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A B S T R A C T

Recently, dynamic multiobjective evolutionary algorithms (DMOEAs) with transfer learning
have become popular for solving dynamic multiobjective optimization problems (DMOPs),
as the used transfer learning methods in DMOEAs can effectively generate a good initial
population for the new environment. However, most of them only transfer non-dominated
solutions from the previous one or two environments, which cannot fully exploit all historical
information and may easily induce negative transfer as only limited knowledge is available.
To address this problem, this paper presents a multiple source transfer learning method for
DMOEA, called MSTL-DMOEA, which runs two transfer learning procedures to fully exploit
the historical information from all previous environments. First, to select some representative
solutions for knowledge transfer, one clustering-based manifold transfer learning is run to cluster
non-dominated solutions of the last environment to obtain their centroids, which are then fed
into the manifold transfer learning model to predict the corresponding centroids for the new
environment. After that, multiple source transfer learning is further run by using multisource
TrAdaboost, which can fully exploit information from the above centroids in new environment
and old centroids from all previous environments, aiming to construct a more accurate prediction
model. This way, MSTL-DMOEA can predict an initial population with better quality for the
new environment. The experimental results also validate the superiority of MSTL-DMOEA over
several competitive state-of-the-art DMOEAs in solving various kinds of DMOPs.

1. Introduction
Dynamic multiobjective optimization problems (DMOPs) contain multiple (often conflicting) objectives that are

changed over time. Various application problems in engineering, economics, and industry can be modeled as DMOPs
[3]. For example, in the energy-saving and environmental optimization problem [33], the total energy should be
maximized while the pollution emissions in power generation should be minimized, with the dynamically changed
total power demand over time.

In recent years, a number of dynamic multiobjective evolutionary algorithms (DMOEAs) have been proposed,
which can be classified into three main kinds, i.e., maintaining-diversity-based DMOEAs [22, 6, 30], memory-based
DMOEAs [2, 28], and prediction-based DMOEAs [45, 1, 37]. Specifically, the maintaining-diversity-based DMOEAs
attempt to improve the population’s diversity in a new environment by introducing more randomly generated solutions
or running more mutations with high probability, which can help to avoid getting trapped in a local optimum. However,
too much diversity added into the population will be equivalent to restarting the optimization with little historical
information used, while too little diversity added has less effect to speed up the convergence in a new environment. The
memory-based DMOEAs usually preserve the approximate Pareto-optimal sets (POSs) in all historical environments
and reuse one of them as an initial population for the new environment when a similar environmental change is
detected. They perform very well for tracking DMOPs with periodic changes [32], but become not so effective when
similar changes do not appear again, due to the lack of capability to predict the change tendency. The prediction-based
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DMOEAs will learn prediction models from historical environments, which can handle various dynamic changes in
DMOPs by predicting their change tendency. They have been validated to perform better than other types of DMOEAs
for solving MOPs with more kinds of dynamic changes [43, 50]. However, in most prediction-based DMOEAs, the
historical solutions used to construct prediction models are assumed to obey an independent identical distribution (IID),
which may not always hold true in some practical cases.

Recently, some prediction-based DMOEAs using the idea of transfer learning have been proposed and shown
promising performance for solving various kinds of DMOPs [18, 17, 48, 13]. These DMOEAs can release the IID
condition for solutions in historical environments and allow the distributions of data used in training and testing
to be different [34]. In Tr-DMOEA [17], a framework based on transfer learning was proposed, which reuses the
search experiences of approximate POF in objective space to generate a high-quality initial population for guiding the
evolutionary search in the new environment. Moreover, the memory mechanism is combined with manifold transfer
learning in MMTL-DMOEA [21] to predict promising solutions for the new environment. In KT-DMOEA [20], a
small number of high-quality solutions (knee points) are integrated with the imbalance transfer learning technique to
improve the computational efficiency. In IT-DMOEA [19], a pre-search strategy is designed to reduce the possibility
of negative transfer, and in AE-DMOEA [13], an autoencoder is modified to predict the moving of POS based on the
nondominated solutions obtained before the dynamic occurs.

These DMOEAs can transfer effective knowledge from historical experience to predict a good initial population
for the new environment. However, they still have much room for improving the effect of transfer learning. First, as
pointed out in [20], transferring the whole approximate POS from the previous environments will consume a large
amount of computational resources and some low-quality solutions may cause negative transfer. Second, most of them
only transfer knowledge from the approximate POSs of the previous one or two environments, which may neglect
effective knowledge from earlier times. Moreover, due to the very limited knowledge available, negative transfer may
easily appear and the prediction models may show poor accuracy as long-term change trends from early times can not
be predicted.

To overcome the aforementioned issues, a multiple source transfer learning method is tailored for DMOEA, called
MSTL-DMOEA, so that more effective knowledge from all historical environments can be fully transferred, which
is our main innovation different from the existing methods [20, 21, 17, 19, 13] that only learn the search experiences
from the previous one or two environments. To select some representative solutions for transfer, the approximate POS
from each historical environment is clustered to obtain the corresponding centroids, which are used for transferring
knowledge to the new environment by using the proposed cluster-based manifold transfer learning (CMTL) and
multiple source transfer learning (MSTL). By this way, our method can construct a more accurate prediction model to
generate a good initial population for the new environment.

To summarize, the main contributions of this paper are clarified as follows:
1) This paper proposes the CMTL method by using a hierarchical clustering method (HCM) [25] to find the

centroids of approximate POS in each environment, which are then fed into the manifold transfer learning (MTL)
model to transfer the knowledge to the new environment. Instead of using the whole approximate POS for transferring
knowledge to the new environment [17], our method only transfers some representative centroids, which can enhance
the transfer effect as validated by our experiments.

2) This paper designs the MSTL method by using multisource TrAdaboost to construct the prediction model, which
can transfer knowledge from the centroids of approximate POSs in all historical environments to the new environment.
Instead of transferring knowledge from the previous one or two environments to the new environment [17],[20], this
method can fully exploit all historical knowledge to construct a more accurate prediction model, without a large demand
of computational resources due to the use of the above CMTL.

To validate the performance of MSTL-DMOEA, three suits of test DMOPs (DF suit [24], FDA suit [12], and F
suit [49]) are adopted and four competitive DMOEAs (SVR-MOEA/D[4], KT-MOEA/D[20], MMTL-MOEA/D[21],
and IT-MOEA/D[19]) are considered for comparison in this paper. The experiments validate the advantages of MSTL-
DMOEA for solving various kinds of DMOPs.

The rest of this paper is organized as follows: In Section 2, some basic concepts of DMOPs and some representative
DMOEAs are introduced. In Section 3, the details of our proposed algorithm MSTL-DMOEA are described. Section
4 shows the experimental results of MSTL-DMOEA with four competitive DMOEAs on three well-known test suits,
while Section 5 gives the conclusions of this paper and discusses some future research directions.
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Table 1

The speci�c mathematical formulations of representative test instances used in this paper

Problems Objective Functions Variable Bounds True PS and PF

DF1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑓1(𝑥) = 𝑥1,

𝑓2(𝑥) = 𝑔(𝑥)
(

1 −
(

𝑥1
𝑔(𝑥)

)𝐻(𝑡)
)

,

𝑔(𝑥) = 1 +
𝑛
∑

𝑖=2

(

𝑥𝑖 − 𝐺(𝑡)
)2 ,

𝐺(𝑡) = | sin(0.5𝜋𝑡)|,𝐻(𝑡) = 1.25 + 0.75 sin(0.5𝜋𝑡).

𝑥1,… , 𝑥𝑛 ∈ [0, 1].

PS(𝑡) ∶ 𝑥1 ∈ [0, 1],
𝑥𝑖≠1 = 𝐺(𝑡).

PF(𝑡) ∶
𝑓1 ∈ [0, 1],
𝑓2 = 1 − 𝑓𝐻(𝑡)

1 .

DF2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓1(𝑥) = 𝑥𝑟,
𝑓2(𝑥) = 𝑔(𝑥)

(

1 −
√

𝑓1∕𝑔
)

,

𝑔(𝑥) = 1 +
∑

𝑖={1,…,𝑛}∕{𝑟}

(

𝑥𝑖 − 𝐺(𝑡)
)2 ,

𝐺(𝑡) = | sin(0.5𝜋𝑡)|, 𝑟 = 1 + ⌊(𝑛 − 1)𝐺(𝑡)⌋.

𝑥1,… , 𝑥𝑛 ∈ [0, 1].

PS(𝑡) ∶ 𝑥𝑟 ∈ [0, 1],
𝑥𝑖≠𝑟 = 𝐺(𝑡).

PF(𝑡) ∶
𝑓1 ∈ [0, 1],
𝑓2 = 1 −

√

𝑓1.

2. Related background
2.1. Dynamic multiobjective optimization problems

This paper considers DMOPs as time-varying problems. Without loss of generality, the mathematical form of
DMOPs can be formulated as follows:

min𝐹 (x, 𝑡) = [𝑓1(x, 𝑡), 𝑓2(x, 𝑡),… , 𝑓𝑚(x, 𝑡)]𝑇 ,
s.t. 𝑥 ∈ Ω, (1)

where x = (𝑥1, 𝑥2,… , 𝑥𝑛) is an 𝑛-dimensional decision vector and Ω ∈ 𝑅𝑛 is the decision space. 𝑡 is the time or
environment variable, 𝑓1, 𝑓2,… , 𝑓𝑚 are objective functions, and 𝑚 is the number of objectives.

Definition 1: (Dynamic Decision Vector Domination) At time 𝑡, a decision vector x1 is said to Pareto dominate
another decision vector x2, denoted by x1 ≻𝑡 x2, if and only if

{

∀𝑖 = 1,… , 𝑚, 𝑓𝑖
(

x1, 𝑡
)

≤ 𝑓𝑖
(

x2, 𝑡
)

,
∃𝑗 = 1,… , 𝑚, 𝑓𝑗

(

x1, 𝑡
)

< 𝑓𝑗
(

x2, 𝑡
)

. (2)

Definition 2: (Dynamic Pareto-Optimal Set, DPOS) If a decision vector x∗ at time 𝑡 satisfies

𝐃𝐏𝐎𝐒𝑡 =
{

x∗ ∣ ∄x, x ≻𝑡 x∗
}

, (3)

then x∗ is called a dynamic Pareto-optimal solution, and the set including dynamic Pareto-optimal solutions is called
the dynamic POS (DPOS).

