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ON THE CALDERÓN PROBLEM FOR NONLOCAL SCHRÖDINGER

EQUATIONS WITH HOMOGENEOUS, DIRECTIONALLY ANTILOCAL

PRINCIPAL SYMBOLS

GIOVANNI COVI, MARÍA ÁNGELES GARCÍA-FERRERO, AND ANGKANA RÜLAND

Abstract. In this article we consider direct and inverse problems for α-stable, elliptic nonlocal
operators whose kernels are possibly only supported on cones and which satisfy the structural
condition of directional antilocality as introduced in [Ish86]. We consider the Dirichlet problem
for these operators on the “domain of dependence of the operator” and in several, adapted
function spaces. This formulation allows one to avoid natural “gauges” which would else have
to be considered in the study of the associated inverse problems. Exploiting the directional
antilocality of these operators we complement the investigation of the direct problem with infi-
nite data and single measurement uniqueness results for the associated inverse problems. Here,
due to the only directional antilocality, new geometric conditions arise on the measurement
domains. We discuss both the setting of symmetric and a particular class of non-symmetric
nonlocal elliptic operators, and contrast the corresponding results for the direct and inverse
problems. In particular for only “one-sided operators” new phenomena emerge both in the
direct and inverse problems: For instance, it is possible to study the problem in data spaces
involving local and nonlocal data, the unique continuation property may not hold in general
and further restrictions on the measurement set for the inverse problem arise.
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1. Introduction

Nonlocal elliptic operators like the fractional Laplacian arise in various settings in physics
[DGLZ12, Eri02, GL97, Las00, MK00, ZD10], engineering [GO08], mathematical finance [AB88,
Lev04, Sch03], ecology [H+10, MV17, RR09] and turbulent fluid dynamics [Con06, DGV13],
among others (also check the survey [BV16]). Compared to their local counterparts, they dis-
play striking novel phenomena including their boundary regularity [Gru15, ROS16] and very
strong rigidity and flexibility properties [GSU20, GRSU18, RS20a, Rül20]. The latter have
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major implications on the fractional Calderón problem, an associated inverse problem, which
had been introduced in [GSU20] for the fractional Laplacian. Exploiting nonlocality, for this
operator and closely related operators modelled on it, partial data uniqueness, stability and
recovery results could be proved for the associated inverse problems which are not known
in the same generality for the corresponding classical local counterparts (see, for instance,
[GSU20, GRSU18, Rül20, RS20a], the survey articles [Sal17, Rül18] and the references in Sec-
tion 1.4 below).

Motivated by applications of such nonlocal elliptic operators and the rigidity and flexibility
properties of the fractional Laplacian, in this article we study direct and inverse problems of
Calderón type for nonlocal elliptic operators, which, in general, differ from the fractional Lapla-
cian and the fractional Calderón problem in their rigidity and flexibility properties. Focusing on
specific classes of generators of stable processes which, for instance, arise in central limit theo-
rems, phyics and economics [ST17, JW94, Wer84, KRS+09, BNMR12], in this article we show
the following properties:

• In spite of their nonlocality and ellipticity, the specific, non-isotropic geometries of the
operators are already reflected in our formulation and the properties of the associated
direct problems. This leads to a formulation of the problem in a suitable “domain of
dependence”, see Sections 3 and 5.2.

• These operators enjoy much weaker rigidity and flexibility properties than the fractional
Laplacian in that the global Runge approximation property and even the weak unique
continuation property may fail for certain (one-sided) examples of these operators, see
Sections 4.2 and 5.3.

• The domain of dependence structure gives rise to natural and at least partially necessary
geometric restrictions for the formulation and derivation of the uniqueness results for
the associated nonlocal Calderón type inverse problem. In general, these may enjoy only
substantially weaker properties than the analogous problems for the fractional Laplacian,
see Theorems 3, 4 and Section 5.4.

• The notion of directional antilocality as introduced in [Ish86, Ish88, Ish89] can partially
compensate for this and provide certain replacements of the rigidity and flexibility of the
fractional Laplacian, see the discussion in Sections 4 and 5.1.

We discuss these properties both for a family of symmetric and a model family of non-symmetric,
nonlocal elliptic operators. The latter are of particular theoretical interest since they allow for
the simultaneous prescription of local and nonlocal boundary data, which leads to new effects in
the direct and the inverse problem formulation and results.

1.1. The direct problem. In the sequel, as a model setting of a family of symmetric nonlocal
elliptic operators we consider a subclass of elliptic nonlocal operators which, from a stochastic
point of view, are generators of 2s-stable Lévy processes. These and related operators naturally
arise as specific examples in generalized central limit theorems [ST17] but are also related to lin-
earizations of nonlinear, nonlocal operators [BHRV17, IS21]. These operators and their associated
stochastic processes have been intensively studied in the probability, potential theory and regu-
larity theory communities [BS05, Bas09, BC10, Szt10, KW18, ROS16, DROSV20, Zol86, SZF95].
Analytically, (in their strong formulations) the specific class of model operators which we consider
here is of the form

Lu(x) :=

ˆ

Rn

(
2u(x)− u(x+ y)− u(x− y)

)a(y/|y|)
|y|n+2s

dy,(1)

where s ∈ (0, 1) and the kernel a satisfies the properties (A1)-(A3) below. In order to stress that
L is a (nonlocal) differential operator we also use the notation L(D).
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In all our considerations on this family of symmetric nonlocal elliptic operators, the integral
kernel, determined by the function a : Sn−1 → R, satisfies the following properties:

(A1) the kernel a gives rise to an elliptic integro-differential operator in the sense that the
symbol L(ξ) of L(D) satisfies L(ξ) := cs

´

Sn−1

|ξ · θ|2sa(θ)dθ > 0 for all ξ ∈ Rn\{0},

s ∈ (0, 1), a ∈ L1(Sn−1) (see Lemma A.1 for the symbol computations),
(A2) the function a is symmetric and non-negative, i.e. a(θ) = a(−θ) for all θ ∈ Sn−1 and

a(θ) ≥ 0,
(A3) there exists a convex, open, non-empty cone C ⊂ Rn\{0}, C 6= ∅ such that a(θ) 6= 0 if

and only if θ ∈ (−C ∪ C) ∩ Sn−1.

We emphasize that these operators, in particular, satisfy the s-transmission condition (see
[Gru15], however the regularity conditions from there are violated) and have been studied in
terms of their higher Sobolev and Hölder regularity properties as special examples in [KRS14,
ROS16, CK20]. For simplicity, in this article we restrict our attention to the setting s ∈ (0, 1)
and to kernels dµ := a(θ)dθ being absolutely continuous with respect to the Hausdorff measure
on the sphere. The case a = 1 a.e. corresponds to the fractional Laplacian; in the sequel we
will however mainly be interested in settings in which −C ∪ C ∩ Sn−1 ( Sn−1 for which only
substantially weaker rigidity and flexibility conditions hold than for the setting of the fractional
Laplacian.

Before turning to Calderón type inverse problems for this class of operators, we first consider
the Dirichlet problem associated with them. Due to the nonlocality of the operators this may at
first be formulated as

(
L(D) + q(x)

)
u = 0 in Ω,

u = f on Ωe,
(2)

where Ω ⊂ Rn is an open, bounded domain, Ωe := Rn\Ω and q is in a suitable function space.
However, this first formulation leads to obvious “gauges” in that there are infinitely many solu-
tions whose restriction to Ω vanishes although f 6= 0. Heading towards the inverse problem, it
will be convenient to deal with these “gauges” already in the formulation of the direct problem.
Indeed, this will be reflected in viewing the Dirichlet problem not as a problem in the whole
space but in the “domain of dependence” of the operator (see Figure 1), which is given by

C(Ω) := (Ω + C) ∪ (Ω− C) = {x+ tθ ∈ Rn : x ∈ Ω, t > 0, θ ∈ (−C ∪ C) ∩ Sn−1}.(3)

As a consequence, both the direct and the inverse problems are still nonlocal problems, however
with a more mild, only directionally nonlocal dependence if compared to the analogous problems
for the fractional Laplacian. Following [Ish86, Ish88, Ish89, Kan88] (see [Lie82] for the isotropic
case), we will work with the stronger notion of directionally antilocal operators (see Definition 1.1
below).

In view of the inverse problem, in the sequel, we contrast the first formulation from (2) with
the better adapted form (6) from below. This illustrates the “lesser degree of nonlocality” of the
operators under consideration when compared with the fractional Laplacian and provides the
starting point for the discussion of the rigidity and flexibility properties of these operators and
the investigation of the associated inverse problems.

1.1.1. A first formulation of the direct problem, well-posedness and first consequences for the
inverse problem. Let us first consider the Dirichlet problem in the form of (2) (and its associ-
ated weak form) as a problem posed in Rn. Its weak form is obtained through testing and a
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symmetrization procedure: More precisely, we consider the bilinear form

B̃q(u, v) :=
1

2

ˆ

Rn

ˆ

Rn

(
u(x)− u(y)

)(
v(x) − v(y)

) a
(

x−y
|x−y|

)

|x− y|n+2s
dydx+ (qu, v)L2(Ω),(4)

and, for q in a suitable function space and f ∈ Hs(Ωe), we say that u is a weak solution to (2) if

B̃q(u, v) = 0 for all v ∈ H̃s(Ω)

and u− f ∈ H̃s(Ω). We refer to Section 2.2 for precise definitions of these and related function
spaces. Following the well-posedness results of [FKV15] (which considers exterior data in weaker
spaces), the energy arguments from [GSU20] or the pseudodifferential framework from [Gru15],
one obtains that this formulation of the problem (2) is solvable as a mapping from Hs(Ωe) to
Hs(Rn). As a consequence, as in the case of the fractional Laplacian, one could be tempted to
define the inverse problem through the associated Dirichlet-to-Neumann map given in terms of
B̃q(·, ·), which formally is

Λ̄q : Hs(Ωe) → H−s(Ωe), f 7→ Λ̄q(f) := L(D)u|Ωe .(5)

However, in view of the inverse problem and also the “domain of dependence structure” of
the operator L (given through the kernel a), the formulation (2) and also (5) have the obvious
caveat that even for q = 0 there is an infinite dimensional set of boundary data such that the
restriction to Ω of the solution to the problem (2) yields the zero function: Indeed, any solution

with boundary datum f ∈ H̃s(Ωe) with supp(f) ⊂ Rn\C(Ω) is of this type. Here C(Ω) denotes
the domain of dependence of L given Ω defined in (3) (see Figure 1). Compared to the setting of
the fractional Calderón problem, in this whole space formulation, a natural “gauge” enters this
first formulation of the direct and inverse problems through “the domain of dependence of the
operator L”. As a consequence, in this formulation there is no hope of deducing as general partial
data or single measurement results as in [GSU20, GRSU18, RS20a, Rül20], (see Lemma 4.2 for
explicit examples of this).

