16) for some 1 < p < oo then

Py,....P,
| gm0 AN Oy St 1o (3:2)

(it) If MY satisfies (1.17) for some 1 < p < oo, p > max {p, p%l} and T € (1,2], then

py,....P
HVP(ANl;X,X “ (f) tN € DT)HLp(X) gdl,dQ:p,P,ﬂX HfHLP(X)a (3-3)

where D, = {7™ : n € N}.

Proof. We proceed in two steps. We perform first a lifting procedure, which allows us to replace
the polynomials Py, ..., P;, with the moment curve Ap from (1.11). Then we can employ the ideas
from the transference principle [16] to complete the proof.

Step 1. Let G := G[T1,...,Ty] be a nilpotent group of step two generated by 711, ...,Ty,, so

(T;,Ty], 7] = 1d, forall 4,j,0e{l,...,di}, (3.4)
where [S,T] := S™IT!ST denotes the commutator of any two invertible maps S, 7 : X — X.
Define Sj; := [T;,Tj] = T; ' T; " T;Ty, for i,j € {1,...,d1}, then by (3.4) note that T,T; = T5T;Sy;,
and T3, S;; = Si;Ty, for all i, j,k € {1,...,d1}. Hence
di dr dr
[Iz I =110 11 s (35)
i=1 j=1 j=1 1<i<j<dy

Formula (3.5) gives rise to a homomorphism 7" : Go(d;) — G defined by

di
T(g) :== H T;lnllo H Sﬂ;’% for any g = (mu1,)(1, 12)ev,, € Gold).
=1 1<la<1 <dy
Let A :Z — Go(dy) be defined by A(n) := (Pi(n),..., Py (n),0,...,0)~! and note that

T(A(n)™) = T oy, (3.6)

In view of [33, Lemma 2.2] there exists d € Z, depending only on the integers dy,dy € Z4, and a
homomorphism ® : Gy(d) — Go# (d1) such that for all n € Z one has

An) = B(Ao(n). (3.7)
From the proof of [33, Lemma 2.2] one can easily deduce that for every g € Go(d) we have ®(g) €
Z4 x (7/2)%. Combining (3.6) with (3.7) we see that the group ® [Go(dy)] acts on X via
D HGo(d1)] x X 3 (g,2) = g©x € X defined by g ® z = (T o ®(g))z, which allows us to write

Al () (@) = 3NN ) F(Ao(n) ! @ ). (3.8)

ne’l
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Step 2. We now prove (3.2) and (3.3). We will only prove (3.3), since the proof of (3.2) is
similar and we omit the details. Define f{(g) := f(g@x)]l[_171]d+d/ (L1 0 9)Lo-1(G,(dy))(g) for L >0,
r € X and g € Go(d). Using (3.8) and the fact that g> € ®~1[Gy(d1)], g € Go(d), observe that for
g € Go(d) obeying L™ o g € [-1,1]%% one has

V(AN () (g2 @) s N € Dy AL, L)) = V(MY (f8,)(9%) : N € D, N[L, L))

for some large absolute constant C' > 0 depending only on d.
Summing over all g € Go(d) obeying L= o g € [-1, 1]d+d/, and integrating over X, we have

((II ) Ve () : N eBen I,
(I1,l2)€Yy

S [ Ve n ) : N € D) g, dute)

S [ UFzalfy ey duta)
ST L)1

(l1,l2)€Yy

(3.9)

using also (1.17) in the second estimate. Dividing both sides of (3.9) by [, 1,)ev, Lh+z and letting
L — oo we obtain (3.3). O

Having proven estimates (3.2) and (3.3) we can easily complete the proof of Theorem 1.2.

3.2. Proof of Theorem 1.2(iii). Let x : R — [0, 1] be a smooth function such that 1_; ;; < x <
L[_22). Note that

Py,...,P,
sup Ay (@) < sup Ap () (@)
NeZy

Appealing to (3.2) we conclude (1.3). O

3.3. Proof of Theorem 1.2(ii). By a simple density argument, using the maximal inequality
(1.3), it suffices to establish pointwise convergence for f € LP(X) N L*(X) with 1 < p < oo.
Invoking p-variational inequality (3.3) one has

Py,....Pay Py,....Pay

DTBJ\I/iITI]\lf%oo A (D) = Ay (@) =0

p-almost everywhere on X. The same is true for the operators
~P1,...,Py L 1 —1 Pl(n) P (n)
AN;X;X 1(f>(.%') T H_NvN]mZ‘Q;ZX(N n)f(Tl .“lel x)? .’EGX.

Let € > 0 and pick a smooth function x : R — [0,1] such that [|1j_1 — x| < e Fix
f € LP(X) N L*(X) such that || f|[ze~x) =1 and f > 0, and note that

. p,...,P, Py,..,P,
lim sup |ANl;X dl(f)(m)fA]V};X dl(f)(mﬂ
D5M,N—x
P ~Py,...,P,
<2 limsup |[Ay'y 1 () () —z‘lNl;X,Xd1 (f)(2)]
D5N—o00

(3.10)

1
S hmsup —_— X N_ln — 1 N—ln
D, 3N—00 [—N,N]ﬂzynze:z‘ ( ) = T1( )|

Sty — Xl w)
Se,
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for p-almost all x € X. Letting € — 07 we obtain that the limit
lim AN () (@)

D3N —00
exists pi-almost everywhere on X for every 7 € (1,2]. Using this with 7 = 2/% for s € Z, we obtain
that there exists a function f; € LP(X) such that

lim AQ,L}';"X (@) = fi(z) (3.11)

p-almost everywhere on X for every s € Z,. Since Dy C D,1/. we conclude that ff = fr for
all s € Z4. Now for each s € Zy and each N € Z, let (nm)men € N be a sequence such that
2N /s < N < 208 +1)/5 Then by (3.11) for f > 0 we have

270 f () < T inf A () < Tmsup Ay () (@) < 21/ (2),

Letting s — co we obtain

P17 7Pd1

Aim Ay (F)(x) = fi(z)

p-almost everywhere on X. This completes the proof of Theorem 1.2(ii). O

3.4. Proof of Theorem 1.2(i). Finally pointwise convergence from Theorem 1.2(ii) combined
with maximal inequality (1.3) and dominated convergence theorem gives norm convergence for any
f € LP(X) with 1 < p < oo and the proof of Theorem 1.2 is completed. O

4. MAXIMAL AND VARIATIONAL ESTIMATES ON Gg: ¢? THEORY

In this section we discuss the nilpotent circle method on the discrete group Gg, and outline the
proof of the key p-variational inequality (1.17) for p =2 and 2 < p < oc.

Assume that 7 € (1, 2] is a fixed parameter. The basic case is 7 = 2, but we need slightly stronger
bounds for the ergodic theory application, see (3.10). We also fix a smooth function x : R — [0, 1]
supported on [—2,2]. For simplicity of notation, for £ € N and = € Gy, let

My f(@) = MY f(@) = 77 n) f(Ao(n) ™" - 2) = (f * Ki) (),
nez
(4.1)
Ki(2) == GY(x) = D 7 X (07 n) Ly (),
nez

see (1.13) and (1.15) for the definitions My and G respectively.
Our aim is to establish (1.17) for p = 2 and 2 < p < oo, which with the new notation can be
rewritten as follows:

Theorem 4.1. Let 7 € (1,2] and 2 < p < oo be given. Then for any f € £*(Gy) one has
va(Mk(f) ik > 0)H£2(Go) Sd,p,T,X ”f”EQ(GO)' (42)
In particular, one also has
| i;% |Mkf|Hg2(G0) Sdrx 1l (4.3)

The proof of Theorem 4.1 will take up Sections 4, 5, 6, 7, and 8. For simplicity of notation, all
the implied constants in this proof are allowed to depend on d, 7, X, p.

We fix 79 : R — [0,1] a smooth even function such that 1_; ;) < no < Lj_g9. For t € R and
integers j > 1 we define

() =mo(r7t) —mo(r 7 ), 1= (4.4)
=0
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For any A € [0,00) we define
Neai= > (4.5)
J€E[0,A|NZ
By a slight abuse of notation we also let n; and n<4 denote the smooth radial functions on R™,

m € Zy, defined by n;(x) = n;(|z() and n<a(z) = n<a(lz|)
To prove Theorem 4.1 we need to decompose the kernels defining the operators Mj. The kernels
K}, have product structure

Ki(g) = Li(gM) Loy (9®),  Li(g™) =Y 775 x(r"n) Loy (9D — A (n)), (4.6)

nez
where A((Jl)(n) = (n,...,nY) € 2% and g = (¢, g?) € Gy as in (1.7).

4.1. The main decomposition. We first decompose the singular kernel 1y, (g(2)) in the central
variable ¢ into smoother kernels. For any s € N and m € Z, we define the set of rational fractions

R™:={a/q: a=(a1,...,am) €Z™, q € [r5, 7T NZ, ged(ay,...,am,q) = 1}. (4.7)

m m 1 2 !

We define also RZ, = Uogsga RYT. For (1) = (xl(l()))lle{l,.v.,d} e R?, (@) = ($l(1l)2)(ll,12)€yd/ € R
and A € (0,00) we define the partial dilations

Noal) = (Mg €RE Aoa® = (W) g € R, (49

which are induced by the group-dilations defined in (1.12).

We fix two small constants § = d(d) < & = 8(d) such that & € (0, (10d)~1°] and & € (0, (6")"],
and a large constant D = D(d) > 6%. These constants depend on arithmetic properties of the
polynomial sequence Ay, more precisely on the structural constants in Propositions 2.2-2.4. For
example, we could take ¢’ = (10d)~'°, then take § = ¢’ /C'y, where C is a large constant depending
on the constant C in Proposition 2.2. Then we fix an integer r = r(§) > =% such that the bounds
in Propositions 2.3-2.4 hold with ¢ = 6%, and then take D := |r0~*| + 1. To summarize

1«1/ <1/§ <r<D. (4.9)
For k > (D/InT)? we fix two cutoff functions d),(gl) : RY— [0, 1], (;5,({:2) :RY — [0, 1], such that
o1 (0D) = naan(rF o gW), 0P (g?) = near(r7F 0 g@). (4.10)

For k,w € N so that k¥ > (D/In7)? and 0 < w < k and for any 1-periodic sets of rationals A C Q¢,
B C Q% we define the periodic Fourier multipliers by

Vi alEW) = Y nepw(t® o (€W —a/g), W e,
= (2) "~ ko (e 2) ¢ d (4.11)

Erws(€@) = ) nesu(™ o (€® —b/q), P eT?.

b/qeB
For k > (D/In7)? and s € [0, k] N Z we define the periodic Fourier multipliers Zj , : RY — [0, 1],
Zhs (€)= Epme €7 = D nean(7 0 (€®) = a/q)). (4.12)
a/qeRY
For k > (D/InT)? we write
Loy (9?) = / (9" £@) g™

(4.13)

= Z / Bk (€) dg + / o(g® £#)Z(E®) ag®,

d/
€[0,0K]NZ T
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where ¢ .£@) denotes the usual scalar product of vectors in RY and
Epi=1- ) G (4.14)
5€[0,0k]NZ

Then we decompose K}, = Kf + Zse[o,6k]mz K}, 5, where, with the notation in (4.6), we have

Kis(9) = Le(gM)Nis(9®),  Ki(g) = Li(gW)NE(g?), (4.15)

and
Nes(g®) = 67 (4% /T L e(g® )2 (6?) de®),

(4.16)
Ni(g?) == 6 (9?) / e(g®.£@)=g (¢®)) de®.

T’

We first show that we can bound the contributions of the minor arcs in the central variables:
Lemma 4.2. For any integer k > (D/InT)? and f € £*(Go) we have
_ 2
I1f * Kl S 752 fllez (o) (4.17)

This is proved in Section 5.1 below.
We now turn to the operators K}, 5, and show first that we can bound the contributions corre-
sponding to scales £ > 0 being not very large. More precisely, for any s > 0 we define

Ky 1= 2P/ T (1), (4.18)
Lemma 4.3. For any integer s > 0 and f € £*(Gg) we have
_s/D?
[V2(f 5 i s max(D/ )2 5/8) < k < 200 |y S 7P Ml (419)
and ,
sup | f o Ky s SN flleaos)- (4.20)
H max((D/InT)2,s/8)<k<2ks HZZ(GO) (Go)
This is proved in Section 7 below.
After these reductions, it remains to prove that
—s/D? .
|VP(f * Kps 1 k> HS)HKQ(GO) < 7ms/P [ flle2(@,)  for any integer s> 0. (4.21)

The kernels K}, s are now reasonably well adapted to a natural family of non-isotropic balls in
the central variables, at least when 7° ~ 1, and we need to start decomposing in the non-central
variables. We examine the kernels Ly, (g™")) defined in (4.6), and rewrite them in the form

Li(gD) = 3 775 x(r Fn) Lo (— AP (n) + gD)
nek (4.22)
=0 [ el €D)su(e) g,

where g .¢(M) denotes the usual scalar product of vectors in R%, and

Si(EM) := 3" Ry (rFn)e(— AP (n).£D). (4.23)

neL
For any integers ) € Z4 and m € Z we define the set of fractions

RE ={a/Q: a=(ar,...,ap) € Z™}. (4.24)
For any integer s > 0 we fix a large denominator
Qs = (PP =12 |7PETD], (4.25)
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and using (4.11) define the periodic multipliers

TRNED) = Vyzn €)= D mean( o (€1 a/g)),
a/qERds
\Ilk: ,S t(g( ) \I]k & Rd\Rd (5(1)> = Z 77§6’k(7'k © (5(1) - a/Q))? (426)
a/gERI\RY
UeEM) =10y = 3" T (€™) =1 Y negr(rt o (€ —a/g)).
tE[O,é’k]ﬁZ a/qeR <ok

Since k > k, = 20/ In7)(s+1)? e see that Qs < 9%k Therefore the supports of the cutoff functions

n<s (7% o (€M) —a/q)) are all disjoint and the multipliers W%, ¥y, ., U¢ take values in the interval

[0,1]. Notice also that Wy, ;; = 0 unless ¢ > D(s+ 1), and that the cutoffs used in these definitions
depend on §'k not on Jk as in the case of the central variables.
We examine the formula (4.22) and define the kernels L}gg, Ly s, LS : 7% — C by

Llg™) = o) [ olaDeD)S60) 0. () ) (.27
where (L., W) € {(LY, VY, (List, Vhosi), (LE, U5)}. For any k > kg we obtain K, = GiY +
> <ok Ghost + Gf ,, Where the kernels Gi¥, Gy 54, G5, : ZIVal — C are defined by
G (9) = Loy (")) Nis (92),
Grsi(9) = Li st (9" Nis(9?), (4.28)
fs(9) == Li(g") Ny s (g®).

To prove (4.21) we need to establish Lemmas 4.4-4.6.
Our next lemma shows that the contribution of the minor arcs can be suitably bounded:

Lemma 4.4. For any integers s > 0 and k > ks, and for any f € £2(Gg) we have

c _ 2
I1f * G5 sl S 77527 fllez (o) - (4.29)

It remains to bound the contributions of the major arcs in both the central and the non-central
variables. We start with the contributions corresponding to averages over large k.

Lemma 4.5. (i) For any integer s > 0 and f € £*(Gg) we have
Vo« Gy ok = k)l ey ST I ) (4.30)
In particular, we have
| sup 17 * G ey < 7P| flee o) (4.31)
(ii) For any integers s >0, t > D(s+ 1), and f € £*(Go) we have
IV Grse k> 5| gy S 772 1 (o) (4.32)
where ky := 20/MDED? qgin (4.18). In particular, we have

P2
I Sup |f * Gk,s,t|Hp(GO) ST flle - (4.33)
ZKt

Finally, we deal with the operators defined by the kernels G}, s for intermediate values of k.



POLYNOMIAL AVERAGES AND POINTWISE ERGODIC THEOREMS 21

Lemma 4.6. For any integers s > 0, and t > D(s+ 1), and f € £2(Gy) we have
va(f * Gk,s,t : ma‘X(K/Sut/(S/) <k< 2“15)“@2((@0) S Tﬁt/DszH@(Go)' (4'34)
In particular, we have

sup [ x G, ST‘t/DQ Flle2(coy- 4.35
Dt 8 * Gl £ 77 Wl (439

We will prove these lemmas in Sections 5-8. Theorem 4.1 follows from Lemmas 4.2-4.6.
For later use in the P theory, we will sometimes need to work with slightly more general kernels
on Gg. Given two 1-periodic sets of rationals A C Q% and B C Q% we define

Kiw A 5(9) :=Lhwa(0") Niws(9?),

4.36
K1 8(9) =L 4(9") Niwo5(9?), (4.36)
where
Liwals™) = 6 (") /T L9 Wi (€M) Si(€M) dg™,
b ale?) = 0 (1) /T e(gM M) T (€D A0S (D) dg, (4.37)

Newsla®) = o2(6) [ elg® 6)Z00(6 ) ac
The multipliers W, ., 4 and Zj,, g are defined in (4.11) and AySy = Sk41 — Sk as in (2.1). Us-
ing the definitions, it is easy to see, for example, that L}C":Sv(g(l)) = kaﬁd@ (g, Lyi(gM) =

Lympveg, (99) and Nis(9) = Ny o (9%)) as in (4.28).

5. MINOR ARCS CONTRIBUTIONS: PROOFS OF LEMMA 4.2 AND LEMMA 4.4
In this section we use high order T*7T" arguments to bound the minor arcs contributions.
5.1. Proof of Lemma 4.2. We proceed in two steps:

Step 1. We define the operators K¢ f := f x K{. Set ¢ = §* and fix a positive integer r = r(d)
large enough such that the bounds as in Propos1t10ns 2.3 and 2.4 hold. Then

{ICR)" KLY f () = (f + A (@),
where, using the formulas (2.13)—(2.16) and (4.15), one has

AR (y) = n<asw (7 0 y) /T oo SO (00, 6) 057 (6) 6D as'?, (5.1)
X
where
e (60,0 = Z {HL h(l) (1))}e(6(1). Z (h(l) J(l)))
h{ g Meza I=1 1<j<r
o =000 30 R <o)+ 3 Ro(-hY g -k 4 g}
1<j<r 1<l<j<r
and
2r
Q" (9@) ::) S Ni(g®)e( - 0®.g?)

g@ezd
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Using the defining formula (4.6) we can write

7 (0) =7 - {Hw—knj)x(f—kmj)}e(—e<l>. > (4l omy) - AP (ny)))

nj,m;€L  j=1 1<j<r

xe( = 0@ > Ro(4f’(ny) A()(nj)—A(()l)(mj))})
1<j<r

e =0 Y0 Ro(Af () — AP (m). AL (ny) = AL (my))}).
1<l<j<r

Using (2.24) it is easy to see that

00, 3 (AP (my) — AP (1)) +02.{ 3 Ro(AL (ny), AL (ny) — AP ()}
1<j<r 1<j<r
AL 3" Ro(AM () — A5 (), AV (nj) — A5V (my))} = 0.D(n,m).
1<l<j<r
Therefore
;" () = —2kr Z {HXT n;)X(T kmj)}e(fH.D(n,m)). (5.2)

n,meZ” j=1
We can also derive a good formula for the kernel Q7". Letting
Fi(B%) = Y neon(r o g®)e(—g®).5%) (5.3)
gDz

and recalling the definition in (4.16), we have

2r
0 (0®) = | [ Ao - @)z ae| (5.4)
Td’

Step 2. We now prove that [|A7" ||, () S 7%, Using also the formula (5.1) for this it suffices
to prove that if k > (D/In7)? then

T (W), 02 Q5 (0@)) | < 77H° for any (6,6 e T¢ x T (5.5)

We examine the formula (5.3) and apply Lemma 2.1 with M € Z, sufficiently large to conclude
that, for any 3 € [~1/2,1/2]%, we have

B S JT {70 (1 g et 7 (5.6)
(lhlg)EY/

To prove (5.5) we use the formulas (5.2) and (5.4), and consider two cases depending on the
location of 2. Assume first that (2 is far from the support of =5, de.

there is an irreducible fraction a/q with ¢ < 7°%~* and a = (a,1,) (11 1n)e

(5.7)
such that \911[2 ar,1,/q| < %2R OAR) for any (1y,1y) € Y.

