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Abstract: 

The solving of large-scale multi-objective optimization problem (LSMOP) has become a hot research 

topic in evolutionary computation. To better solve this problem, this paper proposes a self-organizing 

weighted optimization based framework, denoted S-WOF, for addressing LSMOPs. Compared to the 

original framework, there are two main improvements in our work. Firstly, S-WOF simplifies the 

evolutionary stage into one stage, in which the evaluating numbers of weighted based optimization and 

normal optimization approaches are adaptively adjusted based on the current evolutionary state. 

Specifically, regarding the evaluating number for weighted based optimization (i.e., t1), it is larger when 

the population is in the exploitation state, which aims to accelerate the convergence speed, while t1 is 

diminishing when the population is switching to the exploration state, in which more attentions are put on 

the diversity maintenance. On the other hand, regarding the evaluating number for original optimization 

(i.e., t2), which shows an opposite trend to t1, it is small during the exploitation stage but gradually increases 

later. In this way, a dynamic trade-off between convergence and diversity is achieved in S-WOF. Secondly, 

to further improve the search ability in the large-scale decision space, an efficient competitive swarm 

optimizer (CSO) is implemented in S-WOF, which shows efficiency for solving LSMOPs. Finally, the 

experimental results have validated the superiority of S-WOF over several state-of-the-art large-scale 

evolutionary algorithms. 

 

Keywords: Large-scale optimization; Weighted optimization; Competitive swarm optimizer (CSO) 

 

1. Introduction 

In recent years, multi-objective optimization problems (MOPs), consisting of two or more conflicting 

objectives, are commonly seen in many real-world engineering applications [1-3], such as power allocation 

[4], dynamic resource strategy [5], shop scheduling [6], chemical engineering [7] and crashworthiness 

design [8]. In general, there is no single solution that can optimize all the conflicting objectives 

simultaneously. Therefore, a set of tradeoff solutions, namely Pareto-optimal set (PS), is expected to obtain 

when solving each MOP and its mapping to the objective space is termed Pareto-optimal (PF). The main 

goal of solving MOPs is to find a set of solutions that can distribute as closely as possible and evenly around 

the true PF. Over the several decades, multi-objective evolutionary algorithms (MOEAs) have been well 

studied and shown advantages for solving MOPs. Most existing MOEAs can be broadly grouped into three 

categories, including Pareto-based MOEAs [9-13], decomposition-based MOEAs [14-18] and indicator-



based MOEAs [19-23]. 

For the Pareto-based MOEAs, they use the Pareto dominance relationship to select solutions. For 

instance, NSGA-II [9] was presented based on the Pareto dominance relationship, which uses the 

nondominated sorting method to decide the front number of the population and adopts the crowding 

distance to maintain the diversity of the population. SPEA [10] combined several features of evolutionary 

algorithm in a unique manner, i.e., storing nondominated solutions in an external archive, evaluating the 

fitness of each solution dependent on the number of external nondominated solutions, maintaining 

population diversity based on the Pareto dominance relationship, and incorporating a clustering method. 

ISPEA [11] was proposed to restrain degeneracy of the evolutionary process by the immune operator, which 

includes vaccine extraction, vaccination, and immune selection in turn. SPEA2 [12] not only used the 

fitness assignment method to consider both the dominated number and dominate number of each individual, 

but also applied the truncation method to guarantee the preservation of boundary solutions. PDTEA [13] 

proposed a novel mating selection strategy to select two solutions with good diversity and convergence by 

a decomposition-based method, and adopted the novel environmental selection to maintain the diversity by 

using a modified truncation method. Moreover, an efficient dynamic response mechanism was also 

presented in PDTEA, aiming to produce more promising solutions with good convergence and diversity 

when the environment changes. 

The decomposition-based MOEAs decompose the MOP into several subproblems by decomposition 

approaches. Particularly, MOEA/D [14] is one of the representative algorithms of decomposition-based 

MOEAs. However, MOEA/D was deteriorated when solving some problems with irregular PFs. To address 

this issue, many decomposition-based methods were presented recently, which showed promising 

performance. For example, DMaOEA- C [15] not only adopted a maintenance mechanism for boundary 

points and a distance-based replacement strategy to keep the diversity of the population, but also applied a 

two-side update rule to accelerate the convergence of the population. IBMOEA/D [16] proposed a 

decomposition-based strategy to evolve the population, in which each individual stands for a subproblem. 

Then a binary quality indication-based selection was applied to save the external population, which 

integrates preference information into search. Lin et.al proposed a novel adaptive operator selection (B-

AOS) strategy [17] for decomposition-based MOEAs, which applies two operator pools to focus on 

exploitation and exploration respectively, where two different DE operators are adaptively adjusted 

according to the evolutionary state of the population. Moreover, FDEA-I and FDEA-II [18] were proposed 

based on the fractional dominance relation and the improved objective space decomposition strategy. 

Particularly, the first one is proposed to retain some solutions with promising performance, while the second 

one is presented to improve the ability of diversity maintenance, respectively. 

For the third category, namely indicator-based MOEAs, they select the solutions by some indicators. 

For example, AR-MOEA [19] designed a distance based indicator, in which the reference vectors are 

dynamically adjusted according to the corresponding indicator contributions of the solutions in an external 

archive. hpaEA [20] proposed the hyperplane that is formed by the neighboring solutions of nondominated 



solutions. In addition, an efficient environmental selection strategy based on the hyperplane produced by 

neighboring solutions of nondominated solutions was also implemented in hpaEA, which aims to further 

distinguish nondominated solutions. Besides that, R2HCA-EMOA [21] adopted an R2 indicator variant to 

approximate the hypervolume contribution. EIMA [22] proposed an adaptive reference point, which is 

adaptively adjusted by the calculation of indicators. LIBEA [23] proposed a Lebesgue indicator-based 

algorithm, which adopts the regularity property of continuous multiobjective problems (MOPs) to solve 

MOPs with difficult properties. 

Although the above MOEAs have shown their advantages in solving traditional problems with low 

dimensional space, they behaved poorly when solving large-scale optimization problems (LSMOPs) 

consisting of a large-scale number of decision variables, due to the low search efficiency of operators (e.g., 

simulated binary crossover (SBX) [24], polynomial mutation (PM) [25], and differential evolution (DE) 

[26]). Particularly, a self-adaptive DE operator, termed njDE, was proposed in [27] to improve the global 

search ability. More recently, many MOEAs were extended to solve LSMOPs. These algorithms can be 

roughly divided into two main categories, including cooperative coevolutionary algorithms (CCEAs) [28-

32] with the cooperative idea to optimize LSMOPs and competitive swarm optimizers (CSOs) [33-37] that 

are considered as an improved variant based on particle swarm optimizer (PSO) as most existing PSOs [38-

41] converged prematurely when solving LSMOPs with a large-scale decision space. Although CCEAs and 

CSOs performed well on solving LSMOPs, the problems involving premature convergence [42] and a huge 

number of evaluations still existed. To ameliorate these issues, a self-organizing weighted optimization 

based framework, namely S-WOF, is proposed in this paper. Specifically, the main contributions of this 

paper are summarized as follows: 

(1) Compared to the original framework in [42], the optimization of transformed problem and original 

problem in the proposed S-WOF are integrated into one stage, which is more efficient. In addition, 

a self-organizing mechanism is designed in S-WOF, which can adaptively adjust the evaluating 

numbers for weighted based optimization (i.e., t1) and original optimization (i.e., t2) based on the 

current evolutionary information. In this way, a dynamic trade-off between convergence and 

diversity is achieved in S-WOF. 

(2) In order to improve the search ability in a huge search space, an efficient CSO variant with a strong 

exploration ability is also implemented in S-WOF, which applies a novel particle updating strategy 

to enhance the search efficiency.  

(3) To verify the effectiveness of S-WOF, nine test LSMOPs with up to 3 objectives and 1000 decision 

variables are adopted in our experiments, which have complicated Pareto-optimal sets and fronts. 

Four competitive large-scale MOEAs, i.e., WOF-NSGA-II [43], LMOCSO [36], DGEA [44] and 

LMEA [45], are adopted for performance comparisons. The experimental results have validated 

the advantages of our proposed S-WOF over these competitive large-scale MOEAs on most test 

problems adopted. 

The rest of this paper is organized as follows. Section 2 provides some background information, 



including the basic introduction of MOPs and a brief review of large-scale MOEAs. Section 3 gives the 

details of our proposed S-WOF. Section 4 provides the experimental comparisons between S-WOF and 

other compared large-scale MOEAs. Finally, Section 5 gives the conclusions and some future work. 

2. Background 

Many real world problems need to optimize multiple conflicting objectives simultaneously, which are 

often called multi-objective optimization problems (MOPs). Without loss of generality, a minimum MOP 

can be formulated as follows: 

1 2min ( ) ( ( ), ( ),..., ( ))T
m

x
f x f x f x f x


                                                         (1) 

where x = (x1, x2, …, xn)  is a decision vector with n dimensions,   is the feasible region of decision 

space, the mapping function f :    Rm defines m objectives and Rm is the objective space. 

With the increase of decision variable dimensions, the above problem becomes an LSMOP. In recent 

years, many MOEAs were proposed to solve LSMOPs. These MOEAs can be categorized into two groups, 

including cooperative coevolutionary algorithms (CCEAs) and competitive swarm optimizers (CSOs), 

where some related studies on CCEAs and CSOs for solving LMOPs are introduced in Section 2.1 and 

Section 2.2, respectively. 

2.1 Cooperative coevolutionary algorithms 

Since Potter et al. proposed the cooperative coevolution (CC) framework, which applies the divide-

and-conquer technique to decompose LSMOPs into smaller subproblems and then optimizes these 

subproblems independently. After that, various MOEAs were presented under the CC framework to solve 

LSMOPs. For example, Li et al. proposed CCPSO2 [28], which adopts Cauchy and Gaussian distributions 

to update the position of a particle and determines the number of decision variables of a group. In addition, 

a new decomposition strategy called differential grouping (DG) [31] was proposed by Li et al., which aims 

to improve the distributions of decision variables in CC algorithms. Apart from CC framework, Zille et al. 

proposed a weighted optimization based framework [43], denoted as WOF, which divides the decision 

variables into several groups and applies the same weight value to the decision variables in the same group. 