Definition 3: (Dynamic Pareto-Optimal Front, DPOF) At time 𝑡, the dynamic Pareto-optimal front (DPOF) is the
corresponding objective vectors of the DPOS, i.e.,

𝐃𝐏𝐎𝐅𝑡 =
{

𝐹
(

x∗, 𝑡
)

∣ x∗ ∈ 𝐃𝐏𝐎𝐒𝑡
}

. (4)

For instances, the specific mathematical formulations of DF1 and DF2 in the IEEE CEC2018 DMOP benchmark
[23] are given in Table 1.

2.2. Related works
In recent years, there are a number of DMOEAs designed for solving various kinds of DMOPs. According to the

techniques they use, most of them can be classified into three main categories: maintaining-diversity-based DMOEAs,
memory-based DMOEAs, and prediction-based DMOEAs.

Maintaining population diversity in DMOEAs is one of the effective approaches to address DMOPs, as this can
preserve more diversified decision variables in search space and avoid prematurely falling into local optimal. In [22],
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Jiang and Yang reported a steady-state and generational evolutionary algorithm for solving DMOPs, called SGEA.
When an environmental change is detected, SGEA merges the outdated solutions with high diversity and a number
of solutions generated by the steady-state method as an initial population to quickly adapt to the new environment.
In [6], Chen 𝑒𝑡 𝑎𝑙. presented a novel evolutionary algorithm for solving DMOPs with constraints, in which various
operators were designed to handle infeasible solutions and promote the generation of nondominated solutions. In [30],
Ma 𝑒𝑡 𝑎𝑙. introduced a multiregional co-evolutionary algorithm for solving DMOPs, called MRCDMO. This method
combines a multi-region prediction strategy and a multi-region diversity maintenance mechanism, which can predict
new solutions using different prediction models and obtain diverse individuals within sub-regions. Indeed, maintaining
population diversity in DMOEAs helps to solve DMOPs in most cases. However, too much diversity added into the
initial population will be equivalent to restarting the optimization with little historical information used, while too little
diversity added has less effect to speed up the convergence in the new environment.

The memory-based DMOEAs store the best solutions found from all historical environments and reuse them to
initialize the population in a new environment when similar environmental changes are detected. In [2], Azzouz 𝑒𝑡 𝑎𝑙.
presented a DMOEA with a change severity-based adaptive population management strategy, which could adaptively
hybridize memory mechanism, random and local search strategies. According to the intensity of the changes, this
method can adaptively adjust the number of memory and random solutions. In [28], Liang 𝑒𝑡 𝑎𝑙. proposed a hybrid
strategy of memory and prediction methods for solving DMOPs. In this approach, the memory-based method will reuse
the past best solutions to guide the prediction of new locations of POS when a similar change is detected. However,
these memory-based DMOEAs show some drawbacks, e.g., the large storage resources and computational resources
are required to store and analyze the similarity of historical changes, respectively. Especially, the outstanding solutions
stored from the historical environments may become obsolete, which will lead to negative effects in reuse and waste
of storage resources.

The prediction-based DMOEAs involve exploiting historical information from the past environments to construct
a prediction model, which is capable of predicting an initial population to quickly adapt to the new environment.
By this way, this kind of DMOEAs can accommodate the changes in advance. In [49], Zhou 𝑒𝑡 𝑎𝑙. introduced a
population-based prediction strategy (PPS). This method employs an autoregressive model to predict center points
by using a sequence of center points from the previous environment and then uses the previous manifolds to estimate
the next manifold. In [31], Muruganantham 𝑒t 𝑎𝑙. presented a DMOEA using Kalman filter prediction. The Kalman
filter is used to generate a new initial population once the environmental change is detected, which helps to guide
the search for POS in the new environment. In [36], Rong 𝑒𝑡 𝑎𝑙. proposed a multidirectional prediction approach
(MDP) to predict the moving location of POS. This approach divides the population into different groups by using a
clustering algorithm and obtains a more diverse population as different groups may have different predicted directions.
Meanwhile, the number of clusters is adjusted adaptively according to the severity of environmental change. In [4], Cao
𝑒𝑡 𝑎𝑙. designed a novel DMOEA with support vector regression (SVR) predictor, called MOEA/D-SVR, which could
deal with DMOPs effectively even when the solutions collected in sequential time periods have nonlinear correlations.
However, the performance of the SVR predictor is dependent heavily on the quality of historical solutions. In [35],
Rong 𝑒𝑡 𝑎𝑙. presented a multi-model prediction approach (MMP) for DMOPs. This method detects the type of change
and then selects an appropriate prediction model to generate an initial population for the new environment. Indeed,
these prediction-based DMOEAs can estimate the change trends in different environments and have shown promising
performance in solving various kinds of DMOPs [16, 50]. However, most of them assume that the data used to construct
prediction models obey the IID condition, which may not always hold true in some practical cases and will affect the
prediction accuracy. Thus, it is difficult to obtain the desired results with simple linear prediction methods.

Recently, the prediction-based DMOEAs are extended with the idea of transfer learning, which can release the
IID condition and allow the distributions of data used in training and testing to be different. Some representative
DMOEAs based on transfer learning are respectively introduced below. In [17], a framework based on transfer learning,
called Tr-DMOEA, was proposed to predict an effective initial population for solving DMOPs. The first step of Tr-
DMOEA is to find a latent space via the transfer learning method, so that the distributions of solutions at different
times will be as similar as possible in this latent space. Then, Tr-DMOEA maps the Pareto-optimal front (POF) of
the previous environment into the latent space, which is used to generate a good initial population to search POS
in the new environment. However, Tr-DMOEA often requires very large computational resources as it maps the
objective value of solutions into higher dimensional spaces. Inspired by Tr-DMOEA, some more efficient transfer
learning techniques are embedded into DMOEAs, such as KT-DMOEA [20], MMTL-DMOEA [21], IT-DMOEA
[19], and AE-DMOEA [13]. In KT-DMOEA [20], a knee point-based imbalanced transfer learning method, called
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KT-DMOEA, was presented for solving DMOPs. Probably because low-quality solutions in the transfer process occupy
a lot of computational resources, most of the existing transfer learning-based DMOEAs run slowly. Thus, this method
considers knee points as high-quality solutions and only transfers knee points to predict an initial population in the
new environment. However, in this approach, the distributions of knee points may also change significantly in different
environments, so it is difficult to accurately predict the knee points in a new environment. In MMTL-DMOEA [21],
the manifold transfer learning (MTL) model and memory mechanisms were combined to predict an initial population
for the new environment. This method uses an archive to store non-dominated solutions found in the past several
environments. When an environmental change is detected, partial solutions selected from this archive are regarded as
the source domain of the MTL model. Then, solutions that are most similar to the samples of the source domain in the
manifold space are predicted from a large number of randomly generated solutions as a predictive population, which
are combined with non-dominated solutions from the last environment as an initial population for the new environment.
However, transferring a large number of outdated solutions in this method will also increase the probability of negative
transfer, thus affecting the prediction accuracy. In IT-DMOEA [19], a pre-search strategy is used to filter out some
high-quality solutions with good diversity for transferring, thereby avoiding the negative transfer caused by solution
aggregation. Moreover, in AE-DMOEA [13], an autoencoder is modified to generate high-quality solutions by learning
the mapping relationships between non-dominated solutions in the previous two environments.

Learning from past experiences [15, 38] has been validated to be effective for generating high-quality initial
solutions in the new environment and the transfer learning-based DMOEAs have shown promising performance for
solving various DMOPs [17]. However, as clarified in [19], in the process of knowledge transfer, negative transfer
can easily occur due to solution aggregation. In addition, in the above transfer learning-based DMOEAs, only the
approximate POSs from the previous one or two environments are transferred to predict an initial population for the
new environment, which may easily induce negative transfer, as very limited knowledge can be transferred and other
knowledge from earlier environments are neglected.

To address the above problems, this paper proposes a multiple source transfer learning method for DMOEA, which
uses the CMTL method to transfer diverse knowledge (i.e., the clustering centroids of approximate POS) and employs
the MSTL method to fully transfer knowledge from all historical environments. By this way, our method can construct
a more accurate prediction model without consuming too much computational cost and shows some advantages over
the above DMOEAs for solving various DMOPs.

3. The proposed algorithm
In this section, the details of the proposed MSTL-DMOEA algorithm are introduced. The outline of the proposed

algorithm is provided in Fig. 1. Briefly, MSTL-DMOEA includes two main transfer learning procedures: clustering-
based manifold transfer learning (CMTL) and multisource transfer learning (MSTL). In CMTL, the HCM [25]
method is first used to find clustering centroids from non-dominated solutions in the previous environment, which are
considered as superior solutions and fed into the MTL model to predict the transfer centroids in the new environment.
In MSTL, the clustering centroids and some random solutions are considered as source domains, while the transfer
centroids and other random solutions are considered as the target domain. To fully exploit knowledge from all previous
environments, the source domain of each environment will be maintained. Finally, multisource TrAdaboost is used to
construct a prediction model by using all the source domains and the target domain, which can predict a high-quality
initial population for the new environment. To clearly introduce MSTL-DMOEA, its overall framework is first given
in Section 3.1, while the details of CMTL and MSTL are provided in Section 3.2 and Section 3.3, respectively.

3.1. The overall framework
To clarify the running of MSTL-DMOEA, its pseudo-code is given in Algorithm 1 with the input: the target

DMOP. In the initial environment, a set S and a set PS are both initialized as empty sets, which are used to reserve
the source domains and the approximate POSs from all environments, respectively. The environmental variable 𝑡 is
initialized as 0. In line 2, a population initPop is initialized by including 𝑁 randomly generated solutions, where 𝑁
is the population size. While the termination criterion is not reached in line 3, the following evolutionary process in
lines 4-14 is run. At first, POS𝑡 is found by using the static multiobjective evolutionary algorithm (SMOEA) to obtain
the approximate POS at time 𝑡 in line 4, which is saved into the set PS in line 5. If the environment changes in line
6, the environmental variable 𝑡 is increased by 1 in line 7. Then, the clustering centroids (C𝐻𝐶𝑀 ) of POS𝑡−1 in the
previous environment are found and the corresponding transfer centroids (C𝑀𝑇𝐿) are predicted by CMTL in line 8,
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DMOPs Initialization

Environment changes?Stop criterion satisfied?POS

Reproduction Selection

Input

Output No

Yes No

MSTL

High-quality 

initial population

SMOEA Response Strategy

Yes
CMTL

Fig. 1: The outline of the proposed MSTL-DMOEA for solving DMOPs.

Algorithm 1 MSTL-DMOEA
Input: The dynamic optimizaion problem 𝐹𝑡(𝑥).
Output: The approximate POS set PS in different moments.