In view of the definitions (4.12) and (4.14) it follows that for any ¢(?) in the support of the function
Z¢ there is (I1,12) € Y] such that |£l(121)2 — 91(121)2| > 7Ok/2p=k(litl2)  Then |Fp(0®?) — @) < 772k/9 if

€@ is in the support of Zf, as a consequence of (5.6). The bounds (5.5) follow using (5.4) if ()
satisfies (5.7).
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On the other hand, assume that #() does not satisfy (5.7). By the Dirichlet principle, for any
(l1,12) € Y there is an irreducible fraction a;,1,/qi,1, such that

’6(2) _ Qs 1

k(l1+12)—8%k
< and ¢, €[1,7 |NZ.
l1l2 a1, qlllQTk'(ll+lz)7§2k 1l2 )

Since 6 does not satisfy the property (5.7), it follows that at least one of the denominators ¢,
is larger than 9%k In particular, the property (2.28) is verified if P ~ 7%. Recalling the formula
(5.2), we can apply Proposition 2.3 (i) to conclude that [II7"(6(,02)| < 772k/°. Moreover,
||Fk:HL1(Td’) < 1 due to (5.6), therefore ‘QZ’T(H(Z))‘ < 1 as a consequence of (5.4). The desired
bounds (5.5) follow in this case as well, which completes the proof of Lemma 4.2. O

5.2. Proof of Lemma 4.4. For later use we prove a slightly more general version of Lemma 4.4.
For 1-periodic set of rationals B C R‘ilak, we define new kernels

£ 5(9) = Li(g") Ners(9®), (5.8)
where Ny, i, 5 is defined in (4.37). We now prove the following lemma:

Lemma 5.1. For any 1-periodic set of rationals B C R<5k, k> (D/InT)?, and any f € 1*(Gyg) we
have

c _ 2
I1f * G5 gl S 77PNl (5.9)

Since G¢ = Gy, see (4.28), Lemma 4.4 follows from Lemma 5.1.

k,RY

Proof of Lemma 5.1. As before, we shall proceed in several steps.
Step 1. We define the operators G s f 1= f* Gy, 5. Since G} z(v) = L§ (2M) Ny, g 5(2?)) we have

{(9k,8)" Gk} () = (f * Ap ) (),

where

R8(Y) = n<sor(t "o y) / e(y.0) I, (01, 0)Qy, 5 (0@)) oD ap®,
Td x T4’ '

R0 09) = - {f[Lz(h§”>L2(g§”>}e(e<l>. 3 (0 - gty

WD g Veza  I=1 1<j<r (5.10)
() pM _ oM QW 1, @)
xe( = 0@ > RV — g+ ST Ro(=h + gV, —n{Y + gi0)})
1<j<r 1<i<j<r
and, with F} defined as in (5.3), we may write
2r
hs(0?) —‘ v Fip(0® — )2y 48P ag®| (5.11)
To prove Lemma 5.1 it suffices to show that for any (/(1),02)) € T¢ x T we have
I (6, 60) 2 5 (6) | 5 707 (5.12)

Step 2. Assume first that 62 is far from the support of Ek kB8, in the sense that
1750 (0@ —a/Q)| > 72% for any a/Q € B C R%/M'
Using (5.6) it follows that | 5(0(2))| < 772°k Moreover

‘HZ( )‘<||L o Zd)N{ H T l+5)}

1<I<d

and the desired bounds (5.12) follow in this case.
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Step 3. On the other hand, assume that

|77 0 (6@ — a/Q)| < 7%* for some irreducible fraction a/Q € B C R‘éék. (5.13)
In this case we prove the stronger bounds
’HZ (9(1),«9(2))’ < 7R for any 9 e T?. (5.14)

We examine the formulas (5.10) and (4.27) to rewrite

I (o), 6 — / VIO, 6@; D (D) )
(’]I‘d)27‘

(5.15)
x TT {8u(¢) wif s wice) ) deVaef? .. dcVae,
1<j<r
where (1 , 1 ,~~-»Cr ,f ) € T¢ and
Vr( <1 561 9. ._’Cﬁl)’ 'r('l))
Z 11 {% Y(hy)e (00 = ¢V).hg) 6y (g5)e(— (6 — 53('1))-93‘)}
hj g, €04 1<j<r (5.16)
e( — 0(2).{ Z Ro(hj, hj —g;) + Z Ro(—hi + g1, —h; +gj)}>.
1<5<r 1<i<j<r
We will show below that
’Sk s (31 ))‘ < 7—kd'/(2d0) for any s e T, (5.17)
where C is a constant from Proposmon 2.2. We will also show that
VO™, 02 ¢V gD, eD)|
_ _ -D? 5.18
H FR(+6) } 1I<nl£1T [1 + Lk 86)||0l(1) _ C](',IZ)HQ + Lk 86)“‘91(1) . g](,ll)”Q] ’ ( )
1<i<d 1<1=d

for any 00 = (0} )icq1,ay € T4 ¢V = (D hieqr,ay € T and € = (€ )ieq,..ay € T4 Here
Q < 7%+1 and 4@ are as in (5.13), and

lullg = inf |u—m/Q|  forany peR. (5.19)
meZ

The desired estimates (5.14) would clearly follow from these bounds and the identity in (5.15). Here
the assumption § < ¢’ in (4.9) plays an important role.

Step 4. The bound in (5.18) follows from the more precise formulas in Lemma 5.2 below, using
repeated integration by parts in the variables z;,y; to prove bounds on the function Zj; defined in
(5.25) and using the trivial bound [Wp| < 1 for the function defined in (5.24). We prove now the

bounds (5.17). Assume (1) = (Bz(l))le{l,,,,,d}. By the Dirichlet principle for any I € {1,...,d} there
is an irreducible fraction a;/¢; such that

1 Y
‘/Bl(l) — CL[/Q[} < W and qr € [17le 5 k‘/Q} N 7. (520)

If g < 79K/ Cd) for all 1 € {1,...,d} then U (BM) = 0 due to the definition (4.26). On the other
hand, if q € [r¥F/Cd) Fh=3'k/21 " 7, for some | € {1,...,d} then we apply Proposition 2.2 with

P~7Fande= 5’/(2d) Recalling the definition (4. 23) it follows that |Sk )| < 7k0'/(2dC) anq
the desired bound in (5.17) follow. O

For later use, in Section 8, we prove an approximate formula for the multiplier V.
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Lemma 5.2. Assume that k> D/InT and 1 < Q < 720k - Assume also that
02 =a?/Q + a?, a® ez, I7F 0 )] < 749k (5.21)
and
Ve =b/Q+ 8, 00—V =¢;/Q+y, b €2, QB;Qy € [-1/2,1/2)7, (5.22)

for any 5 € {1,...,r}. Then we have the approximate identity

Vk( 7 7C1 7§1 7"'747('1)757(‘1)) (5 23)
= WQ(a( );blaclv"'vbT7CT> 'Z]Z(a(z);ﬁh’yl?' . "BTarYT‘) +O(7—_D3k)7
where
W@t obre) = {Q7 ST (T o= (03/Q)a)e((e/Q)5) )
uj,VjGZdQ 1<j<r (5 24)
Xt(—(a@)/Q),{ Z Ro(vj,v; — pj) + Z Ro(—l/l—i-ul,—l/j-i-uj)})},
1<j<r 1<i<j<r
and
Zg(a(Q);/B17717"’7/87”777‘ —/ { H T }
R2rd > Z1<a
< TT {nsont@e( = (7 0 8 nss(u)e (7 0 7)5) } (5.25)
1<5<r
xe( (TFoa®){ Y Ro(yjyi—z)+ > Ro(—yz+wz,—yj+fcj)}> dzjdy;.
1<5<r 1<i<j<r

Proof. We decompose g; = Qm; + uj, h;y = Qn;j + v, mj,n; € 74, Wi,V € ZdQ and then rewrite
the formula (5.16) in the form

Vr(a(l) 0(2)((1) 6(1) 7Cr(1)7§7(“1))
= > X T et o @ny 4 vi)e(r(@ny + v)e((e5/Q))

JIPRZIS Z nj,m; €L 1<j<r
X s (T 0 (Qmy + pj))e( = Bj.(Qmy + pj))e( — (bj/Q)-#j)}
e(—a@).{ Z Ro(hj,hj—gj)+ Z RQ(—h[+g[,—hj+gj)}>

1<5<r 1<i<j<r

xe(—(a@)/Q),{ Z Ro(vj,v; — pj) + Z RU(—I/Z—FMZ,—VJ'—FMJ‘)}).

1<j<r 1<li<j<r

We fix the variables p,7; and use the Poisson summation formula to replace the sum over m;, n;
with integrals. Using (2.17) with £ = (—Qf,Q~) and M large we see that the difference is rapidly
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decreasing in 7, due to the assumptions (5.21)-(5.22). Therefore

Vi, 0@ ¢ el ey = 3 LT e(= s/ @ms)e((es/Q) |

pj €Ly 1<§<r

e(— (@®/Q).{ Z Ro(vj,vj — py) + Z Ro(—v; + i, —vj +Mj)})

1<j<r 1<i<j<r

/RQrd H 77<5k (an + I/j))e(*yj.(an + yj))

1<5<r
X Neok (T 0 (Qmj + 1y))e( = B;.(Qmy + Mj))}
B( —a?{ > Ro(hj hi—gi)+ Y Ro(—hi+a,—hj+ gj)}) dmjdnj + O(r=P°F),
1<5<r 1<i<j<r

where h; = @Qn; +v; and g; = m; + p; in the last line. We make the changes of variables
zj =71k o (Qmj+ ), yj = 7 %o (Qn; +v;), and the desired formulas (5.23)—(5.25) follow. O
6. MAJOR ARCS CONTRIBUTIONS: PROOF OF LEMMA 4.5

Our primary goal in this section is to prove the bounds (4.30)—(4.33). For later use in the ¢P
theory, we will prove in fact slightly stronger bounds at several stages.

6.1. Arithmetic decompositions. We will write the kernels G}CO‘;V and G}, ¢+ as tensor products
plus error terms. For any integer () € Z we define the subgroup

HQ - {h‘ - (thllQ) ll,lz)EYd € GO hll lo S Z} (61)
Clearly Hg C Gg is a normal subgroup. Let Jg denote the coset
JQ = {b = (blllQ)(ll,lz)GYd € Go: bll,lz €ZN [07 Q - 1]}a (6'2)

with the natural induced group structure. Notice that
the map (b, h) — b- h defines a bijection from Jg x Hg to Go. (6.3)
Assume that Q € Z, and 7% > Q. For any a € Z¢ and ¢ € R? let

Je(€) =t /R X 2)e[~ AP (2).] da = / @)l AV ().(* 0 £) dy,

R
Jh(E) =7k / (el — A () €] da = /R X )el—AD ().(* 0 €)] dy, (6.4)
S(a/Q) =Q 1 Y e[-Al(n).a/q),
nEZQ

where x/(z) := (1/7)x(x/7) — x(z). For any ¢ € {0,1} we also let

. Sk if 1 =0, . x ife=0, . Jp  if =0,
Si = v X'=q0, Jo=9 ., .. (6.5)
ARSy ifie=1, X ife=1, Jp ife=1

where S;, : RY — R are defined as in (4.23). We first prove an approximation formula for the
functions Sj.

Lemma 6.1. If k> D/In7, |tFo&| <7F/* 1< Q < 7F/*, a € Z%, and v € {0,1} then
Sk(a/Q +€) = S(a/Q) (&) S 7P, (6.6)
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Proof. We write
Si@/Q+6) = 3 @+ m))e[- A (Qn + m).(a/Q + €)]

neZ, melg
= 3 a0/ 3 @n + m))el—AD (@n +m).)}.
meZg neZ

For any m € Zg we apply the estimates (2.17) (with m = 1, £ = 0, and M large) to replace the
sum over n with the corresponding integral, at the expense of an acceptable error. The desired
approximate identity (6.6) follows by a linear change of variables. O

We now prove an approximate formula for the kernels Ky, ., 4 5 from (4.36).

Lemma 6.2. Assume that k,w € N, k> D/In7, 0 <w <k and let 1 < Q < 7%, Let A C ﬁé

and B C ﬁdQ/ be 1-periodic sets of rationals. If h € Hg and by, by € Gg satisfy |bj| < Q4, j € {1,2},
then we can decompose

Kiaw.ap(b1-h-b2) = Wi q(h)Vapsq(b - b2) + Egw.as(h,bi,b2), (6.7)
where, for any h = (R h?) € Hg and b = (b, b)) € Gy, one has

Wewo(h) == Q¥ ¢y (h) / o Nesrw(TF 0 EN<sw(TF 0 0)e(h.(€,0)) Tk (€) dédd,  (6.8)

Re xR

Vagso(b) = Q—d—d/{ Z 5(0(1))9[(,(1).(0(1))}}{ Z e[b(2).(0(2))]}. (6.9)

oM e AN[0,1)4 o eBn(o,1)

Here ¢ (h) :== ¢,(€1)(h(1))¢,(€2)(h(2)) and the error terms Ey 4 g satisfy the bounds

| Eraw.a5(h, b1, b2)| S T_k/2{ 11 T_(ll+l2)k}77§25k(7_k o hM)n<as(r7% o B?). (6.10)
(l1,l2)€Yd

Proof. We start from the formula Ky, 48(9) = L, (g(l))Nk w 3(9( )), and recall the definitions
(4.11) and (4.37). Letting by = (b, 52, by = (oY, b<2 ), h = (), h(®)) we have
by -h-by = (g(l)’g(Q))’
g = h® 45V 4 piH, (6.11)
9@ = h® 1 b 1@ 1 Ro(b{", KDY + Ry(AD 4 5, b{V).
Using (4.11) and (4.37) we have

Lranalg®) = 676 [ el £0)Su60) Wi a(e V) )
=n<ou(r Fogl)y > / Nesw(rh 0 €)Sp(eW +€)

oM eAn(o,1)d
e[ (B + oY + b)) (6@ + )] de,

and

Newsla®) = 026 [ ola®.62)20n(6) 6™

= n<sn(t 0 g®) Z / N<suw(TF 0 0)

(@ eBn[o,1)4

x e{[h® + b7 + b5 + Ro(v", D) + Ro(V) + b 0§))].(0® + )} db.
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We notice that if (1) € (QZ)?, bgl), bgl) ezd oM e ACRY, |7 koh ()| < 70k, \bgl)|+|bgl)] < Q4
Q<% ¢cRY and [TF o] < 7'k then

Ugék(T_k o g(l)) = ngék(T_k o h(l)) + O(T_gk/4), (6.12)
el(n® 01" + 7). (oW + ) = el(by” +057). (o Dl (nD) 817+ 837) ¢
(1) 03 (o e(hD) sk/1 (6.13)
=e[(by’ +by7).(c")]e(h.6) + O(r ).
Using also Lemma 6.1 we have
Liawalg®) = im0 n®) 3" 5@@)e(bi) + b5").(6M)]
cWeAn[o,1)d (6 14)

X /Rd 77§6’w<7'k Of)Jk(f)e(h(l).g) dg‘ S 7_72k/3 H Tﬁllk,

1<l1<d
Moreover, assuming also that h(?) e (QZ)?, b§2),b§2) €z7d o@ e BCRY, |77k o )| < 79k,
]b§2)| + |b§2)| < QY 0 eR?, and |75 0 0| < 7%, we have
n<ok(t7" 0 ) = nesi(r7F 0 H) 4 O(77 /), (6.15)

f B + 0P + 62 + RoY, A + Ro(hD + 6V, 65N)]. (0 + )}

(6.16)
= e{[b§2) + b§2) + Ro(b§1)7 bgl))].(a@))}e(h@).g) + O(r 3k,
Therefore
Niws(0®) = ngan(Fon®) 3T e 08 + R, 87 (o)}
o eBn(o,1)¢
(6.17)
x/ 7]<5w(7.k oﬁ)e(h(Q)'g) d@‘ < +—2k/3 H s (itl2)k
R
(I1,l2)€Y}
The conclusion of the lemma follows from (6.14) and (6.17). O

6.2. Gauss sums operators. We consider now the convolution operators defined by the kernels
VB, on the quotient groups Jg (see (6.2)). The convolution of two functions on the group Jg is
defined by a formula similar to (1.14), namely

(fro9)(@) =D g fy " -a)=> glz-y ")f(y). (6.18)

y€lq yelg

Lemma 6.3. Assume that Q € Z4 and A C féd@ and B C ﬁg are 1-periodic sets of rationals and
let Voo be the kernels defined in (6.9).
(i) Let qg == min{q € Z : a/q € B and ged(ay,...,aq,q) = 1}, then for f € £2(Jg) we have

~1/D
1 *1¢ Vﬁé,B,QHP(JQ) Sa ' I le2g)- (6.19)
In particular, if s > 0 then for VIV .= Vza pa 0 inequality (6.19) ensures
Q57 s 1S

1 %30, Vil s S 7l llerg,- (6.20)

(ii) Let g4 := min{q € Z4 : a/q € A and gcd(ay,...,aq,q) = 1}. If 1 ~ qa for everya1/q1 € A,
and 1 < go < qj‘l/D for every as/q2 € B, then for f € (2(Jg) we have

—1/D
1f %10 Vasellag, S a2 Ifley). (6.21)
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In particular, if s >0, t > D(s + 1), then for Vy; == VR?\ﬁdQS7R§',Qt we have

Hf *Ja, sttHe? Ja,) ST Hf||z2(JQt)- (6.22)

Proof. As in Section 5 we will use a high order T*1" argument.
Step 1. Define the operator V4o qf := f *1, VaB,q- For the integer r = r(d) as before we have

{(VaB@)Vasql f(x) = (f *x1o Vipg) (),

where, as in Section 5, we have

Viso®) = Y. {H Vasoh)Vasa(9) i) (9" hegit-hivy). (6.23)
h1,91,.hrgr€lq =1
Using the formula
Ly(atoy) = QW) 3™ e[(y™ —2M).(a/Q)]e[(y® — 2@).(a®/Q)]
a€Ly x2g
and the definition (6.23) we obtain