This discussion hence strongly suggests to include the geometry of the operator L with its
domain of dependence structure into the formulations of both the direct and inverse problems.

1.1.2. An alternative, more adapted, “domain-of-dependence” formulation of the direct problem,
well-posedness and the inverse problem. In the sequel, rather than viewing the Dirichlet problem
as a problem on Rn, for a given open, bounded set Ω, taking the domain of dependence structure
of the operators into account, we will regard it as a problem on the set C(Ω) ⊂ Rn from (3). In
its strong form this corresponds to

(
L(D) + q

)
u = 0 in Ω,

u = f on C(Ω)\Ω.
(6)

Here, as above, C(Ω) denotes the “domain of dependence of L given Ω”. We emphasize that
we do not prescribe data in Ωe\C(Ω) in (6), since the operator does not “see” this part of
the complement. This avoids the obvious “gauges” or “degeneracies” of the first formulation
from (2) and the discussion in the previous section. Using suitable bilinear forms associated
to the elliptic operator L(D) (or more precisely, suitable Dirichlet forms), we will study weak
versions of this problem as a map from Hs(C(Ω)\Ω) to Hs(C(Ω)). While there are many possible
choices of associated Dirichlet forms, we will focus on two different, naturally arising bilinear
forms. In particular, we will prove the problem’s well-posedness outside of a (discrete) set of
countably many eigenvalues in different functional settings. The choice of the Dirichlet form
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W

Figure 1. Domain of dependence of L given Ω. The domain C(Ω) includes the
set Ω (orange) and the grey cone emanating from its points. For q = 0 and
any exterior data f supported in the domain W , the solution restricted to (2)
vanishes. This in particular shows that without taking this “obvious” geometry
of the operator L(D) into account in the formulations of the direct and inverse
problems, no single (nor infinite data) measurement uniqueness results can hold.

strongly influences the inverse problem and its natural measurement setting (see the discussion
in Section 3.2 below).

As a first weak manifestation of (6), using a weak formulation for (6), we rely on the following
adapted bilinear form

Bq(u, v) :=
1

2

ˆ

C(Ω)

ˆ

C(Ω)

(
u(x)− u(y)

)(
v(x) − v(y)

) a
(

x−y
|x−y|

)

|x− y|n+2s
dydx+ (qu, v)L2(Ω).(7)

This directly restricts the domain which is “visible” for the operator to the cone C(Ω). It
is reminiscent of bilinear forms used in the connection with censored processes [BBC03], see
also [KW18]. Using the structure of Bq we will deduce well-posedness in very weak function

spaces modelled on the setting from [FKV15] (which includes the Sobolev spaces Hs(C(Ω)\Ω)
in particular).

By virtue of these well-posedness results, it is possible to define the Poisson operator Pq

associated with the operator L(D):

Pq : Hs(C(Ω)\Ω) → Hs(C(Ω)), f 7→ u.(8)

Here u is the solution to (6) associated with the boundary data f if zero is not a Dirichlet
eigenvalue of the operator L(D) + q.

Using the bilinear form (7) will further allow us to define a “Dirichlet-to-Neumann map”

Λq : Hs(C(Ω)\Ω) → H−s(C(Ω)\Ω), f 7→ Λq(f),(9)

and to study the associated, Calderón type inverse problem.
As a second weak manifestation of the problem (6), we will make use of the slightly “more

global” bilinear form from (4). While this bilinear form is defined globally and does not directly
refer to the domain of dependence C(Ω), in order to account for the fact that we seek to solve (6)

instead of (2), we only consider data f ∈ H̃s(C(Ω)\Ω). This allows us to exploit the connection
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of (4) and the Fourier transform which in turn leads to very “symmetric” results for the inverse
problem. Analogously to (9) and (5), it is then possible to define a natural (and explicit)
“Dirichlet-to-Neumann” operator for this functional setting (if zero is not a Dirichlet eigenvalue)

Λ̃q : H̃s(C(Ω)\Ω) → H−s(C(Ω)\Ω), f 7→ Λq(f) = L(D)u|C(Ω)\Ω.(10)

We note that, in general, the two Dirichlet-to-Neumann maps (9) and (10) differ (see Re-
mark 3.16) and thus also the measurements for the Calderón inverse problems do not coincide.

In addition to the well-posedness results, a further key structural ingredient replacing the
strong rigidity and flexibility properties of the fractional Laplacian is needed in order to address
the inverse problem in the following. To this end, we restrict our attention to operators which
satisfy a directional antilocality condition, as introduced in [Ish86, Ish88, Ish89, Kan88] and
which builds on [Lie82]. We will discuss this notion next.

1.2. Rigidity in the form of antilocality in cones and examples. The properties of the
operator L(D) and the above discussion illustrate that the redundant information of (2) should
not be considered and instead the direct and inverse problems should be considered in the
framework from (6) (with possibly different choices of Dirichlet forms).

However, in order for Λq (or Λ̃q) to share certain properties of the inverse problem of the
fractional Laplacian, we consider a final structural ingredient which is analogous to the strong
global uniqueness properties of the fractional Laplacian. Following the article [Lie82] as well as
the results from [Ish86, Ish88, Ish89, Kan88], which build up on this, we consider a suitable notion
of antilocality. This notion itself originated from Reeh-Schlieder theorems in quantum physics
[RS61, Ver93, SVW02] and the study of the fractional Laplacian [HJ12, Rie38] and plays a major
role in the analysis of the fractional Calderón problem with its surprisingly strong uniqueness,
stability and single measurement properties [GSU20, RS20a, GRSU18, Rül20] (see Section 1.4
for further references on this). Due to the only directional domain of dependence of the operators
L in general, we here consider operators satisfying an antilocality condition in cones :

Definition 1.1 (Antilocality in cones, [Ish89], Definition 2.2). Let L : C∞
0 (Rn) → C∞(Rn) be

a linear operator and let Γ ⊂ Rn\{0} be a convex cone. The operator L is Γ-antilocal, if the
following implication holds: If f ∈ C∞

c (Rn) and f = L(D)f = 0 in an open, non-empty subset
U ⊂ Rn, then f = 0 in U + Γ.

We remark that this definition can be generalized to more complicated geometries such as the
union of disconnected convex cones.

Let us discuss the notion of directional antilocality in more detail: Just as the isotropic
antilocality properties of the fractional Laplacian, also directional antilocality properties of an
operator give rise to strong rigidity properties. In a sense, they can be viewed as a type of global
unique continuation property – however with the major difference that the information is not
propagated by the global validity of an equation but already the local information f = 0 =
L(D)f suffices to deduce global information. As one can easily show using the only directional
domain of dependence of the operators under consideration, antilocality in cones does not imply
global antilocality in general (for the operators from (1) satisfying (A1)-(A3) from above, the
considerations from above illustrate that clearly global antilocality does not hold and at best
directional antilocality in the cones −C ∪ C could be valid, see also Figure 1).

Examples of only directionally antilocal operators arise already in one dimension (for instance,
in the description of the first hitting time of a Brownian particle, see [Woy01, Section 2.1]) and
will play an important model role in our discussion below.
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Example 1.2 (A 1D operator which is antilocal to the right/left, [Ish86]). Following [Ish86] and
[Ish88], we consider the operators

As
p(D)f(x) =





∞̂

−∞

(
f(x)− f(x+ y)

)
νsp(y)dy if s ∈

(
0, 12 ),

∞̂

−∞

(
f(x)− f(x+ y) + f ′(x)ye−

|y|
e

)
νsp(y)dy if s = 1

2 ,

∞̂

−∞

(
f(x)− f(x+ y) + yf ′(x)

)
νsp(y)dy if s ∈

(
1
2 , 1),

(11)

with p ∈ [0, 1] and

νsp(y) :=
pχR−(y) + (1− p)χR+(y)

|y|1+2s
,

where χR−(y) and χR+(y) denote the characteristic functions of R− and R+, respectively. By the
results of [Ish86, Ish88], these operators are antilocal if p ∈ (0, 1) and antilocal to the left/right if

p = 1, or p = 0, respectively. We remark that for s = 1
2 , [Ish88] considers only A

1/2
1/2. Moreover,

Ishikawa uses sin y instead of ye−
y
e . In spite of this difference it is possible to directly prove one-

sided antilocality for A
1/2
0 , A

1/2
1 by the method of moments, see Lemma 5.3 below. The number

e in the exponent for the operators from (11) in the case s = 1
2 is chosen in order to avoid an

additional constant in the symbol of the antisymmetric part, given below for any dimension. We
further highlight that these operators do not satisfy the symmetry condition from (A2). Hence,
compared to the operators satisfying (A1)-(A3), new interesting phenomena arise, which are
discussed in Section 5 below (see also Section 1.3.2).

