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Abstract

Epidemic outbreaks represent a significant concern for the current state of global health, partic-

ularly in Brazil, the epicentre of several vector-borne disease outbreaks and where epidemic control

is still a challenge for the scientific community. Data science techniques applied to epidemics are

usually made via standard statistical and modelling approaches, which do not always lead to reli-

able predictions, especially when the data lacks a piece of reliable surveillance information needed

for precise parameter estimation. In particular, Dengue outbreaks reported over the past years

raise concerns for global health care, and thus novel data-driven methods are necessary to pre-

dict the emergence of outbreaks. In this work, we propose a parameter-free approach based on

geometric and topological techniques, which extracts geometrical and topological invariants as op-

posed to statistical summaries used in established methods. Specifically, our procedure generates

a time-varying network from a time-series of new epidemic cases based on synthetic time-series

and real Dengue data across several districts of Recife, the fourth-largest urban area in Brazil.

Subsequently, we use the Euler characteristic (EC) to extract key topological invariant of the epi-

demic time-varying network and we finally compared the results with the effective reproduction

number (Rt) for each data set. Our results unveil a strong correlation between epidemic outbreaks

and the EC. In fact, sudden changes in the EC curve preceding and/or during an epidemic period

emerge as a warning sign for an outbreak In the synthetic data, the EC transitions occur close to

the periods of epidemic transitions, which is also corroborated. In the real Dengue data, where

data is intrinsically noise, the EC seems to show a better sign-to-noise ratio once compared to Rt.

In analogy with later studies on noisy data by using EC in positron emission tomography (PET)

scans, the EC estimates the number of regions with high connectivity in the epidemic network and

thus has potential to be a signature of the emergence of an epidemic state. Our results open the

door to the development of alternative/complementary topological and geometrical data-driven

methods to characterise vector-borne disease outbreaks, specially when the conventional epidemic

surveillance methods are not effective in a scenario of extreme noise and lack of robustness in the

data.
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I. INTRODUCTION

The development of data-driven surveillance tools for epidemic outbreaks is paramount

for saving human lives. There is an indispensable need for such tools to ensure the stability

of public health; a case in point is the recent SARS-COV-2 outbreak [1, 2]. However, the

development of such tools poses significant medical, scientific, computational, mathematical

and technological challenges due to the complexity of spatial-temporal interactions of agents

(humans, pathogens) and high-dimensional latent variables in the real world. The develop-

ment of such tools is a hot topic in epidemiology, and various approaches have been proposed

[3–6]. Early developments in the 1950s were based on time-varying models together with

statistical and stochastic techniques that aimed at dissecting the inherent complexity of out-

break events. A pioneering example was the Kermack and McKendrick theory [7, 8]. Over

the past years, research in complex network theory made it possible to deal with epidemic

behaviour from a theoretical, statistical and big data perspective. This has, for instance,

enabled sophisticated network data visualization to present population dynamics behavior

and parameter estimation of mathematical models to predict epidemiological developments

[9–18].

Topological Data Analysis (TDA) and Geometrical Data Analysis (GDA) are recent

promising data-analytic techniques that allow extraction of non-trivial topological and ge-

ometrical features from multi-scale high-dimensional data [19–23]. This conceptual idea of

analysing data via geometrical and topological means stands in stark contrast with conven-

tional numerical summaries (e.g. used in statistics), which might require advanced inference

methods and a reliable data set for a precise parameter estimation. In analogy to a piece

of music (i.e. data), which is composed of chords, topological invariants can be understood

as the fundamental patterns (i.e. chords) that best describe the shape of the data. The

effectiveness of TDA and GDA has been shown in several applications across several fields

[24–28]. For example, Ricci curvature discretization has been useful to predict fragility and

risk in stock exchange [29] and cancer diagnostics [30, 31], while Betti numbers and the

Euler characteristic have been applied to brain activity [32]. Given this past work, we en-

visage that TDA and GDA methods have potential for becoming alternative surveillance

tools for epidemics. As a paradigmatic example, the authors recently developed geometric

approaches in an attempt to infer early signs of COVID-19 new waves by using discrete
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Ricci curvatures [33]. In line with this approach, the aim of the present work is to explore

potential develop surveillance tools based on TDA as an alternative topological approach to

tracking the emergence of epidemic outbreaks. Here, we will focus on analyzing data from

time-series new cases of Dengue disease outbreaks.