VZ,B,Q(Q)ZQ_(dM,) Z e[y(1)~(a(1)/Q)}e[y(2)~(a(2)/Q)} TA,B,Q(Q(I)/Q7G(2)/Q)a

a€Z <24
where
Tyso(0",0?) = > {HVABQ VABQ(QJ)}
h1,91,-,hr,gr€lq  J=1 (6.24)

e(— [t g bt g Mo e(— At gy byt g, )03,
Step 2. Taking into account (6.9) we may write
Vasa,y®?) =@ () > ma(a)mp(a®)ely™ .aMely® o],
aWe(Zq/Q), aPe(Zq/Q)Y
where m4(a(V)) = S(Oé(l))]lAm[()’l)d(Oé(l)) and mp(a(?) := lle[O’l)d/(a(Q)). Using formulas (2.10)—
(2.11) we may simplify (6.24). We notice that the sum over the variables h§2), 3(2)7 jed{l,...,r}
leads to d-functions in the variables §(2 5(2) and # — 5-2). Thus

T50 (00,00 = |ms(0@)|” Q_M{ > >
D 0. 5 0D el Q)1 B o)t g et
x [T {ma(8)e[n{). (60 — ,85.1))} -ma(alD)e[ = gM.(0M — o))} (6.25)
7j=1
xe[=0@.( 3 RoniYnf! + > Bo(=hD 4+ g -+ g0 ]}
1<5<r 1<li<j<r

Step 3. Our aim now is to show that

~1
HV?%dQ,B,QHfl(JQ) S as - (6.26)
This will establish (6.19) and (6.20), by taking Q = Q, and B = R%. To prove (6.26) it suffices to
show

%, BQ(H(D:H(Z))\ <(a +q2)71/5418m[071)d,(9(2))7 (6.27)
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where ¢1|Q, ¢2|@ are the denominators of the irreducible representation of the fractions 0 and
0 respectively.
Inserting the formula S(y()) = Q~ ZneZQ e[-A 61)(71).7(1)], see (6.4), into the identity (6.25)

with A = Rd, we notice that the sums over the variables agl) and B](-l) lead to é-functions. More
precisely,

T, BQ(a(l),o(Z)):]160[071)(1,(9(2))62—%{ Z { (Z A (1)( ))}

nj’ijZQ 1<]<’V‘
x e[—9(2).( > Ro(A (n), A5 (ny) — AP (my))
15<r
+ 3 Ro(4f ) — A4S (), AD (my) — AP ()) ]}
1<i<j<r
_]lBﬁ[Ol)d'(e(z)) - Z e[ = D(n,m) (9(1)79(2))]’
n,mGZZ?

where D(n,m) is defined in (2.24). Using Proposition 2.3 (ii) we obtain (6.27) as desired.
Step 4. To prove (6.21) as well as (6.22) with Q = Q; and A=R{\ R} , B = RY we show

IVisolngy <4 (6.28)

We still use the formula (6.25), with A C 7%% and B C ﬁg satisfying ¢ ~ q4 for every a1/q € A,
and 1 < ¢qo < qu4/D for every as/qa € B. We would like to first evaluate the sums over the variables
h;l) and gj(.l); these sums would lead to d-functions if #2) = 0, but there is an obstruction for

other values of #2). However, we can exploit the fact that the denominators of fractions () are
small. Indeed, assume that a(®) /go = 8 is the irreducible representation of the fraction 6(?), where
1<¢ < ql/D and g2 divides Q. For j € {1,...,7} we decompose h§-1) = QY —i—y;, g](-l) = (o +a:;.,

yj,x € Zqz, Yj, i € ZQ/q Then we notice that

(Q/q2) > H e[gay;.(6)

y171‘17---»yr79€r62é/q2 J=1

™
—
=
—
~—
—
—
Q
[\
&
.
—~
)
PN
N
|
Q
oL~
—
=
~—
—

= H 154 [qz(e(l) _ Bj(-l))]]lzd [q2(9(1) _ agl))}‘
j=1

Therefore, using formula (6.25), one sees

|TTA,B,Q (9(1)79(2))’ S]lzsm[O,l)d’ (‘9(2)){ Z
(1) ﬂ(l),ail)e(ZQ/Q)d
Hﬂzd [Q2(9(1) —ﬁj(l))]]lzd [QQ(H(I) )]|mA( )HmA( ;1))|}
=1

Recall that m4(y) = S(7)1 4np,1y¢(7)- It follows from Proposition 2.2 (ii) that for any v € A we

have |[ma(7)| < a4 e , since g1 ~ q4 for every a;/q1 € A. Therefore
—2r C r
5.0 (01,02 S Lo 1y 02V a z/gmynpo.nye (0)ax ™ a3,
where A + (Z/q2)? = {a/qa +0 : 0 € A, a € Z%}. The desired bound (6.28) follows since

1< ¢ < qL/D for every as/qe € B, and r € Z is sufficiently large. O
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6.3. Maximal and variational operators on the group Hg. The main result of this subsection
is the following lemma:

Lemma 6.4. Assume that 2 < p < oo, 7 € (1,2], and k,ko,w € N satisfy O w < k and
k> ko> D/InT. Assume that 1 < Q < T‘Sk and let Wi, .0 : Hg — C be defined as in (6.8). Then,
for any f € (>(Hg) and D C N one has

|VP(f *1o Wekg : k € Dko,Q)HgZ(HQ) S 1 flleeug) (6.29)

uniformly in Q, where Dy, o :={k € D: k > ko, 9k > Q1.
Moreover, for every w € N and every sequence {s¢; }ren C C satisfying supgen |2a| < 1,

H Y o s, Wit — Wiwq)
kGDkO,Q7k>w

ST flegug).s (6.30)

2(Hg)

for any f € (2(Hg), uniformly in Q.

The main idea to prove (6.29)-(6.30) is to compare our operators with suitable operators on the
Lie group G# . More precisely for 0 < w < k we define the kernels W, : G# — C by

/V[\?k,w(x) = ¢r(x) / ’I’]S(;/w(’rk o 5)17S5w(7'k of)e(x.(&,0))J, (&) dEdo, (6.31)

Ré xR

where z = (z(1),2?)) e R x RY = G# and ¢p(x) = ¢>(1)($(1 )(;5 )(x(Q)).

Then we have a continuous version of Lemma 6.4:

Proposition 6.5. Assume that 2 < p < oo, 7 € (1,2], and k,w € N satisfy 0 < w < k. With
Wi G# — C defined as in (6.31), for any f € L2(G#) one has

va(f *G?O‘# Wk,k ik > 0)“[/2(@#) S HfHLQ(G#)- (6-32)
In particular, one has

W <
H iglg |f *G# Wk7k|HL2(G#) ~ HfHL?((G#) (6'33)

Moreover, for any w € N, any sequence {s}ren C C satisfying suppey |2x| < 1, and any
fe LQ(G#) one has

H Z . f *a# (Wk,wﬂ - Wk,w)’

k>w

< ~—w/D
LQ(G#) ~T HfHLQ((GO#) (634)

Continuous maximal operators such as (6.33) have been extensively studied, see for example
the conclusive work of Christ-Nagel-Stein-Wainger [19]. However, the variational estimates in the
nilpotent setting in the spirit of [19] appear to be new. For the convenience of the reader we provide
a self-contained proof of Proposition 6.5 in Appendix A. Assuming that Proposition 6.5 holds, we
show how to use it to deduce Lemma 6.4.

Proof of Lemma 6.4. We define the Q-cubes
Cq=[0,Q)" x [0,Q)" C G, (6.35)

and notice that the map (p, h) — - h defines a measure-preserving bijection from Cg x Hg to (GzzfE .
Let 1 <p < oo. Given f € (P(Hg) we define

f#(u-h):= f(h) for any (u,h) € Cg x Hy,

" (6.36)
e PG, Il per) = QP 1f lemaig)-
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We now prove the following bounds: for any 1 < p < co and 2 < p < co we have
[VA(F %o Wik b € Do)l any)

S QIO xgp Wik s b 2 )| gy + 1 lerguag o
and
H 2.l wig Wewino = Wiwo) r(Hg)
k€D, Q. k>w N N (6.38)
SQ @/ H > aft *ot (Whwi — Wk,w)HLp(th) + 77 len g

kGDkon, k>w

It is easy to see that the inequalities (6.37)—(6.38) with p = 2 can be combined with (6.32), (6.34),
and (6.36) to complete the proof of Lemma 6.4.
It remains to prove the bounds (6.37)—(6.38). For this we compare the functions f *m, Wi w.q

Hq — C and f# % 4 Wiy : Gf — C. By (6.8) and (6.31), we have Q47 Wy, ,,(h) = Wi, w.q(h) for
0
any h € Hg. Moreover, by (6.31) notice that
Wiaw(pa - - pa) = Wi (R)] S Ex(h), (6.39)

where

Ex(h) = T_m{ 11 T_(lﬁb)k}ﬂswk(r‘k o WY ncosi (7 0 b)),
(l1,l2)€Yd

for any h, 1, ps € G# with ||+ 2| < Q% provided that k > D/In7, 0 <w < kand 1 < Q < 7°F,
Thus

(P xgp W) (-0 = D [ (- )W (u- b byt uy ) i

hleHQ CQ
= > f(h) Wk,w(u-h-h;1~u;1>dm,
hleHQ

for any (i, h) € Co x Hg. Using (6.39) we have

.,
Therefore, for any f € (P(Hg), h € Hg and p € Cg, one has
(f *t1q Wi @) (1) = (f# g Wiew) (- 1) + O (74 (| £ a1, Er)(B),

provided that k > D/In7,0 < w < kand 1 < Q < 7°¢. The desired bounds (6.37) and (6.38) follow
from the last identity and the observation that ;- Tk/4HEkH41(HQ) <778 for any w €N, [

Wil e b i) das = Wi (- 07| S Br(h- 7 H)Q@™ .

6.4. Proof of Lemma 4.5. We begin with a transference lemma which will be used repeatedly.

Lemma 6.6. As in Lemma 6.4, assume that 2 < p < oo, 7 € (1,2], k > ko, and 1 < Q < 7%
Assume that KE’O : Go — C are given kernels such that
K,S’O(bl -h-bg) = WEIQ(h)VJQ(bl - ba) + Ex(h,b1,b2), (6.40)

for any h € Hg and by, by € Gy satisfying |b;j| < Q*, j € {1,2}, for some kernels W,iHQ :Hg — C
and V3o . Jo — C, where the error terms satisfy the estimates

sup || Ex(-,b1,0) gy S 7. (6.41)
[b1],|b2|<Q*
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Let D %IN and Dy, o :H{k eD: k> ko, 7% > Q} as in Lemma 6.4. Let also Ky°f = f xg, K.°,
and W, ®gi=g *Hg Wy ? and VIeh :=h *Jq Viae denote the convolution operators corresponding
to the kernels K](S’O, W,ICHIQ, and Ve,

Then for any 1 < p < oo and either B=V? or B ={*

H
108 o s SIOVE v ool lotsar-oir 4

4 ko/8Q—1/(89),

Moreover, for any sequence {s}tren C C satisfying suppey |2 < 1

H
H Z %k’Ck Hep (Go)—£7(Go) NH Z Wy QH/zp(HQ)Hzp(HQ)HVJQHep(JQ)Hep(JQ)
kEDkO Q keDk‘o,Q (643)

ko8 Q=1/(80)
Proof. Using (6.40) for b € Jg and h € Hg we may write

(fKZ)b-h)y = > flbr-h)KZ(b-h-hit bt
hi€Hg,bi1€lg

; B I (6.44)
= Y f-h){W (- by VIR(b b + Ep(h- by b b )
hléHQ,bleqﬂQ
For any h' € Hg and b € Jq let Fy, (b, 1) := > peng f (1 VI (b-bh). We also take
= > Fiy(b,h))W, HQn b
hleHQ
k(b by) = |f(by - ha)Eg(h- byt b, b))
hleHQ
Then by (6.44) we have
VP(f KRk € Dhy@)lwegy <[ 20 VA(FRD) 1k € Dy )”)
heHg, bElg
(6.45)

+2 Y (Z (> Gk b)) )p/p)l/p::11+12.

b bl EJQ heHQ kEDkO Q

For the first sum in (6.45) we now see that

H
I < H(W Q)kGDkO’QHKP(HQ)AZP(HQ;V")HVJQHZT’(JQ)—MP(JQ)HfHZp(GO)’

whereas for the second one we use (6.41) to conclude that Iy < 7~ k0/8Q=1/ @) £|| ¢r(Go)- This proves
(6.42) when B = V*. The remaining conclusions of the lemma follow in a similar way. g

We now establish a slightly more general result for the kernels K, 45 : Go — C asin (6.7). Let
VaBqQf = fx1,Va,8,q denote the convolution operator corresponding to the kernel Vs g : Jg — C
from (6.9).

Lemma 6.7. As in Lemma 6.4, assume that p € (2,00), 7 € (1,2], and k,ko,w,Q € N satisfy
0<w<k,k>ky>D/InT, and 1 < Q < 79k Assume that A C RZ) and B C Rg are 1-periodic
sets of rationals. Then, for any f € (*(Gg) and D C N we have

IVA(f * Kok - % € Dro@)l oy S (IVaselleag)-eag) + 7 Q7 EM)If lecy),  (6.46)
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uniformly in Q and ko > D/InT, where as before Dy, o = {k € D : k > ko, % > Q}. Moreover
for any sequence {54, }ken C C satisfying supgey |3%| < 1, any f € 2(Gy), and any Q € Zy, w € N
we have

Z s | x (Kkw+1,48 — Kkw.aB)
£2(Go)
K€Dy, @, k>w (6.47)

— max(k’o,w)/8Q—1/(85))

_ 2
S (TP Vasolle Jo)=2(Jg) + T 11l e2(Go)-

Proof. To prove (6.46) we use Lemma 6.6 with K 0 = Ky AB, W = Wik, and Vie = VaB.0
as in Lemma 6.2. The assumptions (6.40)—(6.41) in Lemma 6.6 follow from (6.7) and (6.10). The
bounds (6.46) follow from (6.42) with p = 2 and (6.29).

Ho

On the other hand, taking K,(S’O = Kiwi1,48 — Krwas, Wi,o = Wewi1,0 — Wew,g, and
Vie = V4 5., the bounds (6.47) follow from (6.43) and (6.30). O

We are now finally ready to complete the proof of Lemma 4.5.
Proof of Lemma 4.5. Notice that GlOW =K, , 5a o Weuse (6.46) with @ = Qs and ko = ks; in
v Qg Vs
view of (6.20) we have || ﬁgs,Rg",QsH@Q(JQS)%@Q(JQS) < 77%/Pand the bounds (4.30)(4.31) follow

from (6.46).
Assuming that s > 0, ¢ > D(s + 1) and taking A C Rf \ R%S and B C R%’S we conclude, using
(6.21) and (6.46) with Q = Q; and ko = k¢, that

[VP(f * Kias ok > kel gy S 7P| £l (6.48)
for any 2 < p < oo, as well as
| sup [ * Kipasl|l 2y < 7P| fll 2 (o) (6.49)
k>kKe

The desired bounds (4.32)-(4.33) follow since Gy s = K, . RORL Rd'- O
3fvy t s’ S

7. TRANSITION ESTIMATES I: PROOF OF LEMMA 4.3

In this section we prove the bounds (4.19)-(4.20). Let Hy s = Kjq15 — Kp s for k > jo ==
max((D/InT)?, s/8) and apply the Rademacher—Menshov inequality (2.7) with m = |(D/ In T)(s+
1)2] + 4. For (4.19) it suffices to prove for any fixed i € [0,m] that

1/2
‘( > X f*H’“’Sf) ng(«; ST ey

jeljo2—1,2m—i—1] ke[j2,(j+1)2i—1] 0)

Using Khintchine’s inequality and dividing again dyadically, for (4.19) it suffices to prove that
- 2
H > (S x Hyy) ST e, (7.1)

kelJ,2J]

2(Go)

for any J > max((D/InT)?,s/d) and any coefficients s, € [—1,1].
To prove (7.1) we examine the definition (4.15) and the further decompose

Hk,S = Hl%,s + le,s + Hl?,s’

H}(9) = [AkLi)(9D) o> (9?) / (g2 £D)5, o (€2) de®
Td’
H2 (g) = L1 (6™) Ak[6P)(9) }/ ® £z, () de® (7.2)

H; (9) = Lit1(g" )¢k+1(g(2))/ ¢(g® £D)ALEL$1(€?P) de@.

Td’
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We will prove that, for any k& > max((D/In7)2,5/d) and ¢« € {2,3},

[ Hli,sH@(Go) S Tﬁk/DHfH@(GO)' (7.3)
We will also prove that

Z %k(f * Hl%,s)

ke[J,2J]

£2(Go) ’S T_S/DHfHE2(GO) (74)

for any J > max((D/In7)?,5/) and any coefficients s, € [~1,1]. These two bounds would clearly
imply the bounds (7.1).

7.1. Proof of (7.3). Step 1. Assume first that « = 2 and recall the definition of the functions gb,(f)
n (4.10). Notice that if g = (¢9(1, ¢®) is in the support of the kernel ng,s then there is (I1,12) € Y}

such that | 91(121)2| > rk(litl2) - Therefore we can integrate by parts many times in the variable {}121)2
(recall the definition (4.12)) to prove that the kernels Hy; , decay rapidly in k, i.e. |H,fs(g)\ < 7k
for any g € Go. The desired bounds (7.3) follow.

Step 2. Assume now that : = 3. In this case we use a high order T*T argument as in Section 5.
Notice that the kernels H} . have product structure, so we can apply the identities (2.13)—(2.16).
With r being a sufﬁmently large integer such that the bounds in Propositions 2.3 and 2.4 hold with
e = 64, it suffices to prove that

e (00, 0y (0@)| < 7740 for any (6M,6®) e T4 x T% k> (D/In7)?,  (7.5)
where IT7" is as in (5.2) and

@) =] [, Fenr(0® = €9){Zu11,1(6?) = Snale ™ ac (7.6)

The functions F}, : T¢ — C are defined in (5.3) and satisfy the bounds (5.6).

The proof of (7.5) is similar to the proof of (5.5). Indeed, if #) is close to a fraction with small
denominator, in the sense of (5.7), then |Fj (0 — @) < 77269 if ¢@) is in the support of
Ek+1,s — Sk, due to (5.6). The bounds (7.5) follow in this case. Otherwise, if 0 does not satisfy
(5.7), then there is (I1,l2) € Y and an irreducible fraction a;,;,/q,1, such that

2) il 1 82k _k(ly+12)—6%k
‘%2 Quis |~ q,TRH2) 0%k and gy, € [775,7 INZ.
Using Proposition 2.3 with P ~ 7% we conclude that ‘H 9(1) 9(2))‘ 772k/8 The desired bounds

(7.5) follow in this case as well.

7.2. Proof of (7.4). To prove the more difficult bounds (7.4) we will use a high order almost
orthogonality argument. For this we need a good description of the operators {(#}, ,)*H} ,}" and

{’Hll€ J(H )*}, where ’H,lg f = f* H,i , and, as before, r € Z, is a sufficiently large integer such
that the bounds in Propositions 2.3 and 2.4 hold with & = §*. More precisely:

Lemma 7.1. For any k > max((D/In7)% s/6) and f € (*(Go) we have

{(Hh ) ML) f = FABL+ Ef},  {HL (ML) Y f = f{B} + Ef}, (7.7)
where
By ={ [[ o=} 3 ¢(h.a/Q)G(a/Q) |
(h12)€Ya a/Q=(aM /q1,a® /q2)€RL 5, xRI'N[0,1)d+d" (78)

X n<asn(T" o h) /]R o M<r/2(C s 2 (CNP (el o h).CT
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Bimy={ JI 0} > o(h.a/Q)G(a/Q) |
(I1,12)€Yy a/Q=(a™M /q1,a? /g2)€RL 5, xRE'N[0,1)d+d" (7.9)
X N<son(T" " o h) /Rd o N2 (Cn<sr o (CP) P/ (C)e[(r7% o h).Cld,
and _
Il @) + 1Bl Goy S 72 (7.10)
Here G(a/Q) and é(a/Q) are as in (2.29), x'(x) = (1/7)x(xz/7) — x(x), and
P©Oi= [ { TT ¥ ) fel-.Dlw, ) dudy
R (7.11)

P'(¢) == /RTXRT{ H X' (w;)x }e —C.D(w, y)] dwdy.