Moreover, it is known that certain two-dimensional operators are also antilocal in certain
associated cones:

Example 1.3 (2D operators which are antilocal in cones, [Ish89]). Let Γ ⊂ R2\{0} be an open,
non-empty, convex cone. Following [Ish89], we consider the two-dimensional operators whose
symbol is given by

As
0,Γ(ξ) := −Γ(2s)

ˆ

Γ∩Sn−1

|ξ · θ|2s
(
e−iπsχΓ+(ξ)(θ) + eiπsχΓ−(ξ)(θ)

)
dθ,(12)

where χΓ± denotes the characteristic function of Γ±(ξ) := Γ ∩ {θ ∈ S1 : ±(ξ · θ) > 0}. If

s ∈
(
0, 12
)
∪
(
1
2 , 1
)
, it is proven in [Ish89, Theorem 2.4] that these operators are Γ-antilocal.

These and related stable processes are described and characterized in [Kue73, Theorem 2.1].
The operators defined by (12) correspond to those with measures given by the characteristic
function of Γ ∩ Sn−1. The analogue of these operators for the case s = 1

2 is given by

A
1/2
0,Γ(ξ) :=

ˆ

Γ∩Sn−1

(π
2
|ξ · θ| − iξ · θ log(|ξ · θ|)

)
dθ,

see [Kue73, Theorem 2.1]. This corresponds to the following operator (with the trivial general-
ization to one-dimension, see Lemma A.2):

A
1/2
0,Γ(D)f(x) =

ˆ

Rn

(
f(x+ y)− f(x)−∇f(x) · ye−

|y|
e

) χΓ(y)

|y|n+1
dy.
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The operator classes of Examples 1.2 and 1.3 will be discussed in more detail in Section 5
below.

While at the moment we do not know whether all the operators from (1) satisfying the
conditions (A1)-(A3) are directionally antilocal in the sense of Definition 1.1, we show that they
satisfy a weaker type of antilocality property: Recalling the argument which had been given in
[RS20b, Corollary 5.2] and which in turn relied on [Isa11, Lemma 3.5.4], it is known than many

operators are in a weak sense antilocal in that, if f ∈ H̃r(BR) for some r ∈ R and L(D)f = 0
in Rn\BR(0) for some large open ball BR(0) ⊂ Rn, then f ≡ 0. In [RS20b] this was proved
for rather large classes of pseudodifferential operators with local and nonlocal contributions. We
note that this in particular includes our operators – even if the problems may only be considered
in some subset C(Ω) ⊂ Rn:

Proposition 1.4 (Exterior data). Let r, s ∈ R and L(D) : Hr(Rn) → Hr−2s(Rn) be a linear
operator. Assume further that either

(i) L(D) is −C ∪ C-antilocal for some convex, open, non-empty cone C ⊂ Rn\{0}, or
(ii) s ∈ (0, 1), L(D) is of the form (1) with a satisfying the conditions (A1)-(A3).

Let Ω ⊂ Rn be an open, bounded set. If L(D)f = 0 on C(Ω)\Ω for some f ∈ H̃r(Ω), then f ≡ 0
in Ω.

We remark that, as in the case of the fractional Laplacian, it would also have been pos-
sible to consider local and nonlocal combinations of these operators and to even add further
pseudodifferential contributions (see [RS20b, Corollary 5.2]).

For the fractional Laplacian (see [GRSU18, Proposition 2.3]), which enjoys isotropic antilo-
cality properties, it was proved [GSU20, GRSU18] that rigidity – in the form of antilocality –
and flexibility – in the form of Runge approximation properties – are dual. This provided the
key tool in order to investigate the inverse problem and to deduce properties for it which remain
open for its classical local counterpart.

We next show that a similar duality result also holds for directionally antilocal operators:
Directional antilocality together with the well-posedness of the adjoint equation is dual to Runge
approximation properties. Thus, directional antilocality should be viewed as the key mechanism
for studying the associated inverse problems.

Theorem 1 (Duality between (directional) antilocality and Runge approximation). Let C ⊂
Rn\{0} be an open, non-empty, convex cone and let Ω ⊂ Rn be open, non-empty and bounded.
Assume that W ⊂ Ωe ∩ C(Ω). Let q ∈ L∞(Ω) and let L(D) + q be a self-adjoint elliptic operator
of order s ∈ (0, 1) for which the Dirichlet problem (6) is well-posed and gives rise to a well-
defined Poisson operator, mapping from Hs(C(Ω)\Ω) to Hs(C(Ω)). Then, the following results
are equivalent:

(a) The set R := {Pq(f)|Ω : f ∈ C∞
c (W )} is dense in H̃s(Ω).

(b) If w ∈ H̃s(Ω) (weakly) solves
(
L(D) + q

)
w = v in Ω,

w = 0 in C(Ω)\Ω,
(13)

for some v ∈ H−s(Ω) and L(D)w = 0 in W , then v ≡ 0 and, hence, w ≡ 0 in C(Ω).

Hence, the strong rigidity properties of the antilocality condition in cones directly transfers to
strong flexibility in the form of Runge approximation properties. In contrast to the setting of the
isotropic fractional Laplacian, we emphasize that, in the only directionally antilocal framework,
the verification of these conditions for our operators requires the geometric conditions that W ⊂
C(Ω) and that also Ω ⊂ C(W ) := (W − C) ∪ (W + C) (see Theorem 2). In Lemma 4.2 we will
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show that these conditions are indeed necessary in order to deduce the Runge approximation
property for a −C ∪C antilocal, elliptic operator, and that these thus reflect the geometry of the
operator.

Remark 1.5 (Applicability to the exterior problem for (1)). We remark that the if L(D) is
of the form (1) with a satisfying (A1)-(A3) together with the additional conditions that Ω is
Lipschitz and q ∈ L∞(Ω) is such that zero is not a Dirichlet eigenvalue of L(D) + q imply the
well-posedness hypotheses in Theorem 1 (see Section 3.1). In the particular case that we consider
the (conical) exterior of Ω, i.e. W = C(Ω)\Ω, this duality holds by virtue of Proposition 1.4,
even though we did not prove the full −C ∪ C-antilocality of these operators.

1.3. The inverse problem. As consequences of the above structural discussion, we next deduce
properties of the associated inverse problems. We split this into two parts: First, we present some
of the main results for the inverse problems in the setting of the symmetric operators satisfying
the conditions (A1)-(A3) from above, and then we illustrate new phenomena arising in the study
of the inverse problems associated with the operators from Examples 1.2 and 1.3.

1.3.1. The inverse problem for symmetric operators satisfying the conditions (A1)-(A3). We first
focus on the partial data inverse problem and its uniqueness properties for the operators satisfying
(A1)-(A3) above. In the next section, we will in parallel collect results for the non-selfadjoint
operators from Examples 1.2 and 1.3. We begin by providing Runge approximation results under
the condition that the operator is directionally antilocal and under suitable resulting geometric
assumptions.

Theorem 2 (Runge approximation). Let Ω ⊂ Rn be open, non-empty, bounded and let q ∈
L∞(Ω). Let L(D) be the operator in (1) of order s ∈ (0, 1) with a satisfying the conditions
(A1)-(A3) from above. Suppose that q is such that the Dirichlet problem (6) is well-posed and
gives rise to a well-defined Poisson operator, mapping from Hs(C(Ω)\Ω) to Hs(C(Ω)). Assume
in addition that L(D) is −C ∪ C-antilocal. Consider an open set W such that W ⊂ C(Ω) and
Ω ⊂ C(W ). Then, the set

R :=
{
u = Pqf |Ω : f ∈ C∞

c (W )
}

is dense in H̃s(Ω).

Let us discuss the imposed conditions of the theorem: First of all, solvability is assumed in
order to define a suitable Dirichlet-to-Neumann operator (this could be relaxed to a Cauchy data
setting). Under mild conditions on the potential and in various function spaces, in Section 3 we
prove that this condition is satisfied for our class of operators obeying the conditions (A1)-(A3)
from above. Due to the domain of dependence structure of L(D), the geometric condition that
W ⊂ C(Ω) is natural and part of our well-posedness theory. The key structural condition is
that of antilocality, which allows us to invoke Theorem 1. However, we emphasize that the
only directional antilocality condition again gives rise to an additional geometric condition. In
addition to the assumption that W ⊂ C(Ω) which stems from our well-posedness considerations,
we also impose that Ω ⊂ C(W ). This allows us to invoke the assumed −C ∪ C-antilocality of
the operators in order to infer the desired density condition. In Lemma 4.2 below, we discuss
examples illustrating that such additional geometric conditions are indeed necessary.

While we have formulated Theorem 2 for an abstract class of operators and have imposed
directional antilocality, we remark that by virtue of Proposition 1.4 for the “full data” exterior
problem in which W = C(Ω)\Ω, the assumptions of Theorem 2 are all satisfied. Hence, in this
setting, for our operators from (1) with (A1)-(A3) (with mild conditions on the potential q)
the result from Theorem 2 is valid. The same observation holds for Theorems 3 and 4 below if
W2 = C(Ω)\Ω.
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Relying on the Runge approximation result, as in the fractional Calderón problem, we obtain
an associated infinite data measurement result:

Theorem 3 (Infinite measurement uniqueness under geometric restrictions). Let Ω ⊂ Rn be
open, non-empty, bounded and let q1, q2 ∈ L∞(Ω). Let L(D) be the operator in (1) of order
s ∈ (0, 1) with a satisfying the conditions (A1)-(A3). Suppose that q1, q2 are such that the
Dirichlet problem (6) with the potential qj, j ∈ {1, 2}, is well-posed and gives rise to a well-defined

Poisson operator, mapping from Hs(C(Ω)\Ω) to Hs(C(Ω)). Assume that L(D) is −C∪C-antilocal.
Consider open, non-empty setsW1,W2 such thatWj ⊂ C(Ω) and Ω ⊂ C(Wj) for j = 1, 2. Assume
that

Λq1(f)|W2 = Λq2(f)|W2 for f ∈ C∞
c (W1),

then q1 = q2.