1: PS = ∅, 𝑡 = 0, a set of source domains S = ∅;
2: Initialize randomly a population initPop;
3: while termination criterion is not met do
4: POS𝑡 = SMOEA(𝐹𝑡(𝑥),initPop);
5: PS = PS ∪ POS𝑡;
6: if environment changes then
7: 𝑡 = 𝑡 + 1;
8: (C𝐻𝐶𝑀 ,C𝑀𝑇𝐿) = CMTL(POS𝑡−1,𝐹𝑡(𝑥));
9: Randomly generate two populations P𝑡, P𝑡−1;

10: X𝑠𝑜 = C𝐻𝐶𝑀 ∪ P𝑡−1;
11: X𝑡𝑎 = C𝑀𝑇𝐿 ∪ P𝑡;
12: S = S ∪ X𝑠𝑜;
13: initPop = MSTL (S, X𝑡𝑎);
14: end if
15: end while

the details of which will be introduced in Section 3.2. Then, two random populations P𝑡 and P𝑡−1 are generated in line
9 as the poor solution sets at time 𝑡 and 𝑡 − 1. The clustering centroids and one random population P𝑡−1 are merged
into the source domain training set X𝑠𝑜 in line 10, while the transfer centroids and other random population P𝑡 are then
merged into the target domain training set X𝑡𝑎 in line 11. In order to efficiently transfer knowledge from all historical
environments, the source domain at time 𝑡−1 is added into the set S in line 12. Then, in line 13, a new initial population
initPop for the new environment will be predicted by MSTL, the details of which will be given in Section 3.3. The
above evolutionary process in lines 4-14 will be iteratively run until the termination criterion is met in line 3. At last,
the approximate POS set PS for different environments will be outputted.

3.2. Cluster-based manifold transfer learning (CMTL)
The main idea of CMTL is to obtain the transfer centroids by using HCM and MTL, which can guide the learning of

MSTL in the subsequent step. The use of HCM can obtain those solutions with better diversity and thus avoid negative
transfer due to solution aggregation [19]. Specifically, HCM is used to cluster non-dominated solutions in approximate
POS at time 𝑡-1 into several groups and find the centroid of each group. Those centroids are considered as superior
solutions and fed into the MTL model, which can save the computational resources and improve the transfer effect.
The procedures of CMTL are plotted in Fig. 2.

To clarify the running of CMTL, its pseudo-code is given in Algorithm 2 with the inputs: the POS of previous
environment POS𝑡−1 and the target DMOP 𝐹𝑡(𝑥). In line 1, the subspace dimension 𝑑 is set to 𝑚-1 (𝑚 is the number
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f1

f2

x1

x2

POS at time t-1 centroid of each cluster intermediate points  of subspace transfer centroids

(a) (b) (c)

Manifold TL module
o

o

Fig. 2: A simple example of the CMTL method. (a): The black points are the objective values corresponding to non-
dominated solutions in the approximate POS at environment 𝑡-1, while the blue points are the centroids of di�erent
clusters obtained by running HCM on the black points, (b): the intermediate points of subspace in the MTL model, and
(c): the transfer centroids are predicted by the MTL for new environment 𝑡.

Algorithm 2 CMTL
Input: The approximate POS of last environment POS𝑡−1,

the dynamic optimization function 𝐹𝑡(𝑥).
Output: The set of clustering centroids and transfer centroids:

C𝐻𝐶𝑀 ,C𝑀𝑇𝐿.
1: Initialization: dimension 𝑑 = 𝑚-1, C𝐻𝐶𝑀=∅, C𝑀𝑇𝐿=∅, set the number of random individuals to 𝑄;
2: C𝐻𝐶𝑀 = HCM(POS𝑡−1);
3: Use PCA for C𝐻𝐶𝑀 to get 𝑃𝑠;
4: Generate a set T with 𝑄 random solutions of 𝐹𝑡(𝑥);
5: Use PCA for T to get 𝑃𝑇 ;
6: Construct the geodesic flow by Eq. (5);
7: for each 𝑥 ∈ C𝐻𝐶𝑀 do
8: Map 𝑥 to 𝜙(⋅) and get �̄�;
9: 𝑥′ = argmin𝑥′ ‖‖𝑥′𝑇𝜙(⋅) − �̄�‖

‖

;
10: C𝑀𝑇𝐿 = C𝑀𝑇𝐿 ∪ 𝑥′;
11: end for

of objectives), the sets of clustering centroids (C𝐻𝐶𝑀 ) and transfer centroids (C𝑀𝑇𝐿) are initialized as empty set,
and the number of random individuals 𝑄 used in MTL is set to 2×𝑁 . Then, in line 2, the set of clustering centroids
(C𝐻𝐶𝑀 ) is obtained by running HCM on non-dominated solutions of approximate POS at time 𝑡-1 . These clustering
centroids obtained by HCM can be considered as 𝑚-1 dimensional manifold [47]. Then, in line 3, principal component
analysis (PCA) [26] is employed to obtain the basis (𝑃𝑆 ) of C𝐻𝐶𝑀 in the 𝑑 dimensional subspace, where 𝑃𝑆 ∈ 𝑅𝑛×𝑑 .
Similarly, after generating a set T including 𝑄 random solutions in line 4, the basis (𝑃𝑇 ) of these random individuals
in the 𝑑 dimensional subspace can be obtained by PCA in line 5, where 𝑃𝑇 ∈ 𝑅𝑛×𝑑 . In line 6, the geodesic flow 𝜙(⋅)
[14] can be constructed by Φ(𝑘) with Φ(0) = 𝑃𝑆 and Φ(1) = 𝑃𝑇 when 0 < 𝑘 < 1, as follows:

Φ(𝑘) = 𝑃𝑆𝑈1Γ(𝑘) − 𝑅𝑆𝑈2Σ(𝑘), 0 < 𝑘 < 1, (5)

where 𝑈1 and 𝑈2 are a pair of orthogonal matrices obtained by singular value decomposition (SVD) [39], 𝑅𝑆 ∈
𝑅𝑛×(𝑛−𝑑) is the orthogonal complement of 𝑃𝑆 , Γ(𝑘) and Σ(𝑘) are 𝑑 × 𝑑 dimensional diagonal matrices with diagonal
elements cos(𝑘𝜃𝑖) and sin(𝑘𝜃𝑖) (𝑖= 1, 2,… , 𝑑, and 𝜃𝑖 ∈ [0,𝜋/2] are the principal angle of 𝑃𝑆 and 𝑃𝑇 ), 𝑑 is the dimension
of subspaces, and 𝑛 is the original dimension of source domain and target domain.
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Algorithm 3 HCM
Input: The POS of last environment: POS𝑡−1.
Output: The clustering centroid set: C𝐻𝐶𝑀 .

1: Set 𝑝𝑖 ∈ POS𝑡−1 as a cluster 𝐶𝑖 and centroid 𝑐𝑖;
2: Initialize the number of cluster 𝑁𝑘, 𝑠𝑖𝑧𝑒 = |POS𝑡−1|, C𝐻𝐶𝑀 = ∅;
3: while 𝑠𝑖𝑧𝑒 > 𝑁𝑘 do
4: Find the two clusters with the smallest angle among all clusters by Eq. (8), noted by 𝐶𝑡1 and 𝐶𝑡2;
5: 𝐶𝑡1 = 𝐶𝑡1 ∪ 𝐶𝑡2;
6: Remove 𝐶𝑡2;
7: Update the objective values of new centroid 𝑐𝑡1 by Eq. (11);
8: 𝑠𝑖𝑧𝑒--;
9: end while

10: for 𝑖 = 1 to 𝑁𝑘 do
11: Obtain centroid 𝑐𝑖 of 𝐶𝑖 by Eq. (7);
12: C𝐻𝐶𝑀 = C𝐻𝐶𝑀 ∪ 𝑐𝑖 ;
13: end for

After obtaining the geodesic model, the samples in the source domain and target domain mapped to the geodesic
model can be calculated by

𝑥𝑘 = 𝑥𝑇𝜙(𝑘), 𝑘 ∈ (0, 1), (6)

where 𝑥 ∈ 𝑅𝑛 is the original data (the sample of the source or target domain), 𝑥𝑇 is the transpose of 𝑥, and 𝑥𝑘 is
the feature data on the intermediate subspace of 𝑥 corresponding to position 𝑘 on the geodesic flow. The number of
intermediate subspaces 𝑘 is set as 5 in this paper [21].

Therefore, for each solution 𝑥 in line 7, the mapped data �̄� can be obtained by mapping 𝑥 ∈C𝐻𝐶𝑀 into the geodesic
flow in line 8. In the dynamic environment, the source domain and target domain in the manifold space may be similar,
so the mapped target domain data 𝑥′𝑇𝜙(⋅) is similar to �̄�. Consequently, in line 9, a solution 𝑥′ is found such that
the mapped data 𝑥′𝑇𝜙(⋅) on the geodesic flow is close to �̄�. Then, by iteratively running lines 7-10, a set of transfer
centroids can be obtained. Finally, two sets respectively including clustering centroids (C𝐻𝐶𝑀 ) and transfer centroids
(C𝑀𝑇𝐿) will be outputted by the CMTL method.

To further describe the specific process of HCM, the details of HCM are introduced below. At first, HCM initially
treats each solution as a cluster and then iteratively merges similar clusters into one cluster. In the used HCM [29],
the vector angle of solutions in the objective space is used as an indicator to estimate the similarity between solutions.
Here, the centroid 𝑐𝑖 of the cluster 𝐶𝑖 can be obtained, as follows:

𝑐𝑖 =
1

|𝐶𝑖|

∑

𝑝𝑖∈𝐶𝑖

𝑝𝑖, (7)

where |𝐶𝑖| represents the cardinality of cluster 𝐶𝑖 and 𝑝𝑖 indicates each solution belonging to cluster 𝐶𝑖. To clarify
the running of HCM, its pseudo-code is given in Algorithm 3. In line 1, each solution 𝑝𝑖 ∈ POS𝑡−1 is set as a cluster
𝐶𝑖 with its centroid 𝑐𝑖 (𝑖 = 1, 2, … ,|POS𝑡−1|). In line 2, the number of clusters 𝑁𝑘 is set as 10, 𝑠𝑖𝑧𝑒 is initialized as
|POS𝑡−1| that indicates the number of clusters at first, and the set of clustering centroids C𝐻𝐶𝑀 is initialized as ∅.
Then, two clusters with the smallest angle among all clusters can be identified by comparing the vector angle between
each pair of clusters. Here, the vector angle between two centroids 𝑐𝑖 and 𝑐𝑗 can be computed by Eq. (8), which is an
indicator to evaluate the similarity of two clusters 𝐶𝑖 and 𝐶𝑗 , as follows:

angle
(

𝑐𝑖, 𝑐𝑗
)