Ma et al. proposed MOEA/DVA [46] based on variable analysis, which optimizes the distance variables at 

first before focusing on the position variables. In this way, MOEA/DVA concentrates on the convergence 

in the early stage and considers the diversity in the later stage. LMEA [45] was proposed by Zhang et al., 

which adopts a clustering method to classify decision variables into distance-related variables and position-

related variables, which are then optimized independently. LSMOF [47] was presented by reformulating 

the original LSMOPs into a low-dimensional single-objective problem, in which the decision place is 

reconstructed by using the weight variables in the reformulated problem and the objective space is reduced 

by using an indicator function. Although these CCEAs have shown a good performance for solving 

LSMOPs, they may encounter two main challenges. Regarding the first one, these CCEAs seriously depend 

on the used decomposition strategy, which usually determines the measure of the performance. Therefore, 

the selection of a good decomposition method plays an important role in LSMOPs. Regarding the second 

one, detecting the internship among variables tends to consume a great number of function evaluations, 



while finding a good decomposer also requires a great deal of function evaluations. Hence, most of them 

suffer from high computational complexity. 

2.2  Competitive swarm optimizers 

Recently, Cheng et al. proposed an improved PSO variant, called CSO [48], which introduces the 

pairwise competitive within a swarm. Different from traditional PSO that applies the global best and 

personal best particles to guide the evolution of swarm, CSO introduces the pairwise competitive 

mechanism to divide the particles into two groups based on the fitness value of each particle, including 

winner particle group with better fitness values and loser particle group with lower fitness values. Then, the 

position and velocity of loser particles are updated by learning from their corresponding winner particles, 

formulated as follows: 

1 2 3( 1) ( ) ( ) ( )( ( ) ( )) ( )( ( ) ( ))

( 1) ( ) ( 1)
l l w l l

l w l

V t r t V t r t X t X t r t X t X t

X t X t V t

     

   
                (1)  

where ( )lV t and ( )lX t  are the velocity and position of the loser in the t-th generation, ri(t) (i = 1, 2, 3) is 

the random variable within [0,1] in the t-th generation, ( )wX t   is the position of the winner in the t-th 

generation and   is the control parameter of ( )X t .  

More recently, some CSO variants were proposed for solving LSMOPs, which have shown promising 

performance due to the efficient search ability of CSO. For example, two learning processes were proposed 

in TPLSO [33], including mass learning and elite learning. Specifically, particles in mass learning were 

divided into several groups. In each group, the particles competed with each other, and then the winner 

would be saved and enter into elite learning. On other hands, particles in swarm were sorted according to 

their fitness value during the process of elite learning. In this way, each particle will learn from two particles 

that are better than it is. In SPLSO [34], two different learning mechanisms were proposed during the entire 

process. Specifically, segment-based learning strategy divided the decision variables into several segments 

and then each segment of a particle learned from one exemplar. On other hands, the segment-based 

predominant learning mechanism divided particles into good ones and poor ones and then the poor ones 

can be further optimized by learning from good ones. In LLSO [35], the particles were divided into four 

levels according to their fitness value. Afterward, particles in each level learned from those particles that 

were in lower levels. In LMOCSO [36], the fitness value of particles in the swarm was first calculated by 

shift-based density estimation (SDE) [49]. Then, two particles were randomly selected to compete with 

each other. After that, the worse particle would learn from the better particle. Different from most traditional 

CSOs, two-thirds of the population were updated according to a tri-competitive criterion in MCSO [37], 

where the particles are divided into several groups and each group includes three particles. Then, the 

second-best particle (XL1) learned from the best particle (Xw) and the mean particle ( X ). The worst particle 

learned as same as XL1. However, even though the existing CSOs have been proposed for solving LSMOPs 

and shown strong exploration ability, they still fall into local optima and converge prematurely to some 

extent. 

To conclude, as introduced above, most existing CCEAs require a great deal of function evaluations, 



while most traditional CSOs may encounter the problems of premature convergence. Inspired from that, 

this paper proposes a self-organizing weighted optimization based framework, namely S-WOF, consisting 

of a self-organizing mechanism and an efficient CSO variant, which can achieve a good balance between 

the convergence and diversity, as well as shows a strong search ability when solving LSMOPs in a huge 

search space. The details of our proposed S-WOF are introduced in next section. 

 

3. The proposed algorithm 

In this section, the details of the proposed S-WOF are described. Firstly, the complete framework of 

the proposed S-WOF is introduced in Section 3.1. Then, its two main components, including the proposed 

efficient CSO variant and the proposed self-organizing mechanism, are introduced in Section 3.2 and 

Section 3.3 successively. 

3.1.  The complete framework of the proposed S-WOF 

Algorithm 1: The complete framework of S-WOF
Input: MaxFes 
Output: P
1 P  ← randomly initialize population;
2 set fes= | P |, t1，t2; 
3 while fes<MaxFes do 
4 W ←randomly initialize weight vectors;
5 wP ←apply W  on P ;
6 'P ←WeightOptimization_by_CSO ( wP ,t1); //Algorithm 2 
8 Offspring ←NormalOptimization_by_CSO ( 'P ,t2); //Algorithm 2 
9 t1, t2←Self-organizing Mechanism ( 'P , P ); //Algorithm 3 
10 fes= fes+ t1+ t2; 
11 P = Offspring; 
12 end while 

The pseudo-code of the proposed S-WOF is given in Algorithm 1. At the beginning, the initialization 

procedure is performed in lines 1-2, in which fes, t1 and t2 are the current evaluating numbers, the evaluating 

numbers for weighted optimization method and normal optimization method, respectively. Then, S-WOF 

enters the main loop as shown in lines 3-12, which will terminate until fes reaches the predefined maximum 

number of evaluations (i.e., MaxFes). In each iteration of the main loop, the weight vector  set W  are 

randomly initialized at first in line 4. Then, as shown in line 5, the new population wP  is generated by 

applying W  on P . After that, the weighted optimization method is performed on wP  with t1 evaluating 

numbers and then the new population 'P  is generated. Please note that a novel efficient CSO variant is 

designed as evolutionary search operator, which is introduced in Algorithm 2 of Section 3.2. After the 

weighted optimization method is completed, the normal optimization method is further performed on 'P  

with t2 evaluating numbers. As shown in line 8, Offspring is obtained by using the efficient CSO operator. 

Afterwards, the evaluating numbers for both weighted based optimization method (i.e., t1) and normal 

optimization method (i.e., t2) are updated by the proposed self-organizing mechanism in line 9. Note that 

the detail of the proposed self-organizing mechanism is introduced in Algorithm 3 of Section 3.3. Finally, 

the final solutions in P  are reported as the approximation PS.  
  



3.2. An efficient competitive swarm optimizer in S-WOF 

Algorithm 2: 'P ←WeightOptimization_by_CSO ( wP ,t1);
Input: wP , t1
Output: 'P
1 Offspring ← Ø, SDEf ← 0, 'P ← wP , P ← Ø;
2 while fes < t1 do 
3 P ← 'P ; 
4    SDEf ← compute the fitness value for each particle in P using Eq. (2); 
5 for each particle in P do
6 (Xw, XL1, XL2) ← randomly select three particles from P ;
7 P  ← P \(Xw, XL1, XL2);
8 (Xw, XL1, XL2) ← swap positions based on SDEf in Eq.(2);
9 update XL1 and XL2 by using Eq. (3);
10 mutate XL1, XL2 and Xw;
11 Offspring ← (Xw, XL1, XL2) Offspring;
12 end for 
13 'P ←EnvironmentalSelection(Offspring 'P );
14 end while 

 

The pseudo-code of the proposed Weightedoptimization_CSO is given in Algorithm 2, with the inputs: 

the current population wP  and the evaluating numbers of weighted optimization t1. At the beginning, the 

child population Offspring, the fitness value SDEf  for each individual and the two new population 'P  and 

P  are initialized in line 1. Then, the proposed Weightedoptimization_CSO steps into the main loop of the 

evolutionary process, which will be terminated when the evaluations of the given problem (fes) reach t1. In 

the main loop, as shown in line 4, the SDEf  value for each particle in the swarm is calculated as follows:  

2
SDE
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                                                         (2) 

where ( )if p


 denotes the ith objective value of solution p. After calculating the fitness value of each particle 

in P , the CSO-based update is performed in lines 5-12. Specifically, as shown in lines 6-8, three particles 

are randomly selected from P  firstly and then one winner particle (i.e., Xw), and two loser particles (i.e., 

XL1 and XL2) are determined in line 8 according to their corresponding SDEf value. After that, the position 

and velocity of XL1 and XL2 are updated by learning from Xw in line 9. The details of the proposed position 

and velocity update strategy in CSO are introduced as follows: 

We assume that the swarm includes N particles. Then, the N particles are randomly divided into N/3 

groups. In each group, three particles compete with each other based on the SDEf  value. Specifically, the 

particle with the smallest SDEf value is selected as the winner particle, namely wX , while other two particles 

are determined as XL1 and XL2, respectively. Then, the velocities and positions for two loser particles (i.e., 

XL1 and XL2) are updated as follows: 
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where r1, r2 and r3 are uniformly randomly distributed values in [0,1].   is a parameter within [0,1] that 

controls the influence of XL2. In this way, two-third of particles have been updated in each generation. That 

is, the convergence speed is accelerated by using the proposed position and velocity update strategy. After 

that, as shown in line 10, Xw, XL1 and XL2 are mutated by using polynomial-based mutation (PM) [25] and 



then all the mutated children are added into Offspring in line 11. At last, the environmental selection process 

[50] is performed on Offspring and 'P  to update the newly population 'P . The above evolutionary process 

is terminated when the fes reaches the evaluating number t1. Finally, the population 'P  is returned. Please 

note that the process of NormalOptimization_CSO is the same as that of Weightedoptimization_CSO, 

excepting with different inputs as well as output. More details of the process of NormalOptimization_CSO 

can be also found in [43].  