Dengue is a vector-borne viral disease that represents a significant health concern for our

globalized world, where epidemic control is still a challenge for science and society. Further-

more, its unpredictable spreading dynamics have been threatening humanity, particularly

in tropical countries worldwide [34, 35]. Classical dengue fever, also known as break-bone

fever, is distinguished by headache, a sudden onset of fever, sore muscles and joints, with

occasional nausea and rash. These symptoms may last for several days. When it comes to

Dengue hemorrhagic fever, the symptoms also include a sudden onset of fever and hemor-

rhagic manifestations, resulting in fluid loss and a higher risk of death [36]. Unfortunately,

there is a lack of robust topological and geometrical surveillance tools for monitoring and

controlling Dengue disease. Also, the lack of a well-structured data collection limit the

surveillance methods to basic statistics. In our case, the lack of data prevent us to perform

advanced methods to compute the effective reproduction number through the methods like

the ones presented in [37, 38], which might require estimation of time-delay distribution for

example.

This motivates the present work, which proposes the use of TDA methods to analyze

directly the topological and geometrical changes of time-series data associated with Dengue

outbreaks, which are noisy and poorly collected in general [39–42]. Proceeding in this way, we

can track the epidemic landscape without the use of mathematical modelling and parameter

estimation from data. In particular, the Euler characteristic emerges as an effective tool to

highlight topological information from noisy data in complex networks. In [43], the authors

computed the Euler characteristic of positron emission tomography (PET) scan data and

concluded that the Euler characteristic is an estimator of the number of isolated activation

clusters in the brain. In analogy, for an epidemic network, we hypothesise that the Euler

characteristic can be interpreted as an estimate of the number of epidemic clusters and,

therefore, could be a topological marker for an epidemic outbreak. Indeed, our analysis

shows that, in analogy with [29, 33], there is a strong correlation between topological and

epidemic curves. More specifically, the Euler characteristic could serve as a marker for

Dengue outbreaks despite high levels of noise associated with poor data collection or constant
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endemic situations.

This work is written as follows: In section II we present the methods and materials used

in our approach, followed by section III, where we first introduce the model in which we

generated our synthetic Dengue data. The results of our approach for both synthetic and real

Dengue data are shown in and compared with the results of the effective reproduction number

in section IV. Finally, in section V, we present the conclusion and further considerations of

our work.

II. MATERIALS AND METHODS

In this section, we discuss the methods for creating time-evolving networks from epidemic

data, as well as the filtration of networks and the calculus of Euler characteristics.

A. Building a network from epidemic time-series data

Network-based approaches in epidemiology are usually performed by associating nodes

to individuals, while the edges represent the transmission of the disease [9, 11, 44, 45]. The

starting point of our approach for creating an epidemic network differs from the standard one

in that it is based on Pearson correlation coefficients computed from time-series data, and is

often used as a similarity measure for discrete time-series in general [46]. This approach is

inspired by network analysis in other fields, such as neuroscience [47] or finance [48], where

the connectivity between two nodes is often functional and not only structural.

Guided by the work in [33], we define the evolving epidemic networks from time-series

in this section. More specifically, we define the geographical places where the new cases

of epidemic time-series are collected as the nodes of the network and the (weighted) links

are pairwise Pearson correlation coefficients between the provided time-series [49–51]. As

a result, we have a (weighted) undirected network carrying the epidemic information from

the pairwise Pearson correlation between these time-series. Naturally, this network can be

translated into a symmetric square adjacency matrix, where the entries are the correlation

coefficients between the nodes.