For later use we also define the functions P(¢) and P(¢) as in (7.11), using however the cutoff
function x(w;)x(y;) instead of x'(w;)x'(y;). For ¢ € {0,1} we also let

P ifi=0 ~ P ifi=0
Pl = =R el BeE (7.12)
P oifi=1, Poifi=1.
Using Proposition 2.4 we may estimate
182
|DEP(Q)| + [DEP(Q)| Sjay (O)° (7.13)
for any ¢ € R% x R, any multi-index o € N*+' and any ¢ € {0,1}.

Proof of Lemma 7.1. We only prove in detail the claims for the operators {(H}, ,)*H;, ,}", since the

claims for the operators {H,is(Hllcs)*}T follow by analogous arguments. In view of (2.13)—(2.16) we
have

{(Mh0) o} = fx Hi

where

HY (y) = n<ssr(t ¥ o) / e(y.0)I (01,072 (9P agM dp® . (7.14)
TdxTd ’
The multipliers HZ’l and Q’,;Q can be calculated as in the proof of Lemma 4.2. Namely,

H};l T 2kr Z { H X (77 )Y (7 km])}e(—H.D(n,m)), (7.15)

n,meZ” 1<j<r
and, with Fj, defined as in (5.3), one has

2
2 (0) = | /T Fr(0® — @)z ,(€@) de®

We now show that the kernels Hj . are equivalent to the kernels Bj defined in (7.8) up to

(7.16)

acceptable ¢! errors satisfying (7.10). We accomplish this in several steps:
Step 1. We first replace the multiplier 92’28(0(2)) with Zj, (61?)), at the expense of acceptable £!
errors. For this we show that

[9550P) — S (0]

1 if there is a/q € R such that |7% o () — a/q)| € [r0F/2,720K], (7.17)
~ ) r#9  otherwise.

Indeed, since the functions Fj, satisfy the bounds (5.6), we have [Fkll g1 pary S 1, s0 ‘92’2(9(2))| +
’”m(&( ))’ < 1 for any 0 € T¢. On the other hand, if |70 (0 —a/q)| < 79%/2 for some a/q € RY
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then Ek,5(0<2>) = 1 and, in fact, Ek,s(f(Q)) = 1 for all 5(2) € T with \Tk o (0(2) — 5(2))\ < 79k/2,
Therefore, using (5.6) with M large enough and the definition (5.3) we have
‘ F(0® — @)z, (@) ge® — 1‘ < R/ ‘ / F(0® — ¢@)ge® _q| = 7=k/5,
¢ ’ ~ ¢
Thus ‘QZ’?S(H(Q)) - E;@S(O(z))‘ < 77F/% as claimed in (7.17).
Finally, if [7%0 (6 —a/q)| = 72 for all a/q € RY then Zj, ,(0?)) = 0 and, in fact, Zj, (6@) =0
for all €@ e T¢ with |7% o (0®) — £®?))| < 79%/2, The desired bounds (7.17) follow as before in this

case.
Given (7.17) we can define

HM () = nessn(r™* o) /T SO O 0)E (0) a0 Va7
X

and the difference H . — H ,:i is an acceptable ¢! error.

Step 2. We now restrict to major arcs in the variable 0 5o we define
Hy2(y) o= ne<ssk(t ™ o y) /Td T e(y.O)I; (0, 6)) Uy < (01 Eps (0) d6Ma6®), (7.19)
X

where
Vi<oe(0) = > n<au(™ 0 (01 — a/q)). (7.20)
a/qeR‘%(s,C
We will show that HH;’i — H]:ngl(Go) < 77F. Indeed, if 8 is in the support of 1 — ¥y, <s; then we
apply Dirichlet’s principle to find an irreducible fraction (aj0/q0)ieq1,....qy such that
1 2
pll) _ ol o~ and g € 1,7'/“*‘s Mnz,
‘ O gl T qorkiotk | ]

and at least one of the denominators ¢ is larger than 9%k But then we examine the definition
(7.15) and apply Proposition 2.3 (i) to conclude that |HT1(0(1 6(2) ) ST —k/5 The desired error
bounds follow.

Step 3. We now approximate the sum in the definition of HZ’I. Assume that 6 = (9(1), 9(2)) is a

point in RY4l and a/Q € QY4l is an irreducible fraction such that
|Tk o (9 — a/Q)| < o70k+4, Q < 720k+2, (7.21)

We examine the sum in the formula (7.15). For any j € {1,...,r} we decompose n; = Qw; + x;,
mj = Quj + 2, xj,2; € {0,...,Q — 1}, wj,y; € Z. Letting 8 = 0 — a/Q we notice that

e( - eD(nvm)) = e( - BD(QU) + w,Qy + z))e( - (a/Q)D(x,z))
Moreover, if ‘Tk o B} < 7% and |Qu| + |Qy| < 7F then

B.D(Qu +,Qy + 2) = B.D(Qu, Qy) + O(Qr ") = (Q o B).D(w,y) + O(Q7 "),
as one can see easily from the formula (2.24). In addition
[T X X my) = ] X Quyx'(*Qy;) + 0@ ™).
I<jsr 1<5<r
Therefore

m'e) = 3 { T X Qu)X 7 Qu) fe[ - Qo 8).D(w,y)] |

lwl,ly|$STh/Q  1<j<r

<{ 3 e(~(a/Q)Dlw,2) } +0(Qr ),

»
x,zEZQ

(7.22)
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Recall the definition (2.29). Using the Poisson summation formula we may replace the sum
over w,y € Z" with the corresponding integral, at the expense of O(7~2*) errors, and then change
variables to reach the formula (7.11). Therefore

I (0) = P'(7% 0 B)G(a/Q) + O(r~FF8F), (7.23)

The contribution of the error term can be incorporated into the kernel £}, while the main term can
be substituted into the formula (7.19), leading to the desired formula (7.8) after changes of variables.
We have established (7.8) and (7.9) with nggk(g<1))n§5k(c<2)) in place of nggk/z(g(l))ngk/z(d?)). Fi-

nally we can use (7.13) to replace cutoff functions T]S(gk(((l))nggk((@)) with 77§5k./2(Q(l))ng(;k/Q(((z)).
This completes the proof of the lemma. O

We return now to the proof of the main bounds (7.4). In view of the Cotlar—Stein lemma it
suffices to prove the following:

Lemma 7.2. If k,j > max((D/In7)% s/0) and j € [k/2,k] then
1} s (Hi ) 2 (@o) 2oy + 1 o) Hi slle2 (o) sy S 72 P 2l=H/D, (7.24)

Proof. Step 1. We prove these bounds first when j = k, so we prove that the operators 7—[,16’  are
suitably bounded on £?(Gg). In view of Lemma 7.1, it suffices to prove that

1Byl o) S 7722 (7.25)
We notice that

> e(h.a/Q)G(a/Q)| ST

a/Q=(aM) /q1,a® /q2)eR 5, xR N[0,1) 4+

for any h € Gy, as a consequence of Proposition 2.3 (ii). For ¢ € {0,1} we let

X]?r(h) ::{ H Tﬁk(llJrlz) }ngggk(Tik o h)
(ll,lg)EYd

(7.26)
<[ mesega sl P Qe o b))
R xRd

Notice that

[P
Indeed, invoking (7.13) and integrating by parts in (7.26) we conclude that

Xl s{ I =0 b+ irtony
(ll,lg)EYd

le(Go) S1 for any k € N. (7.27)

for any h € Gg. Now we see that inequality (7.25) follows from (7.27) with « = 1.
Step 2. Since we have already proved that H(”H;S)*H@_}Zz < 77%/P <1, we can estimate

* * x11/2 * 1/2
11} () s = 11 () ME ) 1002 S IS G ) HE D12, o _—
< 7‘[1 7_[1 *le 21/4 < < 7‘[1 7_[1 *le 2a1/29+1 )
~ || j,s[( k,s) k,s] HgQ_MQ ~ A || j,s[( k,s) k,s] HZZ_)(Z ’

for any j < k, where 2% is the smallest dyadic number > r. The norm H(Hjl-,s)*?‘[}f’s”p_MQ can

be estimated in the same way, so it suffices to prove that for any j € [k/2,k] such that k,j >
max((D/InT)?,s/8) we have

1.5l (Hko) Hi] 2 + 1R ) [H o (Hk ) T e S 77/ P80 =HUD, (7.29)
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The bounds on the two terms in the left-hand side of (7.29) are similar, and we only provide the
proof for the first term. We use Lemma 7.1. The contribution of the error kernel £j is bounded by

C7~%/*, due to (7.10), which is better than needed. It remains to prove that
1BE* Hj ol ) S 787/ D =8rli=kl/D (7.30)
We examine the formula (7.8) and decompose the kernel B,
B, = > G(a/Q) X}, 0/q
a/Q=(aM /q1,0 /g2)ERL 5 xRI'N[0,1)d+<' (7.31)
Xiaq(h) = Xy (h)e(h.a/Q),

where the kernels X := X;’T have been defined in (7.26). In view of the rapid decay of the
coefficients G(a/Q) (see (2.30)), for (7.30) it suffices to prove that

HXIZ,a/Q * H},SHEI(GO) < QYo7 SrlimHID (7.32)

for any irreducible fraction a/Q € QY| with denominator Q € [, 72%k+2],
We examine now the definition (7.2) and decompose

o= S B =S AL M)e(g® 52 /a)Y;(9?),

b2 /gaeRI N[0,1)¥ b2 /g2€R N[0,1)4

Yi(g®) = ¢\” (4?) /R e(g®. g7 0 52 dp®)

(7.33)
For (7.32) it suffices to prove that
HXIZ o * H;,b@)/qzugl 5 Q4/§7_—8r|j—k|/D (7'34)
for any b2 / Q2 € Rs , as the sum over b2 / go contains at most 75/9 terms and Q> T8
Step 3. Using the definitions we estimate
1,6 /q B 1,6 /q -1
HX ka/Q * H 2”41(@,0) - Z ‘ Z H] “(9) ka/Q( 'h)‘
h=(h(1) h(2))eG 1) g2 eG
( )€Go  g=(91),g(*)€Go 1 1 (7.35)
< > Vi)l D 18 L1 Xi (™ - mel(g™ - h)-(a/Q)].
h=(h(1) ,h(2)€Gy, g2 €2 gWezd

To get decay in |k — j| the main point is to bound efficiently the sum over ¢() in the expression
above, using the cancellation of the kernel A;L;. We rewrite this sum in the form

| NI X (A (1), 9P) 7 )

nez
[ = AP (0)-aM/Q) + Ro(A (), AT (n) = hV).(a?/Q)] |,

for any h = (h(),h?) € Gg and g € Z%, where X "(z
easily from the definition (7.33) that ||Y; H oz <1
suffices to prove that

> | TG (A - A (). + Ro(AR (n), AP () — 1))
h=(h() h(2)cGy NEZ (7.36)
xe[ = 450 (n).(aV/Q) + Ro(A (n), A (n) — hV).(a® Q)] | 5 Q07 Sli=H/P,

)= (1/7)x(z/7) — x(x) as before. It follows
uniformly in j € Z. Therefore, for (7.34) it
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We further decompose n = mQ@Q + p, m € Z, p € [0,Q — 1] N Z, and notice that the oscillatory
factor in the sum above does not depend on m. For (7.36) it suffices to prove that

S| N ETImQ + )X (Ao(mQ + )7 )| 5w/ (7.37)
heGo meZ

for any @ € [1,720%*2] and p € [0,Q — 1] N Z, as the sum over p contains only @ terms.
Finally, we examine the kernels X;. These kernels can be extended to the continuous Lie group

G# ~ R4l according to the defining formula (7.26). Using (7.13) and integration by parts it
follows that

|X]:(h)| + Z Tk(ll+l2)|(ahlll2XI:)(h)‘ S { H T—k(ll+l2)}(1 + ’T_k o h|)—2/6 (7.38)
(l1,l2)€Yy (l1,l2)€Yy
for any h € RIYdl. Therefore, for any g € G# with |[777 0 g| <1, we have
X = X(g | S P T R (1 R o)), (7.39)
(l1,l2)EYy
Therefore
S NI mQ + ) [XE (Ao(m@ + p) ) = XE(R)]| S T
heGyg meZ

Moreover, since [ x/(x) dz = 0, we have

5| et i) = (5 )| e+ | 50

heGyg meZ heGo
The desired bounds (7.37) follow since j € [k/2, k] and Q < 72°*%2. This completes the proof of the
lemma. 4

7.3. Proof of (4.20). Given that we already proved the variational inequality (4.19), in view of
(2.4) it suffices to prove that

—s 2
1f * Kioslezco) S 721 Flee o (7.40)

where kg in an integer satisfying |ko — 3k4/2| < 1. We decompose Ky, s = G}CO o+ Zt<6’ko kas :+
Gy, s @ in (4.28). The contributions of the operators defined by the kernels G}COWS and G
suitably bounded due to Lemma 4.4 and Lemma 4.5 (i) proved in the previous sections. The
contributions of the operators defined by the kernels Gy, s+ are bounded due to Lemma 4.5 (ii) and

Lemma 4.6 proved in Section 8 below. The bounds (7.40) follow.

8. TRANSITION ESTIMATES II: PROOF OF LEMMA 4.6

In this section we prove bounds (4.34) and (4.35). In fact we establish a stronger result which
will be used in ¢?(Gg) theory in Section 9.

Lemma 8.1. Assume that s >0, and t > D(s+ 1), and let A C RY\ ﬁds, B C R‘és be 1-periodic
sets of rationals. Then for any 2 < p < oo and for any f € (*(Gg) we have

|VP(f * Kppoap : max(rs, t/8') < k < 2'%)“42((;,0) S Tft/D2||f”e2(G0); (8.1)
where Ky, ., 4B s the kernel defined in (4.36). In particular, we have

2
sup |/ * K5l ST flleeeo)- (8.2)
Hmax(ns,t/d’)gk<2nt HZQ(GO) (Go)
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The estimates (8.1)—(8.2) imply (4.34)-(4.35), since Gj o = K i\ ga- Moreover, the
sy Iy g'Vs

bounds (8.2) follow from (4.35) and (6.49). Thus our main goal is to prove the bounds (8.1).

As in Section 7 we let G A48 = ApKp A8 = Kiyik+1,48 — Kipap for k > max(ks,t/d),
apply the Rademacher—-Menshov inequality (2.7) and then Khintchine’s inequality. As in Section 7,
for (8.1) it suffices to prove that

H > sl f * Grran)

kelJ,2J]

- 2
£2(Go) S’ T o HfHP((GO) (83)

for any J > max(ks,t/0") and any coefficients » € [—1,1].
We examine the definitions (4.36) and (4.37), and further decompose

_ 1 2 3 4
GikAB=Grrapt Grrast Girast Grras

Ginap(9) = or(9) /T o SO A€ B (€ [ArSH (€1 dg M,

Girean(9) = [Drdrl(9) /Td o ¢(9-) U o, A(EM)Zg 1o 5(6@) Sppr (€1)) dgMag®,

(8.4)
G ean(9) = der1(9) /Td o ¢(9-€) T e, A(EM) [ AZk k.8 (P Skp1 (€1)) deMag®,
X
Grran(9) = dr+1(9) /Td o ¢(9.6)[ AT Al (EM)Eps1 or1,8(6P)Sppr (€M) dgWag®,
X
where ¢ (g) = gi),(:)(g(l))gb,(f) (¢9?) as before. As in Section 7 we will prove that
1 —t/D
H Z s, (f % Gy a) 2(Go) S HfHP(GO)’ (8.5)
kelJ,2J]
for any J > max(ks,t/d') and any coefficients s, € [—1,1]. We will also prove that
L —k/D
£+ Gk,k,A,BHe2(GO) Tt HfHEQ((GO)’ (8.6)

for any k > max(ks,t/d") and ¢ € {2,3,4}. These two estimates would clearly imply the bounds
(8.3), thus completing the proof of Lemma 8.1.

8.1. Proof of the bounds (8.5). As in Section 7, we will use a high order almost orthogonality
argument. For this purpose we need a good description of the operators {(g;,kyA,B)*ggﬁ’A’B}’” and

{00448k gap) ) where Gl 4 5f == f % Gl 45 We note that Gy, 45 = Ky 45 see the
definitions in (4.36) and (4.37). For . € {0,1} let

Kipwap ifie=0, Lywa ife=0,
KL = y Wy L = y Wy 8.7
kw,AB { Kjyapg ift=1, kw,A Ljya ifr=1 8.7)
For later use we consider both operators ICLk,k,A,Bf = f % K pap L€ {0,1}.

Lemma 8.2. Assume that A C Q% B C Q¥ are 1-periodic sets and assume that {g€Z4 :a/q€
A and ged(ay,...,aq,q) = 1} C [qa,4qa] for some qu € 7. Assume that g4 > QP for any

irreducible fraction a/Q € B, and k > (D/In7)? satisfies 7% > qu. If r € Z is sufficiently large
then for every f € (?(Gg) we have

{(Kspoan) Kipast f=1{F"+0:},

L v T LT AT (88)
{Ks ka5 (Kipons) s f=F*{F"+ 0.},
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where
Fi7(h) = { > > C(a®/Q,o)e(hM.0)e(h®.(a® /Q))}
a(®/QeBN[0,1)? oe[A+(Z/Q)4N[0,1)¢
(8.9)
Kl +2) %o / ko h).Cldc,
< { H b " {anm } (el o h).cld¢
FOESENDY S /@) Ma)e(h® . (a?/Q) |
a(?)/QeBN[0,1)¥ o€[A+(Z/Q)¥N[0,1)?
(8.10)
” Pk b on) | {HMW DR GHCREIIES
RixRe
(llle)GYd
and _
10: ler o) + 1105 ler ey S 77 (8.11)
The functions P* and P* are as in (7.12) (see also (7.11)), and the coefficients C and C satisfy
C@®/Q.0)| +1C(0® /Q,0) S 4y’ (8.12)

for any a®/Q € BN[0,1)% and o € [A+ (Z/Q)¥ N [0,1)%.

Proof. We only prove in detail the claims for the operators {(IC,LCk A,B)*’Cz,k, A’B}T, since the claims
for the operators {IC,;&AB(IC,:’,C,A,B)*}T, follow by analogous arguments.