Remark 1.6. While the two Dirichlet-to-Neumann maps from (9), (10) do not coincide in gen-

eral, we remark that an analogous statement as in Theorems 2 and 3 also holds for Λ̃q1(f)|W2 =

Λ̃q2(f)|W2 . Further we stress that analogously to [RS20a] it would also have been possible to
work with potentials in critical multiplier spaces. Since the structural conditions on the principal
symbols are our main focus in this article, we have opted not to include this here.

Similarly as in the fractional Calderón problem, also the infinite, partial data measurement
nonlocal Calderón problems studied here are always formally overdetermined inverse problems
and the corresponding single measurement problems are always formally determined. Thus,
there is at least formal reason to consider single measurement uniqueness results. Exploiting the
−C∪C-antilocality together with the weak unique continuation property (Proposition 4.3, which
here is a consequence of the two-sided antilocality property of the operator), it is then indeed
possible to prove such single measurement results.

Theorem 4 (Single measurement uniqueness under geometric restrictions). Let Ω ⊂ Rn be
open, non-empty, bounded, C1 regular and let q ∈ C0(Ω). Let L(D) be the operator in (1) of
order s ∈ (0, 1) with a satisfying the conditions (A1)-(A3). Suppose that q is such that the
Dirichlet problem (6) is well-posed and gives rise to a well-defined Poisson operator, mapping
from Hs(C(Ω)\Ω) to Hs(C(Ω)). Assume that L(D) is −C∪C-antilocal. Consider open, non-empty

sets W1,W2 ⊂ C(Ω) such that Ω ⊂ C(W2). Then f ∈ H̃s(W1)\{0} and Λ̃q(f)|W2 determine q
uniquely.

We emphasize that in both Theorems 3 and 4 the choice W1 =W2 is admissible.

Remark 1.7. The unique determination also follows from the knowledge of f ∈ H̃s(W1)\{0}
and Λq(f)|W2 under the additional geometric conditions that W1∩W2 = ∅ or C(W1∩W2) ⊂ C(Ω)
(see Lemma 3.15).

We remark that this result is essentially in parallel to the single measurement results for the
fractional Calderón problem. The geometric conditions on W1,W2 are only (very mild) conse-
quences of the domain of dependence structure of the problem and of the directional antilocality.

1.3.2. The inverse problem for the model operators from Examples 1.2 and 1.3. In Section 5,
we contrast the results from the symmetric setting from the previous section with the results
for the inverse problem for the explicit examples of not necessarily symmetric operators from
Examples 1.2 and 1.3 (generalized to any p ∈ [0, 1] and any dimension in (36)). Here new
phenomena arise both for the direct and the inverse problems:

• Already in the formulation of the direct problem, the cases p ∈ {0, 1} give rise to new data
spaces in that both local and nonlocal contributions can be considered (see Section 5.2).
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• For p ∈ {0, 1} the operators are not antilocal in two-sided cones but only antilocal in
one-sided cones, which in one dimension turns into antilocality to the left and right,
respectively (see Section 5.1).

• While the weak unique continuation property holds for n = 1 (as a consequence of well-
posedness; see Lemma 5.24), for n ≥ 2 and p ∈ {0, 1} this fails in general for s ∈ (0, 12 ),
see Lemma 5.25 (the case p = 0 is defined in (12), in parallel to the one-dimensional
setting we will consider a whole family parametrized by p ∈ [0, 1]). While the operators
are thus nonlocal and elliptic and “have constant coefficients”, they are substantially less
rigid than the fractional Laplacian or local, constant coefficient elliptic partial differential
operators. The only one-sided antilocality is strongly reflected in this result.

• Due to the only one-sided domain of dependence for the operators with p ∈ {0, 1} in
Examples 1.2 and 1.3, new restrictions have to be imposed on the data in the inverse
problems. In particular, restricted to the domain of dependence, the associated Dirichlet-
to-Neumann maps do not carry information on the operator (but only on the data). Thus,
for instance, in the single measurement results, data have to be taken in the “opposite”
cone in order to infer non-trivial information (see Section 5.4).

Moreover, in Section 6 we illustrate that many “natural” nonlocal elliptic operators which
are defined as sums of certain rigid nonlocal operators do not enjoy arbitrarily strong antilo-
cality properties but only satisfy weaker forms of antilocality and rigidity, for which geometric
constraints have to be imposed.

1.4. Relation to the literature on Calderón type inverse problems. The problem un-
der investigation in this article should be viewed as a generalization of the fractional Calderón
problem in which the geometry of the problem plays a more prominent role and which displays
weaker rigidity and flexibility properties than the fractional Calderón problem.

The study of the fractional Calderón problem has been a very active field in the past years:
After its introduction in [GSU20], in which the partial data infinite measurement result at L∞

coefficient regularity was proved, many facets have been addressed. This includes the study
of uniqueness and (in-)stability in the low regularity regime [RS20a, RS18], qualitative and
quantitative single measurement results and reconstruction [GRSU18, Rül20], inversion methods
by monotonicity [HL19, HL20], nonlinear problems [LL20, LO20], uniqueness in the presence
of anisotropic background metrics [GLX17], the study of the magnetic problem and lower or-
der perturbations [Cov20a, Li20a, Li20b, CLR20, BGU21], stability in the presence of apriori
information [RS19] and the presence of Liouville type transforms in these settings [Cov20b].
The study of higher order analogues of these problems and parabolic settings was initiated in
[GFR19, CMR21, CMRU20, LLR20].

Compared to the local “classical” Calderón problem [Uhl09], the fractional problem displays
rather striking uniqueness, stability and reconstruction properties mirroring the strong rigidity
and flexibility properties of the fractional Laplacian [Sal17, Rül18]. Formally, this is indicated by
the strong overdeterminedness of the problem. Crucial inputs in the above results on the inverse
problems consisted of the unique continuation property of the fractional Laplacian [FF14, Seo14,
Rül15, Yu17, GFR19] and the dual Runge approximation properties for fractional Laplacian
[DSV14, GSU20, RS20a, Rül19]. Subsequently, some of these properties have been extended to
larger classes of nonlocal operators [DSV16, RS20b, GFR20]. Moreover, connections between
local and nonlocal Calderón type problems have been established in [CR20]. A nonlocal problem
for the fractional Laplacian with a lesser degree of overdeterminedness was recently introduced
and studied in [Gho20] where the author makes use of the theory developed in [Gru15].

As initiated in [GFR20], it is the purpose of this article to transfer some of the results for
the specific problem of the fractional Laplacian to more general nonlocal elliptic operators and
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to extract the decisive nonlocal features entering in this discussion, such as the operators’ an-
tilocality. In particular, our study of the operators as in (1) satisfying (A1)-(A3) illustrates the
relevance of the notion of antilocality and indicates that geometric conditions may enter for these
only directionally antilocal operators.

1.5. Outline of the article. The remainder of the article is structured as follows: In Section 2,
we begin by collecting notation and discussing some auxiliary results on some of the function
spaces which we will be considering in the article. Building on this, in Section 3 we discuss
the well-posedness properties of the direct problem, emphasizing the role of the geometry of the
operator only “seeing” certain regions. Here we focus on the symmetric operators from (A1)-
(A3). Given these results, in Section 4 we study the antilocality properties from exterior conical
domains of these operators and, exploiting these, provide the results on the general inverse
problems. In Sections 5 and 6 we complement this by discussing further examples, including the
ones from above, and point out additional features which may arise due to the lack of symmetry.
The appendices contain various symbol computations, the investigation of an alternative bilinear
form for the operators from Section 5 and some geometric facts.
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2. Preliminaries

2.1. Notation. We denote by Γ a convex, open, non-empty cone in Rn, i.e. Γ ⊂ Rn\{0} is a
convex set such that tx ∈ Γ for all x ∈ Γ and t > 0. Further, C also denotes a convex, open,
non-empty cone in Rn, however, we reserve this notation to settings when we consider operators
with symmetric kernels supported in the two-sided cone −C ∪ C. In that case, we define for a
set Ω ⊂ Rn the domain of dependence (relative to an operator whose kernel is supported in the
two-sided cone −C ∪ C) as the two-sided cone

C(Ω) := Ω + (−C ∪ C) = {x+ tθ ∈ Rn : x ∈ Ω, t > 0, θ ∈ (−C ∪ C) ∩ Sn−1}.

For any open set Ω ⊂ Rn, we denote the interior of its complement by Ωe := Rn\Ω. In
addition, given any function u : Ω → R, we define its extension by zero by

EΩu :=

{
u in Ω,

0 in Ωe.
(14)

The notation u|Ω denotes the restriction of a function to Ω, but sometimes – if no confusion may
arise – it will also be interpreted as a global solution which is zero outside Ω.

In one dimension we further use the notation

R+ := {x ∈ R : x > 0} and R− := {x ∈ R : x < 0}

for the right and left half lines. Moreover, in the following we say that an open set Ω ⊂ Rn is
a differentiable domain if its boundary can locally be written as a differentiable (not necessarily
continuously differentiable) function.



NONLOCAL ELLIPTICITY AND GAUGES 13

Finally, the Fourier transform is denoted by

û(ξ) = Fu(ξ) =

ˆ

Rn

u(x)e−ix·ξdx.

2.2. Function spaces. In the next sections, we will discuss the direct and inverse problems
associated with the operators described in the introduction in various function spaces. While
“standard” Sobolev spaces and their symmetry properties in Ω and C(Ω)\Ω prove to be rather
convenient for the inverse problem, the direct problem can be formulated at lower regularity in
less symmetric spaces which take into account the geometry of the operators and their nonlocal
character (see [FKV15]). In the sequel, we recall and define both classes of function spaces and
deduce a number of auxiliary properties which will be heavily exploited in the following sections.