Formally, for every fixed time interval in the epidemic data, we generate an undirected

simple weighted graph G = (V,E), where V are the places that provide the time-series and
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E = {e = (x, y); x, y ∈ V , x ̸= y} is the set of edges, with we ∈ [−1, 1] the weight of the

edge e = (x, y), computed according to the Pearson correlation coefficient between the places

x and y. By repeating this step for all time intervals, we build a sequence of time-evolving

networks that carries the information of the epidemic data along the time.

B. Filtration method

The procedure of generating networks from data generally results in dense graphs, which

may have several spurious links or might be time demanding for most large-scale complex

networks analyses. Also, there is no established way to threshold a network and, therefore,

no established filtration procedure. Taking these facts into account, we decided to use a

network filtration method that allows us to delete spurious information from the network.

This process is also performed in our recent work [33] and is described as follows:

Let G = (V,E) be an undirected weighted simple graph. The ϵ-neighbourhood [19] is a

subset of E that derives a subgraph Gϵ ⊂ G, defined by Gϵ = (V,Eϵ), and is defined as

Eϵ = {e = (x, y) ∈ E, x ̸= y ; m(x, y) ≤ ϵ}, (1)

were m(x, y) is a metric distance defined over the set of nodes. The added value of this

definition is the possibility of visualizing an evolving graph as a function of a parameter ϵ.

Note that the interaction between nodes is provided by the Pearson correlation coefficient

matrix, whose entries might assume negative values and cannot be considered as distance

values in (1). In other domains, the absolute value of the Pearson correlation coefficient is

often considered to define these networks. However, the original information is useful for

measuring the degree of synchronicity of the time-series: for example, a negative correlation

between two time-series can be interpreted as opposite trends of epidemic stages - the number

of new epidemic cases increases in one place while it decreases elsewhere. Furthermore, the

idea of varying the ϵ values is to start with an empty graph and gradually add the strongest

links to the evolving graph, i.e., we first add the edges with a higher correlation coefficient.

This construction can be harmed by considering the absolute value of Person correlation

coefficients as done in other domains.

For these reasons, we remodeled eq. (1) by setting Eϵ as
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Eϵ = {e ∈ E; we ≥ 1− ϵ}, (2)

where we is the weight of the edge e. From (2), we can see that ϵ runs over the interval [0, 2]

(once the Pearson correlation values run in [−1, 1]) and that Gϵ ⊂ G. In order to ignore

redundant information for the time-varying analysis, we compute the critical percolation

value of ϵc such that the graph still keeps the connections which are relevant in the skeleton

structure. This threshold value is defined as follows:

ϵc = inf{ϵ ∈ [0, 2] ; |Gϵ| = |G|}, (3)

where |G| denotes the number of connected components of G = G2 [52, 53]. The idea is

to keep the graph structure the same as the crossing number of connected components (or,

alternatively, the Betti numbers of G [54]). The filtration process is visualized in Figure 1.

In this example, the original network (ϵ=2.0) has the same number of connected components

as its filtered version (ϵc = 0.63), which is the chosen threshold network that preserves the

number of connected components of the original network. For each time-evolving graph,

FIG. 1: Visual and geometrical difference between non-filtered network (left) and filtered

network (right).
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a filtration is selected in the vicinity of the giant component transition. As is discussed

in theoretical models for epidemic networks, an epidemic outbreak happens at the critical

probability for the emergence of a giant component transition [11, 13], so that the detachment

of connected components is imminent. Here, we are seeking the smallest threshold value that

leads to the maximum amount of connected components in the graph. This approach not

only reduces time-processing and spurious links but also maintains the crucial information

provided by the original network. In the following subsections, we will recall the basics

of CW complexes relevant for our analysis and their applicability to computing the Euler

characteristic of complex networks.