Step 1. By (4.36) notice that the kernels K fck AB have product structure. Thus in view of
(2.13)—(2.16) we have

{(Kipoa8) Kipast f=1*E5am

where
K asW) = n<son(r " oy) /T - e(y.0)IL 4 (01, 0)05 , 5(6) d6Mae®,  (8.13)

and the multipliers H kA and €2}, kB are given by

HL:” ’A(H(l)’H(Q)) = Z {HkaA h (1) Lk;k;A(gj( ))} (9(1) Z (hgl) _g](l)))

WD gDezd =1 1<j<r (8.14)
(1) 1 (1) (1) (1) (1)
( @157 R 0D — gy 1 3 Ro(—nY 4 g, —h() 4 g )})
1<j<r 1<i<j<r
and, with Fj, defined as in (5.3),
2r

U is(07) 1= | / F(0®) — €224 x(¢®) ag®] (8.15)

"y Td/

As in the proof of Lemma 7.1, our goal is to show that the kernels K}’ 4. are equivalent to
the kernels Fli’r in (8.9), up to acceptable ¢! errors. For this we need to replace the multipliers
HZZ A (9(1), 9(2))QZ, kB (0(2)) with more explicit multipliers, at the expense of acceptable errors.

Step 2. We will follow the ides from Sections 5-7. As in (5.15) we may write

I 4 (01, 01%)) = /(Td)Q Vi(OD, 0@ ¢V gD e
(8.16)

< T ASEE) wral S S0E Wipae) deacV . agMact,

1<5<r
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where (see also in (5.16)) we have

Vk( fl)’ 1 ""’Cr ’ 7("1))

- Z TT {0 0)e(@ = ¢)hi)ol (e — (00 — )05 }

hj.g; €74 1<5<r

e<—9(2)~{ > Rolhjhy—gi)+ > RO(_hl+gla_hj+gj)}>'

1<5<r 1<i<j<r

In view of (5.6) we have a rapid decay |Q};,k’8(9(2))| < 7Pk unless |77 o (0?) — (P /Q)| < 720k
for some a? /Q € B. Hence, we may assume that 82 = a(® + a2 /Q for some (¥ /Q € B and

7% 0 a®)| < 720k The condition (5.21) is then verified so we can use Lemma 5.2.
We now define new projections

Pparz/i@) = Y <o (B ~0)),
cE€EA+(Z/Q)?

where A + (Z/Q)? == {0 +a/Q : 0 € A, a € Z}. Examining (5.18) we conclude that V} decays
rapidly unless TleHl(l) - f;ll)HQ < 710% and Tkl||9l(1) — C;?HQ < 71 for all j € {1,...,7} and
l€{1,...,d}, thus we may replace H;”Tk’A(Q(l), 02) with HZ,Tk,A(H(l)’ 0(2))(I)k7A+(Z/Q)d (61)) at the

expense of O(7~PF) error term.

Expanding the cutoff functions Wy, ;. 4, invoking rapid decay from (5.18) of V| as above and using
Lemma 5.2 we may replace IT", (o), 9(2))®k7A+(Z/Q)d (61)) with

> Y woshW(a®, byer, by e n<osi(Th 0 (00 — o)
oEA+(Z/Q) b,ee(Z, )r

X /(Rd)QT { Hnga/k(rk o (45](.1) — 0 +b;/Q))n<sn(Th 0 (Cj(;) o4 Cj/Q))}
j=1

x 2 (a®;00 — ¢V —b1/Q,0M — (fV —e1/Q,.... 00 - <1>—b/@ 00 — ¢ —¢,/Q)
X H {SL SL 5(1) }dfgl)dc(l) dé.,(,l)dggl)

1<<r

at the expenses of O(7~PF/2) errors, where ZJ and W, have been defined in (5.24)-(5.25), b =
(b1,...,b.) € (Z‘é)r, c=(c1,...,¢) € (ZdQ)”, and the coefficients ¢ are defined by

1@(o;b,¢) == (8.17)

1 if 0—b;/Q,0—c¢;/Q € Aforanyje{l,...,r};
0 otherwise.
We make the changes of variables 5](1) = pj+0—b;/Q and Cj(-l) =j + 0 — ¢;j/Q in the latter

integral. In view of Lemma 6.1 we can also replace S,Lﬁ(fj(-l)) and S,fc(Cj(l)) with S(o — b;/Q)J;(5;)
and S(o — ¢;/Q)Ji(vj), at the expense of acceptable errors. Therefore, the integral formula above
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shows that if ) = o + a® /Q for some (¥ /Q € B and |7% 0 a(?| < 272% then

H;TkA(G(l),G(Z)) - Z Z (03, c)Wh(a a® . b, )nssn(tF o (00 — o))
oEAH(Z/Q) bee(Z)r

x J[ {S(o—1b;/@)S(c—¢;/Q) }/ [T <o 0 Bj)n<sn(r* OW)JIQ(BJ')J;Q(%)}
1<5<r 1<5<r

x Z(a® 00 — o — 1,00 — g — 41,00 — 0 — 5,00 — 5 — y,) dBrdyr ... dBrdy,
+O(r~ k), (8.18)

where W@(a@),b, c) = W@(a(z), b1,¢1,- -y br ).
Step 3. Using the definitions (6.4)—(6.5) and (5.25), the integral over ;,v; in (8.18) is equal to

/R2rd/]R2r (7 oa(2) { Z Ro( y]’% ')+ Z RO(_yl—Fxl,—yj—{—xj)})

1<j<r 1<i<j<r
X H {77<5k (zj)e( — (7% o aM).z; ) nesk (y;)e ((7F 0 o) y;) (8.19)
1<5<r

—

X)X (0T (A () = )i (A (07) + ) dugdydas

where 7<g;, denotes the Euclidean Fourier transform of 7<), and a® =00 — 4.

We notice that we may replace the factors n<sx(z;) and n<sp(y;) with 1 in the formula (8.19), at
the expense of O(7~PF) errors, due to the stronger localizations induced by the factors in the last
line. Then we make the changes of variables x; = A(()l)(uj) + 2,y = A(()l)(vj) + y; to rewrite the
remaining integral in the form

a.a®)i= [T {Tmi-amm e~ (o o). - 1)) 8:20)
R2rd 1<5<r
X {/Rzr e(_ (Tk oa(2)) :c y u, 1) H {X u] } ( (Tk OCV).D(Q,@)) dudy}dg’dg’,
1<5<r

where o = (@), a®?), the function D : R” x R” — R is defined as in (2.24), and
T(z,y u,v) =Tz, y,u,v) + To(2',y),
iy uw) = Y [Ro(AS ()0 — o) + Ro(yf, AF (1)) = AF ()]

1<j<r
+ Y [Ro(A (w) — AP (w),a — ) + Rola) — o, AV (ug) — AP ()], (821
1<I<j<r
T2(£l’y,> = Z Ro(y;’y; —$;> + Z RO( yl7 ki _y])
1<j<r 1<i<j<r

To summarize, we have proved that if () = o(? 4 a2 /Q for some a(? /Q € B and |7% 0 a?)| <
2720k then

’Hk a(00,02) — 37 C(a®/Q, 0 napi(r 0 (91 — o))
o€ A+(Z/Q)? (8.22)

X I,Lf(ﬁ(l) — U,a(2)) < T_Dk/3,
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where the multipliers I}, are defined as in (8.20), and

C(CL(2)/Q,O') = Z LQ(O';Q,Q)Wé(a(Q),QaQ) H {S(U_bj/Q)m}' (8.23)

b.ee(Z)" 1<j<r

Notice that the coefficients C(a® /Q, o) satisfy the desired bounds (8.12) because QP < ¢4, and
’S(Q)} < q;\‘S for any g € A, as a consequence of (2.22).
Step 4. We now show that if |7% o o] + |7% 0 (2| > 79k/2 then

11t (M), a@)| < 770/, (8.24)

We shall apply Proposition 2.4. For this we rewrite
e(= (Foa®) Ty w o) [T X'} =TT {ws(w)eswi},
1<5<r 1<j<r

where, using the formulas (8.21), we obtain

+ Z RO(A( )( yl + Z Ro(z yl’ ()(uj))]}’

j<i<r 1<Il<y

1 1
63(vy) 1= x'(05)e{ = (7 0 a?).[Ro(A§ ><vj>,y; — )+ Ro(y), A5 (1))
1
= > Ro(A W)@l —u) = Y Rolai — i, AL ()] }-
j<i<r 1<i<j
Then we notice that the contribution to the integral in (8.20) coming from the points (2, y') outside
the ball B, := {(2/,y') € R x R¥ : [2'| + [3/| < 779#/2} is negligible, due to the rapid decay of
the function f<gx. On the other hand, if |2/| + |y/| < 77%%/2 and |7* 0 a(®)| < 272 then the
functions 1; and ¢; defined above have bounded C1(R) norms, [|¢;|c1 + [|¢jllcr < 1, so we can

apply Proposition 2.4 for any (2/,y') € B,. The desired bounds (8.24) follow.
On the other hand, if |7% o a(D| 4 |7% 0 a?)| < 7°%/2 then we observe that

]/ Teri(2)27 dz = 0, (8.25)
Rd

for any multi-index 8 = (B1,...,Bq4) € N?\ {0}. Since T'(2/,y’,u,v) is a polynomial in the variables
xj,yj, we can use a Taylor expansion to see that

[ T e mntp} s(- Foat). 3 @) - 1))
R2rd 1<jer 1552

xe( = (tFoa®) 7@,y u,0)) - 1} m

)

provided that |7% o aD| + |7 0 a®| < 79%/2 and |u| + |v| < 1. Recalling also the definition (7.11),
we have the approximate identity

(o) = PL(Tk ° a)ngak/2(7'k o a(l))ﬁgék/z(Tk 0 a(Q)) + O(Tfk/é)- (8.26)

Step 5. We examine the functions (2} ; ;; defined in (8.15). Using (5.6) it is easy to see that

% .50 /Q + @) —1| < 770k if 7% 0 o < 27%%/2 and ¥ /Q € B. (8.27)
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Compare (8.27) with the bounds from (7.17). Combining this with (8.22), (8.24), and (8.26) we

derive our main approximate identity for multipliers,

H;f}g’A(g(l),g(?)) T 5 (0%) - Z Z C(a?)Q,0) (8.28)

a) JQEB cEA+(Z/ Q)
x k2 (T 0 (00 = 0))nesppa(rh 0 (0% — a® /Q)) P! (7" 0 (01 — 0,6 —a? Q)| S 77/°.
The desired conclusions (8.8)—(8.9) follow using the identity (8.13). O

We now return to the proof of the bounds (8.5). In view of the Cotlar—Stein lemma it suffices to
prove the following:

Lemma 8.3. Assume that s >0, t > D(s+ 1), and let A C RY\ ﬁds, B C R%/s be 1-periodic sets
of rationals. If k,j > max(ks,t/d') and j € [k/2,k], then

1G] 548Gk ka8) 12 @o)sez o) + 190 4.8) GhkaslleGorse@) S 7 2 Pr2=H/P (8.29)

Proof. We will use Lemma 8.2 with + = 1, since Gl%ck.AB = K}, ;. 13- The proof will proceed in
several steps as the proof of Lemma 7.2.
Step 1. We will abbreviate Fkl"r(h) to FJ (h), where

Fma={ 3 > c@?/Q.0)hV.a)e(n® (a?/Q)) }xp (),

a® /QeBn[0,1)? oelA+(Z/Q)%]N[0,1)4
where X} := X;’r are the kernels defined in (7.26). In view of (7.27) and (8.12) we have

1EE ey S 7740

This shows that |G}, 4 slle2(Go)—2(Go) S 7=t/" and bound (8.29) follows if j = k.
To prove the bounds (8.29) in the general case 7 < k we use first a high order T*T argument, as
in (7.28), so it suffices to prove that

1G5 5. 4.80(Gierea8) GreaB) 122 + 1G5 5.48) Gk e, a8 Gieeoa )] s

< —8rt/D_—8r|j—k|/D (8.30)

for any j € [k/2, k] such that k,j > max(ks,t/d’). The two bounds are similar, so we will focus on
bounding the first term. We use Lemma 8.2, and notice that the contribution of the error kernel
Ollﬁ’r is controlled by O(7=%), which is better than needed. It remains to prove that

15 % G a sl gy S 75 P B UTHIE, (8.31)

Step 2. Using Lemma 6.1 the kernels Gjl.J’Aﬁ =K}, a5 =L’ ; sNj;B: can be rewritten as

> SOW /q1)e(g™. (0" /q1))e(g®).(0?) /2))Y;(9),
b /g1 €AN[0,1)4,b(2) /go€BN[0,1)d’

(8.32)
Y;(g) :== ¢;(9) /Rd iy e(g.C)Jj’.(C(l))ng(;,j(Tj o C(l))ngéj(Tj o C(2)) dC(l)d§(2),

up to rapidly decreasing errors. Here ¢;(g) = ¢§1) (g(l))gbg?) (¢9®) as before, and the functions J]’- are

defined as in (6.4).

As in (7.31), we define X a/q(h) = X} (h)e(h.a/q). We define also Y}, /4(9) = Y;(g)e(g.a/q), with

Y; as in (8.32). By the definition of F} and the rapid exponential decay |C(a®/Q, )| < 779 (see
(8.12) with A C RY \ 'RdQS and B C R‘é’s), for (8.31) it suffices to prove that

< 7 8rli=kl/D (8.33)

X% asa * Yiasa lneg) S
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for any irreducible fractions a/q,d’/q’ € Q*% with denominators ¢,q' < 7212,
Step 3. Let Q = q¢’ € [1,7%%4] and recall the definitions (6.1)-(6.2). Since ¢((g-h-g').a/q) =
e((g-9').a/q) and e((g-h-¢').d'/qd) =¢e((g-¢').d'/¢) if h € Hg and g,¢" € Go, we have

(Go) - Z ‘ Z Xlg,a/q(ufl ’ hfl h- M)Y},a’/q’(hl : ,UJl)‘

nelg, helg melg,hietg

< S X b b )Y ).

1227240 GJQ, hEHQ h1 GHQ

HXIZ,a/q * YJ}G’/Q'

Therefore

) S Z | X5 (- byt b p) = X (B )] [Y5(ha - )|
wu1€lqg, h,h1€tg

Y Xl Y Vil m)|

mwu1€lqg, helqg hi€Hg

HXIZ,a/q * Y}ya’/Q’
(8.34)

Using (7.38), for any g, g1 € Gy we have
Xior' - 9) = Xi(g)| S 7 F O+ o g2 L [T w7 M0 (4 ko gm0,
(ll,lz)EYd
which is a stronger version of (7.39). Moreover, using the definition of the kernel Y; in (8.32),

RACINRS { H oI 611[2 /’X 1 + ‘763 (Ao( ) — I 091)‘)_4/5 du,

(l1,l2)€Yy
uniformly in g1 € Go. Here gz (51112)”1,[2)65@ and 51112 = if (ll, l2> S Yd/ and 51112 = 5/ otherwise.
Since
1+ ]T_j ogi| <1+ ‘T‘sj (Ao(u) — 7o 91) ’,

we obtain the desired bound for the first term in the right-hand side of (8.34).
Next, we focus on the second term in the right-hand side of (8.34). Notice that using (2.17) we
are able to prove that

[ ot me( i) @ T AU (1 o))

h1 EHQ (ll,lQ)EYd

uniformly in |77 o ¢| < 79/4, Q < 7//% and yy € Jg. Further, since Ji(0) = 0, it follows from the
definition of J} (see (6.4)) that ]J]’-(C(l))] < min(1, |77 o ¢W|) for any ¢V € RY Combining the
above with (7.38) we bound the second term in the right-hand side of (8.34) by

M DORTUREIED oy S »EXCRR R RN

melg hi€Hg n1€dq
X ’7795’]' 7'] o( )77<5 7'] o( ‘d{ dC

< i)V (1 4 2951 0 ¢} 1 0 W] deMac®
S A IT PO} (e o) o ¢ aca

(l1,l2)€Yy

g7

Recalling that j € [k/2, k| we see that the desired estimates (8.33) follow. O
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8.2. Proof of the bounds (8.6) for + = 2. Notice that if ¢ is in the support of the kernel
Gi,k,A,B then there is (I1,l3) € Yy such that |g;,1,| 2 7Ok rk(litl2) - Therefore we can integrate by
parts many times in the variable &,;, to prove that the kernels G%h AB have rapid decay, i.e.
]Gi7k7A7B(g)| < 77#/9 for any g € Gy. The desired bounds (8.6) follow. O

8.3. Proofs of the bounds (8.6) for « = 3 and ¢ = 4. As before, we use a high order T*T
argument. Notice that the kernels G3 , 4 and G4 4 defined in (8.4) have product structure

Gi,k,A B( )= Il?k A( (1))Jl§,k,3(9(2)),
Ilz),k,A( ) ¢k+1( )/]I‘d e(g(l)-g(l))\I’k,k,A(E(l))Sk—l—l(g(l)) dg(l)a (8.35)
Teasta®™) = oZ(0®) [ ela® 6)AZ005(6®) de®

and

Grras(g) = Ié,k,A(g(l))Jﬁ,k,B(g@)%
Ity ag™) = 6)1 (9) /Td e(g M) [ AT a) (€1) Shpa (€M) dg™, (8.36)
Jg,k,B(g(z)) = ¢§21(9(2)) /’Jl‘d' e(¢@.6ONZp 1 pr1.8(6@) de®
We define the operators Gy ;. 4 5 by Gp . a5f = f*Gjj ap: ¢ € {3,4}. Using (2.13)-(2.16) we have
{Ghkr8) Grkant f=1F*Gap
for a sufficiently large integer r € Zy and ¢ € {3,4}, where the kernels G;Tk A are given by
Ghanl0) = ncs(r ™ o0) [ el (000,005, (007 00
X

The multipliers H;’Cﬁ 4 are given by

HL’,T 7A(9(1)’9(2)) = Z {H kkA h & IkkA(g]( ))} (9(1)- Z (hﬁ-” —gj(-l))) (8.37)

51),9(1)€Zd Jj=1 1<5<r
(1) (1) 1) 4 (1) 4 1)
( { Z h; ’hJ )+ Z Ro(—hy ,—h; " +g; )}>
1<j<r 1<i<j<r

Moreover, with Fj ;1 defined as in (5.3), the multipliers Q kB re given by

2r
055 (0%) = | [ Fen (6% - €¥)[8Z00el(€¥) ds?)
) (8.38)
Q;‘;:Z,B(e ) = ‘/Ed’ Firs1(0® — € i1 11,8(6@) dg®
For (8.6) it suffices to prove that for ¢ € {3,4} we have the multiplier bounds
7 4 (60, 02) Q7 5(02)[ S 777 for anmy (0,09) € T x T (8.39)

The proof of (8.39) follows by similar arguments as in Lemma 8.2. We consider two cases:
Case 1. Assume first that « = 3. Notice that we have rapid decay \Qk 50 )] < 77P* unless

178 0 () — @ /Q)| < 72 for some a!?/Q € B. In this case the symbols Hk",;A satisfy similar
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bounds as the symbols Hg’}; 4 analyzed in the proof of Lemma 8.2. In particular, we have
’Hk ra(00,62) — 37 c(a®/Q, 0 nasi(rh 0 (61 — o))
c€A+(Z/Q)%
X 12(9(1) -0, a(2)) < T_Dk/3,
which is analogous to the approximate identity (8.22). The coefficients C(a(®? /Q, o) are as in (8.23),

while the functions I} are similar to the functions I!, defined in (8.20) (with the factor x*(u;)x*(v;)
replaced by x(u;/2)x(vj/2)/4). We still have the key bounds

a®,a®) 770 il oal| 4 [rF oa®)] > £97,
which are similar to (8.24). The main difference is that the bounds (8.27) are replaced by
% 5(a®/Q+a?)| < 77 if 7% 0 a®| < 27%%/2 and @ /Q € B,

due to the presence of the difference factor [AyZy 1 8] (€ (2)) in the definition (8.38) of the multipliers
Qz’,; 5 The desired estimate (8.39) for « = 3 follows from the last three bounds.
Case 2. Assume now that ¢ = 4. As in (8.16) we rewrite

Hi:Z,A (9(1)’ 9(2)) = /('I[‘d)Q'r VI:—H( v fl)a 1 a SRR <r ) 7(=1)) (840)

< 1 {Sk—i-l Ak‘lfkkA](C( ))5k+1(§( ))[Ak‘l’k,k,A](ﬁj(-l))} deMacM .. agMa¢m,

1<5<r

{1)7 1 . --,Cr ,5(1)) is as in (5.16).
In view of (5.6) we have a rapid decay |Qi’,258(9(2))| < 7Pk unless |77 o (0?) — (P /Q)| < 720k

where V] +1(

for some a(? /Q € B. On the other hand, in this case we can use similar arguments as in the proof
of Lemma 8.2 to simplify the multipliers Hi’z 4> at the expense of acceptable errors. After several
reductions we derive an approximate formula similar to (8.22), namely

M (0M.6%) = 37 ea®/Q.o)m<api(r* o (01 — o))
TEA+(Z/Q)4 (8.41)
X L(0D — 7,0®)| 5 7 PH,

provided that ) = o® + a2 /Q for some a®/Q € B and |7* 0 a(®| < 72 The coefficients
C(a(2)/Q o) are the same as in (8.23), and I}! is defined as in (8.20), namely

@) /R 1<H<r (o= e (= (7 0 aM).(af =) } (8.42)
{/RQT e( - (Tk o a(2)) $ y u, U H {X uj ( (Tk o Oé).D(QQ, 2&)) d@dﬂ}d@’dﬁ’,
1<5<r

where 1151, (2) == N<s/ (k1) (T02) — <ok (2), and @ denotes the Fourier transform of the function
Ns1., and the function T is defined as in (8.21).