≜ arccos ||
|

𝐴𝑖𝑗
|

|

|

, (8)

where

𝐴𝑖𝑗 =
∑𝑚

𝑙=1 𝑓
′
𝑙
(

𝑐𝑖
)

⋅ 𝑓 ′
𝑙
(

𝑐𝑗
)

√

∑𝑚
𝑙=1 𝑓

′
𝑙
(

𝑐𝑖
)2

⋅
√

∑𝑚
𝑙=1 𝑓

′
𝑙
(

𝑐𝑗
)2

, (9)
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Fig. 3: A �owchart of MSTL, in which (a): a set of source domains and target domain are inputted into a base classi�er F,
(b): the most similar source domain found by F and the target domain are used to train TrAdaboost, and (c): a number of
weak classi�ers are combined by a weighted voting mechanism to compose a strong classi�er to predict an initial population
for the new environment.

and 𝑓 ′
𝑙 (𝑐𝑖) indicates the normalized value of the 𝑙th objective value for 𝑐𝑖 by

𝑓 ′
𝑙 (𝑐𝑖) =

𝑓𝑙(𝑐𝑖) − 𝑓𝑚𝑖𝑛
𝑙

𝑓𝑚𝑎𝑥
𝑙 − 𝑓𝑚𝑖𝑛

𝑙
, (10)

where 𝑙 = 1, 2, … , 𝑚, 𝑓𝑚𝑎𝑥
𝑙 and 𝑓𝑚𝑖𝑛

𝑙 are, respectively, the maximum and minimum values of the 𝑙th objective among
all solutions in POS𝑡−1. When 𝑠𝑖𝑧𝑒 is larger than 𝑁𝑘, the procedures of clustering in lines 4-8 will be run iteratively.
In line 5, two most similar clusters (𝐶𝑡1 and 𝐶𝑡2 ) are merged into 𝐶𝑡1, and the corresponding value of the new centroid
𝑐𝑡1 in the objective space is updated by

𝑓𝑖(𝑐𝑡1) =
∑

𝑓𝑖(𝑝)
|𝐶𝑡1|

, (11)

where 𝑖= 1, 2,… ,𝑚, and each 𝑝∈𝐶𝑡1. Then, remove the cluster𝐶𝑡2 and decrease 𝑠𝑖𝑧𝑒 by 1 in lines 6 and 8 respectively.
After getting the above 𝑁𝑘 clusters, the centroid of each cluster by Eq. (7) is obtained iteratively in lines 10-13 and
finally a set of clustering centroids (C𝐻𝐶𝑀 ) is outputted.

3.3. Multisource transfer learning (MSTL)
Since the number of transfer centroids obtained by CMTL are limited, these small number of transfer centroids are

not sufficient to guide the population to search POS in the new environment. Thus, MSTL is further run by using the
multisource TrAdaboost to improve the accuracy of prediction.

The main idea of TrAdaboost [7] is to establish a weight adjustment mechanism through the Boosting method,
which increases the weight of effective data (i.e., target domain) and decreases the weight of invalid data (i.e., source
domain). This way, the data in the source domain that are not similar to the samples of the target domain can be filtered
out. To do this, TrAdaboost generates a strong classifier by combining several weak classifiers and each weak classifier
maps samples 𝑋 ∈ {X𝑠𝑜 ∪ X𝑡𝑎} to a label 𝑌 ∈ {−1, 1}, where X𝑠𝑜 and X𝑡𝑎 refer to the samples in the source domain
and target domain, respectively. Indeed, TrAdaboost can effectively utilize the similar distributions in both the source
and target domains to help classify the data in the target domain. However, when the distributions of the source domain
are not similar to that of the target domain, the accuracy of TrAdaboost will be decreased, which may lead to negative
effect on transfer learning.

To solve the above problem, the multisource TrAdaboost [44] is used in this paper, which can effectively reduce
the possibility of negative transfer by fully exploiting effective knowledge from all historical environments. In a
dynamic environment, the solutions of the previous environments often have some relationship with that of the
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Algorithm 4 MSTL
Input: The set of source domain S, target domain D𝑡𝑎.
Output: Predicted population POP𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 .

1: Set 𝐿 as the size of S;
2: Set the maximal number of iterations 𝑀 ;
3: for 𝑖 = 1 to 𝐿 do
4: D𝑖

𝑠𝑜 = S𝑖;
5: Initialize the weight vector 𝑤1 by Eq. (12);
6: Train a weak classifier ℎ𝑖𝑤 with (D𝑖

𝑠𝑜 ,D𝑡𝑎) and 𝑤1;
7: Compute the error of ℎ𝑖𝑤 on D𝑡𝑎 by Eq. (13);
8: end for
9: Identify the source domain (D𝑘

𝑠𝑜) with the minimal 𝜖;
10: Initialize the weight vector 𝑤1 by Eq. (12);
11: for 𝑖 = 1 to 𝑀 do
12: Train a weak classifier ℎ𝑖𝑤 with (D𝑘

𝑠𝑜 ,D𝑡𝑎) and 𝑤𝑖;
13: Calculate the weighted error 𝜖𝑖 by Eq. (13);
14: Calculate 𝛽𝑖 and 𝛽 by Eq. (14) and Eq. (15);
15: Update the weight vector 𝑤𝑖+1 by Eq. (16);
16: end for
17: Get a strong classifier ℎ𝑠 by Eq. (17);
18: Generate a large number of test solutions X𝑡𝑒𝑠𝑡;
19: Select 𝑥 ∈ X𝑡𝑒𝑠𝑡 which ℎ𝑠(𝑥) = 1 as POP𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ;

current environment. Therefore, the source domain of each environment should be preserved and exploited. When the
environmental changes are detected, the source domains from all historical environments with the target domain are fed
into a base classifier, where one source domain with the smallest error is selected as the most suitable one for training
TrAdaboost. Fig. 3 depicts a flowchart of the MSTL method. During the transfer process, the clustering centroids and
random solutions are regarded as the source domain D𝑠𝑜, while the transfer centroids and random solutions are regarded
as the target domain D𝑡𝑎. In the source domain D𝑠𝑜, the clustering centroids and the random solutions are respectively
labeled by +1 and -1, which indicate good samples and poor samples. In the target domain D𝑡𝑎, the transfer centroids
and the random solutions are respectively labeled by +1 and -1, which also indicate good samples and poor samples.

To clarify the running of MSTL, its pseudo-code is given in Algorithm 4 with the inputs: the set of source domain
S and the target domain D𝑡𝑎. Firstly, set 𝐿 as the size of S in line 1 and set the maximal number of iterations 𝑀 as 7 in
line 2. Then, for each source domain from set S in line 3, the weights of samples in the source and target domains are
set as follows:

𝑤1(𝑥) =

{ 1
|D𝑠𝑜|

, 𝑥 ∈ X𝑠𝑜,
1

|D𝑡𝑎|
, 𝑥 ∈ X𝑡𝑎,

(12)

where D𝑠𝑜 and D𝑡𝑎 indicate the source domain and target domain, respectively. Then, train a classifier ℎ𝑖𝑤 for each set
(D𝑖

𝑠𝑜 , D𝑡𝑎), 𝑖 = 1,… , 𝐿 in line 6, and calculate the error of the corresponding classifier to the target domain in line 7.
Then, select the source domain (i.e., the 𝑘-th source domain in S, D𝑘

𝑠𝑜) corresponding to the classifier with the smallest
error as the source domain of TrAdaboost in line 9. After that, reinitialize the weights of all solutions from D𝑘

𝑠𝑜 and
D𝑡𝑎 in line 10 and train 𝑀 weak classifiers in lines 12-15. Specifically, in line 13, in the 𝑖th (𝑖 =1,… ,𝑀) iteration, the
error rate of the weak classifier ℎ𝑖𝑤 on D𝑡𝑎 is calculated, as follows:

𝜖𝑖 =
∑

𝑥∈𝑋𝑡𝑎

𝑤𝑖(𝑥) ⋅ |ℎ𝑖𝑤(𝑥) − 𝑦(𝑥)|
∑

𝑥∈𝑋𝑡𝑎
𝑤𝑖(𝑥)

, (13)
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and the coefficients of the weights in D𝑡𝑎 and D𝑘
𝑠𝑜 are calculated respectively by

𝛽𝑖 =
𝜖𝑖

1 − 𝜖𝑖
, (14)

and

𝛽 = 1∕
(

1 +
√

2 ln |
|

𝑋𝑘
𝑠𝑜
|

|

∕𝑀
)

, (15)

where 𝑀 is the maximal number of iterations. The weights of the samples in the source and target domains can be
updated by:

𝑤𝑖+1(𝑥) =

{

𝑤𝑖(𝑥) ⋅ 𝛽|ℎ
𝑖
𝑤(𝑥)−𝑦(𝑥)|, 𝑥 ∈ D𝑘

𝑠𝑜,
𝑤𝑖(𝑥) ⋅ 𝛽

−|ℎ𝑖𝑤(𝑥)−𝑦(𝑥)|
𝑖 , 𝑥 ∈ D𝑡𝑎,

(16)

For each iteration in lines 12-15, a weak classifier can be obtained, which will become more and more accurate when
the weights are adjusted. Finally, in line 17, a weighted voting mechanism is used to combine these weak classifiers
into a strong classifier, which is expressed by

ℎ𝑠(𝑥) = sign

( 𝑁
∑

𝑖=1
𝛽𝑖ℎ

𝑖
𝑤(𝑥)

)

. (17)

After obtaining the strong classifier, a large number of test solutions (X𝑡𝑒𝑠𝑡) are generated in line 18. To make full
use of effective information from C𝑀𝑇𝐿, the solutions in C𝑀𝑇𝐿 are evolved once in the new environment and then
also added into X𝑡𝑒𝑠𝑡. Then, X𝑡𝑒𝑠𝑡 is inputted into the strong classifier and those solutions predicted as good ones by
the strong classifier will be selected to form an initial population in line 19. It is worth noting that if the number of
predicted solutions is smaller than the population size, the initial population will randomly add some non-dominated
solutions from the previous environment.

3.4. Complexity analysis
The computational cost of the dynamic response part comes from the CMTL and MSTL algorithms. In CMTL,

the computational costs involve HCM, constructing the geodesic flow, and identifying transfer centroids by using
the interior-point algorithm. For HCM, the total computational complexity of the clustering process is 𝑂(𝑁 × 𝑁𝑘).
In addition, mapping data via PCA and constructing the geodesic flow spends 𝑂(𝑑2) and 𝑂(1), respectively. The
computational cost of identifying transfer centroids by using an interior-point algorithm consumes 𝑂(𝑚3 × 𝑁𝑘). In
MSTL, the computational cost only involves training weak classifiers, and thus acquiring a strong classifier takes
𝑂(𝑁2 ×𝐷), where 𝐷 is the dimension of decision variables.