3.3 A self-organizing mechanism in S-WOF 

In order to adaptively adjust the evaluating numbers for weighted based optimization approach (t1) 

and normal optimization method (t2) more effectively, a self-organizing mechanism based on the current 

evolutionary state is proposed in S-WOF. Different from the original weighted based optimization 

framework (i.e., WOF) [43], where the value of t1 and t2 are fixed during the whole evolutionary process, 

t1 and t2 in the proposed self-organizing strategy can be adaptively adjusted based on the current 

evolutionary state. In this paper, the survival rate of the parents at the current t-th generation, denoted as 

SRt, is applied to reflect the current evolutionary state. The details of SRt are introduced as follows: 

Let us assume that the population P includes N solutions (i.e., p1, p2, p3,…, pN) and W = (w1, w2, …, 

wk) includes k weight values. Then, W  is performed on P  to generate a new population 'P . Afterward, 

an environmental selection process is performed on the union population 'P P  and then the newly updated 

population 'P  is obtained for the next generation. Hence, the survival rate SRt is calculated as follows:  

t

count
SR

N
                                                                                               (4) 

where count represents the number of solutions from P  that are survived in the newly population 'P . N 

stands for the population size of the given problem and t indicates the current t-th generation. In this way, 

SRt is used to reflect the current evolutionary state. Particularly, a small SRt value indicates that the 

population is evolved dramatically. In other words, a small SRt means the evolutionary state is in 

exploitation state, where many promising offspring are generated during this stage. On the other hand, a 

large SRt value indicates that there are few promising children that are generated during this period. Hence, 

it is considered that the evolutionary state is in exploration state. Therefore, the current evolutionary state 

is applied to dynamically adjust the evaluating numbers, in which the evaluating numbers of weighted based 

optimization method (i.e., t1) and normal optimization approach (i.e., t2) are respectively calculated as 

follows: 

1

1
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t

e
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where   and   are respectively the initial values for t1 and t2. Please note that we set =500 and =1000

in this paper, which refers to the parameter settings in the original WOF framework [45]. Nevertheless, 

different from the WOF that keeps the evaluating numbers as a fixed value (i.e., t1=500, t2=1000), t1 and t2 

are adaptively adjusted in the proposed self-organizing mechanism, which are guided by the current 



evolutionary state as well as the current survival rate at t-th generation. To have an intuitive observation on 

the changing tendency of t1 and t2, the graphs of t1 and t2 with the iterations are respectively plotted in Fig.1 

(a) and Fig.1 (b), as follows: 

  
(a)                                                                          (b) 

Fig. 1. The change tendency of (a) t1 and (b) t2 based on the survival rate that reflects the current evolution state: a 

high survival rate indicates the current evolution is in exploitation stage (a larger t1 aims to accelerate convergence), 

whereas the opposite indicates the current evolution is in exploration stage (a larger t2 aims for diversity maintenance).  

As we can learn from Fig. 1 (a) and Fig. 1 (b), t1 and t2 change dramatically at the early evolutionary 

stage, as the evolutionary stage is in the exploitation state where there are many promising offspring that 

are generated to update the population. In other words, the survival rate SRt is very small when the 

evolutionary stage is in exploitation state. Nevertheless, SRt decreases slowly with the increasing of the 

iterations when the evolutionary stage switches the exploitation state to exploration state. Specifically, the 

evaluating numbers of weighted based optimization method t1 is lager at early evolutionary stage when the 

population is in the exploitation state, in which more attentions are putted on the convergence speed. 

However, t1 reaches a stable state at later evolutionary stage since the population gradually switches to the 

exploration state where more focuses are concentrated on diversity maintaining. Conversely, the evaluating 

numbers of normal optimization method t2 shows an opposite trend to t1, which is small at beginning and 

then rapidly increases when the population is in the exploitation state. Later, t2 also reaches a stable state 

since the population is in a stagnation state, in which the diversity maintenance is emphasized. In this way, 

the evaluating numbers (i.e., t1 and t2) can be adaptively adjusted during the completely evolutionary 

process based on the current evolutionary state. That is, a dynamic trade-off is achieved in the proposed 

self-organizing mechanism. The pseudo-code of the proposed self-organizing mechanism is given in 

Algorithm 3.  

 

 

 

Algorithm 3: t1, t2←Self-organizing Mechanism ( 'P , P ) 



Input: 'P , P  
Output: t1, t2 
1 count ← calculate the number of P in 'P ;
2 SRt ←update the survival rate by using Eq. (4); 
3 t1 ← update the evaluating numbers of weighted based optimization 

method by using Eq. (5);
4 t2 ← update the evaluating numbers of normal optimization method by 

using Eq. (6); 

4. Experimental results 

In this section, several experiments are conducted to investigate the performance of the proposed S-

WOF in solving LSMOPs. The superiority of the proposed S-WOF is verified by comparing it with four 

state-of-the-art MOEAs on LSMOPs, including WOF-NSGA-II [43], LMOCSO [36], DGEA [44] and 

LMEA [45]. A brief introduction of each compared algorithm is given as follows. 

(1) WOF-NSGA-II [43]: WOF-NSGA-II proposes a weight-based optimization framework that 

applies a problem transformation technique to reduce the dimension of the search space.  

(2) LMOCSO [36]: LMOCSO proposes a two-stage-based particle update strategy to update the 

position for each particle. At first, the velocity of each particle is updated by a leader particle and 

then the position of each particle is updated according to its updated velocity.  

(3) DGEA [44]: DGEA proposes an adaptive offspring generation method. Firstly, it selects a balanced 

parent. Then, these parent solutions are used to construct direction vectors, which can reproduce 

promising offspring. 

(4) LMEA [45]: LMEA proposes a decision variable clustering method, which divides the decision 

variables into convergence-related variables and diversity-related variables and then optimize 

separately.  

4.1. Benchmark problems  

In our experimental comparison, we have tested our S-WOF and other compared algorithms on nine 

benchmark problems. Regarding the adopted benchmark problems in our experiment, nine test problems 

(i.e., LSMOP1-LSMOP9 proposed in [51]) are used for experimental comparison. Among these problems, 

they have different characteristics. Specifically, LSMOP1-LSMOP4 are constructed by linear variable 

linkages in their PSs and a liner unit hyper-plane in their PFs, while LSMOP5-LSMOP8 show nonlinear 

variable linkages in their PSs and a concave unit hyper-sphere in their PFs. LSMOP9 has a nonlinear 

variable linkage in its PS and disconnected segments in its PF. 

4.2. The performance metrics 

In our experimental comparison, we use IGD [52] and HV [10] to evaluate the performance of different 

algorithms, as they can simultaneously evaluate the performance of convergence and diversity. 

(1) Inverted generational distance (IGD): We utilize IGD to measure the performance of solution set 
'S obtianed by each algorithm. Let us assume that S is a set of solutions uniformly distributed along the 

true PF in the objective space. Hence, the IGD value can be calculated as  

'| |
' 1 ( , )

( , )
| |

S
i id S S

IGD S S
S

                                                           (7) 



where '( , )id S S  is the minimum Euclidean distance from the point iS  to the individuals in population 'S , 

and |S| represents the size of S. The true PF of the target problem is assumed available in advance when 

computing IGD. A lower value of '( , )IGD S S indicates a better overall performance. Regarding the 

performance metric, the inverted generational distance (IGD) [52] is adopted to assess the performance of 

all algorithms in our experiment. Please note that 10000 reference points are sampled on each Pareto front 

of LSMOP1-LSMOP9 [51] for calculating the IGD value, which is based on the methods suggested in [53]. 

(2) Hypervolume (HV): Let us assume that S is the approximation to the true PF in the objective space, 

which is obtained by the algorithm. Let 1 2( , ,..., )r r r r T
mz z z z be a reference point in the objective space, which 

can dominate any Pareto optimal objective vector. Then, HV can be defined as  

 1 1( ) ( ), ... ( ),r r
m m

x S
HV S VoI f x z f x z


                                             (8) 

where VoI(.) denotes the Lebesgue measures. A higher value of HV indicates a better overall performance. 

The mean and standard deviation of the IGD and HV values are recorded after 20 independent runs 

by each algorithm. The Wilcoxon rank sum test with a significance level of 0.05 is adopted to perform 

statistical analysis on the experimental results, where “+”, “-” and “~” respectively indicate that the result 

obtained by another compared algorithm is significantly better than, worse than and similar to that obtained 

by the proposed S-WOF. Note that all experiments are performed on PlatEMO [54] and the source code of 

our designed S-WOF is available at https://github.com/xiaoyugege20/SWOF.git. 

4.3. Experimental settings 

(1) Algorithms: To have a fair comparison, the relative parameters of the compared algorithms are set 

according to the corresponding references [36, 43, 45, 46]. To be specific, in WOF-NSGA-II [43], the 

number of evaluations at each generation of original problem t1, the number of evaluations of transferred 

problem t2, and the number of groups γ are set to 1000, 500 and 4, respectively. The penalty parameter α 

of APD in LMOCSO is set to 2 [36]. The operation and RefNo are set to 3 and 10, respectively in DGEA 

[44]. The number of selected solutions nSel is set to 5, the number of perturbations for each selected solution 

in decision variable clustering nPer is set to 50 and the number of selected solutions in decision variable 

interaction analysis nCor is set to 5 in LMEA [45]. The penalty parameter α of APD, the number of 

evaluations at each generation of original problem t1, the number of evaluations of transferred problem t2, 

and the number of groups γ are set to 2, 1000, 500 and 4 in S-WOF, respectively. 

(2) Population Size: The population size N is set to 300 in all algorithms. 

(3) Problems: Regarding the number of objectives (M) for each test problem, we set M=2 and M=3 in 

our experiment. Regarding the number of decision variables (D), it is set from 100 to 1000 (i.e., n= (100, 

200, 500, 1000)). In addition, the number of sub-components in each variable group nk is set to 5. 

(4) Termination Criterion: The maximum number of evaluations is set to 15000D, where D is the 

decision variable dimensions. 

4.4. Comparisons between S-WOF and four competitive large-scale MOEAs 

In this section, to verify the effectiveness of S-WOF, S-WOF is compared with four competitive large-



scale MOEAs, including WOF-NSGA-II, LMOCSO, DGEA, and LMEA on solving nine benchmark 

problems (i.e., LSMOP1-LSMOP9). The scalability of S-WOF is verified for solving LSMOPs with the 

number of decision variables ranging from 100 to 1000. Finally, the final solutions obtained by S-WOF and 

four compared large-scale MOEAs can further verify the effectiveness of S-WOF. In addition, the CPU 

time comparison between S-WOF and four compared algorithms can verify that S-WOF shows a promising 

performance and an acceptable and reasonable CPU time simultaneously. 