2.2.1. Sobolev spaces. First, we recall the definitions of the Sobolev spaces which are relevant for
us. For s ∈ R, the whole space Sobolev spaces are denoted by

Hs(Rn) :=
{
u ∈ S ′(Rn) : ‖(1 + | · |2)

s
2Fu‖L2(Rn) <∞

}
,

and their homogeneous versions by

Ḣs(Rn) :=
{
u ∈ S ′(Rn) : ‖| · |sFu‖L2(Rn) <∞

}
.

Associated with them, we further define

‖u‖Hs(Rn) := ‖(1 + | · |2)
s
2Fu‖L2(Rn),

‖u‖Ḣs(Rn) := ‖| · |sFu‖L2(Rn).

Given an open set Ω ⊂ Rn, we define

Hs(Ω) :=
{
u|Ω : u ∈ Hs(Rn)

}
, equipped with the quotient topology,

H̃s(Ω) := closure of C∞
c (Ω) in Hs(Rn),

Hs
Ω
:= {u ∈ Hs(Rn) : supp(u) ⊆ Ω}.

If Ω is an open, bounded Lipschitz domain, the following identifications hold:
(
Hs(Ω)

)∗
= H̃−s(Ω),

(
H̃s(Ω)

)∗
= H−s(Ω), s ∈ R,

Hs
Ω
= H̃s(Ω), s ∈ R,

H̃s(Ω) = Hs(Ω), s ∈
(
0,

1

2

)
,

H̃s(Ω) =
{
u ∈ Hs(Ω) : u|∂Ω = 0

}
, s ∈

(1
2
, 1
)
.

(15)

These identifications also hold in Ω + C, C(Ω) and their open complements, with Ω a bounded
Lipschitz domain and C an open convex cone (see Lemma 2.1).

We use 〈·, ·〉 to denote the corresponding duality pairings.

2.2.2. Asymmetric Sobolev type spaces. Next, we introduce further spaces, which are modelled
on the spaces from [FKV15] and which are tailored to the exterior boundary value problem (2).
In particular, they allow us to deal with this problem at rather low regularity in the exterior
domain. Let s ∈ (0, 1), assume that a : Sn−1 → [0,∞) satisfies the assumptions (A1)-(A3), and
let Ω ⊂ Rn be an open set. We define

V s(Ω, a) :=
{
u : C(Ω) → R : u|Ω ∈ L2(Ω),

(
u(x)− u(y)

) a 1
2

(
x−y
|x−y|

)

|x− y|
n
2 +s

∈ L2
(
Ω× C(Ω)

)}
,
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endowed with the norm

‖u‖2V s(Ω,a) := ‖u‖2L2(Ω) + [u, u]V s(Ω,a),

where

[u, v]V s(Ω,a) :=

ˆ

Ω

ˆ

C(Ω)

(
u(x)− u(y)

)(
v(x) − v(y)

) a
(

x−y
|x−y|

)

|x− y|n+2s
dxdy.

Assumption (A1) implies the following statements for s ∈ (0, 1) (see Lemmas 2.4 and 2.3 in
the following subsection for their proofs)

Hs(C(Ω)) ⊆ V s(Ω, a),(16)

Hs(Rn) = V s(Rn, a).(17)

We emphasize that, in general, the first inclusion is strict, due to the asymmetric definition of
the spaces V s(Ω, a) with regards to Ω and C(Ω)\Ω: While the space V s(Ω, a) imposes a Sobolev
regularity type control in Ω, it only provides very weak regularity conditions on C(Ω)\Ω.

In addition, if Ω is bounded, the following Poincaré inequality holds for any u ∈ H̃s(Ω):

‖u‖2L2(Ω) ≤ C[u, u]V s(Rn,a) = C‖L(D)
1
2 u‖2L2(Rn).(18)

Finally, we introduce the following space, in which the exterior data in (6) will be considered:

V s
e (Ω, a) := {u|C(Ω)\Ω : u ∈ V s(Ω, a)}, equipped with the quotient topology.(19)

2.2.3. Auxiliary results on the function spaces. In this final subsection we prove some auxiliary
results on the relationship between the spaces defined in Sections 2.2.1 and 2.2.2. They will play
an important role in our definition of weak solutions in Section 3.

We begin by proving the validity of (15) for a slightly more general class of domains than the
one considered in [McL00, Defintion 3.28]. We emphasize that we only drop the condition that
the boundary ∂Ω is compact. This implies that the boundary can be unbounded, but we assume
that the unbounded parts must be given by a union of finitely many Lipschitz graphs (up to rigid
motions). Then, we still have a finite covering of ∂Ω by (up to rigid motion) Lipschitz graphs.

Lemma 2.1. Let Ω ⊂ Rn be an open Lipschitz set such that there exist finite families {Wj}
N
j=1,

{Ωj}
N
j=1 satisfying that Wj ,Ωj ⊂ Rn and

(i) ∂Ω ⊂
⋃N

j=1Wj,

(ii) Ωj is a Lipschitz hypograph (up to a rigid motion) for any j ∈ {1, . . . , N},
(iii) Wj ∩ Ω =Wj ∩ Ωj for any j ∈ {1, . . . , N}.

Then the identifications (15) hold.

Proof. The proof of each identification does not differ from those in [McL00, Chapter 3], where it

is additionally assumed that ∂Ω is compact. Indeed, we can find Ω0 ⋐ Ω such that Ω ⊂
⋃N

j=0 Ωj

and consider a partition of unity for Ω subordinated to {Ωj}Nj=0 (see for instance the proof of
[McL00, Theorem 3.29]). After this reduction, the proof only exploits the same ingredients as in
[McL00], including (15) for Lipschitz hypographs. �

We next deduce an extension result which will ensure that for our notion of weak solution
(see Definition 3.1) to the inhomogeneous interior problem (24) it is possible to extend a solution
canonically from a function on C(Ω) to a function on Rn:
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Ω

C(Ω) BR

B2R

Ω

C(Ω) BR

B2R

Figure 2. Illustration of the subset U = B2R ∩
(
Ω ∪ C(Ω)e

)
(in orange) in

Lemma 2.2. In the first case Ω ⋐ C(Ω), so the inclusion ⊃ follows immedi-
ately. In the second case, the slightly more general argument from the proof of
Lemma 2.2 is necessary.

Lemma 2.2. Let s ∈ (0, 1), let C ⊂ Rn\{0} be an open, non-empty, convex cone and let Ω ⊂ Rn

be an open, bounded Lipschitz domain. Then

H̃s(Ω) =
{
EC(Ω)u : u ∈ Hs(C(Ω)), u = 0 in C(Ω)\Ω

}
,

with EC(Ω) as in (14).

Proof. The inclusion ⊂ is immediate by definition. The inclusion ⊃ follows easily in the case
Ω ⋐ C(Ω), which holds for differentiable domains (see Lemma C.1). Nevertheless, the inclusion
Ω ⋐ C(Ω) may fail for some Lipschitz but not differentiable domains (e.g. when considering
certain triangles, see the right of Figure 2). In general, the inclusion ⊃ can be proved as follows:

Let ũ ∈ Hs(Rn) with ũ|C(Ω) = u. This means that ũ = 0 in C(Ω)\Ω. Let R > 0 be such that
Ω ⊂ BR and let η be a smooth cut-off function supported in B2R such that η = 1 in BR. Since
ηũ ∈ Hs(Rn) and supp(ηũ) ⊂ U with U = B2R ∩

(
Ω ∪ C(Ω)e

)
, then ηũ ∈ Hs

U
. Furthermore,

since U is a bounded Lipschitz subset (see Figure 2 and the remarks from Section 2.2.1), ηũ ∈

H̃s(U). By definition, for any ǫ > 0 there is g ∈ C∞
c (U) such that ‖ηũ − g‖Hs(Rn) < ǫ. Since

Hn−1
(
Ω ∩ (Rn\C(Ω))

)
= 0 (see Lemma C.3), we have EΩg ∈ C∞

c (Ω) and

‖EΩ(ηũ)− EΩg‖Hs(Rn) < ǫ.

Therefore, EΩ(ηũ) ∈ H̃s(Ω). The conclusion then follows by noticing that EΩ(ηũ) = EΩu =
EC(Ω)u. �

Next we provide the proof for the identity (17):

Lemma 2.3. Let s ∈ (0, 1) and assume that the function a : Sn−1 → R satisfies the hypotheses
(A1)-(A3). Then

Hs(Rn) = V s(Rn, a).

In particular, for any u ∈ Hs(Rn)

[u, u]V s(Rn,a) = 2‖L(D)
1
2u‖2L2(Rn) ≤ C‖u‖2

Ḣs(Rn)
.(20)

Proof. Both Hs(Rn) and V s(Rn, a) are contained in L2(Rn). Thus it suffices to show that the
norms of Hs(Rn) and V s(Rn, a) are equivalent. By (4) and its Fourier transform (see Lemma 2.5
and Lemma A.1), it follows that

[u, u]V s(Rn,a) = 2B̃0(u, u) = 2‖L(D)
1
2 u‖2L2(Rn).
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In addition, (A1) implies that there is λ ∈ (1,∞) such that

λ−1 ≤ L(ω) ≤ λ, for all ω ∈ Sn−1.

This means that

λ−1|ξ|2s ≤ L(ξ) ≤ λ|ξ|2s, for all ξ ∈ Rn,

and therefore

λ−1‖u‖2
Ḣs(Rn)

≤
1

2
[u, u]V s(Rn,a) ≤ λ‖u‖2

Ḣs(Rn)
.

�

Further, we present the argument for (16):

Lemma 2.4. Let s ∈ (0, 1), Ω ⊂ Rn be an open set, and assume that the function a : Sn−1 → R

satisfies the assumptions (A1)-(A3). Then

Hs(C(Ω)) ⊆ V s(Ω, a).