The space cost of the proposed MSTL-DMOEA comes from storing the source domain of all historical environ-
ments, where the source domain is the POS of each environment. Therefore, the total space cost of MSTL-DMOEA
is 𝑂(𝑁 × 𝑡), where 𝑡 is the number of environmental changes.

4. Experimental studies
4.1. Performance indicators

In this paper, two indicators are used to evaluate the performance of the compared DMOEAs when solving various
kinds of DMOPs, as introduced below.

4.1.1. Mean Inverted Generational Distance (MIGD)
This MIGD metric calculates the average of inverted generational distance (IGD) [47] values in all historical

environments over a run, as follows:

MIGD(POF∗
𝑡 ,POF𝑡) =

1
|T|

∑

𝑡∈T
IGD(POF∗

𝑡 ,POF𝑡), (18)
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Table 2

Types of DMOPs

Type I POS changes over time, but POF remains unchanged.

Type II Both POS and POF change over time.

Type III POF changes over time, but POS remains unchanged.

Type IV Both POS and POF remain unchanged, but the environment may change.

where POF∗
𝑡 is the true POF of a DMOP at time 𝑡, POF𝑡 is an approximate POF set obtained by a DMOEA at time 𝑡,

T is a set of discrete-time points in a run, |T| is the cardinality of T, and the IGD metric measures the average of the
closest distance of the solutions in POF∗

𝑡 to that in POF𝑡, as follows:

IGD(POF∗,POF) = 1
|

|

POF∗
|

|

∑

𝑝∗∈POF∗
min

𝑝∈POF
‖

‖

𝑝∗ − 𝑝‖
‖

2 . (19)

Thus, a smaller MIGD value indicates a better performance of DMOEA regarding the convergence and diversity.

4.1.2. Mean Hypervolume (MHV)
The MHV metric calculates the average of hypervolume (HV) [42] values in all historical environments over a run,

as follows:

MHV(POF) = 1
|T|

∑

𝑡∈T
HV(POF𝑡), (20)

where T is a set of discrete-time points in a run, |T| is the cardinality of T, and the HV metric measures the hypervolume
of the space construed by the approximate PF set POF𝑡 and the reference point, which can reflect both convergence
and diversity of these non-dominated solutions, as follows:

HV(POF𝑡) = VOL

(

⋃

𝑥∈POF𝑡

[

𝑓1(𝑥), 𝑧𝑡1
]

×⋯ × [𝑓𝑚(𝑥), 𝑧𝑡𝑚]

)

, (21)

where VOL is the lebesgue measure and 𝑧𝑡𝑖 (𝑖 = 1, 2,… , 𝑚) is the reference point for the computation of HV.

4.2. Test problems and parameter settings
In this paper, three popular test suites for DMOPs, i.e., DF series [24], FDA series [12], and F series [49], are

adopted to challenge the performance of MSTL-DMOEA. In general, the DF, FDA, and F test problems cover almost
all types of environmental changes as shown in Table 2. The environmental parameter in these test problems is set as
𝑡 =

(

1∕𝑛𝑡
)

⌊𝜏∕𝜏𝑡⌋, where 𝑛𝑡, 𝜏𝑡 and 𝜏 are the severity of the environmental changes, the frequency of environmental
changes, and the maximum generation for solving DMOPs, respectively.

To verify the effectiveness of the proposed MSTL-DMOEA, four competitive DMOEAs are considered for
comparison, i.e., SVR-MOEA/D [4], KT-MOEA/D[20], MMTL-MOEA/D[21], and IT-MOEA/D[19]. For static
optimization solvers, there are many excellent MOEA solvers that can be chosen [40, 41, 46], and MOEA/D [46]
is used as the static optimization solver in this paper. Please note that all the parameters in these compared algorithms
are set according to the original references. Other common parameters are briefly summarized in Table 3.

For environmental parameters, there are four pairs of dynamic configurations for test DMOPs in our experiments:
(𝑛𝑡 = 5, 𝜏𝑡 = 10), (𝑛𝑡 = 10, 𝜏𝑡 = 5), (𝑛𝑡 = 5, 𝜏𝑡 = 5), (𝑛𝑡 = 10, 𝜏𝑡 = 10), which are commonly used in the experimental
comparisons of DMOEAs [20],[4],[21],[27]. As suggested in [10], the maximum number of generations 𝜏 is fixed to be
20×𝜏𝑡, which ensures that there are 20 environmental changes in each run. Each algorithm is run 20 times independently
for each test case.

For the static optimizer MOEA/D, the population size 𝑁 is set to 100 for biobjective problems and 150 for
triobjective problems, and the number of decision variables is set to 10 for all benchmark problems according to the
reference [20]. The simulated binary crossover (SBX) [8] is used as a crossover operator, whose crossover distribution
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Table 3

Parameter settings

Parameter Variables Parameter Values

Dynamic settings 𝑛𝑡 = {5,10}, 𝜏𝑡 = {5,10}.
Termination criterion 𝜏 = 20 × 𝜏𝑡.
The number of runs 20 times.
The population size, 𝑁 𝑁 = 100 or 150.
The number of decision variables, 𝐷 𝐷 = 10.
The decomposition method Tchebyche� [46].
The SBX crossover 𝜂𝑐 = 20, 𝑝𝑐 = 0.8.
The PM mutation 𝜂𝑚 = 20, 𝑝𝑚 = 1/𝐷.
Weak classi�er SVM.
The number of clusters 𝑁𝑘 10.

index 𝜂𝑐 and crossover possibility 𝑝𝑐 are set as 20 and 0.8, respectively. The polynomial mutation (PM) [9] is used as a
mutation operator, whose mutation distribution index 𝜂𝑚 and mutation possibility 𝑝𝑚 are set as 20 and 1/𝐷, respectively.

In the proposed MSTL-DMOEA, the support vector machine (SVM) [5] is used as weak classifier. The number of
clusters 𝑁𝑘 used in Algorithm 3 is set to 10 according to parameter analysis in section 4.5.

4.3. Performance comparisons with other algorithms
The statistical results of MIGD from 20 runs are collected in Table 4 for solving the DF test problems and Table

5 for solving the FDA and F test problems. In these tables, (+), (=), and (-) after the statistical results respectively
indicate that MSTL-MOEA/D performs better than, similarly with, and worse than the compared algorithms according
to Wilcoxon [11] ranksum test with a 0.05 significance level.

Table 4 gives the MIGD values of all the compared algorithms when solving the DF test problems. As observed
from the last row in Table 4, MSTL-MOEA/D can achieve the best results in 29 out of 56 cases, while SVR-MOEA/D,
KT-MOEA/D, MMTL-MOEA/D, and IT-MOEA/D respectively obtain the best results in 12, 3, 2, and 10 cases.
Specifically, MSTL-MOEA/D is superior to the other compared algorithms on DF1, DF2, DF3, DF4, DF5, DF9, and
DF12 with the most dynamic configurations, which indicates that MSTL-MOEA/D can find the final solutions with
better convergence and diversity at different environments on most test cases. This is mainly because the proposed
CMTL can effectively transfer knowledge from the clustering centroids of approximate POS and the proposed MSTL
can fully transfer knowledge from all historical environments, which constructs a more accurate prediction model
to generate a good initial population for the new environment. On DF6 and DF8, MSTL-MOEA/D is only slightly
worse than the corresponding competitors with the best performance. Moreover, MSTL-MOEA/D shows significantly
worse performance than SVR-MOEA/D on DF7 and DF13, and than IT-MOEA/D on DF10 and DF14, mainly due to
some specific characteristics in these problems. The POS of DF7 is dynamically changed in different environments,
but its centroid remains unchanged. Thus, it is not so effective for MSTL-MOEA/D by using the past centroids of
POS to train a prediction model. For DF11, DF13, and DF14, as their PFs are irregularly changed, it is very difficult
for MSTL-MOEA/D to exploit valid information from the historical environments, while SVR-MOEA/D constructs
a regression model for each decomposed subproblem, which can give a more correct prediction for each subproblem
and perform relatively better on these three cases.

To comprehensively show the performance of all the compared algorithms, their IGD values in each environment
are plotted in Fig. 4. As observed from Fig. 4, MSTL-MOEA/D obtains the better IGD results in most environments
when compared to other algorithms. Moreover, MSTL-MOEA/D also shows a better stability, as its IGD curve is
smoother, while the IGD curve of other compared algorithms may rise suddenly, e.g., the performance of KT-MOEA/D
on DF1, DF3, DF5, DF12, and DF13 fluctuates significantly at some specific environments, as well as that of SVR-
MOEA/D on DF6 and DF9. For KT-MOEA/D, probably because the distribution of knee points varies dramatically
in different environments, it is difficult to accurately predict the knee points. For SVR-MOEA/D, probably because
the predictor is highly dependent on the qualities of past solutions, the accuracy of the predictor will be affected when
their qualities are poor.
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Table 4

Mean and standard deviation values of MIGD metric obtained by the compared algorithms under the DF problems

Problems (𝑛𝑡, 𝜏𝑡) SVR-MOEA/D KT-MOEA/D MMTL-MOEA/D IT-MOEA/D MSTL-MOEA/D

DF1

(5, 10) 0.0325±7.58e-03(=) 0.0382±5.47e-03(+) 0.0301±4.05e-03(=) 0.0429±5.67e-03(+) 0.0294±3.38e-03
(10, 5) 0.0780±1.34e-02(+) 0.1254±8.65e-03(+) 0.0790±1.13e-02(+) 0.0817±1.01e-02(+) 0.0611±5.79e-03
(5, 5) 0.1116±2.04e-02(+) 0.1245±1.23e-02(+) 0.0849±1.03e-02(=) 0.1386±1.91e-02(+) 0.0801±5.21e-03
(10, 10) 0.0270±5.00e-03(+) 0.0386±5.12e-03(+) 0.0274±4.60e-03(+) 0.0280±4.58e-03(+) 0.0236±3.09e-03

DF2

(5, 10) 0.0404±9.40e-03(+) 0.0352±4.11e-03(+) 0.0332±5.20e-03(+) 0.0430±6.33e-03(+) 0.0304±4.43e-03
(10, 5) 0.1019±1.77e-02(+) 0.1025±8.73e-03(+) 0.0837±9.12e-03(+) 0.0746±6.86e-03(+) 0.0617±5.96e-03
(5, 5) 0.1214±2.24e-02(+) 0.1053±1.06e-02(+) 0.0838±1.10e-02(+) 0.1097±1.74e-02(+) 0.0764±4.30e-03
(10, 10) 0.0367±7.01e-03(+) 0.0352±4.50e-03(+) 0.0321±5.85e-03(+) 0.0342±7.31e-03(+) 0.0261±3.04e-03