4.4.1 Comparison results on the two-objective LSMOPs 

 

Table 1 
The average IGD values and standard deviations obtained by S-WOF and its four competitors on two-objective LSMOP1–LSMOP9 

Problem M D WOF-NSGA-II LMOCSO DGEA LMEA S-WOF 

LSMOP1 2 100 4.0340e-1(5.07e-2) - 3.0789e-3(2.10e-4) = 2.4684e-3(1.56e-4)+ 1.4596e-2(1.05e-3)- 3.0201e-3(3.92e-4) 

LSMOP1 2 200 4.2686e-1(5.34e-2) - 4.7952e-3(4.08e-4) - 3.4613e-3(2.69e-4)+ 1.4194e-1(2.66e-1)- 3.9959e-3(3.96e-4) 

LSMOP1 2 500 4.1022e-1(6.65e-2) - 1.4026e-2(1.13e-3) - 6.4300e-3(8.37e-4)= 5.2421e-2(9.33e-2)- 7.1473e-3(1.31e-3) 

LSMOP1 2 1000 3.5829e-1(1.25e-1) - 9.8950e-2(2.03e-1) - 1.7658e-2(1.27e-3)- 1.4030e-1 (1.64e-1) - 1.3992e-2(4.18e-3) 

LSMOP2 2 100 2.5868e-2(7.71e-3) - 4.8628e-2(1.66e-2) - 3.0564e-2(2.97e-2)- 1.2268e-1(4.41e-2)- 1.0625e-2(9.71e-4) 

LSMOP2 2 200 1.7943e-2(5.64e-4) - 4.1959e-2(1.14e-2) - 1.4514e-2(1.63e-3) - 1.0960e-1(3.07e-2)- 9.8940e-3(8.58e-4) 

LSMOP2 2 500 1.1086e-2(3.50e-4) - 3.1545e-2(9.80e-4) - 8.1514e-3(5.03e-4) - 6.0888e-2(5.07e-3)- 5.2139e-3(1.20e-3) 

LSMOP2 2 1000 9.0983e-3 (6.40e-4) - 1.8046e-2(1.34e-3) - 5.2611e-3(2.27e-4) - 3.3683e-2 (3.16e-3) - 3.0097e-3(5.99e-4) 

LSMOP3 2 100 6.2328e-1(3.64e-2) + 6.9037e-1(5.17e-2) = 1.6126e+0(1.29e+0)= 1.8030e+0(2.50e+0)- 7.0485e-1(7.08e-2) 

LSMOP3 2 200 6.5356e-1(2.63e-3) + 7.8224e-1(2.31e-1) + 1.3457e+0(5.09e-2) - 3.0858e+0(4.66e+0)- 8.0283e-1(3.39e-2) 

LSMOP3 2 500 6.6001e-1(1.58e-2) + 8.4000e-1(2.76e-1) + 1.3510e+0(1.93e-2) - 4.0250e+0(5.94e+0)- 8.6930e-1(3.92e-2) 

LSMOP3 2 1000 6.6949e-1(5.30e-3) + 1.8542e+0(1.52e+0) 

= 
1.3381e+0(3.58e-1) - 

3.3320e+0 (2.75e+0) - 9.1834e-1(2.99e-2) 

LSMOP4 2 100 5.0139e-2(2.49e-3) - 2.7645e-2(8.49e-4) - 1.4992e-2(3.20e-3) = 1.4160e+0(5.48e-2)- 1.2014e-2(2.56e-3) 

LSMOP4 2 200 3.7614e-2(2.47e-3) - 1.6989e-2(4.12e-4) - 1.0228e-2 (1.21e-3) - 8.7735e-2(4.03e-2)- 8.6726e-3(7.93e-4) 

LSMOP4 2 500 2.5569e-2(9.53e-4) - 1.1183e-2(5.40e-4) - 6.3799e-3 (8.63e-4) - 4.3447e-2(1.62e-2)- 4.6142e-3(1.49e-4) 

LSMOP4 2 1000 2.4038e-2(7.57e-4) - 1.1229e-2(6.74e-4) - 4.8882e-3 (2.61e-4) - 2.1006e-2 (6.49e-4) - 2.8382e-3(1.01e-4) 

LSMOP5 2 100 1.3462e-1(1.01e-1) - 3.9376e-3(2.89e-4) + 2.8370e-2 (1.13e-2) - 3.7641e-1(2.98e-1)- 2.8031e-2(6.91e-2) 

LSMOP5 2 200 7.5729e-2(3.70e-2) = 5.3896e-3(5.57e-4) + 2.5781e-2(1.04e-2) = 4.1010e-1(2.73e-1)- 1.2193e-1(1.06e-1) 

LSMOP5 2 500 3.9922e-2(1.64e-2) + 9.4023e-3(2.72e-3) + 3.0203e-2(1.65e-2) + 4.6232e-1(9.16e-2)- 2.1769e-1(8.51e-2) 

LSMOP5 2 1000 3.2946e-2(6.03e-3) + 1.9680e-2(4.18e-3) + 5.3828e-2(5.15e-2) + 4.0997e-1 (1.58e-2) - 2.4601e-1(5.75e-2) 

LSMOP6 2 100 4.4301e-1(1.60e-1) = 7.5751e-1(1.50e-2) - 6.6857e-1(5.86e-1) = 7.6759e-1(2.16e-1)- 4.9526e-1(1.00e-1) 

LSMOP6 2 200 4.8044e-1(1.66e-1) = 7.6025e-1(6.66e-3) - 4.2393e-1(1.30e-1) + 7.7327e-1(1.07e-1)- 5.6040e-1(1.56e-1) 

LSMOP6 2 500 3.2969e-1(6.52e-2) = 7.5450e-1(2.61e-3) - 3.4404e-1(2.05e-1) = 5.8865e-1(1.84e-1)- 3.9064e-1(1.99e-1) 

LSMOP6 2 1000 3.0430e-1(5.24e-2) = 7.5340e-1(1.37e-3) - 2.9228e-1(2.40e-1) = 6.0161e-1 (2.37e-1) - 4.5854e-1(2.23e-1) 

LSMOP7 2 100 9.3666e-1(2.37e-1) = 1.2986e+0(2.11e-1) - 1.5186e+0(6.60e-1) - 1.2704e+0(1.64e-1)- 9.6265e-1(1.40e-1) 

LSMOP7 2 200 9.3576e-1(1.87e-1) + 1.6460e+0(3.25e-1) - 1.1820e+0(4.58e-1)= 1.3548e+0(2.25e-1)- 1.2978e+0(9.32e-2) 

LSMOP7 2 500 9.3822e-1(6.09e-2) = 1.7418e+0(1.93e-1) - 1.0101e+0(4.19e-1)= 1.2194e+0(3.89e-1)= 1.0525e+0(2.33e-1) 

LSMOP7 2 1000 1.0107e+0(1.61e-1) = 1.6297e+0(2.29e-1) - 2.0160e+0(5.40e-1) - 1.2447e+0 (4.00e-1) = 9.0154e-1(2.59e-2) 

LSMOP8 2 100 1.2756e-1(2.89e-2) - 4.7421e-2(8.33e-3) - 5.6053e-2 (8.40e-3) - 9.0561e-2(2.51e-2)- 4.7551e-3(2.60e-3) 

LSMOP8 2 200 6.1941e-2(1.83e-2) - 5.1568e-2(3.20e-3) - 4.7302e-2 (6.42e-3) - 6.5953e-2(2.93e-3)- 4.6012e-3(6.80e-4) 

LSMOP8 2 500 4.2151e-2(1.42e-2) - 2.6046e-2(6.04e-4) - 3.7752e-2 (1.48e-2) - 4.1147e-2(1.97e-3)- 8.3719e-3(1.55e-3) 

LSMOP8 2 1000 3.2790e-2(4.96e-3) - 1.3751e-2(8.75e-4) - 3.3468e-2 (9.40e-3) - 3.8178e-2 (7.09e-3) - 7.0492e-3(2.71e-4) 

LSMOP9 2 100 8.1004e-1(1.17e-16) = 1.5858e-2(2.85e-3) + 
4.4052e-1(3.17e-1) + 

7.1036e-1(2.77e-1)= 8.1004e-1(1.17e-

16) 

LSMOP9 2 200 8.1004e-1(3.10e-16) - 9.3795e-2(6.21e-2) + 7.9983e-2(3.83e-2) + 6.8305e-1(2.97e-1)= 7.3049e-1(2.52e-1) 

LSMOP9 2 500 8.0988e-1(1.91e-4) - 1.0472e-1(9.80e-3) + 2.2113e-1(2.05e-1) + 5.4352e-1(1.65e-1)- 4.5473e-1(1.91e-1) 

LSMOP9 2 1000 8.0728e-1(1.11e-3) - 5.9582e-2(3.57e-3) = 9.2922e-2(4.40e-3) = 5.8055e-1 (2.02e-1) - 3.2233e-1(2.15e-1) 

+/-/=   7/20/9 9/23/4 8/18/10 0/32/4  

Table 1 provides a comparison of results in terms of the IGD values obtained by each compared 

algorithm for two-objective LSMOP1-LSMOP9 with 100, 200, 500 and 1000 decision variables. Note that 

all the experimental results are obtained after 20 independent runs. As observed from Table 1, the proposed 



S-WOF performed better than the other four competitors. Specifically, S-WOF can obtain the best results 

on 14 out of the 36 cases, while WOF-NSGA-II, LMOCSO, DGEA and LMEA only showed the best 

performance on 9, 7, 6, 0 out of 36 cases. From the one-by-one comparisons in the last row of Table 1, S-

WOF performed better than WOF-NSGA-II, LMOCSO, DGEA and LMEA in 20, 23, 18 and 32 out of 36 

cases, respectively, and it only underperformed in 7, 9, 8 and 0 out of 36 cases, respectively. According to 

the experimental results summarized in Table 1, S-WOF performed well in most adopted benchmark 

problems, including LSMOP1, LSMOP2, LSMOP4 and LSMOP8, while may show slight disadvantages 

in LSMOP3, LSMOP6 and LSMOP7 when compared to WOF-NSGA-II and show slight disadvantages in 

LSMOP1 when compared to DGEA. Regarding the performance of S-WOF in solving LSMOP3, LSMOP6 

and LSMOP7 with multimodal landscapes, S-WOF performed poorly mainly due to the lack of diversity. 