The functions I} still satisfy the bounds |I}(aM), a@)| < 77k if |7F 0 W] 4 |7F 0 (2| > 79K/2]
which are similar to (8.24). The main difference is that the identities (8.25) are replaced by the
stronger identities

/Rd n’g5,k(z)z5 dz =0,
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for any multi-index 3, including 8 = 0. Therefore we can use a Taylor expansion (as in the proof
of (8.26)) to see that I} (a(V),a®)| < 77Pk if |7# 0 oV)| 4 |7F 0 (@] < 7°%/2. The desired bound
in (8.39) follows for ¢ = 4. O

9. MAXIMAL ESTIMATES ON (P(Gg): PROOF OF THEOREM 1.3

In this section we complete the proof of the P theory in Theorem 1.3.

Theorem 9.1. With My, defined as in (4.1) for 7 =2, and for any p € (1, c0]we have

| igg\Mkf\ng(Go) So 1 llev (o) f € #(Go). (9.1)

Notice that the maximal inequality (9.1) for 7 = 2 implies the full maximal inequality for any
7 > 1. By interpolation with the variational /2 estimates in Theorem 4.1, this completes the proof
of the main Theorem 1.3.

To prove Theorem 9.1 we will use Lemma 9.2 and Propositions 9.3 and 9.4 below.

Lemma 9.2. Assume that there is a constant v > 0 such that for every u € (1,2], p € (0,1), and
A > 0 there is a sequence of linear operators (Az’p)kzo such that

HiliIS|A2’pf|”€“(Go) SP,U )\prH(“(Go)? for any f € EU(GO)a (92)

and

[suplef = A2 F ) S0 XM iy for amy f € (o), (9.3)

Then the estimate (9.1) holds true for every p > 1.

Proof. This is a general interpolation result. See for example [34, Lemma 7.1] or [32, Lemma 4.4]
for proofs of such results. O

We will need the following logarithmic maximal estimates.

Proposition 9.3. For every p € (1,00), f € P(Gy), and J € N we have

sup |M;f Sp log(J +2)|| f .
Hje[J+1,2J]| il gy Sp logl N ller (o)

Proposition 9.3 will be proved in Subsection 9.2. The idea of using restricted ¢?(Gg) estimates as
in Proposition 9.3 together with ¢2(Go) bounds to prove the full #°(Gyg) estimates (9.1) originates
in Bourgain’s paper [13].

Finally, we will also need the following shifted maximal inequality for the kernels Wy ,, o with
0 < w < k defined in (6.8).

Proposition 9.4. For any p € (1,00), Q@ > 1, and w € N we have

sup | f *m, Wk,w,Q\ng(HQ) Sp (W4 D) fller o) feP(Hg).
2k/4>Q, k>w

We prove Proposition 9.4 in Appendix B. For now we show how to use the conclusions of
Propositions 9.3 and 9.4 to complete the proof of Theorem 9.1.
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9.1. Proof of Theorem 9.1. We divide the proof in several steps:
Step 1. In view Lemma 9.2, in order to prove (9.1) it suffices to find a sequence of linear

operators (Az’p)keN, p € (0,1) and A > 0 satisfying (9.2) and (9.3). For A < e” we can just set
Az’p = 0 and the bounds (9.3) follow from the already established ¢?(Gg) theory for the maximal
operator supysq |[Mgf| -

Therefore from now on we may focus only on A > eP. Let us define

S:=|lnA|] > D. (9.4)
Recall from (4.18) and (4.25) that for S as in (9.4) we have respectively

kg = 2(D/ln2)(5’+1)2. and Qs = (2D(S+1))!'

If A > eP and k < kg then we just define Az’p = M. The bounds (9.3) are trivial, whereas the
bounds (9.2) follow from Proposition 9.3. Indeed, since S* ~ (In \)* we have

2D(S+1)2
sup |M " < su M “
H1gk§pns| kf‘“e (Go) ; H2a?l§£§2j’ kf|He (Go)
2D(S+1)2
SO G DIy S Qog M)A fllen(o)-
§=0
Step 2. Assume now that \ > el and k > ks. We set Az’pf = fx Kk SR R > where the
Iy QS’ QS
kernels K}, ., 45 are defined as in (4.36). In view of Lemma 9.2 it suffices to show that
I s |f = Kys vy we Moo Sp WV loo),  f € E(Co) (9.5)
3
| sup ]Mkf f*KkSRd s 1,2 o) SAT 27 Flle2 (o) f € 3(Gy). (9.6)

k>kg

for every p € (1,2].
Let Kgw 4,8, Wrw,g and V4 5o denote the convolution operators correspondlng respectlvely to

the kernels Ky, 48, Wiw,@ and V45, defined in Lemma 6.2. Let Q = Qg, A= RQs’ B = RQs’

ko = |ksg], and w = S. Notice that 1 < Qg < 29%0_ 50 the decomposition (6.7) and the error term
estimate (6.10) of Lemma 6.2 hold.

We prove first the bounds (9.5). We apply Lemma 6.6 with ICEO = K, gma B > WEIQS =
Qe Qg
Wh.s.qs and Ves = Vﬁ‘égsﬁgsts and conclude from (6.42) (with B = £°°) that

~ ~ <
Hksggsv * Kk7S7RdQS7RdQIS|H5p(G0) ~ ||(Wk7S,Qs)k2HsHKP(HQS)—MP(HQS;Z"O)

(9.7)
X ”Vﬁ%yﬁdQ’S,Qs||€P(JQS)ﬁ€P(JQS)HfHEP(Go) + 27558 Fll o )
From Proposition 9.4 we know that
[Wr,5,05 Jkzrsller (g o) r (g s0) S S (9.8)
We also know that
||V7§dQS77§dQ’S,QS||ep(JQS)—>ep(JQS) < ||V7§4QS77§deS,QSH€1(JQS) S, (9.9)



52 ALEXANDRU D. IONESCU, AKOS MAGYAR, MARIUSZ MIREK, AND TOMASZ 7. SZAREK

which follows from the direct computation

Vig s 0o = Q5" X0 S(0/Qs)e0V.0/Qs)}{ 30 et?.c/s)}

d da’
aEZQS CEZQS

=Q5" Y Liagmy®).
nEZQS
The bounds (9.5) follow from (9.7)-(9.9).
Step 3. Finally, we prove the bounds (9.6). Observe that for & > kg we have the following
decomposition, with the notation in Section 4,

Mif = Kysqn gu =Mif = [ 3 Ko+ 5[ Y Ko +£5[ Y Gl
s s s€[0,0k] s€(8S,0k] s€[0,5S]

—f*xK

«+ *]( ~ =~/ ’
f kk,RE k,k,RdQS,RéS \R% ;s

!
<5’k\RdQS’R%6$
+f*[K i ma — K o 5a Nd’:|-

k,k,’RQS,’RQS k,S,’RQS,’RQS

Therefore, to prove (9.6) it is enough to show that for every A > e and f € £2(Gy)

H:;ES Mif =1+ [SGZO;M K| 2(Go) SA U e (e)s (9.10)

H:;l'i se(ézS:ék] i S: £2(Go) s )\_E/Dgan@Q(GO)’ (9.11)

Hksili se%S]G 1e2(Go) S A lleo): (9.12)

Hks;,fs'f Ky FRL AR ,R‘i’asmﬁ Go) SAYE ) flee (Go)> (9.13)
H:;,Z’f*Kk,k,Rd Rd’ \R<5S’He2 Go) S AT o/D? Hf”ﬁ (Go)» (9.14)

Hks;’z I [Kk’kﬁésﬁgs a Kk,sﬁg?s RE } 2(Gy) SA ey (9.15)

Step 4. We now establish inequalities (9.10)—(9.15). Notice that My f — f * [Zse[o,ék] Kk’s} =

[+ Kf, and the bounds (9.10) follow from Lemma 4.2. Similarly, the bounds (9.12) follow from
Lemma 5.1 with B = R%S. In addition, combining (4.20) with (4.21) we obtain

Hsup I * Z Ky s < ZH sup |f>kKk78|HZQ(G)
kzns [se(és,ék] | 0) S5 kzmax(es.s/d) ’
_s/D? /D3
S 2 flleey S AT fllee o)
s>6S5

This proves (9.11). Moreover, using (6.49) and (8.2) with A = R¢ \ ﬁ%s and B = Rgés’

sup | % K Moy < s [f+ K o
szﬁs kkR‘its,k\R R s He2(Go) tZ%H)HkZmax(ns,t/z?’) k,k,Rf\Rd Rss H82(@0)
_ 2 _ 2
S Y 27l SATYP If e
t>D(5+1)

This completes the proof of (9.13).
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We prove now the bounds (9.14). We apply Lemma 6.2 with Q = Qg, A = RQs’ B = 7%‘1@/ \R<5S,
ko = |ks] and w = k. Then we apply Lemma 6.6 and conclude from (6.42) that

5D 1760 iy g vty Mleno) S NOVik@s izl iag)»exeiogie)
ZKS

A/8
*|Vra_ e w208l eaeg)se e M leeo +27 Pl f e o)-

By (6.19) we may conclude that

~ ~ < 9—65/D
HVRdQSngS\R%léstSHZQ(JQS)HZQ(JQS) ~ Hf”@Q(JQS)'

The bounds (9.14) follow using also Lemma 6.4.
Finally, we prove the bounds (9.15). By a simple square function argument and Khinchine’s

inequality it suffices to prove that for every w > S, every sequence (s)reny C [—1,1] and any
f € £2(Gyg) we have

S27P | fle@y.  (9.16)

H >l Kewnmy me ~Kowrg my ]

Qgs’ 2 (Go
k>max{rkg,w+1} ( )

We apply again Lemma 6.2 with Q = Qg, A= ﬁdQS, B= ﬁdQ/S and w > S. Then we apply Lemma
6.6 with ko = max{ss,w + 1}, K = Ky yome mg — Koy 7o W% = Wiai1.0s —
Wiwgs and VIes = Vﬁdczsﬁgs@s and conclude from (6.43) that the left-hand side of (9.16) is
controlled by

H Z 2 [(Wiw1,0s — Wi, Qs
k>max{rg,w+1}

I fle2co) + 27 21 flle2 (o)

2 (Hog)—2(Hg )
since HvﬁdstﬁgstS”gQ(JQS)*}EQ(JQS) < 1 by (9.9). Finally, using (6.30) we obtain

< 27w/D2

~

H > aWhatras — Wewos]

02(Hg o )—¢2(H
k>max{rkg,w+1} ( QS) ( QS)

as desired and the proof of (9.15) is finished. This also completes the proof of Theorem 9.1.

9.2. Proof of Proposition 9.3. To prove Proposition 9.3 we exploit the positivity of the operator
My f,ie, Mgf >0 whenever f > 0. We will extend the ideas of Bourgain [13, Lemma 7.32] (see
also [32, Lemmas 4.2 and 4.3]) to the nilpotent setting. We will need the following technical result,
to approximate the original operator.

Lemma 9.5. For every u € Zy there is a constant C,, > 0 such that for every f € (*(Go) the
following inequality

HMkf - f * Uk,J,S,quz(GO) < Cusil/DQHfH@(Go)v

holds uniformly in 1 < J<k<2J,1<5< 20k satisfying SP < 20k and S < JH. Here

Uk,1.5.(9) = 61(9) > > ¢(g.(c, o)) S (M)

U
TWERL g, sNOD? e RE,  oN[0,1)

II > ll+l2)}/ 1o <8 Dtllo, 7] (€M )n<sppliog, 1 (€P) k(27" 0 €W)el(27F 0 g).€] de.
(ll,lg)EYd
(9.17)
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We show first how to use Lemma 9.5 to prove Proposition 9.3. We proceed in several steps.
Step 1. Since the result is clear for p = co it suffices to consider only p € (1, 2] and nonnegative

functions f : Go — [0,00). Let K ;(z) = Kj(z1). By a general abstract argument, involving duality
and a separation in scales j (see [13] and [32, Lemma 4.2]), it suffices to show that
1D 1 # Killyn g,y Sr IFIVE, (9.18)
JjES
for any even integer R > 2, any subset I’ C Gg, any functions h; satisfying

h; = gj1p, gj : Go — [0, 1], Zgj(m) <1 forany =z € Gy, (9.19)
JjES
and any subset S C [J + 1,2J] satisfying the sparseness property |l —I'| > Dulogy J if I £1' € S.
Here p = p(R) is a sufficiently large constant to be determined later (in (9.22)).
Indeed, by a duality argument there are functions 0 < g; < 1 for J < j < 2J, such that

ZJ<j§2J gj(x) =1, x € Gy, and
sup |f x Kj(x)| = Z [*Kj(z)gj(x), ze Gy, J>1.
J<j<2J J<j<2J
Then, we have

I, ol = 3 15 ¢ Kl
B J<

< swp || Y0 (hgy) x K

1l oy =1 J<j<2g

o o) 1 ller(@o)-

Using interpolation it suffices to show that the latter operator is of restricted weak type (R, R) for
any integer R > 2, with norm <g log(J + 2). This means that we need to show that for every fixed
integer R > 2, every finite subset F' C Gg and every J > 1 we have

H Z h] * I}jHZR(GO) SR IOg('] + 2)|F|1/R7
J<j<2J

where hj = g;1F for every J < j < 2J. Finally, we partition the set (.J, 2.J] into at most Dy logy J+1
subsets & with the sparseness property mentioned above. Therefore, we reduced our task to showing
(9.18). We prove (9.18) by induction over R. The case R = 2 follows from the ¢?(G) boundedness
of the maximal function sup,~|M;|. The case of general R can be reduced to proving that

R
H(thn *f(jn> * (K, — Kjy) Sk JTEF)2, (9-20)
£2(Go)
n=2
uniformly in J = jg < 51 < ... < jr < 2J satisfying
Jn+1 — Jn = Dulogs J, 1<n<R-1. (9.21)

See [32, Lemma 4.2] for the details of this reduction, which apply in our case as well.
Step 2. To prove (9.20) we first define some constants

A:=D*+ R, pu:=D?AR4+ R, S,:=J4, 1<n<R. (9.22)

We may assume that J 2, 1,s01 < 5, < 25‘]/2, S,? < 29"7/2 and S, < JH 1 <n < R. For
simplicity of notation, in the rest of this subsection the implicit constants are allowed to depend on
R. Using Lemma 9.5 we obtain for every f € £?(Gg) that

~ ~ _1/D2
Hf * an - f * UmJ,MHZZ(GO) S Sn /D ”fHZz(Go)a 1<n<R, J=J, (923)
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where l?nJ,u(ac) = Uj,.78.u(x71), see (9.17). Here we use the fact that if Tf = f* K and

Tf=f*K, then | Ty -e2cy) = IT1e2(G0)-2(Go)-
We show that

oy ST, (9.24)

R N R N
HH hjn * an — H hj’n * Un,J,/L
n=2 n=2
uniformly in J = jo < j1 < ... < jr < 2J satisfying (9.21). Indeed, notice that

1R, * Unorlles o) < N Un,saller oy 1 leso (o) S SEPEHD, 1<n<R. (9.25)

Since Un, 7 = Uj,, 5,8, ,u, see (9.17), this follows from the identity

Un,7u(9) = ¢5,.(9) Z Z e(g,(g(l)’ 0(2)))5(0(1))
G(l)eR%DlogQ Snﬂ[O,l)d g(@gR%’logz Snﬂ[ovl)dl
X /RX(U){ H 2—jn(l1+lz)}m(A(()l)(u) _9=in Og(l)) (9.26)
(llle)EYd

o »
X N<5Dp|log, J] (=270 9(2)) du,

see also (6.4). Using (9.23) and (9.25) we can estimate the left-hand side of (9.24) by

R n—1 R
€2 ( LL1ns. « Uk"]’“”zw(GOQ ( 1T 1ihs + Kﬂ'kH@O(Go)) 1P * K = B % Un,gll 2 gy
n=2 k=2 k=n+1
R n—1 ) , R 1 2
S Z ( H SzD(der))S;l/D |F|1/2 < ZJ4D(d+df)An— —A"D~ \F|1/2 < J_R|F|1/2,
n=2 k=2 n=2

since 4D(d + d')A" ! — A"D72 < —A""1 < —R, see (9.22). The bounds (9.24) follow.
Step 3. In view of (9.24), for (9.20) it is enough to prove that

S TP, (9.27)

H (}ihj” * ﬁ""”“) * (K = Kio) 2(Go)

uniformly in J = jo < j1 < ... < jr < 2J satisfying (9.21). Let us define

X9 = 03,() [ x{ [ 20 ban ios (4 ) — 27 o) 029

(I1,l2)€Yy
X <sDullong 1) (=27 0 9®) du,
Xn,gpo(9) = Xn,gu(9)e(g.0). (9.29)
Using (9.26) we have
B % Unogp = > S WY - hj, % X s pon-
T ERL gy 5, MO oV ERE, o N[0,1)Y

In view of (9.22), for (9.27) it suffices to show that

(60 S TR, (9.30)

R
H < H h]” * Xn,J,u,an> * (KJI - KJ )
n=2

for any ot € R%DlogQ s, N0, 1)4, P e ,R’%llogQ s, N[O, D%, 2<n<R.