Proof. Let u ∈ Hs(C(Ω)) and ũ ∈ Hs(Rn) be such that ũ|C(Ω) = u. Then, by Lemma 2.3,

[u, u]V s(Ω,a) ≤ [ũ, ũ]V s(Rn,a) ≤ C‖ũ‖2
Ḣs(Rn)

.

Taking the infimum among all possible ũ satisfying the above properties, it holds

[u, u]V s(Ω,a) ≤ C‖u‖2Hs(C(Ω))(21)

and therefore the claimed inclusion follows. �

2.3. The bilinear forms. A common theme in our discussion of the direct problem, which
has been also already indicated above, is the choice of a notion of a solution to the nonlocal
equation (6). This can be viewed as the choice of a suitable Dirichlet form. In the previous
sections, we considered two natural function spaces associated with the operator L which are
closely related to the two bilinear forms (4), (7) from the introduction. In our discussion of
the direct problem, we will observe that these two bilinear forms give rise to the same solution
in Ω if suitable boundary conditions are imposed. However, in general, the bilinear forms do
not agree on arbitrary function spaces and lead to different Dirichlet-to-Neumann maps (see, in
particular, the discussion in Section 3.2) and thus to different measurements for the associated

inverse problems. In many places of the article we will thus develop our results for Bq and B̃q

in parallel. Throughout this section, we assume Ω ⊂ Rn is a bounded, open set.
We begin by discussing the boundedness properties of the bilinear forms. To this end, we

first note that the bilinear form (4) is globally related to the operator L(D) through a Fourier
characterization:

Lemma 2.5. Let s ∈ (0, 1), let B̃q be as in (4) with the function a : Sn−1 → R satisfying the
assumptions (A1)-(A3) and let q ∈ L∞(Ω). Then for u, v ∈ Hs(Rn) it holds that

B̃q(u, v) =

ˆ

Rn

(
L(D)

1
2u
)(
L(D)

1
2 v
)
dx+ (qu, v)L2(Ω).(22)

In particular,

|B̃q(u, v)| ≤ C‖u‖Hs(Rn)‖v‖Hs(Rn),

where C > 0 depends on ‖q‖L∞(Ω) and a.
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Proof. The identity (22) follows from Fourier-transforming the bilinear form (4) (see also Lemma A.1
for the computation of the symbol). Indeed, by Plancherel’s theorem, for u, v ∈ C∞

c (Rn)

B̃0(u, v) =
(
L(D)u, v

)
L2(Rn)

=
(
L(ξ)û, v̂

)
L2(Rn)

=
(
L(ξ)

1
2 û, L(ξ)

1
2 v̂
)
L2(Rn)

=
(
L(D)

1
2u, L(D)

1
2 v
)
L2(Rn)

.

Thus, the claimed estimate is a direct consequence of the representation (22), an application
of the Cauchy-Schwarz inequality and the estimate (20). �

While the boundedness of the bilinear form B̃q in Sobolev spaces directly follows from its
Fourier characterization, the corresponding bound for the bilinear form Bq which we will use for
the analysis of the Dirichlet problem (6) requires slightly more care.

Lemma 2.6. Let s ∈ (0, 1), let Bq be as in (7) with the function a : Sn−1 → R satisfying the
assumptions (A1)-(A3) and let q ∈ L∞(Ω). Then for any u, v ∈ Hs(C(Ω))

|Bq(u, v)| ≤ C‖u‖Hs(C(Ω))‖v‖Hs(C(Ω)),

where the constant C > 0 depends on ‖q‖L∞(Ω) and a. In addition, for any u ∈ V s(Ω, a) and

v ∈ H̃s(Ω)

|Bq(u, v)| ≤ C‖u‖V s(Ω,a)‖v‖Hs(Rn).

Proof. Let u, v ∈ Hs(C(Ω)) and let ũ, ṽ ∈ Hs(Rn) be such that ũ|C(Ω) = u, ṽ|C(Ω) = v. By the
Hölder inequality

|2B0(u, v)| ≤

(
ˆ

C(Ω)

ˆ

C(Ω)

(
u(x)−u(y)

)2
ka(x−y)dxdy

) 1
2
(
ˆ

C(Ω)

ˆ

C(Ω)

(
v(x)−v(y)

)2
ka(x−y)dxdy

) 1
2

≤

(
ˆ

Rn

ˆ

Rn

(
ũ(x)−ũ(y)

)2
ka(x−y)dxdy

) 1
2
(
ˆ

Rn

ˆ

Rn

(
ṽ(x)−ṽ(y)

)2
ka(x−y)dxdy

) 1
2

≤ [ũ, ũ]
1
2

V s(Rn,a)[ṽ, ṽ]
1
2

V s(Rn,a),

where

ka(z) :=
a
(

z
|z|

)

|z|n+2s
.(23)

Applying (20), we infer

|B0(u, v)| ≤ C‖ũ‖Hs(Rn)‖ṽ‖Hs(Rn).

Taking the infimum among all possible ũ, ṽ and including the zeroth order contribution originat-
ing from the potential, we hence arrive at

|Bq(u, v)| ≤ C‖u‖Hs(C(Ω))‖v‖Hs(C(Ω)) + ‖q‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤ C‖u‖Hs(C(Ω))‖v‖Hs(C(Ω)).

In order to prove the second claim, let u ∈ V s(Ω, a) and v ∈ H̃s(Ω). Splitting the integral
and taking into account the support of v in Ω, we can write

2B0(u, v) = I1 + I2,
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where

I1 :=

ˆ

Ω

ˆ

Ω

(
u(x)− u(y)

)(
v(x) − v(y)

)
ka(x− y)dxdy,

I2 :=

ˆ

Ω

ˆ

C(Ω)\Ω

(
u(x)− u(y)

)(
v(x)− v(y)

)
ka(x− y)dxdy

+

ˆ

C(Ω)\Ω

ˆ

C(Ω)

(
u(x)− u(y)

)(
v(x) − v(y)

)
ka(x− y)dxdy

= 2

ˆ

Ω

ˆ

C(Ω)\Ω

(
u(x)− u(y)

)(
v(x) − v(y)

)
ka(x− y)dxdy.

In the last step we used the symmetry of the kernel ka. Therefore, by (20), for j ∈ {1, 2}

|Ij | ≤ 2[u, u]
1
2

V s(Ω,a)[v, v]
1
2

V s(Ω,a) ≤ 2[u, u]
1
2

V s(Ω,a)[v, v]
1
2

V s(Rn,a) ≤ C[u, u]
1
2

V s(Ω,a)‖v‖Hs(Rn).

Combining this with the contribution from the potential yields the desired estimate. �

Upon concluding this section, we present some first comparisons between the bilinear forms
Bq and B̃q.

Lemma 2.7. Let s ∈ (0, 1) and let B̃q and Bq be as in (4) and in (7), respectively. Let

u, v ∈ Hs(Rn). If in addition u ∈ H̃s(Ω) or v ∈ H̃s(Ω), it holds that B̃q(u, v) = Bq(u, v).

Proof. By the symmetry of both Bq and B̃q, it is enough to prove that Bq(u, v) = B̃q(u, v) for

any u ∈ H̃s(Ω) and v ∈ Hs(Rn). We start by noticing that if u is supported in Ω, then

(
u(x)− u(y)

)
a

(
x− y

|x− y|

)
6= 0

at most in C(Ω)× C(Ω). Therefore, we infer

B̃0(u, v) =
1

2

ˆ

Rn

ˆ

Rn

(
u(x)− u(y)

)
a
( x− y

|x− y|

)v(x) − v(y)

|x− y|n+2s
dydx

=
1

2

ˆ

C(Ω)

ˆ

C(Ω)

(
u(x)− u(y)

)
a
( x− y

|x− y|

)v(x) − v(y)

|x− y|n+2s
dydx = B0(u, v).

Since the potential term is the same for both forms, the proof is complete. �

Remark 2.8. For a general function u ∈ Hs(Rn) the equality between the bilinear forms may
fail. Indeed, let W ⋐ C(Ω)\Ω be bounded, open and such that C(W ) 6⊂ C(Ω) and consider

f ∈ H̃s(W ). Then B̃q(f, f) 6= Bq(f, f). In fact, arguing as in the proof of Lemma 2.7,

B̃0(f, f) =
1

2

ˆ

C(W )

ˆ

C(W )

(
f(x)− f(y)

)2 a
(

x−y
|x−y|

)

|x− y|n+2s
dydx,

B0(f, f) =
1

2

ˆ

C(Ω)∩C(W )

ˆ

C(Ω)∩C(W )

(
f(x)− f(y)

)2 a
(

x−y
|x−y|

)

|x− y|n+2s
dydx.

Since C(W ) 6⊂ C(Ω), the integrals do not agree. Indeed, taking into account the support of f
(and the fact that W ⊂ C(Ω), which hence implies that f(x) = 0 for x ∈ C(W )\C(Ω)) and the
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symmetry of the kernel, we can write the difference as follows

B̃0(f, f)−B0(f, f) =
1

2

ˆ

C(W )\C(Ω)

ˆ

C(W )

f2(y)
a
(

x−y
|x−y|

)

|x − y|n+2s
dydx

+
1

2

ˆ

C(Ω)∩C(W )

ˆ

C(W )\C(Ω)

f2(x)
a
(

x−y
|x−y|

)

|x − y|n+2s
dydx

=

ˆ

W

ˆ

C(W )\C(Ω)

f2(x)
a
(

x−y
|x−y|

)

|x − y|n+2s
dydx > 0,

where the integral in the last line is finite since dist
(
W, C(W )\C(Ω)

)
> 0.

Further comparison results between the two forms e.g. as acting on solutions or as inducing
associated Dirichlet-to-Neumann maps will be discussed below.