C. CW complexes

The study of topology in a continuous manifold and its geometric counterparts is not a

new field [55–59]. However, discrete versions of theoretical results in differential geometry

and associated computational algorithms have recently become a burgeoning area of pure

and applied mathematics [60]. Over the past years, the topological and geometric approaches

were formalized for discrete structures [56, 61–65]. Here, we discuss the relevant topological

objects for our analysis and, in particular, introduce the Euler characteristic as a discrete

topological measure that can be written in terms of cells of a CW-complex.

We are going to introduce the concept of CW-complexes and how this structure relates

to the computation of Euler characteristic.

Let G = (V,E) be an undirected graph. We define a d-cell as a complete subgraph of G

with d+1 nodes, i.e., the structures equivalent to open balls of dimension d in the continuous

definition [66]. They are also called (d+ 1)-vertex cliques (or cliques of dimension d) in the

computational approach. The union of all d-cells is said a CW-complex.

In Figure 2, we see a CW-complex consisting of 10 cells of dimension 0 (nodes), 13

cells of dimension 1 (edges), 5 cells of dimension 2 (triangles) and 1 cell of dimension 3

(tetrahedrons). Alternatively, we can also say that the structures in this figure are cells of

dimensions 0, 1, 2 and 3, respectively.

In our work, the CW-complexes are extracted from the time-evolving filtered networks

defined in the last section. These structures are relevant for expressing the topological

signature of the epidemic data, in this work, expressed in terms of Euler characteristics.
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FIG. 2: Example for a CW-complex and its d-cells (or (d+ 1)-vertex cliques) highlighted

in purple,for d ∈ {0, 1, 2, 3}.

D. The Euler characteristic

One important set of tools used to explore and understand the shape of data is Topo-

logical Data Analysis [23, 67]. Over the past years, TDA applications across fields have

yielded astounding results for science. For instance, topological transitions have been used

as bio-markers in protein-protein networks [68] and to identify the emergence of neurologi-

cal diseases from brain data[32]. There are many ways to compute the Euler characteristic

across fields, [69–73]. Here, we use [71] in order to reduce the computational complexity.

The Euler characteristic of a CW-complex is defined as follows:

Let G = (V,E) be an undirected finite graph. We define the Knill curvature of a node

v ∈ V as [65, 74, 75]

K(v) = 1 +
dmax∑
d=1

(−1)d
Sd(v)

d+ 1
, (4)

where Sd is the number of d cells containing v and dmax is the highest cell (clique) dimension

of the CW-complex. The d-cells are the same as defined in the previous section. Equation
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Node Knill Curvature

1 -3/4

2 -5/12

3 1/4

5 -1/4

6 0

7 -1/6

8 1/3

4 1/2

9 1/2

10 1

TABLE I: Comparison between Knill curvatures across nodes, based on the CW-complex

in Figure 2.

(4) can also be re-written as follows:

K(v) = 1 +
∑
c⊇v,
c∈C

(−1)#c−1

#c
, (5)

where c is a cell in the CW-complex C and #c is the number of nodes of the cell. The

formulas in (4) and (5) satisfy the Gauss-Bonnet Theorem [65, 74, 76, 77] i.e.,

χ(G) =
∑
v∈V

K(v), (6)

where χ(G) is the Euler characteristic of G. In Table I, it is possible to see how the Knill

curvatures of the network in Figure 2 differ from each other across nodes. The Euler char-

acteristic for the graph in Figure 2 is the sum of Knill curvatures per node in Table I, which

is χ = 1.