56 ALEXANDRU D. IONESCU, AKOS MAGYAR, MARIUSZ MIREK, AND TOMASZ 7. SZAREK
Observe that

Fo (K = Kjp)(9) =Y Xijoqr (W) f(Ao(u) " - g),

UEZL
where X, ., (v) = 2771y (2771v) — 2790y (27900). Notice that
’Z Xjo,j1 (Qu + b)’ S 2_j07 QeZy, belg. (9.31)
VEZ
Therefore we have

R
(TL s * Kt ) * (i~ Kip)(0)

n=2

R
= Xio(v) Y ( T Xnrpon (vn - g7t - Ao(v)) (yn)) (9.32)

VEZ Yy2,...yr€Gy n=2

R
= > (H hjn(yn))H(:tn 97y g,

y27"'7yR€GO n=2

where
R
H(ys. - um) = 3 Xioo (0) ( TT Xt (v - Ao(v) ). (9.33)
vEZ n=2
For (9.30) it suffices to show that there are functions H,, = H,, j, >0, 2 < n < R, such that
R
[Hollage) S1for2<n <R and [H(ya,...,yr)| ST [ Hulvn)- (9.34)
n=2

Indeed, assuming (9.34) and using (9.32) we can bound the left-hand side of (9.30) by

R
CJ‘Q“H I1 .
n=2

Step 4. It remains to prove (9.34). Let ¢, be the denominator of o,. By (9.22) one has

R
< g HHh’jn * Hp | 2r-1) () S T,
n=2

"lle2(Go)

R
Q:i=]]ws H S2PE < g, (9.35)
n=2

n=2

Splitting the summation in v in (9.33) into classes modulo @ and using (9.29) we obtain

|H(y2, - yr)l < )ngo,ﬂ Qu + ) (HXnJ;L Yn - Ao(Qerb)))’

beZg veEL

Z‘ZXJOJI QU+b<HXnJu Yn - Ao Qv—l—b HXNJM yn)‘ (9.36)

beZg veL

+ 37 3 i @u b (HXW )| =1+ 1

bEZQ VEZL
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Using the definition (9.28) it is easy to see that for every y € G# and 2 <n < R one has

| X0 (y)| + Z 2jn(ll+lz)J—61112Du‘(3%1[2)(”7(]’“)(3])‘
(l1,l2)€Yq

<{ I 2ot shusbe /R x(w){ T (Ag(u) — 279 o y)>72D du,

(l1,l2)€Yy

(9.37)

where § = (01115) (11 1), and &y, = & if (I1,12) € Y] and &3, = &' otherwise. Since 271 < J=Pu
(the separation condition (9.21)), for every y, h € Gy satisfying [277 o h| < 1 we have

|Xn,J,/,L(y : h) - Xn,J,,u(y)|

Sj—su{ I1 2—jn(ll+12)J51112Du}/

< . )
X(u)<J5D“ (Ao(u) —277" 0 y)> du. (9.38)
(ll,lQ)EYd R

Using (9.37)—(9.38) if |Qu + b| < 27t then we have

‘HXnJ,u Yn - AO Q'U+b HXnJ,LLy”

S J_S'u H </RX(Un){ H 2—jn(l1+l2)J5lll2DM}<JSD/L (AO(Un) — 9 Jn o yn)>_D dun> .
n=2

(I1,l2)€Yy

Since ZbeZQ Y vzl X1 (Qu +b)| S 1, we see that the required decomposition (9.34) for the first

term I; in (9.36) follows. The decomposition for I3 also follows using (9.31), (9.35) and (9.37). This
completes the proof of Proposition 9.3.

9.3. Proof of Lemma 9.5. Observe that we may assume that k > D2y, otherwise the conclusion
is trivial. Observe that we have a decomposition

Mif = f3Usgsp=Mef =+ [ S K +7[ 2 m]+f+] Y 6il

s€[0,0k] s€(log, S,0k| s€[0,log, S|
+fx [ oo R - Uk,J,s,u]-

To prove Lemma 9.5 it remains to show that for any f € EQ(GO), k> D2,u, J<k<2J,and S < JH
we have the following estimates

ES Z:S ’ i
+f kkRL, \RZ RY RY
<&’k <Dlogg S’ “<logg S <Dlogg S’ “<logg S

_ 2
[Mis =1 o[ 3 K]y 2SN (9.39)
5€[0,5k] 0
_ 2
s€(logy S,0k] 0
—k/D?
(YN R He?(@o) S 27577 fleeo)s (9.41)
1/D
Hf * Kk kRizs’k\R%Dlogz sz%’loggsHEQ (Go) S’ ST / ”fHZQ(GO)’ (942)
g1
Hf i { FhRL o o RE T Uk,J,s,M} (G ) 1 lle2(@0)- (9.43)

Here and in the rest of this subsection the implicit constants are allowed to depend on u. The
bounds (9.39) follow from Lemma 4.2. The bounds (9.40) follow from (4.20)—(4.21). The bounds

(9.41) follow from Lemma 5.1 with B = Ri’logQ
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To prove the bounds (9.42) we use Lemma 8.2 with ¢ = 0, so we have the decomposition

* r 0,r 0,r
{(Ick /C Rd\R<Dlog2S7Rd, ) ]Ck: k Rd\R<Dlog257Rd, } f = f * {Fk + Ok }7 (944)

<logg S <logg S

for any p € (Dlog,y S, 0'k]. Here ||02’ ||g1(GO) <27k A= Rg \ R%Dlo& g B= T\’fglogZS, and

FO7(h) = { 3 3 C(a?/Q,0)e(hD.o)e(h® . (a® /Q))}

a® /QeB[0,1)# o€[A+(Zg/Q)4N[0,1)
X { 11 2_k(l1+12)}7)§36k(2_k o h)/ N<stey2(C g2 (CPP(Oe[(27F o h).CldC.
(I1,l2) €Yy Rdx R4’

The function P was defined in (7.12), and the coefficients C satisfy the bounds
C(@®/Q,a)] S 2777,
for any a? /Q € R%{logg N[0, 1)% and o € [Rd\R<Dlog s+ (Zg/Q)4N|0,1)% Using this estimate

and (7.27) (with ¢ = 0), we see that HFk le@o) S 2 —»/(20) " The desired bounds (9.42) follow by
summation over p > Dlog, S.
Finally, to prove the bounds (9.43) we use first Lemma 6.1 to see that

K _ U < 2—/6'
I k,Dpllogy J], R<D10g2 S’R(illogz 5 k’J’S’“Hel(GO) ~

Therefore it remains to establish the following:

Lemma 9.6. Assume > 1, k> D?*u, J <k <2J, and S < J*. Then for any f € /*(Gy),

< ST fllez(Go)- (9.45)

* da’ K a4’ ]
Hf [ k.k R<Dlog2 5 R%1ogy s k,Dpllog, J] R<Dlog2 5 R%10g, 51 1l02(Go)

Proof. For w € N and Z C {1, 2} we define the auxiliary functions

1 N<s'(wr1) — N<ow 1 ETL, 2 N<s(w+1) — N<ow 2 €L,
) = Qs TS @) — Qsotwrt) THsw (9.46)
; N<srw if1¢7Z, , N<sw if2¢7.
Then we define the projections Wy, ,, 47 and Zj ,, g7 as in (4.11),
Vewaz€®) = 3 T o (€M —a/q),  ZpuszE®):= 3 T o (€ —b/g)),

a/qeA b/qeB

where A C Q% and B C Q% are 1-periodic sets. Then we define the associated kernels
Kiw,a87(9) = Liw,az(9") Niwsz(9?),
Liwaz(gV) = ¢ (4" )/Td e(gM D)Wy 4 z(€M)S(W) dg,

Niwz(9?) =0 (9?) /Td' e(9 €2k z(6?) dg®

Let wo := Dpu|logy J| and observe that

KkkR

d/ - K d d’
<Dlogy $R<l0gy § kwo, RS logg 57 < logy S

k—1

= K d’ - K d d’
Z ( kw+1,RE logy §7 % logy S kw,RE piogy 5 R 10g, s)
w=

K d d’ .
35> R gy 5 Ry 5

w=wo ATC{1,2}

.—E
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Therefore (9.45) is reduced to prove that for any w € [wo, k — 1] and Z # ()

* K : e < 27PNl 9.47

Hf k’w’R%DlogQ S’R%IOgQS’IHZ (Go) ~ Hf”é (Go) ( )

We examine the definition of the kernels K kw RE R 7 and notice that we can replace
W< Dlogy 57%<logy S?

the cutoff function ¢ by the cutoff function
dr0(9) =n<p(27% 0 g n<p(27* 0 g¥).
Indeed, letting K} ., s 7 denote the corresponding kernel we have

(9) = Kiw,52(9) = (91(9) — dr0(9)) Z

d d, !
oERL logs sN[o,1)4 XR§10g2 sN[0,1)4

xe(g0)2™ Y e( = Ag(m)o)x(@Fm){ T 27k}

nez (li,l2)€Yy

K d d’!
k’w’RSD logo S’Rglogg S

— o —

X T (A (27 ) =27 0 )Yy (27 0 )

i

)

which shows that

K d d’
H kawRS logo S7R§10g2 s>

D2 _D2 _
T - Kk,w,S,I ‘fl(Go) S S 2 w S 2 w.

To bound the operators defined by the kernels K}, ,, 5 7 we use again a high order 7*7T" argument,
so it suffices to prove that

{(Kkw,57) Kw, sz} fllezcoy S 27N flle2(co)- (9.48)

The proof of (9.48) proceeds along the same lines as the proof of Lemma 8.2. However, there are
some subtle differences arising from the fact that we can only hope for a rapid decay with respect
to w, which might be much smaller than k. In particular, this is the reason why we had to replace
the function ¢y, by ¢4 0. For the convenience of the reader we shall provide the details.

In view of (2.13)—(2.16) we have

{(rw,52) Kiwsz} [=F*Kpyst

where

Kiwsz(y) = ]l|2‘k0y|§1/ °(9-9)H2,w,s,z(9)QZ,w,s,z(9(2)) oMo,

TdxTd
and the multipliers 0y w51 and Q};,w, 57 are given by

, i 1 1
I} ,57(0) = Z { HLk,w,RleogQS,z,o(hg ))Lk,w,RiDlogQS,I,o(gj( ))}
hM gMezd  I=1 B B
< e(0@. S (r{Y — giMy)
1<5<r
(T RO s 5 Rl ).
1<j<r 1<i<j<r

where Ly, 4, 47,0 is defined as Ly, 47 except that we replace gﬁ,(cl) by ¢,(§1%. With Fj, ¢ defined in a
similar way as in (5.3) (we replace n<s; by n<p) we have

2r
fwsz(0P) = ’/Td, Fioo(0® — @)z, o 1(5(2))615(2)’ :

’w’Rglogg S
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We first analyze the kernel QLw’ sz- Note that

L, o0 = €)%, o () de®

<logg S”

= > Y nep@Fog®e(—g?.(6% —a®/Q))

a(2) /Q€R<log Sm[o 1)d/ g(Q)GZd/

«{ 2_;@(11“2)}@(_2—1«: o g@).
(ll,lz)GYd

Notice that we may replace the factor n< p(27 %o g(2)) by 1 above, at the expence of ¢! error term

O(§2rD*9=D*w) < 9=w (here we have used the fact that integration with respect to 6 produces a
delta and trivializes summation in y). After this replacement we can use the Poisson summation
formula and we end up with

3 ST P (2o (0? — a?/Q - M)).

a® /Qe7z<log sN[o,1)4" Mezd

This means that we can deal with a simpler kernel

Kpsz(®) = Lroy1 > e(y?.a?/Q) / ¢(y.9)

Td xR’
a®/QeRYE, . sNI0,1)%

X T0}, 5.7 (01,02 +a®/Q) (TE, (2 0 02))* apWag®).

We now focus on I}, 7. As in (5.15)-(5.16) we may write

sz (00,09) = [ Vi, 005606, g
("H‘d)Qr
1 1 1
< TT {8k wk,w,@mng(c; NS E N Vra, 1G] (9.49)
1<5<r

x deMactV . deMde,

where

V£0(9(1)79( ) (1) 7' "7CT‘ ? (1))

r

= X H{“) (00 — <)y aly(a)e( — (00— £V).47)}

hj gJEZd 1<5<r

e(—e<2>.{ D> Ro(hjhj—g))+ Y Ro(—hz+gz,—hj+gj)}>~

1<j<r 1<i<j<r

Further, proceeding as in the proof of Lemma 5.2 we see that for |2¥ o )| < 20% and o /Q €
RglogQS N o, 1) 4" we have

VEo(0™M,0%) +a® /@i & ¢V e)
= Wé(a( )aba Q)Zk,O(e( ;Bla Ty 7/87“7 71“) + O(Q_DSk)a
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where b, c € Z' and B;,v; € [-1/(2Q),1/(2Q)]¢ are defined in (5.22). Here W&(a@); b, c) is defined
in (5.24) and Z} ; is a modification of (5.25), i.e

Z£,0(9(2);ﬁ1,71,~--,ﬁm%« = /RM{HQM}

x T {nent@e(= 280 B).as)ne(y)e(@* 0 7)) }

1<5<r

Xe( (280 0®).{ > Rolyjys—z)+ Y Ro(—yz+$l,—yj+xj)})dxjdyj-

1<5<r 1<I<j<r

Further, we have an analogue of (5.18), namely

Vio(0M, 0@ +a@/Q; ¢V, &V, ... ¢V, €M)
w —dw -D
$q fI?“}]2£+P+2“5‘W“ (W + 2006 — ¢D}jg] 2,
1<i<d 1<I<d

1 1
for any 00 = (0 yicqr,ap € T% ¢ = (¢ ey € T and &Y = (6 Vieqray € T
Using this we proceed as in Step 2 of the proof of Lemma 8.2. Having a rapid decay unless
M0 — ¢ llg < 22 and 20V — ({)llg < 22 for all j € {1,...,r} and I € {1,...,d} we
expand the cutoff functions ¥, , wa LT (9.49) and we use Lemma 6.1 to obtain
y Wy ogo S
1 2 ") ey -
HKIZw S Kk,w,S,IHfl(Go) S S4TD(d+d )2 Duw/a 5 2 w,

where

Kiwsz®) = Ljp-koyi1 > > C(a?/Q,0)

a®[QeRY, N[0 TERL 1oy, 5+(Za/Q)UN0.1)¢
< e(y®.a) )/Hw@wmqumfowma»

/Rzm ZIZ’O 01— 5J(’l) — 0,00 — CJ('l) - U)

X

x{ r<1> (2 0 60) 102 0 ()0 (¢ } dePact? . agMac

X (Tﬁ’l(zk 0 0))* a6 o).
Here C(a® /Q, 0) is defined as in (8.23) with

(0:b.0) 1 if a—bj/Q,a—cj/QeRiDlogQSfor any j € {1,...,r}
ol(o;b,c) == <
Q%2 0 otherwise.

Note that C(a?/Q, o) satisfies the estimate
|C(CL(2)/Q,O')| < QsTdQ;2T/6 5 Q3rd S S3'rd’ (950)

for any a® /Q € R% Zlog, N0, D% and o € [R<Dlog25+(ZQ/Q)d]ﬂ[O, 1)4, where Q) is a denominator
of the first component of ¢ and C is the constant from Proposition 2.2. Therefore it suffices to deal
with the kernel K,:fv g7 Next, we focus on the integral over §J(-1), Cj(l) above. Proceeding as in Step
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3 of the proof of Lemma 8.2 we are able to prove that up to an error term O(2~P%) this integral is
equal to Iy, () — 0,0?), where

tewl0,0%) = [ T (F0a TR0l @00 05 )
X {/Rm ( (2k09(2)) x y u,v) H {x u] (_(gkog)'D(ng)) dgdy}dg'dg’.
1<5<r

Therefore we have

r,2 3 4rD(d+d')9—Dw/2 —w
1K wsz — Krwszlloe) <8 2 S27Y,

where

Ky s7() = Lpmhoy <t Z > C(a?/Q,0)

a@/QeRY 2 1ogg sNOD)Y TERL p 1, sT(Za/Q)4N[0,1)?
X 2( ( /Q)) /d p (y.@)n§25/w+D(2k o 9(1))(T53,)I(2k o 0(2)))2TIk,w(0) dg(l)dQ(Q)

Next, proceeding as in Step 4 of the proof of Lemma 8.2 we conclude

"7§26’w+D(2k © 9(1)) (Tz(f,)I(Qk © 0(2)))2T1k,w(0)
= Nsuy2(25 0 0D)ngs (28 0 0@) (T2 (2 0 6))* (Y0 )(0)* P(2F 0 0) + O(27/°),
where P is defined in (7.12). Therefore using (9.50) we obtain

T’,3 . ’I”,4 —w/(26) 4T(d+d/) —w
”Kk:,w,S,Z Kk,w,s,zHél(Go) S2 S S27Y,

where
K s 7)) = Ljg-roy<t > > C(a?/Q,0)

a®/QeRY,,, N0, TE[RL o0, s+(Zo/Q)N[0,1)¢
<e(ploa®/Q@){ I 2} [ e[ o) blncsu a0 nsu0)
(li,l2)€Yy R+
2r 2r
x (T (6)™ (X,5(0)) " P(6) do M),
Finally, to prove (9.48) it suffices to show that

74 -
1K wszllenee) S 277

If 1 € Z, then TS )Z(O) = 0 and there is nothing to prove. Otherwise, since Z # () we need to have
2 € Z. This means that 2| > 2% and using (7.13) with ¢ = 0 together with (9.50) we have

1K szl ey S ST ¢Iomw/@0) < 97w,

This proves (9.48) and consequently the proof of Lemma 9.6 is completed.

APPENDIX A. PROOF OF PROPOSITION 6.5

In this section we prove the estimates (6.32) and (6.34). We begin with proving (6.34), which
will be needed in the proof of (6.32).
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A.1. Proof of inequality (6.34). We examine the definitions (6.31) and (6.4), and rewrite

Wk,w—&-l(l') - Wk,w($) = ¢r(x) Z Skw,z(),
0#£IC{1,2}

where for Z C {1,2} we define

Ssz( )= Sy (aW)SE) (@),

={ 1I *’d} [Tl ) - o) du
R k)

le{1,...,d (A-l)
2 _ ~2)
Sinz@®)i={ TI mHOr bl (s oa),
(ll,IQ)GYd/
and TS)I and Tg)z are defined in (9.46). Let Sy zf = f *c# Skwz. Notice that
) ’ 0
| xSk wz — # ST_Dk, T#0, 0<w<k.
T (GF)
Therefore, to prove (6.34) it suffices to show that if w > 0 and Z # () then
< —w/D
| 2 sty ST M gy
provided that |s;| < 1. In view of the Cotlar-Stein lemma it suffices to prove that
* * —2w/D __—|k—7j|/D
HSj,W,ISk,w,I”LZ(GO#)HLQ(G#) + HSj % )A)LQ(GO#) ST / T Ik=31/ ) (A2)

uniformly in 0 < w < j < k and Z # (. We will prove the estimates only for the first term in the
left-hand side above, since the second term can be treated in a similar way.