2.4. Antilocality in cones. We conclude the discussion of the preliminary results with an
antilocality statement for more general function spaces under the assumption that the operator
under consideration is antilocal in the corresponding cones (see Definition 1.1).

Lemma 2.9. Let Γ ⊂ Rn\{0} be a convex, non-empty, open cone. Let r, s ∈ R and let L(D) :
Hr(Rn) → Hr−2s(Rn) be a linear operator which is Γ-antilocal in the sense of Definition 1.1.
Let f ∈ Hr(Rn) and assume f = 0 = L(D)f in an open subset U ⊂ Rn. Then f = 0 in U + Γ.

Remark 2.10. We remark that by the linearity of the operators and the openness of the vanish-
ing assumption, only extremely mild regularity conditions are required in Lemma 2.9. We will
implicitly make use of similar mollification arguments in various places of the article without
explicit references to this.

Proof. In order to apply the Γ-antilocality of Definition 1.1, we need to approximate f ∈ H̃r(U)
by smooth compactly supported functions. Let η be a standard mollifier compactly supported
in the unit ball and let ηj(x) := jnη(jx) for j ∈ N. We define fj := ηj ∗ f ∈ C∞

c (Rn) and
Uj := {x ∈ U : d(x, ∂U) > 1

j }. In addition, we notice that

L(D)fj = F−1
(
L̂(ξ)fj(ξ)

)
= F−1

(
L(ξ)η̂j(ξ)f̂(ξ)

)
=
(
ηj ∗ (L(D)f)

)
.

Then, f = 0 = L(D)f in U implies that fj = 0 = L(D)fj in Uj. By the Γ-antilocality, since
fj ∈ C∞

c (Rn), we conclude that fj = 0 in Uj + Γ.
It is clear that for any x ∈ U + Γ there exists N ∈ N so large that x ∈ Uj + Γ for all j ≥ N .

Thus fj(x) = 0 for all j ≥ N , which in turn implies f(x) = 0. This finally implies f = 0 in
U + Γ. �

3. The Direct Problem

This section is devoted to the study of the direct problem (6) with L(D) of the form (1) and
with a satisfying the conditions (A1)-(A3). On the one hand, we will discuss this in function
spaces modelled on [FKV15] which allow for very weak regularity conditions on the data. On
the other hand, we will also consider it in Sobolev spaces. The latter allows us to provide a more
“symmetric” definition of the Dirichlet-to-Neumann operator (see Proposition 3.12). From now
on, we assume Ω ⊂ Rn is an open, bounded Lipschitz domain and s ∈ (0, 1).
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3.1. Well-posedness result for the direct problem in Sobolev spaces. We first prove
solvability (outside of the spectrum) for the inhomogenous problem with interior source and zero
exterior data: (

L(D) + q
)
u = g in Ω,

u = 0 in C(Ω)\Ω,
(24)

with g ∈
(
H̃s(Ω)

)∗
= H−s(Ω). As discussed in Section 1.1.2, the exterior condition is only

prescribed in the domain of dependence of L. Similarly, u is defined as a function on C(Ω)
with suitable regularity conditions. Nevertheless, by Lemma 2.2 and by the imposed boundary
conditions, no generality is lost if we consider u defined in Rn and vanishing also outside C(Ω).
In the sequel we will introduce and discuss a solution notion based on the “more local” bilinear
form Bq in the spaces V s(Ω, a) which are associated with this bilinear form. The corresponding

results for B̃q can be deduced analogously; we comment on this in the context of Sobolev spaces
in Lemma 3.9 below.

Relying on our above discussion, we first present the definition of a (weak) solution based on
the bilinear form Bq:

Definition 3.1. Let s ∈ (0, 1) and let Bq(·, ·) be the bilinear form from (7). Given g ∈ H−s(Ω),

a function u ∈ H̃s(Ω) is a (weak) solution to (24) (based on Bq) if

Bq(u, v) = 〈g, v〉 for all v ∈ H̃s(Ω).(25)

Using this, we prove the well-posedness result for the interior source problem:

Proposition 3.2 (Well-posedness, no exterior data). Let s ∈ (0, 1), Ω ⊂ Rn be a bounded,
Lipschitz open set, L(D) be as in (1) with a satisfying (A1)-(A3) and q ∈ L∞(Ω). There exists
a countable set Σq ⊂ (−‖q−‖L∞(Ω),∞) such that if λ /∈ Σq, then for any g ∈ H−s(Ω) there is a

unique solution u ∈ H̃s(Ω) of
(
L(D) + q − λ

)
u = g in Ω,

u = 0 in C(Ω)\Ω.
(26)

In addition, the solution satisfies

‖u‖Hs(Rn) ≤ C‖g‖H−s(Ω).(27)

Proof. Step 1: Solvability for L(D) + q + γ. Let γ = ‖q−‖L∞(Ω), where q−(x) := min{q(x), 0}.

Then Bq + γ is a coercive continuous bilinear form on H̃s(Ω). Indeed, by Hölder’s inequality,

Lemmas 2.7, 2.5 and 2.3, for any u, v ∈ H̃s(Ω)

|Bq(u, v)| ≤
1

2
‖L(D)

1
2 u‖L2(Rn)‖L(D)

1
2 v‖L2(Rn) + ‖q‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤ C‖u‖Hs(Rn)‖v‖Hs(Rn).

The coercivity follows from the Poincaré inequality (18):

Bq(u, u) + γ(u, u) ≥
1

2
‖L(D)

1
2u‖2L2(Rn)

≥ C
(
‖L(D)

1
2u‖2L2(Rn) + ‖u‖2L2(Ω)

)
≥ C‖u‖2Hs(Rn).

Then there is a unique u =: Kg ∈ H̃s(Ω) satisfying

Bq(u, v) + γ(u, v)Ω = 〈g, v〉 for all v ∈ H̃s(Ω),
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and in addition

‖u‖Hs(Rn) ≤ C‖g‖H−s(Ω).

Step 2: Fredholm alternative. Let us consider the operator K : g 7→ u. We have already seen

that K : H−s(Ω) → H̃s(Ω) is bounded. Further, the embedding H̃s(Ω) →֒ L2(Ω) is compact.
Therefore,K is a compact, self-adjoint operator when viewed as a mapping from L2(Ω) → L2(Ω).
The conclusion hence follows by the spectral theorem and the Fredholm alternative. �

In a second step, we obtain the well-posedness of the exterior value problem (6) by reducing
it to the problem (24). In order to highlight the fact that the nonlocal problem allows for very
weak data spaces and to clarify their connection with the bilinear form Bq, here we work with
the spaces defined in Section 2.2.2, similarly as in [FKV15].

Definition 3.3. Let s ∈ (0, 1) and let Bq(·, ·) be the bilinear form from (7). Given f ∈ V s
e (Ω, a),

u ∈ V s(Ω, a) is a (weak) solution to (6) (based on Bq) if

Bq(u, v) = 0 for all v ∈ H̃s(Ω),

and EC(Ω)(u − f̃) ∈ H̃s(Ω) for any f̃ ∈ V s(Ω, a) with f̃ |C(Ω)\Ω = f.

With this in mind, we address the exterior data well-posedness result:

Proposition 3.4 (Well-posedness, exterior data). Let s ∈ (0, 1), Ω ⊂ Rn be a bounded, Lipschitz
open set, L(D) be as in (1) with a satisfying (A1)-(A3) and q ∈ L∞(Ω). There exists a countable
set Σq ⊂ (−‖q−‖L∞(Ω),∞) such that if λ /∈ Σq, then for any f ∈ V s

e (Ω, a) there is a unique
solution u ∈ V s(Ω, a) of

(
L(D) + q − λ

)
u = 0 in Ω,

u = f in C(Ω)\Ω.
(28)

Moreover, it satisfies

‖u‖V s(Ω,a) ≤ C‖f‖V s
e (Ω,a).(29)

Proof of Proposition 3.4. We reduce the exterior setting to the one from Proposition 3.2: Let
u := w|C(Ω) + f̃ ∈ V s(Ω, a), where f̃ ∈ V s(Ω, a) with f̃ |C(Ω)\Ω = f and w ∈ Hs(Rn). Then we

seek to construct w ∈ H̃s(Ω) satisfying (26) with g = −
(
L(D) + q − λ

)
f̃ |Ω. It hence suffices to

prove that g ∈ H−s(Ω), which reduces to proving that L(D)f̃ ∈ H−s(Ω) (interpreted weakly) if

f̃ ∈ V s(Ω, a). By the second part of Lemma 2.6, for any v ∈ H̃s(Ω)

|〈L(D)f̃ , v〉| = |B0(f̃ , v)| ≤ C‖f̃‖V s(Ω,a)‖v‖Hs(Rn).

This then proves that L(D)f̃ ∈ H−s(Ω) and therefore ‖g‖H−s(Ω) ≤ C‖f̃‖V s(Ω,a).

Finally, by Proposition 3.2, if λ /∈ Σq, there is a unique solution w ∈ H̃s(Ω) of (24) with

g = −
(
L(D) + q − λ

)
f̃ |Ω and it satisfies

‖w‖V s(Ω,a) ≤ ‖w‖V s(Rn,a) ≤ C‖w‖Hs(Rn) ≤ C‖g‖H−s(Ω) ≤ C‖f̃‖V s(Ω,a).

This implies

‖u‖V s(Ω,a) ≤ ‖f̃‖V s(Ω,a) + ‖w‖V s(Ω,a) ≤ C‖f̃‖V s(Ω,a).