E. Computing the Euler characteristic from the dataset

Here, we are going to construct a pipeline to compute the Euler characteristic from

epidemic time-series. We establish the conversion of time-series data files into time-evolving
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graphs, which then enable us to compute the Euler characteristic from the dataset. This

workflow is composed of the following steps:

• Step 1: A time window is selected from the time-series dataset;

• Step 2: A pairwise time-series correlation matrix is constructed from the Pearson

correlation coefficient [49–51];

• Step 3: A network is built from Step 2 in a natural way, i.e. the information of

weights and links in the network are provided by the rows (columns) of the matrix;

• Step 4: The network undergoes a filtration in order to reduce spurious links, through

equation (3);

• Step 5: The Euler characteristic of the resulting filtered network is computed by

using equation (6), and provides the information of the curvature for a selected time

interval.

This process is repeated for all time windows in the epidemic data. Figure 3 visually illus-

trates the steps of this process.

In the next section, we are going to generate the synthetic data in order to study its

topological behaviour afterwards.

III. APPLICATION OF TOPOLOGICAL APPROACHES TO SYNTHETIC

DENGUE DATA

In order to test the validity of our hypothesis that the Euler characteristic is a topo-

logical marker for a vector-borne disease outbreak in epidemic time-series, we first apply

the provided methods to synthetic epidemic data as a proof of concept. For this, we simu-

lated time-series from a spatial epidemic interaction based on a classical stochastic epidemic

disease network model. More specifically, we used a variation of a stochastic Susceptible-

Infected-Recovered (SIR) model in order to replicate the behaviour of Dengue disease [78],

originally used for modelling the Dengue epidemic in Rio de Janeiro, Brazil. Our approach

includes birth and death interactions for generating epidemic waves. We model the infection

dynamics of the population as follows:
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FIG. 3: An explanation of the pipeline for computing the Euler characteristic from

epidemic data.

The total initial population (N) is divided by sites/places (P1, P2, · · · , Pm). For each

j ∈ {1, · · · ,m} we have susceptible (Sj), infected (Ij) and recovered/removed (Rj) as local

population.

The contagion dynamics between the sites is ruled by a probability matrix, Φ = (ϕij)m×m.

Each class (susceptible, infected or recovered) has a death rate (δSj
,δIj and δRj

), and only

the class of susceptibles has a birth rate αi, for all j ∈ {1, · · · ,m}.

From this dynamic, we can express a system of ordinary differential equations from rate
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equation techniques provided in [79],

dSi

dt
= αi −

∑m
j,k=1 βjϕijϕkjSi

Ik
Np

j

− δSi
Si

dIi
dt

=
∑m

j,k=1 βjϕijϕkjSi
Ik
Np

j

− (γi + δIi)Ii

dRi

dt
= γiIi − δRi

Ri

, (7)

for all j, k ∈ {1, · · · ,m}, and satisfying the constant initial condition equation

Sj(0) + Ij(0) +Rj(0) = Nj , (8)

for Nj ∈ N+, where
∑m

j=1Nj = N , Np
j =

∑m
k=1 ϕkjNk, and ϕij is an element of the Flux

Matrix satisfying
m∑
k=1

ϕjk = 1, (9)

for all j ∈ {1, · · ·m}. In our approach, we are considering

ϕij(ρ) =

 ρ, i ̸= j

1− (m− 1)ρ, i = j
, (10)

for some ρ ∈ [0, 1/(m − 1)]. Equation (10) represents the migration rate from place i to j.

In particular, when i = j, we have the rate of population that are not migrating (i.e. that

is staying at place i). This flow is uniform when ρ = 1/m. We generated the epidemic

time-series from a Monte-Carlo simulation [80] as follows:

1. Select the time: t;

2. Take r ∈ (0, 1) a random variable uniformly distributed;

3. Update the propensities i.e., for all i ∈ 1, · · · ,m:

• ai =
∑m

j,k=1 βjϕijϕkjSi(t)
Ik(t)

Np
j

;

• bi = γiIi(t);

• ci = Si(t);

• di = δSj
Sj(t);
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• ei = δIjIj(t);

• fi = δRj
Rj(t);

• r0 =
∑m

i=1 ai + bi + ci + di + ei + fi;