With § = (01312) (11 12)evys 01, = 0 if (I1,12) € Y and &y,0 = &' as before, it is easy to see that

|Skwz(T)] + Z k(l1412)— (5lll2’w‘ 211125k7w72>($)‘

(ll,lg)EYd (A 3)
- -D .
< { H T_k(l1+12)+6lll2w} / x(u) <7'6w (Ao(u) kg x)> du,
(11,12) €Yy R
uniformly in z € G#, 0 < w < k. Observe that for every 6 € R4 we also have
Sk (8) = TOL(r* 0 gO)TE) (7F 0 g2 /R x(w)e( = 0.A9(r*w)) du. (A.4)

Step 1. We prove first the bounds (A.2) when k —j > w. Using (A.4) we have [ 4 Sk z(z)dz =0
0
for Z # (). Therefore the kernels Ky, ; of Sj,w,IS,;w’I satisfy the bounds

HKk,jHLl(GO#) < /G#‘Sj,w,1<y)’/(}#‘sk,w,l<$-y) — Skwz(T)| dz dy. (A.5)
0 0
Using now the bounds (A.3) we obtain

Sz (@) = Sez(@)] S 77 EDRL ] I (7 o )
(ll,lz)GYd

X /Rx(u)<7'5w (Ag(u) — 770 :z:)>

—-D/8+1 du<7-5w (T*k . y) >D/4?
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for any z,y € G#, provided that k — j > w. Therefore, using (A.5),

L /2/ [ ottt }

(L1 l2)€Yy

X /Rx(v)<75w (Ao(v) — 7700 y)>

This proves (A.2) provided that k — j > w.
Step 2. Assume now that &k — j < w. Using a high order T*T argument it suffices to prove that
if 0 <w <k and Z # () then

s dvdy < 7= k=972,

H (S;ek,w,ISk,w,I)r||L2(G#)_>L2(G#) S T (A6)
Using the formulas (2.13)—(2.16) we see that (Sy , 7Skwz)"f = [ *g# K, where
. 0

Kj () = / e(0.2) (YEL(rF 0 6D 17, 16D, 6P) b, (A.7)
R4 xR’
and
Fua®):= | {HSé?i,ﬂhE”)S,SZU,I(g}%}e(em. 3 () - o))
R2rd 50 1<i<r
xe( =02 S Ro(n{Y,nf! + Y Ro(=n) + g~ + g} ) anVaglt.
1<i<r 1<p<i<lr

Using the definitions (A.1), (8.21), and (2.24), and making the changes of variables hz(l) = rko
(A5 (0) +9), 9" = 7 0 (AG) (i) + ;) we rewrite

]

0= [ TR Y el — (0 0) (0 - )}
i=1

X {/R2Te(— (Tkoe( )) T(z,y,u,v) H{X ;)X vj)}e( (TkOH).D(g,g)) dgdy} dady.

In view of (A.3) we have
15k 0,2 (2) L ko108 [ 1 gty S 70772
To prove (A.6) it suffices to show that for a large fixed constant C, > 1 we have
K ()L rompecr oty S 7
In view of (A.7), for this is suffices to show that for any (#(),0?)) € R? x R? we have
|(X (5 0 6717, 2(01,6@)] < [T (7% 0 62) P r =t (1 4 72w |rk o ) =10 (AL9)

This is similar to the proof in Steps 3 and 4 of Lemma 8.2. Indeed, first we integrate by parts
many times in x; (or in y;) in the identity (A.8) to see that

(Y2 (7% 0 02)* 17, 7(00,02)] < [TE (75 0 6P (1 4 20|k o gV)}) =P

for any (01, 0(2)) € R? x R?. Tt remains to prove (A.9) if |7¥ 00| < 279+ and |7F 0 p(V)| < 730w,
In this case we can use Proposition 2.4 as in Step 4 in Lemma 8.2 to prove a suitable decay 1f
7% 0 0] > 704, Finally, if |7* 0 8] < 70%~* then we may assume that 1 € Z, so

/Rd TS)I(I‘)J}ﬁ =0
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for any multi-index 8 = (B1,...,34) € N This is similar to (8.25) and can be used to show that
’IIQI(H)’ <77 Pwif |78 0 ] < 79w—4. This finishes the proof of inequality (6.34). O

A.2. Proof of inequality (6.32). The space X = G# endowed with the Lebesgue measure p# =
0

| - | and the quasi-metric

_ 11+l
qg#(z,y) == sup (Hfﬁ-y 1]1112}1/(1”)), z,y € GY (A.10)
0 (I1,2) €Yz

defines a space of homogeneous type (G# , B(G ), Ko qG#) This in turn allows us to associate a

system of dyadic cubes for X in the sense of Christ [18 Theorem 11].
Following [35, Section 3 and 4, pp. 6721— 6726] we can define the martingale sequence Ey f(x) =

E[f|Fk](z) for k € Z, x € GO ,and f € LIOC(G ), where Fj, is the filtration corresponding to the
system of Christ’s dyadic cubes, see [35, formula (27), p. 6721] and [35, Lemma 3.1, p. 6721].

An important ingredient in the proof of inequality (6.32) will be Lépingle’s inequality [41, 45],
which asserts that for every 1 < p < oo and 2 < p < oo and every f € LP (G# ) one has

[VP(Exf : k€ Z)H,;p(@#) SP,P ”fHLP(GO#)' (A.11)

We now establish certain variational estimates necessary to prove (6.32). In a similar way as in
(6.31), let us define new kernels on Go# by setting

Wi(z) == / no(7% 0 E Mo (7% 0 E@e(2.&) T (€M) de, 2z e G, 7>1.
R xR
Observe that
Wi (z) = / (R (z — Ag(w)) du,  x e GF,
R
where for k € Z and x € G# we set

() = { H Tfk(l1+lz)}w(7_fk o z), () = ﬁo(—$(1))ﬁo(—$(2))-

(l1,lg)€Yd

The main result of this subsection is stated below.
Lemma A.1. Let 2 < p < oo be given. Then for any g € LQ(GO#) one has
[VP(g gy Wi k € Dll sty Sor ol ey (A.12)

Proof. We reduce the matters to Lépingle’s inequality for bounded martingales (A.11).
Step 1. Let po := [p x(#)dz and define

Thg(x) := g *gp Wi(@) = g gz (nove)(@) =: g #gp Ki(a), @€ Gy .
Observe that
IVP(angp Wi k € Z)ljaqy < IVP(0 gt b € Z) ot

+(Tmar)™

As in the Jones—Seeger—Wright paper [35] we can conclude that

va(g *G# VY k€ Z)HLz(G#) SP,T HQHL2(G#)' (A'14)

(A.13)

L2(G¥)
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Indeed, let Eif denote the martingale sequence, as above, and define the martingale difference
operator Dy = Ex — Ex_; and proceeding as in the proof of [35, Lemma 3.2, p. 6722] we are able to
prove that there is a constant v > 0 such that for any f € L? (G# ) the estimate

H(Dmf) *fo ¢M0(k+m)+b - Ek+mDmeL2(GO#) S A HDme[ﬂ(G#)?

holds uniformly in k,m € Z, and b € Zjy,; here My € N is fixed but large constant such that
§ = 27Mo in the construction of Christ’s dyadic cubes, see [18, Theorem 11]. This estimate and a
simple square function argument (see [35, Section 4, p. 6724]) reduces (A.14) to Lépingle’s inequality
(A.11) and the claim follows.

Step 2. The proof will be completed if we estimate the square function from (A.13). By

Khintchine’s inequality it suffices to show that for every f € L? (G# ) one has
HZ s Trg ‘
kEZ

for any coefficients s, € [—1,1]. Using the Cotlar-Stein lemma it remains to prove that

<
L2(G§E) ~ HgHLQ(GO#)’

—k—d .
||KZ *G# KjHLl(G#) + ”Kj *G# KZHLl(G#) ST | jlv k>j. (A.15)
We prove only the first estimate since the second one is analogous. Note that

K} g ()] < /G K )| Ke (™ - y) — Kila™) | dy, (A.16)

0

since we have [.» K;(z)dr = 0. Further, using the estimate
0
Wz -y — 2) — p(z — 2)| < T—Ik—jl{ I1 T—k(l1+l2)}<7_—j o y)DHL (7 o g) =D/,
(l1,l2)€Yy
which holds uniformly in k& > 7, [T ¥ 02| <1, and z,y € G#, we obtain
Ki(z-y) ~Ke(@)| ST [T w0 T og)Polr ko a)=P/2e,
(I1,l2)€Yy

Combining this with (A.16) and a simple estimate

K s{ TI 77 Hroy™P,

(l1,12)€Yy

we conclude

Kk *g2 Kj(@)] S Tf‘kfﬂ{ 11 Tﬁk(hm)}ﬁ*k ox)™Pl8,  xeGf.
(ll,lg)GYd

This shows (A.15) and the proof of Lemma A.1 is completed. O
We now prove inequality (6.32). Note that
Hvﬂ(f *G# Wik k> O)HLQ(G#) < HVp(f *G# Wi k€ Z)HLQ(G#)

" H <;0 |/ *¢ (Who — Wk)|2>1/2‘

L2(GY)

= S (18 w6 Wowrs = W) )

weN k>w

L2(G¥)
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The p-variations are bounded due to Lemma A.1. The first square function is bounded due to the
following pointwise bound

|f g (Wio — Wi)(@)| S 7752 f| 5o E(a),
0 0
where
Ek(h) — { H 27k(ll+12)}<2*k o h)iD, he G#
(ll,lz)GYd

Appealing to Khintchine’s inequality and (6.34) we conclude that the second square function is
bounded by a constant multiple of 2_“’/D||f||L2(G#), which completes the proof of (6.32). O
0

APPENDIX B. PROOF OF PROPOSITION 9.4: SHIFTED MAXIMAL FUNCTION

Using the definition of Ji (&), (see (6.4)), and (6.8) we obtain
W) =oxm)( T] Q8,27 0+) / X(@)A (B (27% 0 b — AN (2)))
(I1,12) €Yy R
x 70 (8@ (27% 0 h?))) da,
where 8 = (81, 8@) = (By,1,) € R g, = 20w if [, £ 0, B,;, = 219 if I, = 0. We define
the quasi-norm on qg : R¥? — [0, 00) by

qﬁ(x) = sup (/6l1l2’x1112|)1/(ll+12)' (B'l)
(ll,lz)GYd

Since qg(X o) = Aqg(x), we have
Wewa(h)] < / ( [1 @827 kb )(1 + 27k qa(h — A0(2ku)))_D du.  (B.2)

(l1,l2)€Yy
For Q € Z4, h € Hg, and u € [—2,2] we define
Mouaf(h)i= s (] QBn,27 ) > @)l (B3)
REN, 2K/228Q2/5 (1 1) ey, {y€Hg: qp(h-y—1—Ag(2ku))<2k}

and notice that, as a consequence of (B.2),

o0

5 v WD) £ 3277 [ Mg mna (1)
n=0
for any h € Hg, integer k satisfying 2k/2 > 8Q2w/8 and f € (P(Hg), uniformly in @ and w.
Therefore, for Proposition 9.4 it suffices to prove the following:
Theorem B.1. For any Q € Z,, w € N, and u € [-2,2] we have
[ MQw,uller (g)—ser e y) S (w+1), B4)
M@ uwuller () —erg) Sp (w+1),  pe(1,00]. '

B.1. Proof of Theorem B.1. We begin with some simple observations related to the quasi-
distance qg and the associated quasi-balls Bgu,, (7,7) defined for any = € G# and r > 0 by

By(z,r) = {y € G+ qsle-y~h) <},
BIQ7HQ($,T) ={ycHgy: qa(z- y_l) <r} = Bg(z,r) NHy.

We record first several simple properties, which follow directly from the definition (B.1) and the
observation that 1 < 8,5, < By for any (l1,l2) € Yg and I € {1,...,d}.

(B.5)
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Lemma B.2. The following relations holds uniformly for any x,y € G#:
(a) qs(x) >0 for every x € G# and qg(x) =0 if and only if x =0,
(b) as(x 4 y) + a5 y) S a5(2) + a5(y),
(c) ag(z™") ~ qa(x),
(d) 1+ qﬁ(x) S} 1+ ‘5$| 5 (1 + qﬁ(x))2d7 where Bz := (51112x1112)1112'

We start with a simple lemma concerning the cardinality of the quasi-balls Bg m,, (x,r).

Lemma B.3. For any x € G# and > 2Q27" we have

B 7,l1+l2
| Bg,sg (z,7)] ~ S T
Proof. Observe that for x,y € G# we have
(z-y D =z — D) (z-y H)® =2@ — @ 4 Ry(yW) — 21y, (B.6)
Therefore
B@HQ(x,T) = {y(l) € (QZ)d, y(2) € (QZ)d, : Biolzio — o] < rt for any l € {1,...,d} B.7)
and By, 1,1, = Yy, + Ro(y™ — 2,y M)y, | < 7142 for any (11, 15) € Yy} |
This desired volume bounds follow. U

Next, we prove two facts concerning the quasi-norm qg and shifted balls.

Lemma B.4. There exists a universal constant Cy > 1 such that for any x € Hg, u € [-2,2], and
any k € N satisfying 25/2 > 2Q25 | there is z € Hq such that

{y e Hp: qa(z - T A0(2ku)) < 2’“} C Bpm, (2, Co2"). (B.8)

Proof. We choose z € Hg satisfying the inequalities
Briolz0 — 20 + (2Fw) | < 28 e {1, d}, (B.9)
Butl 2ty — T1,1, + Ro(z® — 20 gM — a9k, ) < oblitl) (1 1,) € V7. (B.10)

This is indeed possible due to the assumption Q29w+1 < 2k/2, Using (B.6) we see that for any
y € Hg satisfying qg (x T A0(2ku)) < 2F we have

Brolzno — o — (2Fw)t| < 28 1 e {1,...,d}, (B.11)
Buuts | %131, = Yty + Ro(y™ — &M,y W)y, [ < 280F2) (1 1) € v, (B.12)
We want to show that y € Bgu,, (2, Co2%) for some large constant Cy. Using (B.9) and (B.11)
Buolzio —ynol <2F1 1< <d
To finish the proof of Lemma B.4 it is enough to show that
Burtol 21, — Yty + Ro(y™ — 20,y M), | S 2HOHR) - (1,15) € Y (B.13)
This follows by combining the bounds (B.9)—(B.12) and the identity
2ty — Uity + Ro(y™M — 20 yW), = 2, =y, + Ro(y™ — 2,y W)y,
+ 21,0, — L1305 + Ro(x® — 20 (1) A(()l)(Qku))lll2
+ Ry (x(l) — 2 — A(()l)(Zku) + A(()l)(Qku), y® — M 4 A((]l)(2ku))

l1le”

This completes the proof of the lemma. O
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Lemma B.5. There is a constant C; > 1 such that for any u € [-2,2], x € Hg, and n € Z

satisfying 2™/2 > Q29" +3 there is a sequence of points {xg,z1,...,zwt10} € Hg, = Tyy10, with
the following property: if z € Hg, k < n satisfies 2k/2 > 20'wtl gnd
{yeHg:qp(z-y ' — A0(2ku)) < 2’“} C Bg g (7, 2"), (B.14)
then
B, (2,2%) C U Beme(xs, Ci2"). (B.15)
E{0,..;w+10}

Proof. For any s > 0 we define a point ; = € Hg such that the inequalities
BiolTio =m0 — (2" *u)'| < 2",

_ _ (B.16)
ﬁth |561112 — Ty, + Ry (33(1) — x(l), I(l) + Aél)(Qn_su))

- + (2n—su)l1+l2‘ < 2n(l1+l2)’
for any [ € {1,...,d} and any (1,l2) € Yj. Such a choice is possible because of the assumption
2n/2 > 20'wt4 and, in fact, we can set x5 = x if s > 10 + w.

Given these points {xg,...,Zw+10}, assume now that & = n — s, s > 0, is an integer and
z € Hg is a point such that the inclusion (B.14) holds. With z = z, we would like to show that

Bsm, (2, 2k) C Bgu, (z,C12"). In view of Lemma B.2 it suffices to show that
qp(z -7 < 2™ (B.17)
To see this we fix a point y € Hg such that qg (z~y*1 —A0(2ku)) < 2% and notice that z-2~' = F+1,
where qg(E) < 2" and I = Ag(2%u) -y - 77! satisfies
1M =4O 70 4 Aél)(Qku),
1® =@ _ 5@ 4 ry@W, 7W) + Ro(AV (2Fu), y1) — Ro(AL (2Fu) + y M), 7).
We would like to see that qs(I) < 2". Since y € Bgu, (7,2") we have
Biolzio — yio] < 2™ le{l,...,d}
Buuts | %131, = Yty + Ro(y™ — &,y M)y, | < 20001 15) € Y,
see (B.7). Combining these inequalities with (B.16) and recalling that 89 2 Bi,1, > 1 it follows
easily that qg(/) < 2", as desired. O

Now we are ready to complete the proof of Theorem B.1.

Proof of Theorem B.1. Step 1. We define an auxiliary maximal function

Mq.uwf(h) = sup Bomg(9:297" Y. Ifw)l,  heHg,
hGBﬁ,HQ (972k)12k/22Q2w/8 yEBﬁ,HQ (972k)

where the supremum is taken over all the quasi-balls Bs u,, (9, 2k) that contain h. For any f € ¢}(Hg)
and A > 0 we define the set .

Oyr:={he€Hg: Mguwf(h) > A} (B.18)
By a standard Vitali covering argument (using also Lemma B.2 (b)) we can select a maximal finite
family of disjoint balls BévHQ = B, (g5,2%), 25/2 > Q2v/%, j € J(A, f), such that

Blg, ™t Y 1f@) = forany e J(A ),

eB’
v=Thaq (B.19)

J nJj
€I\ f) €I\ f)
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where Eé,HQ = Bé,HQ (95, Cngf) is a fixed multiple of the quasi-ball BéHQ for a suitable constant
C5 > 1. In particular,

OA = D> Bhu = Y 1Byl S Iflleg)/A (B.20)
JEJ(N) JeJ(A)

so the operator MQyw is a bounded operator from ¢!(Hg) to £1:°°(Hg), uniformly in @ and w.
Step 2. To complete the proof of the theorem it suffices to show that there is a constant C'5 > 1
sufficiently large such that

{h € Ho: Mgwuf(h) > CsA} < (1+w)|{h € Hy: Mg f(h) > A}, (B.21)
for every A > 0. Using the definition (B.3), we see that if Mg .. f(2) > C3A then there is an integer
k satisfying 25/2 > 8Q2%/8 such that

[I Q82 0) > ()] = Cax. (B.22)
(l1,l2)€Yy {yeHq : qp(z-y~1—Ag(2Fu))<2F}

Using Lemma B.4 we know that there is 2 € Hg such that

{y eHg: qa(z -y — Ao(2Fu)) < 2"} C Bgp, (%, Co2). (B.23)
Using Lemma B.3 and (B.22), and assuming that Cj is sufficiently large it follows that
| B g (%, 2577 > [f(y) = 2, (B.24)

yeBﬁ,HQ (g,2k+a)

where a is the smallest integer with the property that 2% > Cp. Therefore Bgp,, (%, 2k+a) C O, (see
the definition (B.18)), so the ball Bs y,, (z, 2k+a) intersects one of the selected balls Bé Ho for some
j € J(A, f). Therefore

B g (%,27%) € By, C Bpg(95,2%")  for some j € J(\, f), (B.25)

where b € N is a universal constant such that Cy < 2° and k + a < k; + 0.

On the other hand, we use Lemma B.5 (with n = k; + b and = = g;), starting from the inclusion
(B.23), and (B.15), so

FARS U Bg’HQ(g;',Clejer),
i€{0,...w+10}

for suitable points g;- € Hg (that do not depend on k). Consequently we get

{z € Hg: Mgwuf(z) > C3A} C U U Bﬂ7HQ(g§,Cl2kj+b)7
jeJ(\f) i€{0,...,w+10}

The desired estimate (B.21) follows using also (B.20), which completes the proof of the theorem. [
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