DF3

(5, 10) 0.1676±5.74e-02(+) 0.1721±1.66e-02(+) 0.1688±1.39e-02(+) 0.1478±2.33e-02(+) 0.1155±2.12e-02
(10, 5) 0.2487±3.24e-02(+) 0.3533±3.26e-02(+) 0.3199±1.46e-02(+) 0.2718±5.09e-02(+) 0.1961±4.52e-02
(5, 5) 0.3182±3.41e-02(+) 0.3186±2.14e-02(+) 0.2568±1.87e-02(+) 0.2214±2.97e-02(+) 0.1913±5.05e-02
(10, 10) 0.1308±2.58e-02(+) 0.2160±1.36e-02(+) 0.2321±1.82e-02(+) 0.1871±2.39e-02(+) 0.0993±3.06e-02

DF4

(5, 10) 0.1212±1.23e-02(+) 0.1360±1.05e-02(+) 0.1047±6.14e-03(+) 0.1415±1.85e-02(+) 0.0992±7.62e-03
(10, 5) 0.3491±8.02e-02(+) 0.4840±5.60e-02(+) 0.2222±3.80e-02(+) 0.5340±5.40e-02(+) 0.1952±1.60e-02
(5, 5) 0.2533±4.03e-02(+) 0.3724±4.07e-02(+) 0.1719±1.96e-02(+) 0.3624±6.04e-02(+) 0.1440±1.62e-02
(10, 10) 0.1863±2.37e-02(+) 0.1907±1.29e-02(+) 0.1594±8.68e-03(-) 0.2209±3.36e-02(+) 0.1667±1.18e-02

DF5

(5, 10) 0.0279±6.88e-03(+) 0.0387±6.85e-03(+) 0.0231±3.21e-03(=) 0.0261±3.74e-03(+) 0.0228±2.52e-03
(10, 5) 0.0600±1.01e-02(+) 0.1541±2.39e-02(+) 0.0574±1.02e-02(+) 0.0461±7.33e-03(=) 0.0425±3.93e-03
(5, 5) 0.0953±2.17e-02(+) 0.2087±4.02e-02(+) 0.0814±1.96e-02(+) 0.0747±8.44e-03(+) 0.0675±9.77e-03
(10, 10) 0.0226±3.88e-03(+) 0.0318±4.82e-03(+) 0.0216±2.46e-03(+) 0.0227±3.56e-03(+) 0.0195±2.41e-03

DF6

(5, 10) 1.4911±5.51e-01(+) 0.5268±5.91e-02(+) 0.8024±6.09e-02(+) 0.6794±3.96e-01(+) 0.4346±8.93e-02
(10, 5) 0.7778±1.99e-01(=) 1.0265±1.55e-01(+) 1.3155±3.63e-01(+) 1.0974±5.88e-01(=) 0.7817±2.57e-01
(5, 5) 2.0049±6.82e-01(+) 1.0337±1.41e-01(+) 1.2027±4.22e-01(+) 1.3477±4.25e-01(+) 0.7906±1.03e-01
(10, 10) 0.4233±1.19e-01(=) 0.4753±9.40e-02(=) 0.8842±3.42e-01(+) 0.5801±2.78e-01(=) 0.5541±2.56e-01

DF7

(5, 10) 0.1770±3.95e-02(-) 0.2882±3.34e-02(+) 0.3185±4.54e-02(+) 0.3262±2.89e-02(+) 0.2208±5.64e-02
(10, 5) 0.2454±3.22e-02(=) 0.3132±2.16e-02(+) 0.3684±5.17e-02(+) 0.3235±4.11e-02(+) 0.2505±3.75e-02
(5, 5) 0.2855±5.84e-02(-) 0.3523±1.82e-02(=) 0.4017±3.25e-02(+) 0.3642±2.85e-02(=) 0.3470±4.74e-02
(10, 10) 0.1866±2.86e-02(+) 0.2325±2.22e-02(+) 0.2705±3.73e-02(+) 0.2577±3.43e-02(+) 0.1680±3.05e-02

DF8

(5, 10) 0.0758±1.02e-02(+) 0.0783±9.01e-03(+) 0.0617±9.14e-03(=) 0.0802±1.18e-02(+) 0.0671±1.17e-02
(10, 5) 0.0664±1.26e-02(=) 0.1324±1.34e-02(+) 0.1074±1.64e-02(+) 0.0935±1.24e-02(+) 0.0745±1.34e-02
(5, 5) 0.0790±9.05e-03(=) 0.1274±1.13e-02(+) 0.1018±1.30e-02(+) 0.0855±1.08e-02(+) 0.0755±1.46e-02
(10, 10) 0.0625±1.12e-02(=) 0.0801±8.28e-03(+) 0.0639±8.19e-03(=) 0.0751±1.39e-02(=) 0.0679±1.02e-02

DF9

(5, 10) 0.2926±1.02e-01(+) 0.1566±3.37e-02(=) 0.2388±4.51e-02(+) 0.1906±8.70e-02(+) 0.1666±4.85e-02
(10, 5) 0.6828±1.48e-01(+) 0.3203±5.21e-02(+) 0.4173±1.01e-01(+) 0.3187±1.09e-01(+) 0.1833±3.86e-02
(5, 5) 0.6797±1.59e-01(+) 0.3688±6.05e-02(+) 0.4558±1.43e-01(+) 0.4354±1.16e-01(+) 0.2729±4.41e-02
(10, 10) 0.2886±5.15e-02(+) 0.1541±3.07e-02(+) 0.2238±4.38e-02(+) 0.1496±7.07e-02(=) 0.0979±3.24e-02

DF10

(5, 10) 0.2265±1.90e-02(=) 0.2372±1.99e-02(=) 0.2200±2.02e-02(=) 0.2107±1.13e-02(-) 0.2336±2.90e-02
(10, 5) 0.2384±2.09e-02(+) 0.2693±1.51e-02(+) 0.2151±1.74e-02(=) 0.1878±1.35e-02(-) 0.2192±2.29e-02
(5, 5) 0.2292±2.20e-02(=) 0.2659±1.48e-02(+) 0.2365±2.48e-02(=) 0.2161±3.65e-02(=) 0.2393±2.31e-02
(10, 10) 0.2460±2.31e-02(+) 0.2353±1.46e-02(+) 0.2197±3.00e-02(=) 0.1957±1.32e-02(-) 0.2197±1.46e-02

DF11

(5, 10) 0.1156±3.35e-03(=) 0.1126±2.47e-03(-) 0.1182±5.14e-03(=) 0.1128±2.00e-03(-) 0.1171±4.16e-03
(10, 5) 0.1508±5.24e-03(=) 0.1745±8.10e-03(+) 0.1523±6.36e-03(=) 0.1435±5.72e-03(=) 0.1551±1.05e-02
(5, 5) 0.1489±2.68e-03(-) 0.1775±8.41e-03(+) 0.1540±5.49e-03(=) 0.1468±5.81e-03(=) 0.1539±8.51e-03
(10, 10) 0.1167±3.48e-03(=) 0.1117±3.16e-03(-) 0.1151±3.60e-03(=) 0.1152±3.60e-03(=) 0.1168±3.42e-03

DF12

(5, 10) 0.1883±1.54e-02(+) 0.3177±1.96e-02(+) 0.3236±6.85e-02(+) 0.1887±9.29e-03(+) 0.1729±3.17e-02
(10, 5) 0.3111±6.50e-02(+) 0.3754±2.49e-02(+) 0.3187±4.21e-02(+) 0.2090±1.06e-02(=) 0.1985±1.97e-02
(5, 5) 0.3329±1.15e-01(+) 0.3874±2.25e-02(+) 0.3951±4.82e-02(+) 0.2288±7.77e-03(=) 0.2313±2.38e-02
(10, 10) 0.1765±8.24e-03(+) 0.2701±2.81e-02(+) 0.2556±2.37e-02(+) 0.1589±1.29e-02(+) 0.1384±8.06e-03

DF13

(5, 10) 0.2586±1.59e-02(=) 0.2986±1.98e-02(+) 0.2599±1.01e-02(=) 0.2652±1.01e-02(=) 0.2616±1.15e-02
(10, 5) 0.2438±1.28e-02(-) 0.3803±2.88e-02(+) 0.2697±1.39e-02(=) 0.2491±5.09e-03(-) 0.2680±1.32e-02
(5, 5) 0.2853±2.35e-02(-) 0.3749±1.65e-02(+) 0.3155±4.06e-02(=) 0.2924±1.46e-02(=) 0.3196±4.17e-02
(10, 10) 0.2472±1.02e-02(-) 0.2817±1.27e-02(+) 0.2644±1.34e-02(=) 0.2532±7.29e-03(-) 0.2604±1.51e-02

DF14

(5, 10) 0.0805±2.10e-03(-) 0.0887±3.30e-03(+) 0.0932±2.94e-02(=) 0.0809±3.83e-03(=) 0.0853±3.80e-03
(10, 5) 0.0928±2.45e-03(-) 0.1468±1.38e-02(+) 0.1042±3.53e-03(-) 0.0907±2.42e-03(-) 0.1117±1.02e-02
(5, 5) 0.1054±5.57e-03(-) 0.1505±1.19e-02(+) 0.1970±1.00e-01(+) 0.1012±3.77e-03(-) 0.1169±1.19e-02
(10, 10) 0.0794±2.36e-03(-) 0.0899±3.17e-03(+) 0.0817±2.81e-03(-) 0.0785±1.40e-03(-) 0.0846±5.06e-03

+/=/- 33/13/10 50/4/2 35/18/3 32/15/9 �
best/all 12/56 3/56 2/56 10/56 29/56

Table 5 gives the MIGD values of all the compared algorithms when solving the FDA and F test problems. It is
observed that the proposed MSTL-MOEA/D demonstrates a better performance when compared to other algorithms.
As observed from the last row of Table 5, MSTL-MOEA/D performs best on 32 out of total 44 cases, while SVR-
MOEA/D, KT-MOEA/D, MMTL-MOEA/D, and IT-MOEA/D respectively obtain the best results in 3, 1, 6, and
2 cases. Specifically, MSTL-MOEA/D performs significantly better than the other compared algorithms on FDA1,
FDA2, FDA4, F5, F7, F9, and F10 with the most dynamic configurations, indicating that MSTL-MOEA/D has an
outstanding performance in dynamically tracking POS of these problems. On F6 and F8, MSTL-MOEA/D is slightly
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Fig. 4: The IGD values of all the compared algorithms with the con�guration (𝑛𝑡 = 5 and 𝜏𝑡 = 10).

worse than the corresponding competitors with the best performance. Only on FDA3 and FDA5, MSTL-MOEA/D
performs significantly worse than the compared algorithms, mainly due to some specific characteristics in these
problems. FDA3 is a biobjective problem with different densities of solutions on the dynamic POF and with the
overlapped POS dynamically changing over time, which causes a significant challenge to find good transfer solutions in
the procedure of CMTL. FDA5 is a triobjective problem, where both POS and POF dynamically change over time. As
a result, the POS and POF of FDA5 become very complicated, which makes it very difficult to exploit valid knowledge
in transfer learning.