4. Compute the extreme points of intervals for the next time step:

ri =



1
r0

∑i
j=1 aj , 1 ≤ i ≤ m

1
r0
(
∑m

j=1 aj +
∑i−m

j=1 bj), m+ 1 ≤ i ≤ 2m

1
r0
(
∑m

j=1(aj + bj) +
∑i−2m

j=1 cj), 2m+ 1 ≤ i ≤ 3m

1
r0
(
∑m

j=1(aj + bj + cj) +
∑i−3m

j=1 dj), 3m+ 1 ≤ i ≤ 4m

1
r0
(
∑m

j=1(aj + bj + cj + dj) +
∑i−4m

j=1 ej), 4m+ 1 ≤ i ≤ 5m

1
r0
(
∑m(

j=1 aj + bj + cj + dj + ej) +
∑i−5m

j=1 fj), 5m+ 1 ≤ i ≤ 6m

5. Update time, t := t+ 1;

6. Update population:

• If 0 ≤ r < r1, then S1(t+ 1) = S1(t)− 1 and I1(t+ 1) = I1(t) + 1;

Considering the other possible cases, when ri ≤ r < ri+1 :

• If i ∈ {1, · · · ,m− 1}, then Si+1(t+1) = Si+1(t)− 1 and Ii+1(t+1) = Ii+1(t)+ 1;

• If i ∈ {m, · · · , 2m− 1}, then Ii+1−m(t+ 1) = Ii+1−m(t)− 1 and Ri+1−m(t+ 1) =

Ri+1−m(t) + 1;

• If i ∈ {2m, · · · , 3m− 1}, then Si+1−2m(t+ 1) = Si+1−2m(t) + 1;

• If i ∈ {3m, · · · , 4m− 1}, then Si+1−3m(t+ 1) = Si+1−3m(t)− 1;

• If i ∈ {4m, · · · , 5m− 1}, then Ii+1−4m(t+ 1) = Ii+1−4m(t)− 1;

• If i ∈ {5m, · · · , 6m− 1}, then Ri+1−5m(t+ 1) = Ri+1−5m(t)− 1;

7. Return to 1. and repeat the algorithm for the next time step.

Before moving on, it is important to note that the focus of our work is to generate a toy model

for epidemic time-series for further topological analysis , rather than studying the ergodocity

of the model through a topological perspective, once it might be time demanding for both

generating the synthetic data and computing the Euler Characteristics. Furthermore, we are

not concerned with the behaviour of the stochastic model or even with parameter estimation

for curve fitting with real data.
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IV. RESULTS

In what follows, we will present the results of our analysis for both synthetic and real

data.

A. The Euler characteristic of synthetic epidemic Dengue data

To test the validity of our proposed algorithm (outlined in the previous sections and

coded in python [81]), we first apply our methodology to synthetic epidemic time-series.

To this end, we set up the SIR model with a population of size N = 2000, with one

infected individual at time t = 0, and we run the simulations for a total of 5000 time steps.

The population was uniformly distributed into 20 (geographical) sites (m = 20) and the

parameters for the population dynamics were βi = 1, γi = 0.1, αi = 1, δSi
= δIi = δRi

=

1/60, for all i ∈ {1, · · · ,m}, ρ = 1/m = 0.05.

The resulting simulation is shown in Figure 4. The generated epidemic data shows three

outbreaks in the initial, intermediate and final period of the simulation run. The first peak

is the highest, and the remaining epidemic manifestations are on smaller scales, which might

be compared with the mild levels of epidemic close to endemic periods. The computation

of the Euler characteristic for various maximum cell dimensions (dmax ∈ {2, . . . , 10}) in a

time window of 150 points and the comparison with the synthetic epidemic data and its

effective reproduction number (Rt) computed by the Joint Research Centre (JRC) method

[82] is provided in FIG. 5.