Regarding the performance of S-WOF in solving LSMOP9 with discontinuous landscape, S-WOF behaved 

poorly because S-WOF lacks diversity. In other LSMOPs, S-WOF showed its superiority because of its 

strong convergence pressure by using the efficient CSO strategy and self-organizing mechanism. To 

conclude, the IGD results summarized in Table 1 have validated the effectiveness of the proposed S-WOF 

over other competitive MOEAs in most cases. 

The statistical HV results of S-WOF and other compared algorithms are listed in Table 2. Some 

conclusions can be drawn from Table 2. The proposed S-WOF showed better overall performance than the 

other four competitors did. Specifically, S-WOF can obtain the best results on 13 out of the 36 cases, while 

WOF-NSGA-II, LMOCSO, DGEA and LMEA only showed the best on 5, 8, 6 and 2 out of 36 cases, 

respectively. From the one-by-one comparisons in the last row of Table 2, S-WOF performed better than 

WOF-NSGA-II, LMOCSO, DGEA and LMEA in 20, 17, 12 and 27 out of 36 cases, respectively, and it 

was only worse than WOF-NSGA-II, LMOCSO, DGEA and LMEA in 8, 10, 7, and 0 out of 36 cases, 

respectively. According to the HV results listed in Table 2, S-WOF performed well in most adopted 

benchmark problems, including LSMOP1, LSMOP2, LSMOP4 and LSMOP8, while may show slight 

disadvantages in LSMOP3 and LSMOP6 when compared to WOF-NSGA-II and show slight disadvantages 

in LSMOP1 and LSMOP6 when compared to DGEA. Regarding the performance of S-WOF in solving 

LSMOP3, LSMOP6 and LSMOP7 with multimodal landscapes, S-WOF performed poorly mainly due to 

the lack of diversity. Regarding the performance of S-WOF in solving LSMOP9 with discontinuous 

landscape, S-WOF performed poorly mainly because S-WOF lacks diversity. To conclude, the HV results 

summarized in Table 2 has validated the effectiveness of the proposed S-WOF over other competitive 

MOEAs. 

 

 

 
Table 2 

The average HV values and standard deviations obtained by S-WOF and its four competitors on two-objective LSMOP1–LSMOP9 
Problem M D WOF-NSGA-II LMOCSO DGEA LMEA S-WOF 

LSMOP1 2 100 1.2612e-1 (3.48e-2) - 5.8223e-1 (2.69e-4) = 5.8309e-1 (2.35e-4) + 5.6476e-1(1.22e-3)- 5.8231e-1 (5.19e-4) 

LSMOP1 2 200 1.0883e-1 (1.05e-2) - 5.8011e-1 (5.04e-4) - 5.8169e-1 (3.63e-4) + 4.7084e-1(1.93e-1)- 5.8111e-1 (4.93e-4) 



LSMOP1 2 500 1.3684e-1 (3.71e-2) - 5.6906e-1 (1.36e-3) - 5.7793e-1 (1.03e-3) = 5.0666e-1(1.42e-1)- 5.7730e-1 (1.57e-3) 

LSMOP1 2 1000 1.9319e-1 (1.16e-1) - 4.9247e-1 (1.61e-1) - 5.6427e-1 (1.52e-3) - 3.9619e-1 (2.16e-1) - 5.6910e-1 (5.13e-3) 

LSMOP2 2 100 5.5361e-1 (9.67e-3) - 5.2518e-1 (2.20e-2) - 5.4896e-1 (3.56e-2) - 4.3091e-1(5.26e-2)- 5.7305e-1 (1.15e-3) 

LSMOP2 2 200 5.6358e-1 (6.36e-4) - 5.3282e-1 (1.50e-2) - 5.6830e-1 (1.97e-3) - 4.4795e-1(3.69e-2)- 5.7396e-1 (1.02e-3) 

LSMOP2 2 500 5.7202e-1 (4.16e-4) - 5.4567e-1 (1.18e-3) - 5.7593e-1 (6.09e-4) - 5.0795e-1(6.24e-3)- 5.7958e-1 (1.45e-3) 

LSMOP2 2 1000 5.7451e-1 (7.54e-4) - 5.6345e-1 (1.70e-3) - 5.7942e-1 (2.74e-4) - 5.4278e-1 (3.94e-3) - 5.8233e-1 (7.97e-4) 

LSMOP3 2 100 9.0486e-2 (4.74e-4) + 9.0909e-2 (6.61e-7) + 3.6347e-2 (4.69e-2) = 0.0000e+0(0.00e+0)- 3.7098e-2 (3.30e-2) 

LSMOP3 2 200 
9.0533e-2 (4.70e-4) + 7.9096e-2 (2.88e-2) + 

0.0000e+0 (0.00e+0) 

= 
0.0000e+0(0.00e+0)= 0.0000e+0 (0.00e+0) 

LSMOP3 2 500 
9.0320e-2 (1.32e-3) + 6.1524e-2 (4.29e-2) + 

0.0000e+0 (0.00e+0) 

= 
0.0000e+0(0.00e+0)= 0.0000e+0 (0.00e+0) 

LSMOP3 2 1000 8.7608e-2 (8.31e-3) + 1.7647e-2 (3.72e-2) = 1.8183e-2 (3.83e-2) = 0.0000e+0(0.00e+0)= 0.0000e+0 (0.00e+0) 

LSMOP4 2 100 5.0975e-1 (3.61e-3) - 5.5249e-1 (1.01e-3) - 5.6749e-1 (3.89e-3) = 4.0931e-1(5.54e-2)- 5.7138e-1 (3.09e-3) 

LSMOP4 2 200 5.3290e-1 (3.04e-3) - 5.6533e-1 (5.03e-4) - 5.7332e-1 (1.49e-3) - 4.7429e-1(4.53e-2)- 5.7540e-1 (9.53e-4) 

LSMOP4 2 500 5.5197e-1 (1.21e-3) - 5.7233e-1 (6.48e-4) - 5.7796e-1 (1.08e-3) - 5.2870e-1(1.92e-2)- 5.8029e-1 (1.85e-4) 

LSMOP4 2 1000 5.5574e-1 (8.18e-4) - 5.7233e-1 (7.99e-4) - 5.7981e-1 (3.44e-4) - 5.5733e-1 (9.22e-4) - 5.8253e-1 (1.40e-4) 

LSMOP5 2 100 2.5944e-1 (5.37e-2) - 3.4646e-1 (4.57e-4) + 3.3826e-1 (5.18e-3) = 1.7617e-1(1.11e-1)- 3.2661e-1 (5.41e-2) 

LSMOP5 2 200 2.9056e-1 (2.14e-2) = 3.4427e-1 (7.78e-4) + 3.3532e-1 (4.74e-3) + 1.5410e-1(1.04e-1)- 2.4633e-1 (8.09e-2) 

LSMOP5 2 500 3.0740e-1 (1.54e-2) + 3.3874e-1 (3.30e-3) + 3.2162e-1 (1.56e-2) + 8.7940e-2(8.61e-4)- 1.8959e-1 (5.35e-2) 

LSMOP5 2 1000 3.0821e-1 (1.02e-2) + 3.2328e-1 (6.25e-3) + 3.0402e-1 (3.42e-2) + 8.5283e-2 (1.77e-3) - 1.7587e-1 (1.10e-2) 

LSMOP6 2 100 1.0920e-1 (2.41e-2) + 5.2313e-2 (2.81e-2) = 4.7337e-2 (3.86e-2) = 6.9026e-3(2.18e-2)- 6.1366e-2 (2.47e-2) 

LSMOP6 2 200 1.1143e-1 (2.57e-2) + 5.0841e-2 (1.26e-2) = 6.6206e-2 (3.41e-2) = 0.0000e+0(0.00e+0)- 6.6587e-2 (3.42e-2) 

LSMOP6 2 500 1.1368e-1 (1.74e-2) = 6.2657e-2 (6.07e-3) - 1.2319e-1 (7.68e-2) = 4.9720e-4(1.57e-3)- 1.1337e-1 (4.69e-2) 

LSMOP6 2 1000 1.3042e-1 (1.93e-2) = 6.6015e-2 (2.12e-3) - 1.6386e-1 (8.04e-2) = 3.1874e-2 (1.24e-2) - 1.1035e-1 (3.46e-2) 

LSMOP7 2 100 0.0000e+0(0.00e+0) 

= 

0.0000e+0(0.00e+0) 

= 

0.0000e+0 (0.00e+0) 

= 
0.0000e+0(0.00e+0)= 0.0000e+0 (0.00e+0) 

LSMOP7 2 200 0.0000e+0(0.00e+0) 

= 

0.0000e+0(0.00e+0) 

= 

0.0000e+0 (0.00e+0) 

= 
0.0000e+0(0.00e+0)= 0.0000e+0 (0.00e+0) 

LSMOP7 2 500 0.0000e+0(0.00e+0) 

= 

0.0000e+0(0.00e+0) 

= 
2.9347e-3 (9.28e-3) = 4.2655e-3(1.35e-2)= 0.0000e+0 (0.00e+0) 

LSMOP7 2 1000 0.0000e+0(0.00e+0) 

= 

0.0000e+0(0.00e+0) 

= 

0.0000e+0 (0.00e+0) 

= 
6.7436e-3 (1.57e-2) = 0.0000e+0 (0.00e+0) 

LSMOP8 2 100 2.5357e-1 (2.66e-2) - 2.9296e-1 (9.16e-3) - 2.7531e-1 (8.70e-3) - 2.4340e-1(3.11e-2)- 3.4530e-1 (3.08e-3) 

LSMOP8 2 200 2.9568e-1 (1.39e-2) - 2.9145e-1 (5.43e-3) - 2.9321e-1 (1.22e-2) - 2.6329e-1(1.71e-3)- 3.4503e-1 (1.02e-3) 

LSMOP8 2 500 3.0308e-1 (1.13e-2) - 3.2405e-1 (9.81e-4) - 3.2276e-1 (4.67e-3) - 2.9443e-1(2.31e-3)- 3.3867e-1 (2.33e-3) 

LSMOP8 2 1000 3.0615e-1 (6.42e-3) - 3.3474e-1 (4.85e-4) - 3.2890e-1 (4.23e-3) - 2.9764e-1 (1.01e-2) - 3.4046e-1 (3.80e-4) 

LSMOP9 2 100 9.0909e-2 (0.00e+0) 