Based on the above experimental results, MSTL-MOEA/D can effectively generate a good initial population for
most test problems when the environment changes. However, for some test problems with specific characteristics,
such as DF7, DF11, DF13, DF14, FDA3, and FDA5, MSTL-MOEA/D still needs further improvement, as it is not
so effective to reuse past experiences to predict a high-quality initial population for the new environment, mainly
due to the severe POS changes in these problems. In addition, when the environmental changes do not occur in a
similar manner, MSTL may degenerate into a single source domain for transfer learning and thus is not so effective.
Generally, the performance of transfer learning based DMOEAs will be significantly degraded when the POSs in
different environments do not share a certain correlation.

Moreover, to further verify the performance of our algorithm in terms of both convergence and diversity, MHV
is adopted as another metric to evaluate the final approximate POSs obtained by all the compared algorithms. Due
to page limitations, the experimental results are presented in Table S-1 for solving the FDA and F test problems and
Table S-2 for solving the DF test problems in the supplementary material. As observed from Table S-1 and Table
S-2, MSTL-MOEA/D also outperforms other compared DMOEAs in most of the cases, which further validates that
MSTL-MOEA/D shows certain advantages for solving different types of DMOPs.
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Table 5

Mean and standard deviation values of MIGD metric obtained by the compared algorithms under the FDA and F problems

Problems (𝑛𝑡, 𝜏𝑡) SVR-MOEA/D KT-MOEA/D MMTL-MOEA/D IT-MOEA/D MSTL-MOEA/D

FDA1
(5, 10) 0.0303±2.52e-03(+) 0.0481±4.15e-03(+) 0.0416±4.63e-03(+) 0.0284±2.47e-03(=) 0.0281±1.68e-03
(10, 5) 0.0654±6.66e-03(+) 0.1552±1.23e-02(+) 0.0734±5.69e-03(+) 0.0520±5.93e-03(=) 0.0510±5.80e-03
(5, 5) 0.1004±1.26e-02(+) 0.1597±1.29e-02(+) 0.1275±1.41e-02(+) 0.0765±7.30e-03(=) 0.0746±7.54e-03
(10, 10) 0.0254±1.48e-03(+) 0.0476±4.70e-03(+) 0.0282±2.29e-03(+) 0.0244±2.18e-03(=) 0.0242±2.33e-03

FDA2
(5, 10) 0.0199±1.11e-03(+) 0.0233±2.65e-03(+) 0.0293±4.92e-03(+) 0.0206±2.46e-03(+) 0.0181±1.37e-03
(10, 5) 0.0482±4.32e-03(+) 0.0513±3.83e-03(+) 0.0737±1.50e-02(+) 0.0399±1.07e-02(+) 0.0259±2.33e-03
(5, 5) 0.0527±4.21e-03(+) 0.0521±3.97e-03(+) 0.0763±1.22e-02(+) 0.0387±4.70e-03(+) 0.0333±5.99e-03
(10, 10) 0.0193±1.28e-03(+) 0.0231±1.99e-03(+) 0.0282±3.81e-03(+) 0.0193±1.89e-03(+) 0.0175±1.24e-03

FDA3
(5, 10) 0.0461±1.10e-02(=) 0.0440±5.78e-03(=) 0.0386±8.88e-03(-) 0.0470±9.11e-03(=) 0.0448±7.65e-03
(10, 5) 0.0991±1.94e-02(+) 0.1201±1.99e-02(+) 0.0637±1.21e-02(=) 0.0745±1.12e-02(+) 0.0589±9.09e-03
(5, 5) 0.0776±1.97e-02(+) 0.0986±1.56e-02(+) 0.0497±1.16e-02(=) 0.0741±1.50e-02(+) 0.0520±5.85e-03
(10, 10) 0.0988±2.36e-02(+) 0.0699±8.80e-03(-) 0.0657±1.56e-02(-) 0.0666±1.06e-02(-) 0.0816±1.82e-02

FDA4
(5, 10) 0.0976±2.75e-03(=) 0.1026±3.74e-03(+) 0.0966±3.10e-03(=) 0.0984±2.36e-03(+) 0.0961±2.77e-03
(10, 5) 0.1336±3.89e-03(=) 0.1620±7.55e-03(+) 0.1458±7.35e-03(+) 0.1412±6.44e-03(+) 0.1311±6.73e-03
(5, 5) 0.1619±1.55e-02(+) 0.1618±5.23e-03(+) 0.1420±7.58e-03(-) 0.1536±6.63e-03(=) 0.1521±7.49e-03
(10, 10) 0.0930±2.57e-03(=) 0.1009±2.83e-03(+) 0.0958±3.04e-03(+) 0.0947±2.63e-03(+) 0.0919±1.94e-03

FDA5
(5, 10) 0.0855±1.47e-02(+) 0.0666±4.17e-03(-) 0.0714±7.39e-03(=) 0.0725±6.37e-03(=) 0.0749±8.11e-03
(10, 5) 0.1077±1.04e-02(+) 0.1002±1.05e-02(+) 0.0959±8.58e-03(=) 0.0899±8.07e-03(=) 0.0930±8.66e-03
(5, 5) 0.1114±1.02e-02(+) 0.1101±4.99e-03(+) 0.0899±1.09e-02(-) 0.1076±1.03e-02(=) 0.1036±8.85e-03
(10, 10) 0.0770±7.64e-03(=) 0.0690±5.68e-03(=) 0.0645±5.85e-03(-) 0.0666±4.58e-03(-) 0.0734±8.28e-03

F5
(5, 10) 1.1083±1.82e-01(+) 0.5935±9.50e-02(+) 1.7362±1.20e-01(+) 0.7828±2.76e-01(+) 0.4813±9.28e-02
(10, 5) 0.7982±1.60e-01(+) 0.9243±1.28e-01(+) 2.1409±3.97e-01(+) 0.7703±2.59e-01(+) 0.5542±1.00e-01
(5, 5) 1.7953±1.36e-01(+) 0.9407±9.61e-02(+) 2.2594±2.99e-01(+) 1.2618±3.14e-01(+) 0.8592±1.01e-01
(10, 10) 0.4102±1.15e-01(+) 0.5846±6.28e-02(+) 1.2076±2.66e-01(+) 0.3983±1.87e-01(+) 0.2515±7.00e-02

F6
(5, 10) 0.4240±1.12e-01(-) 0.5345±9.60e-02(=) 0.7968±1.96e-01(+) 0.4590±7.73e-02(=) 0.4816±8.74e-02
(10, 5) 0.5645±8.01e-02(+) 0.8880±1.36e-01(+) 1.2068±2.41e-01(+) 0.6807±2.07e-01(+) 0.5035±6.67e-02
(5, 5) 0.7895±1.30e-01(=) 0.9797±1.38e-01(+) 0.9655±2.30e-01(+) 0.7923±1.80e-01(=) 0.7786±1.14e-01
(10, 10) 0.2664±5.59e-02(=) 0.5007±8.31e-02(+) 0.8160±2.22e-01(+) 0.4344±1.15e-01(+) 0.2904±5.61e-02

F7
(5, 10) 0.6263±1.67e-01(+) 0.4070±5.97e-02(+) 1.0675±3.13e-01(+) 0.4818±1.11e-01(+) 0.3643±5.68e-02
(10, 5) 0.6346±7.02e-02(+) 0.7825±8.78e-02(+) 1.3903±6.17e-01(+) 0.6882±1.71e-01(+) 0.4495±7.84e-02
(5, 5) 1.1142±1.86e-01(+) 0.7832±8.17e-02(+) 1.4244±2.51e-01(+) 0.9052±2.01e-01(+) 0.6089±7.71e-02
(10, 10) 0.3190±7.83e-02(=) 0.4482±9.10e-02(+) 0.6150±2.02e-01(+) 0.3779±7.45e-02(+) 0.2721±4.49e-02

F8
(5, 10) 0.1972±1.93e-02(-) 0.2654±2.24e-02(=) 0.2472±3.33e-02(-) 0.2174±1.90e-02(-) 0.2713±2.39e-02
(10, 5) 0.2793±1.77e-02(+) 0.4191±3.14e-02(+) 0.3338±1.73e-02(+) 0.2613±1.50e-02(=) 0.2591±2.04e-02
(5, 5) 0.3442±3.47e-02(-) 0.3882±2.53e-02(=) 0.3659±3.76e-02(=) 0.3271±3.75e-02(-) 0.3877±3.05e-02
(10, 10) 0.1946±1.18e-02(+) 0.2627±2.66e-02(+) 0.2454±1.89e-02(+) 0.1961±1.17e-02(+) 0.1840±1.92e-02

F9
(5, 10) 1.5377±6.11e-02(+) 0.6234±1.32e-01(+) 1.1861±3.30e-01(+) 1.1490±2.61e-01(+) 0.3934±6.30e-02
(10, 5) 1.4116±2.13e-01(+) 0.9615±1.54e-01(+) 1.1730±1.95e-01(+) 1.1600±3.83e-01(+) 0.6196±1.16e-01
(5, 5) 1.9171±1.19e-01(+) 0.9975±1.26e-01(=) 1.4540±3.61e-01(+) 1.6630±3.18e-01(+) 0.9275±1.84e-01
(10, 10) 0.8102±9.21e-02(+) 0.6142±7.80e-02(+) 0.9079±1.70e-01(+) 0.5414±1.63e-01(+) 0.2967±3.63e-02

F10
(5, 10) 0.9988±7.85e-02(+) 0.5314±9.85e-02(+) 1.1142±1.66e-01(+) 0.7586±1.83e-01(+) 0.4351±7.32e-02
(10, 5) 2.5510±1.98e-01(=) 2.7684±2.16e-01(+) 3.0806±2.14e-01(+) 2.7028±2.49e-01(+) 2.4481±1.95e-01
(5, 5) 1.3686±1.46e-01(+) 0.9108±1.83e-01(=) 1.5140±1.46e-01(+) 1.3025±3.11e-01(+) 0.9067±2.00e-01
(10, 10) 2.7018±2.16e-01(=) 2.9455±9.76e-02(+) 2.8056±1.18e-01(+) 2.8518±1.41e-01(+) 2.6776±1.90e-01