To fully clarify these results, we have prepared a detailed online dynamic dashboard

[83, 84], where the reader can further scrutinise the results for other time windows (for

25, 50, 75, 100, 125 and 150 density points). As observed, the Euler characteristic manifests

higher values during an epidemic phase, in analogy to the Rt transitions. These signs of the

Euler characteristic might indicate the starting and/or ending period of an epidemic (for

example, in the intervals 0 − 629, 1080 − 1229 and 1200 − 1349), and its intensity is also

sensitive to the intensity of the epidemic waves. In general, even (odd) values of dmax result

in positive (negative) values of the curvature. The balance between the signal and the noise

can be controlled by varying the maximum cell dimension and the size of the time window.

The higher the dimension, the higher the computation complexity and the smaller the noise;
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however, the intensity of the sign is also reduced.

FIG. 4: Stochastic simulation of SIR epidemic model with birth and death. Each

grey-coloured curve is the time-series of a site (20 sites in total). The blue, red and green

curves represent the average of susceptible, infected and recovered population per time

scale (in this order).
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FIG. 5: Comparison between the moving average of Dengue synthetic data provided by the

infected population from Figure 4 (top), the effective reproduction number (center) and its

Euler characteristic (bottom) for the same time window (150 points), for various values of

dmax.
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Despite the evidence of Euler characteristic as a hallmark of the epidemic in the pre-

sented synthetic data motivated our approach, we believe that a more detailed, systematic

simulation of the Euler characteristic across different epidemic models deserves further in-

vestigation.

Overall, the Euler characteristic applied to synthetic Dengue networks, together with the

network filtration method, has a reasonable performance in forecasting surges in new cases,

even in the presence of noise during the height of the epidemic.

B. The Euler characteristic as a possible fingerprint for epidemic outbreaks in

real Dengue data

The validity of the Euler characteristic as a possible indicator for epidemic periods (as

tested in our toy model) prompts us to examine it in the context of real Dengue data. In

particular, we focus on Recife, Brazil’s fourth largest metropolitan area in the Northeast of

the country, with tropical weather and its population distributed over 94 districts/regions.

Recife is a relevant city to test our hypothesis, as it experiences recurrent Dengue outbreaks

over the last decades and is in a constant endemic state. The associated data can be found

in the following database [85], and alternatively, we also provide all relevant information,

including the raw data in our repository.

In Figure 6, we plot Recife’s total new Dengue cases per day from the 1st of January

2014 to the 31st of December 2021. In FIG. 7 we compare the moving average of Dengue

new cases with the Rt (JRC method [82]) and the Euler characteristics for a time window

of 7 days. In Figures 8 - 9, we apply our algorithm, and we illustrate the performance of

the Euler characteristic over odd and even values of dmax, respectively. Due to the high

computational complexity, we restricted the computations for at most dmax = 7. As in the

case of the synthetic data, we also provide a detailed online dynamic dashboard [84, 86],

where the reader can further scrutinise the results for other time windows (7, 14, 21, and 28

days).

It is noteworthy that the data shows a high level of noise due to poor public health data

acquisition systems, which involve delays and other non-trivial factors. Apart from that,

nothing else but the new cases time-series is provided by local health authorities in Recife

(Brazil). At the same time, there is an ongoing endemic condition in the city. Despite high
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FIG. 6: Daily new cases of Dengue in Recife, Brazil.

noise levels, the Euler characteristic can increase the signal-to-noise ratio of an epidemic

period. Just as in the case of the toy model, the higher dmax, the smaller the effect of noise

on the computed Euler characteristic. Moreover, even (odd) values of dmax lead to positive

(negative) values of the Euler characteristic. This fact is explained by the exponential growth

of the number of cells (cliques) at the vicinity of the outbreak, since the epidemic network

becomes strongly connected.
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In contrast with the results obtained in the previous section for synthetic data, the Euler

characteristics correlate with the peaks of local epidemic periods rather than early warnings.