= 
2.3501e-1 (1.76e-3) + 1.6249e-1 (5.58e-2) + 1.0898e-1(6.52e-2)= 9.0909e-2 (0.00e+0) 

LSMOP9 2 200 9.0909e-2 (6.51e-17) 

- 
1.9776e-1 (2.78e-2) + 2.0528e-1 (1.74e-2) + 1.1425e-1(6.75e-2)= 1.0534e-1 (4.56e-2) 

LSMOP9 2 500 9.0929e-2 (2.49e-5) - 1.9214e-1 (4.15e-3) + 1.6418e-1 (2.56e-2) = 1.4925e-1(3.88e-2)- 1.6751e-1 (3.51e-2) 

LSMOP9 2 1000 9.1298e-2 (1.82e-4) - 2.1319e-1 (1.62e-3) = 1.9800e-1 (2.13e-3) = 1.4064e-1 (4.71e-2) - 1.9125e-1 (3.19e-2) 

+/-/=   8/20/8 10/17/9 7/12/17 0/27/9  

To have an intuitive observation, some final solution sets obtained by each compared algorithm are 

plotted in Figs. 2-3 on two-objective LSMOP8 with 200 decision variables and two-objective LSMOP4 

with 1000 decision variables, respectively. Note that the obtained solutions are marked as blue rhombus 

and the red lines indicate the true PFs that are plotted for performance comparison. Some conclusions can 

be easily drawn from these figures. Regarding the different test problems with various decision variables, 

all the final solution sets obtained by the proposed S-WOF are distributed evenly in these representative 

problems with different characteristics, while the final solution sets obtained by other competitors show 

worse distributions. Hence, it is reasonable to conclude that the proposed S-WOF shows an obvious 

superiority over other compared algorithms in solving LSMOP test problems with different decision 

variables. 



 

 

Fig. 2. The final non-dominated solutions obtained by all the compared algorithms on 2-objective LSMOP8 with 200 decision variables. 

 

 

Fig. 3. The final non-dominated solutions obtained by all the compared algorithms on 2-objective LSMOP4 with 1000 decision variables. 

4.4.2 Comparison results on the three-objective LSMOPs 

Table 3 provides a comparison of results in terms of the IGD values obtained by each compared 

algorithm and S-WOF for three-objective LSMOP1-LSMOP9 with 100, 200, 500 and 1000 decision 

variables. It is obvious that the proposed S-WOF obtained better overall performance than the other four 

competitors did. Specifically, S-WOF can obtain the best results on 21 out of the 36 cases, while WOF-

NSGA-II, LMOCSO, DGEA and LMEA only showed the best results on 2, 5, 4 and 4 out of 36 cases, 

respectively. From the one-by-one comparisons in the last row of Table 3, S-WOF performed better than 

WOF-NSGA-II, LMOCSO, DGEA and LMEA in 31, 29, 27 and 25 out of 36 cases, respectively, and it 

was only respectively worse in 2, 4, 5 and 4 out of 36 cases. According to the experiments in Table 3, S-

WOF performed well in most adopted benchmark problems, including LSMOP1, LSMOP2, LSMOP4, 

LSMOP5 and LSMOP8, while may show slight disadvantages in LSMOP9 when compared to LMOCSO. 



Regarding the performance of S-WOF in solving LSMOP9 with discontinuous landscape, S-WOF 

performed poorly mainly because S-WOF converged prematurely. Apart from the above cases, S-WOF 

showed its great superiority in most adopted cases, which mainly because S-WOF has excellent 

convergence pressure through using the proposed CSO strategy and self-organizing mechanism. Hence, the 

IGD results summarized in Table 3 have validated the effectiveness of the proposed S-WOF over other 

competitive large-scale MOEAs. 

Table 3 
The average IGD values and standard deviations obtained by S-WOF and its four competitors on three-objective LSMOP1–LSMOP9 

Problem M D WOF-NSGA-II LMOCSO DGEA LMEA S-WOF 

LSMOP1 3 100 2.0648e-1(5.73e-3) - 6.2339e-2 (1.72e-2) - 1.8201e-1 (6.23e-2) - 4.4548e-2(1.72e-2) - 3.1140e-2(2.06e-3) 

LSMOP1 3 200 2.0309e-1(3.40e-2) - 8.1250e-2 (9.16e-3) - 2.9000e-1 (2.14e-2) - 1.1382e-1(9.90e-2) - 3.7918e-2(6.10e-3) 

LSMOP1 3 500 1.5672e-1(3.00e-2) - 9.7606e-2 (8.35e-3) - 3.2798e-1 (1.31e-2) - 8.8396e-2(7.14e-2) = 4.9185e-2(9.28e-3) 

LSMOP1 3 1000 1.8669e-1(3.26e-2) - 1.0296e-1 (1.63e-2) - 3.4836e-1 (1.65e-2) - 1.0024e-1(9.96e-2) - 4.2533e-2(1.09e-2) 

LSMOP2 3 100 1.3389e-1(1.09e-3) - 6.5988e-2 (2.15e-3) - 7.4268e-2 (1.44e-2) - 1.0095e-1(9.35e-2) = 5.2411e-2(3.81e-3) 

LSMOP2 3 200 1.2580e-1(1.36e-3) - 5.4807e-2 (1.55e-3) - 4.7497e-2 (2.32e-3) - 7.0993e-2(2.91e-2) - 3.9341e-2(5.40e-3) 

LSMOP2 3 500 6.7045e-2(1.04e-3) - 3.4033e-2 (2.98e-4) - 3.2549e-2 (5.64e-4) = 4.8686e-2(6.60e-3) - 3.2937e-2(1.56e-3) 

LSMOP2 3 1000 4.8606e-2(1.81e-3) - 2.6176e-2 (1.25e-3) = 2.8493e-2 (5.95e-4) - 1.0426e-1(1.46e-1) - 2.7849e-2(4.35e-3) 

LSMOP3 3 100 6.6250e-1(2.54e-1) = 7.5839e-1 (7.57e-2) - 1.0667e+0(1.01e+0) = 5.3316e-1(3.86e-2) + 6.0616e-1(2.25e-2) 

LSMOP3 3 200 6.9291e-1(2.18e-1) = 8.1291e-1 (5.26e-2) - 7.5457e-1 (5.20e-1) = 6.1258e-1(6.38e-2) = 6.2223e-1(2.44e-2) 

LSMOP3 3 500 4.3681e-1(3.05e-2) + 8.5004e-1 (2.84e-2) - 5.7525e-1 (2.04e-2) + 6.8341e-1(6.54e-2) - 6.3748e-1(2.13e-2) 

LSMOP3 3 1000 4.4579e-1(3.43e-2) + 1.1305e+0 (8.91e-1) - 5.7737e-1 (1.47e-2) + 1.4682e+0(1.66e+0) - 6.4363e-1(9.43e-3) 

LSMOP4 3 100 1.5040e-1(1.36e-2) - 1.1438e-1 (9.70e-3) - 1.5222e-1 (1.30e-2) - 1.1398e-1(5.03e-2) = 8.9143e-2(2.92e-2) 

LSMOP4 3 200 2.0638e-1(9.07e-3) - 8.6293e-2 (9.98e-3) - 1.3521e-1 (7.00e-3) - 1.0293e-1(7.48e-2) = 7.5910e-2(5.28e-3) 

LSMOP4 3 500 1.7219e-1(4.47e-3) - 6.5152e-2 (3.04e-3) - 8.1473e-2 (3.94e-3) - 4.6602e-2(8.95e-4) + 5.5658e-2(5.91e-3) 

LSMOP4 3 1000 1.1947e-1(2.38e-3) - 4.7149e-2 (4.26e-3) - 5.0087e-2 (8.45e-4) - 6.9789e-2(8.53e-2) - 4.2141e-2(1.73e-3) 

LSMOP5 3 100 3.6087e-1(2.18e-3) - 6.9232e-2 (1.36e-2) - 3.3621e-1 (7.62e-2) - 1.6732e+0(1.09e+0) - 4.5606e-2(1.03e-2) 

LSMOP5 3 200 3.1994e-1(6.59e-2) - 2.0585e-1 (9.13e-2) - 3.8010e-1 (1.97e-2) - 2.4991e+0(2.52e+0) - 5.5774e-2(1.50e-2) 

LSMOP5 3 500 3.5782e-1(2.22e-2) - 3.7384e-1 (7.57e-2) - 3.8793e-1 (3.55e-2) - 6.3834e+0(3.20e+0) - 7.7927e-2(3.55e-2) 

LSMOP5 3 1000 3.7203e-1(4.70e-2) - 6.4303e-1 (1.70e-1) - 4.0600e-1 (4.51e-2) - 8.0646e+0(4.13e+0) - 9.1555e-2(2.83e-2) 

LSMOP6 3 100 8.7401e-1(4.47e-2) - 8.3758e-1 (3.94e-2) - 7.2501e-1 (1.34e-1) = 1.0349e+0(1.51e-1) - 6.7694e-1(4.21e-2) 

LSMOP6 3 200 1.1148e+0(3.10e-3) - 9.9895e-1 (1.97e-1) - 7.4572e-1 (1.93e-1) + 8.0431e+2(9.36e+2) - 9.3359e-1(5.67e-2) 

LSMOP6 3 500 1.2416e+0(1.29e-3) - 1.0013e+0 (4.11e-1) = 7.6006e-1 (2.95e-1) + 7.9835e+2(2.52e+3) - 9.5501e-1(2.29e-1) 

LSMOP6 3 1000 1.2832e+0(5.91e-4) - 1.1732e+0 (4.45e-1) = 7.4288e-1 (2.53e-1) + 1.5359e+0(3.19e-1) - 1.1527e+0(1.81e-1) 

LSMOP7 3 100 7.7249e-1(2.16e-2) - 9.4547e-1 (1.44e-3) - 9.8289e-1 (5.08e-2) - 2.2685e+0(9.45e-1) - 6.4510e-1(3.10e-2) 

LSMOP7 3 200 8.4353e-1(1.90e-2) - 9.4593e-1 (1.01e-6) - 1.1481e+0 (1.11e-1) - 1.6182e+0(3.06e-1) - 7.0139e-1(4.81e-2) 

LSMOP7 3 500 8.4735e-1(7.81e-3) - 9.4593e-1 (6.70e-7) - 1.1206e+0 (2.17e-1) - 8.7350e-1(1.28e-1) - 7.6147e-1(4.71e-2) 