+/=/- 31/10/3 35/7/2 32/6/6 28/12/4 �
best/all 3/44 1/44 6/44 2/44 32/44

4.4. Ablation study
The main purpose of MSTL-MOEA/D is to exploit all past valid information by using the MSTL method to

predict a good initial population for the new environment. On the one hand, MSTL-MOEA/D can improve the transfer
effect by only selecting clustering centroids for transfer learning in CMTL. On the other hand, MSTL-MOEA/D
can help to reduce negative effect by fully exploiting the effective knowledge from all approximate POSs in past
environments using MSTL. To verify the effectiveness of each component (CMTL and MSTL) in the algorithm design,
more experiments are conducted by comparing the performance of MSTL-MOEA/D, MSTL-MOEA/D𝑎, and MSTL-
MOEA/D𝑏 with 𝑛𝑡 = 5, 𝜏𝑡 = 10. MSTL-MOEA/D𝑎 removes the CMTL part and uses non-dominant solutions in
the previous environment for running MTL and that in all historical environments for running MSTL, which aims to
verify the effectiveness of CMTL. MSTL-MOEA/D𝑏 removes the MSTL part and just uses the source domain in the
last environment for running transfer learning by TrAdaboost, which aims to verify the effectiveness of MSTL.
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Table 6

Mean and standard deviation values of MIGD and MHV metric obtained by MSTL-MOEA/D𝑎, MSTL-MOEA/D𝑏, and
MSTL-MOEA/D

Problems Metrics MSTL-MOEA/D𝑎 MSTL-MOEA/D𝑏 MSTL-MOEA/D

DF1 MIGD 0.0347±3.16e-03(+) 0.0353±4.91e-03(+) 0.0294±3.38e-03
MHV 0.5098±4.25e-03(+) 0.5087±6.45e-03(+) 0.5172±5.11e-03

DF2 MIGD 0.0382±4.51e-03(+) 0.0416±3.08e-03(+) 0.0304±4.43e-03
MHV 0.6611±6.72e-03(+) 0.6527±4.89e-03(+) 0.6758±6.23e-03

DF3 MIGD 0.1192±1.77e-02(=) 0.0894±1.36e-02(-) 0.1155±2.12e-02
MHV 0.3973±1.41e-02(=) 0.4229±1.08e-02(-) 0.4001±1.82e-02

DF4 MIGD 0.1003±9.11e-03(=) 0.1012±8.87e-03(=) 0.0992±7.62e-03
MHV 0.6597±3.12e-03(=) 0.6597±2.79e-03(=) 0.6600±3.35e-03

DF5 MIGD 0.0245±5.87e-03(+) 0.0242±2.14e-03(+) 0.0228±2.52e-03
MHV 0.5400±7.80e-03(+) 0.5427±3.36e-03(+) 0.5520±3.30e-03

DF6 MIGD 0.6243±9.83e-02(+) 0.4531±1.20e-01(+) 0.4346±8.93e-02
MHV 0.3523±2.82e-02(+) 0.3644±9.07e-02(+) 0.3791±8.05e-02

DF7 MIGD 0.2298±4.12e-02(+) 0.2355±4.37e-02(+) 0.2208±5.64e-02
MHV 0.3946±1.61e-02(=) 0.3846±1.36e-02(+) 0.3965±2.27e-02

DF8 MIGD 0.0692±6.99e-03(=) 0.0656±8.27e-03(=) 0.0671±1.17e-02
MHV 0.6027±2.64e-03(+) 0.6058±2.65e-03(=) 0.6045±2.81e-03

DF9 MIGD 0.1789±4.66e-02(+) 0.1695±3.70e-02(=) 0.1666±4.85e-02
MHV 0.3924±2.76e-02(+) 0.3953±2.42e-02(+) 0.4032±2.42e-02

DF10 MIGD 0.2265±3.01e-02(=) 0.2256±2.53e-02(=) 0.2336±2.90e-02
MHV 0.5968±2.52e-02(=) 0.5992±2.10e-02(=) 0.5929±2.66e-02

DF11 MIGD 0.1206±5.40e-03(=) 0.1196±4.80e-03(=) 0.1171±4.16e-03
MHV 0.2522±4.03e-03(+) 0.2521±2.49e-03(+) 0.2547±2.15e-03

DF12 MIGD 0.1646±1.42e-02(=) 0.1593±6.05e-03(=) 0.1729±3.17e-02
MHV 0.6069±2.11e-02(=) 0.6400±1.10e-02(-) 0.6057±2.05e-02

DF13 MIGD 0.2574±1.37e-02(-) 0.2613±1.55e-02(=) 0.2616±1.15e-02
MHV 0.5834±2.10e-02(+) 0.5821±1.66e-02(+) 0.5868±1.12e-02

DF14 MIGD 0.0860±4.80e-03(=) 0.0886±3.94e-03(+) 0.0853±3.80e-03
MHV 0.5556±4.20e-03(=) 0.5494±5.36e-03(=) 0.5570±3.68e-03

+/=/- 14/13/1 14/11/3 �
best/all 1/28 8/28 19/28

The experimental results are collected in Table 6 when solving the DF test problems. Obviously, MSTL-MOEA/D
performs significantly better than MSTL-MOEA/D𝑎 and MSTL-MOEA/D𝑏, as MSTL-MOEA/D obtains the best
results in 19 out of 28 cases. To be specific, MSTL-MOEA/D is better than MSTL-MOEA/D𝑎 and MSTL-MOEA/D𝑏
both in 14 cases. However, MSTL-MOEA/D is only outperformed by MSTL-MOEA/D𝑎 and MSTL-MOEA/D𝑏 in 1
and 3 cases, respectively. Thus, it is reasonable to conclude that selecting clustering centroids for transfer learning is
more effective than simply transferring all non-dominated solutions and the MSTL method is effective to construct
a prediction model by exploiting effective knowledge from all historical environments. Other experiments with other
dynamic settings are all conducted on the DF test problems, which are provided in Table S-3 and Table S-4 of the
supplementary material due to page limitations. To summarize briefly, the experimental results in these two tables
also support the above conclusion that both CMTL and MSTL are effective in improving the performance of MSTL-
MOEA/D.

4.5. Influence of parameter 𝑁𝑘 in MSTL-DMOEA
In MSTL-MOEA/D, the parameter 𝑁𝑘 plays an important role to decide the number of transfer centroids. The

setting of the parameter 𝑁𝑘 will affect the performance of our algorithm. If the parameter 𝑁𝑘 is set too large, it will
generally lead to the waste of computational resources and may cause negative effect in transfer learning. However,
if it is set too small, the historical information may not be fully exploited. To study the effect of parameter 𝑁𝑘 on the
performance of our algorithm, more experiments are conducted by running MSTL-MOEA/D with different values of
𝑁𝑘. Fig. 5 shows the average value of MIGD obtained by MSTL-MOEA/D on the DF test problems. To summarize,
the overall performance of MSTL-MOEA/D becomes a little better when the number of clusters is enlarged from 1 to
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Fig. 5: The mean MIGD values obtained by MSTL-MOEA/D with di�erent numbers of clusters on the DF problems with
the con�guration (𝑛𝑡 = 5 and 𝜏𝑡 = 10).

10. However, in some cases, such as DF8, DF11, and DF13, the number the clusters has little effect on the performance
of MSTL-MOEA/D, as it is difficult to accurately find transfer centroids in these problems. Through these extensive
experiments, it is also found that the performance of MSTL-MOEA/D won’t be improved significantly after the number
of clusters has exceeded 10. Therefore, the number of clusters is suggested as 10 in MSTL-MOEA/D.

4.6. Running time cost
To study the computational cost of all the compared algorithms in solving the DF test problems, the running times

of SVR-MOEA/D, KT-MOEA/D, MMTL-MOEA/D, IT-MOEA/D, and MSTL-MOEAD are plotted in Fig. 6, where
the computer system is windows 10 and the running software is Matlab 2020a. As shown in Fig. 6, SVR-MOEA/D
consumes less time on most of the cases among all the compared algorithms. Although MSTL-MOEA/D includes
two transfer learning procedures, it still runs faster than the other three transfer learning-based DMOEAs (i.e., KT-
MOEA/D, MMTL-MOEA/D, and IT-MOEA/D) in most of the cases. Thus, considering the promising performance
of MSTL-MOEA/D regarding MIGD and MHV metrics, MSTL-MOEA/D still seems very competitive.

5. Conclusion
Applying transfer learning to address DMOPs have been validated to be promising, but the existing transfer

learning-based DMOEAs intend to transfer knowledge from the approximate POS in the previous one or two
environments, which may ignore effective knowledge from earlier times and may induce negative effect in transfer
learning due to limited knowledge available. To address the above problems, a multiple source transfer learning
algorithm, called MSTL-DMOEA, has been proposed, which enhances the transfer effect by only selecting clustering
centroids for transfer. Moreover, a multisource TrAdaboost method is adopted to exploit effective knowledge from

Y. Ye, Q. Lin, L. Ma 𝑒𝑡 𝑎𝑙: Preprint submitted to Elsevier Page 18 of 21



Multiple source transfer learning for dynamic multiobjective optimization

1 2 3 4 5 6 7 8 9 10 11 12 13 14

DF Function

0

50

100

150

200

250

S
ta

ti
s
ti
c
a

l 
ru

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

SVR-MOEA/D

KT-MOEA/D

MMTL-MOEA/D

IT-MOEA/D

MSTL-MOEA/D

Fig. 6: Running times (seconds) of �ve DMOEAs on the DF test problems.

all historical environments, in which one best source domain from the source domain set will be selected with the
target domain to train classifiers. As a result, a more accurate prediction model can be constructed to predict a good
initial population for the new environment. The extensive experiments demonstrate some advantages of our proposed
algorithm over four competitive DMOEAs (i.e., SVR-MOEA/D, KT-MOEA/D, MMTL-MOEA/D, and IT-MOEA/D).

Although the proposed algorithm can effectively exploit the historical knowledge to construct a more accurate
predictor, its idea is still simple to select one best source domain based on the similarity between the source and target
domains by using the error rate from the base classifier, which is then combined with the target domain to train a
strong classifier. In addition, the accuracy of the weak classifier can greatly affect the optimization performance of
the algorithm. For future work, there is still a huge challenge to improve the positive knowledge transfer for solving
DMOPs. Hence, we will further study an incremental positive transfer learning method, which can incrementally
exploit the historical knowledge from all the source domains for solving DMOPs. Moreover, the applications of our
algorithm in solving some real-world DMOP applications will also be our future work.
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