On the other hand, the Rt seemed unable to catch the epidemic periods in the real data.

In fact, for real epidemic time series, both facts might be explained by the delays in data

collection and the generation of several zero cases in the time series. It is also essential to

highlight that the peaks of Rt preceding the periods of February 2015 and February 2021

are induced by the noise generated by the zero cases in these periods.
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FIG. 7: Comparison between the Dengue data from Recife (red curve),its Rt and Euler

characteristic, respectively.
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FIG. 8: Comparison between the Dengue data from Recife, Brazil, and its respective Euler

characteristic, for even values of dmax.
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FIG. 9: Comparison between the Dengue data from Recife, Brazil, and its respective Euler

characteristic, for odd values of dmax.
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V. CONCLUSION

The present work investigates the feasibility of implementing surveillance algorithms

based on topological and geometrical data analysis to infer the emergence of an outbreak in

vector-borne diseases. While we focus on the example of the Dengue fever, the developed

methods are general enough to be applied to other vector-borne diseases, such as Zika and

Chikungunya.

Our approach was first tested on synthetic data and subsequently applied to real data.

Specifically, a modified SIR stochastic model generated the synthetic epidemiological evolv-

ing network, which simulates multiple epidemic waves by different sites. Later, we computed

the Euler characteristic for various time windows and cells dimensions. In particular, we

showed that the Euler characteristic has significant variations during epidemic periods and

more minor variations in endemic periods. Furthermore, the topological transitions of EC

showed up at the vicinity of time windows in which the Rt performs its epidemic transitions

for synthetic data. This indicated the viability of using topological and geometrical data

analysis approaches for vector-borne diseases, which motivated our subsequent study on real

data. Specifically, for the real data, we focused on the city of Recife (Brazil), which has been

at the epicentre for vector-borne diseases several times and lacks of reliable data for advanced

inference methods. Following our approach, we computed the evolving epidemiological net-

work from the data on Recife and subsequently computed the Euler characteristic. In this

case, the EC seems to present a better signal-to-noise ratio in its topological transitions, in

comparison with the epidemic indicators of the Rt. This can be again explained by the high

levels of noise in the data. We find that topological and geometrical measures can serve as

potential markers for identifying Dengue outbreaks even in the context of high-level noise

(in this case, associated with poor data acquisition or a constant endemic state). The sharp-

ness of these markers varies according to the maximum cell dimension and time window size

chosen.

Despite the results of our approach to synthetic data being satisfactory, the model chosen

for generating and analysing data is a proof of concept only. Therefore, it is too simple to

reproduce the realistic effects of Dengue behaviour and consider the noise generated from

delays in the data collection. Yet a more comprehensive systematic analysis over a wider

parameter range and different epidemic models deserves further investigation.
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Even though, we believe that our results unveil a strong correlation between the Euler

characteristic and the epidemic periods for both synthetic and real Dengue data. In fact, the

presence of peaks (valleys) in the Euler characteristic preceding (or during) an epidemic peak

may emerge as a warning sign for an outbreak. In analogy with the work in [43], where the

authors used low dimensions of the Euler characteristic for detecting human brain activation

areas from PET scan data, we suggest that the Euler characteristic close to Dengue epidemic

periods might be used as markers of these events.

Ultimately, considering that topological data analysis is independent of the dynamics of

the (epidemic) network, we believe our results will contribute to a better understanding

of epidemic outbreaks from a topological point of view. In particular, our results can be

further exploited and developed to improve next-generation alternative surveillance tools

for epidemic outbreaks, which combine topological and geometrical approaches with other

advanced data science techniques. One such possible further development of our approach

in future studies could be to consider higher-order interactions (as opposed to pair-wise

interactions) for generating simplicial complexes [87]. We believe that this approach might

be an alternative topological surveillance method for vector-borne epidemic disease when

the data set lacks robustness.
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