LSMOP7 3 1000 8.4227e-1(3.25e-4) - 9.4593e-1 (1.37e-5) - 1.1199e+0 (3.06e-1) - 6.0539e-1(7.22e-2) + 7.4680e-1(4.38e-2) 

LSMOP8 3 100 3.1954e-1(5.58e-2) - 1.0564e-1 (7.33e-3) - 1.8770e-1 (7.28e-2) - 1.5494e-1(8.08e-2) - 3.9304e-2(6.70e-3) 

LSMOP8 3 200 1.6598e-1(3.00e-2) - 9.8161e-2 (6.46e-3) - 8.8078e-2 (7.56e-3) - 1.3212e-1(1.21e-2) - 3.4280e-2(2.70e-3) 

LSMOP8 3 500 1.5045e-1(7.83e-3) - 6.8204e-2 (1.62e-3) - 7.3967e-2 (3.16e-3) - 7.4491e-2(6.47e-3) - 3.1876e-2(1.16e-3) 

LSMOP8 3 1000 1.4587e-1(1.29e-2) - 5.6712e-2 (4.37e-3) - 1.6727e-1 (2.77e-1) - 5.4653e-2(1.15e-3) - 3.2483e-2(2.62e-3) 

LSMOP9 3 100 1.1450e+0(8.52e-6) = 1.2970e-1 (6.77e-2) + 1.2999e+0 (3.69e-1) - 6.2784e-1(2.81e-1) + 8.6919e-1(2.91e-1) 

LSMOP9 3 200 1.1450e+0(3.36e-6) - 1.6636e-1 (1.10e-1) + 1.4096e+0 (4.71e-1) - 6.3617e-1(2.82e-1) = 7.0288e-1(2.33e-1) 

LSMOP9 3 500 1.1450e+0(4.48e-6) - 2.2201e-1 (5.91e-2) + 1.2503e+0 (5.96e-1) - 6.4108e-1(4.34e-1) - 5.9239e-1(5.65e-5) 

LSMOP9 3 1000 1.1449e+0(4.92e-6) - 2.6135e-1 (1.74e-1) + 1.0411e+0 (2.60e-1) - 8.4397e-1(5.72e-1) = 5.9243e-1(2.27e-4) 

+/-/=   2/31/3 4/29/3 5/27/4 4/25/7  

The statistical HV results of each compared algorithm and S-WOF are listed in Table 4. Some 

conclusions can be drawn from this table. The proposed S-WOF obtained better overall performance than 

the other four competitors did. Specifically, S-WOF could obtain the best results on 17 out of the 36 cases, 

while WOF-NSGA-II, LMOCSO, DGEA and LMEA only showed the best results on 4, 9, 5 and 1 out of 

36 cases, respectively. From the one-by-one comparisons in the last row of Table 4, S-WOF performed 

better than WOF-NSGA-II, LMOCSO, DGEA and LMEA in 28, 23, 26 and 23 out of 36 cases, respectively, 



and it was only worse than WOF-NSGA-II, LMOCSO, DGEA and LMEA in 3, 5, 7 and 2 out of 36 cases, 

respectively. Based on the results in Table 4, S-WOF performed well in most adopted benchmark problems, 

including LSMOP1, LSMOP2, LSMOP4, LSMOP5 and LSMOP8, while may show slight disadvantages 

in LSMOP3 when compared to WOF-NSGA-II, in LSMOP6 when compared to DGEA, and in LSMOP7 

and LSMOP9 when compared to LMOCSO. Regarding the performance of S-WOF in solving LSMOP3, 

LSMOP6, LSMOP7 with multimodal landscape, S-WOF performed poorly mainly due to the lack of 

diversity. Regarding the performance of S-WOF in solving LSMOP9 with discontinuous landscape, S-

WOF performed poorly because S-WOF converged prematurely. Therefore, the HV results summarized in 

Table 4 have validated the effectiveness of the proposed S-WOF over other competitors. 

 
Table 4 

The average HV values and standard deviations obtained by S-WOF and its four competitors on three-objective LSMOP1–LSMOP9 
Problem M D WOF-NSGA-II LMOCSO DGEA LMEA S-WOF 

LSMOP1 3 100 6.1851e-1 (6.46e-3) - 8.0314e-1 (2.57e-2) - 6.6942e-1 (9.54e-2) - 8.2121e-1 (1.36e-2) - 8.4329e-1 (2.09e-3) 

LSMOP1 3 200 6.2651e-1 (4.67e-2) - 7.7255e-1 (1.75e-2) - 4.9676e-1 (3.05e-2) - 7.2773e-1 (1.20e-1) - 8.3671e-1 (5.82e-3) 

LSMOP1 3 500 6.8836e-1 (5.00e-2) - 7.4498e-1 (1.23e-2) - 4.4564e-1 (1.16e-2) - 7.3676e-1 (1.22e-1) - 8.2499e-1 (9.52e-3) 

LSMOP1 3 1000 6.7508e-1 (2.61e-2) - 7.3940e-1 (2.65e-2) - 4.1852e-1 (1.27e-2) - 7.4204e-1 (1.41e-1) - 8.3135e-1 (1.17e-2) 

LSMOP2 3 100 7.2926e-1 (1.91e-3) - 8.0733e-1 (2.11e-3) - 7.9890e-1 (1.80e-2) - 7.6819e-1 (8.66e-2) = 8.2349e-1 (3.45e-3) 

LSMOP2 3 200 7.3618e-1 (1.58e-3) - 8.1807e-1 (1.43e-3) - 8.2619e-1 (2.61e-3) - 7.9716e-1 (2.91e-2) - 8.3495e-1 (5.31e-3) 

LSMOP2 3 500 8.0165e-1 (1.30e-3) - 8.3897e-1 (3.45e-4) - 8.4220e-1 (5.54e-4) + 8.2287e-1 (6.52e-3) - 8.4099e-1 (1.61e-3) 

LSMOP2 3 1000 8.2176e-1 (1.24e-3) - 8.4804e-1 (1.24e-3) = 8.4772e-1 (8.57e-4) = 7.8828e-1 (1.05e-1) - 8.4626e-1 (6.24e-3) 

LSMOP3 3 100 2.5360e-1 (2.18e-1) = 9.3259e-2 (3.30e-3) - 1.3849e-1 (9.25e-2) = 2.4575e-1 (8.22e-2) + 1.0857e-1 (2.12e-2) 

LSMOP3 3 200 2.0995e-1 (1.60e-1) = 9.1249e-2 (8.61e-4) - 1.4973e-1 (6.52e-2) + 1.7005e-1 (6.09e-2) + 9.7393e-2 (4.79e-3) 

LSMOP3 3 500 3.9571e-1 (4.53e-2) + 9.1198e-2 (7.69e-4) - 1.7378e-1 (3.96e-3) + 1.2023e-1 (5.67e-2) = 9.5455e-2 (4.26e-3) 

LSMOP3 3 1000 3.8311e-1 (5.05e-2) + 8.1818e-2 (2.87e-2) - 1.6909e-1 (6.30e-3) + 4.0821e-3 (6.16e-3) - 9.5725e-2 (2.99e-3) 

LSMOP4 3 100 6.8695e-1 (1.71e-2) - 7.6218e-1 (9.95e-3) - 7.1764e-1 (1.62e-2) - 7.3279e-1 (7.62e-2) - 7.8749e-1 (2.78e-2) 

LSMOP4 3 200 6.2843e-1 (8.27e-3) - 7.9092e-1 (9.04e-3) - 7.3907e-1 (7.98e-3) - 7.5349e-1 (8.77e-2) - 8.0270e-1 (4.43e-3) 

LSMOP4 3 500 6.7760e-1 (5.19e-3) - 8.1050e-1 (2.92e-3) - 7.9450e-1 (4.27e-3) - 8.2084e-1 (1.33e-3) = 8.2011e-1 (6.11e-3) 

LSMOP4 3 1000 7.4529e-1 (2.98e-3) - 8.2705e-1 (3.92e-3) - 8.2446e-1 (9.25e-4) - 8.0117e-1 (8.14e-2) = 8.3182e-1 (1.89e-3) 

LSMOP5 3 100 3.7787e-1 (1.33e-2) - 5.2383e-1 (1.56e-2) - 3.7385e-1 (5.54e-2) - 1.3522e-1 (2.27e-1) - 5.4801e-1 (1.62e-2) 

LSMOP5 3 200 3.8222e-1 (4.40e-2) - 3.7786e-1 (9.41e-2) - 3.5870e-1 (3.33e-2) - 2.2403e-1 (2.46e-1) - 5.3637e-1 (1.85e-2) 

LSMOP5 3 500 3.6088e-1 (1.69e-2) - 2.1569e-1 (4.42e-2) - 3.5342e-1 (4.92e-2) - 4.9866e-2 (1.06e-1) - 5.1072e-1 (3.99e-2) 

LSMOP5 3 1000 3.6618e-1 (1.84e-2) - 1.0477e-1 (1.54e-2) - 3.3449e-1 (6.05e-2) - 6.2012e-2 (1.35e-1) - 4.9347e-1 (3.23e-2) 

LSMOP6 3 100 2.2492e-3 (1.99e-3) + 2.2264e-3 (4.80e-3) = 2.8010e-2 (2.08e-2) + 2.5108e-3 (7.94e-3) = 0.0000e+0 (0.00e+0) 

LSMOP6 
3 

200 0.0000e+0(0.00e+0) 

= 
1.3536e-2 (4.28e-2) = 4.2750e-2 (2.03e-2) + 

0.0000e+0(0.00e+0) 

= 
5.6838e-3 (1.80e-2) 

LSMOP6 
3 

500 0.0000e+0 (0.00e+0) 

- 
3.2743e-2 (5.47e-2) = 6.0422e-2 (2.14e-2) = 

0.0000e+0 (0.00e+0) 

- 
3.6736e-2 (3.90e-2) 

LSMOP6 
3 

1000 0.0000e+0(0.00e+0) 

= 
1.3636e-2 (2.90e-2) = 6.9174e-2 (2.43e-2) + 5.9012e-3 (1.87e-2) = 1.4556e-2 (3.07e-2) 

LSMOP7 
3 

100 
7.5820e-3 (1.65e-2) - 9.0906e-2 (1.20e-6) + 9.0885e-3 (2.87e-2) - 

0.0000e+0 (0.00e+0) 

- 
8.5523e-2 (1.50e-3) 

LSMOP7 
3 

200 0.0000e+0 (0.00e+0) 

- 
9.0907e-2 (1.03e-6) + 0.0000e+0 (0.00e+0) - 2.3570e-3 (7.45e-3) - 8.7303e-2 (1.72e-3) 

LSMOP7 3 500 1.8684e-3 (5.33e-3) - 9.0905e-2 (1.13e-6) + 0.0000e+0 (0.00e+0) - 2.3724e-5 (7.50e-5) - 8.8637e-2 (9.31e-4) 

LSMOP7 3 1000 1.6212e-2 (1.11e-3) - 9.0895e-2 (3.09e-5) + 8.8960e-3 (2.23e-2) - 1.0874e-2 (3.76e-3) - 8.9415e-2 (3.36e-4) 

LSMOP8 3 100 3.9695e-1 (1.98e-2) - 4.6438e-1 (1.26e-2) - 4.0581e-1 (4.68e-2) - 3.7311e-1 (1.25e-1) - 5.6026e-1 (8.23e-3) 

LSMOP8 3 200 4.2093e-1 (2.07e-2) - 4.7288e-1 (6.24e-3) - 4.9972e-1 (1.19e-2) - 3.9860e-1 (1.77e-2) - 5.6724e-1 (3.89e-3) 

LSMOP8 3 500 4.2909e-1 (8.66e-3) - 5.1086e-1 (2.93e-3) - 5.2079e-1 (3.47e-3) - 4.8982e-1 (9.39e-3) - 5.7092e-1 (2.10e-3) 

LSMOP8 3 1000 4.3785e-1 (1.53e-2) - 5.2500e-1 (6.82e-3) - 4.7409e-1 (1.41e-1) - 5.2452e-1 (1.65e-3) - 5.7052e-1 (3.25e-3) 

LSMOP9 3 100 1.4772e-1 (1.37e-6) = 2.3117e-1 (4.15e-2) + 4.9345e-2 (5.15e-2) - 1.8242e-1 (2.15e-2) = 1.6786e-1 (2.16e-2) 

LSMOP9 3 200 1.4772e-1 (1.13e-6) - 2.1173e-1 (6.18e-2) = 2.5876e-2 (1.50e-2) - 1.7553e-1 (2.00e-2) = 1.8048e-1 (1.75e-2) 

LSMOP9 3 500 1.4771e-1 (1.96e-6) - 1.7946e-1 (3.19e-2) = 6.0559e-2 (7.13e-2) - 1.6217e-1 (5.79e-2) = 1.8870e-1 (4.04e-5) 

LSMOP9 3 1000 1.4771e-1 (1.28e-6) - 1.6902e-1 (8.12e-2) = 6.3297e-2 (5.47e-2) - 1.4713e-1 (7.08e-2) = 1.8868e-1 (1.35e-4) 



+/-/=   3/28/5 5/23/8 7/26/3 2/23/11  

For further observation, some final solution sets with the best IGD values from all 20 runs are plotted 

in Figs. 4-5 for the nondominated solutions obtained by the four compared MOEAs and S-WOF on three-

objective LSMOP2 with 100 decision variables and three-objective LSMOP8 with 500 decision variables. 

Note that the blue and red dots in figures are the optimal solutions obtained by each compared algorithm 

and the true PFs, respectively. Some conclusions can be easily drawn from these figures. Regarding the 

different test problems with various decision variables, all the final solution sets obtained by the proposed 

S-WOF are distributed evenly in these representative problems with different characteristics, while the final 

solution sets obtained by other competitors show poor distributions. Hence, it is reasonable to conclude that 

the proposed S-WOF shows an obvious superiority over other compared algorithms in solving LSMOP test 

problems with different decision variables. 

 

 

 
Fig. 4. The final non-dominated solutions obtained by all compared algorithms on 3-objective LSMOP2 with 100 decision variables. 
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Fig. 5. The final non-dominated solutions obtained by all compared algorithms on 3-objective LSMOP5 with 500 decision variables 
 

4.4.3 Comparison on CPU running time. 

 

Fig. 6. Average CPU running time of all compared algorithms on all test problems with 2 objectives and 500 decision variables. 

Fig. 7. Average CPU running time of all compared algorithms on all test problems with 3 objectives and 1000 decision variables. 

The CPU running time is also an important criterion to evaluate the efficiency of an algorithm. 

Therefore, we further investigate the computational efficiency of our proposed method and other compared 

large-scale MOEAs. Figs. 6-7 provide the average CPU running time of each compared algorithm after 20 

independent runs on all LSMOP test problems with two objectives and 500 decision variables and all 

LSMOP test problems with three objectives and 1000 decision variables (in seconds: s), respectively. We 

can draw following conclusions from these figures:  

First, WOF-NSGA-II and LMOCSO showed some advantages over our proposed method in most 

adopted test problems. The main reason behind this is that these two algorithms were implemented in a 

simple MOEA framework, where WOF-NSGA-II adopted a simple non-dominated sorting genetic 
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algorithm and LMOCSO adopted a basic CSO variant to optimize the LMOPs with large-scale variables. 

Despite these two methods showed some advantages in terms of the CPU running time, as learned from the 

average IGD results in Table 1 and Table 2, such a simple MOEA framework adopted in WOF-NSGA-II 

and LMOCSO may not be sufficient to address the various LMOPs in the huge search space due to its weak 

search ability to some extent.  

Second, when comparing to LMEA, the CPU time of our proposed method was similar to that of 

LMEA for 2-objective LSMOP problems with 500 decision variables, while it showed advantages over 

LMEA when solving 3-objective LSMOP problems with 1000 decision variables. The reason behind this 

is that LMEA, as a method based on the decision variable analysis, requires more computation time to 

conduct decision variable analysis as the dimensionality of decision variables increases. 

Third, DGEA performed worst in most adopted cases, because DGEA need to select the diversity-

related solutions and convergence-related solutions as the balanced parent population before each iteration 

of evolution, which consumes a significant amount of time. 

Last, when considering the CPU time of our proposed method, S-WOF showed slight disadvantages 

compared to WOF-NSGA-II and LMOCSO in most adopted cases. Here, we further investigate the main 

reasons behind this. Compared to WOF-NSGA-II, the main difference between S-WOF and WOF-NSGA-

II is that the evaluating numbers for the weighted based optimization and original optimization in WOF-

NSGA-II are fixed, while the evaluating numbers in our proposed S-WOF are dynamically adjusted 

according to the current evolutionary state, aiming to achieve a good tradeoff between diversity and 

convergence. Therefore, compared to WOF-NSGA-II, although our proposed S-WOF needs to consume a 

small amount of extra time for monitoring the current evolutionary state and adjustment of the evaluating 

numbers for the weighted based optimization and original optimization, it can achieve a better balance 

between convergence and diversity. On the other hand, compared to LMOCSO, one of the main difference 

between LMOCSO and S-WOF is the adopted optimizer during the evolutionary search. Specifically, 

LMOCSO adopted a basic CSO variant as the optimizer to perform the evolutionary search, where only 

half of particles are evolved in each iteration. However, such a basic CSO variant may show slow 

convergence when solving LMOPs with large-scale decision variables. To alleviate this issue, this paper 

proposed a new efficient CSO variant that allows two-thirds of particles to be evolved in each iteration, 

aiming to speed up the convergence. Therefore, compared to LMOCSO, although our proposed S-WOF 

consumes a small amount of extra time to evolve more particles in each iteration, it has a faster convergence 

speed. Since there is no free lunch, we sometimes need to sacrifice a small amount of time while improving 

the performance of the algorithm. Fortunately, compared to WOF-NSGA-II and LMOCSO, it can be seen 

from the experimental results that the performance of our method in solving various LMOPs has been 

obviously improved, while the CPU times of our method and these two competitors are still at the same 

and acceptable level. 

Summarily, compared with these current competitive large-scale MOEAs, extensive experimental 

results show that our proposed S-WOF can achieve a good tradeoff between performance and execution 



efficiency. That is, S-WOF not only obtains promising performance in solving most adopted LMOPs, but 

also exhibits an acceptable and reasonable execution efficiency.  

The main contribution and concern of this paper is to improve the performance of algorithm in solving 

LMOPs by designing some efficient techniques, including a self-organizing mechanism for balancing the 

diversity and convergence and a new CSO variant for further accelerating convergence. Of course, how to 

better guarantee the performance of the algorithm while further improving the efficiency of the algorithm 

execution is also a point we need to consider in the future. Moreover, we note that different programming 

styles may also have a significant impact on the CPU running time of the algorithms to some extent. Thus, 

we will attempt to adopt a more efficient coding style for programming when designing algorithms in future 

work. 

5. Conclusions and future work 

In this paper, we proposed a self-organizing weighted optimization based framework, termed S-WOF, 

which applies a self-organizing mechanism to adaptively adjust the evaluating numbers of weighted based 

optimization method and normal optimization method. Specifically, regarding the number of evaluations 

for the weighted based optimization approach (t1), it becomes larger when the population is in the 

exploitation state, which aims to accelerate the convergence speed, while t1 is gradually diminished when 

the population switches to the exploration state, in which more attentions are put on the diversity. On the 

other hand, regarding the number of evaluations for the normal optimization method (t2), it shows an 

opposite trend to t1, which becomes smaller during the exploitation state and gradually increases later. In 

this way, a dynamic trade-off between convergence and diversity is achieved in the proposed S-WOF. 

Moreover, an efficient CSO variant is designed in S-WOF to further improve the search ability in the large-

scale search space. As illustrated in the experimental comparison and analysis, our proposed S-WOF has 

shown superiority on solving most benchmark problems adopted in this paper when compared to four state-

of-the-art MOEAs (i.e., WOF-NSGA-II, LMOCSO, DGEA, and LMEA). 

Although the experimental results have validated the effectiveness of our proposed method over several 

competitive large-scales MOEAs, with the rapid development of the field of large-scale optimization, there 

is still tremendous room for further research and improvement. First, designing a more computationally 

efficient framework as well as improving the robustness of our method in solving various LMOPs are on 

the agenda of our future work. Second, extending our method to solve large-scale many-objective 

optimization problems (LMaOPs) and some practical applications are also on the agenda of our future work. 
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