Taking the infimum among all possible f̃ then leads to (29). �
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Next, as a direct corollary, we state the well-posedness for (6) in the more restrictive func-
tion spaces Hs(C(Ω)), which will be convenient for later applications to the associated inverse
problems – in particular for defining the corresponding Dirichlet-to-Neumann maps. In order
to note the advantages of this, we highlight that functions u ∈ Hs(C(Ω)) satisfy the symmetric
regularity condition

(
u(x)− u(y)

) a 1
2

(
x−y
|x−y|

)

|x− y|
n
2 +s

∈ L2(C(Ω)× C(Ω)),(30)

which follows as in the proof of Lemma 2.4. Contrary to the function spaces from Proposition 3.4
we thus also require Hs Sobolev regularity for the data in the exterior domain. We emphasize
that the symmetry in x and y will allow us to define the Dirichlet-to-Neumann operator by means
of our bilinear form Bq(·, ·) in a “symmetric way” in the next subsection.

Corollary 3.5. Under the same conditions as in Proposition 3.4, if λ /∈ Σq and f ∈ Hs(C(Ω)\Ω),
the unique (weak) solution to (28) (based on Bq) satisfies u ∈ Hs(C(Ω)) and

‖u‖Hs(C(Ω)) ≤ C‖f‖Hs(C(Ω)\Ω).(31)

Proof. Let ũ := w + f̃ ∈ Hs(Rn), where f̃ ∈ Hs(Rn) with f̃ |C(Ω)\Ω = f and w ∈ H̃s(Ω) satisfies

(24) with g = −
(
L(D) + q − λ

)
f̃ |Ω. By Lemma 2.3, it holds

[f̃ , f̃ ]V s(Ω,a) ≤ [f̃ , f̃ ]V s(Rn,a) ≤ C‖f̃‖Hs(Rn).

Therefore, arguing as in the proof of Proposition 3.4, we infer g ∈ H−s(Ω) and ‖g‖H−s(Ω) ≤

C‖f̃‖Hs(Rn). By virtue of Proposition 3.2, if λ /∈ Σq, then w ∈ H̃s(Ω) exists, is unique and
satisfies

‖w‖Hs(Rn) ≤ C‖g‖H−s(Ω) ≤ C‖f̃‖Hs(Rn).

Defining u := ũ|C(Ω) results in

‖u‖Hs(C(Ω)) ≤ ‖ũ‖Hs(Rn) ≤ C‖f̃‖Hs(Rn)

The estimate (31) follows by taking the infimum among all possible f̃ . �

In particular, the corollary allows us to introduce a well-defined Poisson operator Pq as already
claimed in (8):

Definition 3.6 (Poisson operator). Let s ∈ (0, 1), Ω, L(D) and q be as above. Let 0 /∈ Σq.
Then, the Poisson operator is given as the mapping

Pq : Hs(C(Ω)\Ω) → Hs(C(Ω)), f 7→ u =: Pqf,(32)

where u denotes the solution to (6) from Corollary 3.5 (with λ = 0).

After discussing the existence and uniqueness of solutions to (6) associated with the bilinear

form Bq, we discuss analogous results for the bilinear form B̃q and relate the corresponding
solution notions.

To this end, we begin by defining weak solutions to (28) based on B̃q:

Definition 3.7. Let s ∈ (0, 1) and let B̃q(·, ·) be the bilinear form from (4). Given f ∈

Hs(C(Ω)\Ω), A function u ∈ Hs(C(Ω)) is a (weak) solution to (6) (based on B̃q) if the fol-
lowing properties hold

B̃q(ũ, v) = 0 for all v ∈ H̃s(Ω) and any ũ ∈ Hs(Rn) with ũ|C(Ω) = u,

and EC(Ω)(u − f̃) ∈ H̃s(Ω) for any f̃ ∈ Hs(C(Ω)) with f̃ |C(Ω)\Ω = f.
(33)
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We remark that since the bilinear form B̃q is a more nonlocal object, the definition of a

solution of (28) is slightly more involved for data f ∈ Hs(C(Ω)\Ω) compared to the one for Bq.

This is due to the fact that the bilinear form B̃q (in contrast to the bilinear form Bq) requires
globally defined inputs (and not only inputs localized on the domain of dependence C(Ω)). It is
thus necessary to work with suitable extensions as in the definition stated above.

Remark 3.8. Let us collect the following observations on Definition 3.7:

• In contrast to asking the validity of the equation

B̃q(ũ, v) = 0 for all v ∈ H̃s(Ω) and all ũ ∈ Hs(Rn) with ũ|C(Ω) = u,

it would also have sufficed to require it

for all v ∈ H̃s(Ω) and some ũ ∈ Hs(Rn) with ũ|C(Ω) = u.

Indeed, this follows by noting that for v ∈ H̃s(Ω) the bilinear form Bq(ũ, v) = 0 is
independent of the choice of the extension ũ of u.

• If data f ∈ H̃s(C(Ω)\Ω) are considered, the solution notion from Definition 3.7 be-
comes very intuitive, with the zero extension being the canonical choice since EC(Ω)(u) ∈

H̃s(C(Ω)). Indeed, this follows from the fact that, by definition, EC(Ω)(u− f) ∈ H̃s(Ω).

• Compared to restricting our data to the space H̃s(C(Ω)\Ω), the advantage of the more
general Definition 3.7 however is that we do not necessarily have to consider data sup-
ported in C(Ω), but may prescribe information up to ∂C(Ω). Since the bilinear form Bq

is by definition restricted to C(Ω), this did not pose any difficulties in the setting of the
definition of solutions to the “more local” bilinear form Bq.

With this notion and the properties of the bilinear forms from Section 2, we obtain that the
two solution notions agree in C(Ω):

Lemma 3.9. Let s ∈ (0, 1), f ∈ Hs(C(Ω)\Ω) and let λ /∈ Σq. Then there exists a unique

weak solution to (28) based on B̃q, i.e. it satisfies the conditions in Definition 3.7 with overall
potential q − λ. Moreover, let u ∈ Hs(C(Ω)) be the solution to (28) from Corollary 3.5, based
on the bilinear form Bq. Then u agrees with the unique (weak) solution of (28) based on the

bilinear form B̃q.

Proof. We start by showing the existence of a unique u ∈ Hs(C(Ω)) satisfying (33) with overall
potential q − λ for λ /∈ Σq. As in the proof of Corollary 3.4, we reduce this problem to the
one from Proposition 3.5. Firstly, we notice that the notion of solution in Definition 3.1 and
Proposition 3.2 can be also written in terms of the bilinear form (4) according to Lemma 2.7.

This in particular implies that no unique solution exists if λ ∈ Σq, i.e. Σ̃q = Σq.

Secondly, for λ /∈ Σq we define ũ = w + f̃ ∈ Hs(Rn), where f̃ ∈ Hs(Rn) is such that

f̃ |C(Ω)\Ω = f and w ∈ H̃s(Ω) solves (26) with g = −
(
L(D) + q − λ

)
f̃ |Ω. As in the proof of

Corollary 3.5, we infer that g ∈ H−s(Ω). If λ /∈ Σq, then there exists a unique w. Finally, taking

the infimum among all possible f̃ and u := ũ|C(Ω), the existence and uniqueness of u ∈ Hs(C(Ω))
follows.

The equality u = u, where u is the solution of Corollary 3.5, is immediate by comparing the
previous construction with the one of u in Corollary 3.5. Indeed, for the same extension f̃ , we
have g = g. Since λ /∈ Σq, then w = w.

Lastly, we notice that B̃q(ũ, v) = 0 for all possible extensions ũ ∈ Hs(Rn) with ũ|C(Ω) = u.

Indeed, let ũ1, ũ2 ∈ Hs(Rn) such that ũj|C(Ω) = u and let v ∈ H̃s(Ω). By Lemma 2.7

B̃q(ũ1 − ũ2, v) = Bq(ũ1 − ũ2, v) = 0,
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where the last equality follows by the definition in (7) and the fact that ũ1− ũ2 = 0 in C(Ω). �

3.2. The Dirichlet-to-Neumann operator. Heading towards the discussion of the associated
inverse problems, we next define the Dirichlet-to-Neumann map for the problem (6) based on

the two bilinear forms Bq and B̃q. Roughly speaking, for B̃q it is defined as the restriction of the
operator applied to the solution to the “significant region” in the exterior of Ω (Proposition 3.12).
Under suitable geometric assumptions this is also the case for Bq (Lemma 3.15), however in
general the two definitions do not agree (Remark 3.16). In this section, due to the more convenient
symmetry properties, we will only discuss the Sobolev space setting. Again, we will begin by
discussing the setting based on the bilinear form Bq.

Proposition 3.10 (The Dirichlet-to-Neumann operator Λq). Let s ∈ (0, 1), Ω ⊂ Rn be a
bounded, Lipschitz open set, L(D) be as in (1) with a satisfying (A1)-(A3) and q ∈ L∞(Ω)
be such that 0 /∈ Σq. There exists a well-defined, bounded Dirichlet-to-Neumann operator

Λq : Hs(C(Ω)\Ω) →
(
Hs(C(Ω)\Ω)

)∗
: f 7→ Λqf,

given by

〈Λqf, h〉 := Bq(uf , h̃) for f, h ∈ Hs(C(Ω)\Ω),

where uf = Pqf ∈ Hs(C(Ω)) is the unique solution to (6) and h̃ ∈ Hs(C(Ω)) with h̃|C(Ω)\Ω = h.

Proof. First, we prove that the definition of the Dirichlet-to-Neumann map does not depend on
the choice of h̃. Let h̃, h̃′ ∈ Hs(C(Ω)) with h̃|C(Ω)\Ω = h̃′|C(Ω)\Ω = h. Hence, EC(Ω)(h̃ − h̃′) ∈

H̃s(Ω) by Lemma 2.2. Since Bq(uf , v) = 0 for all v ∈ H̃s(Ω) and recalling the definition in (7)

which only “sees” the contributions restricted to C(Ω), we obtain Bq(uf , h̃− h̃′) = 0.
Next we prove that Λq is bounded: By Lemma 2.6 and (31) we have

|〈Λqf, h〉| = |Bq(uf , h̃)| ≤ C‖uf‖Hs(C(Ω))‖h̃‖Hs(C(Ω)) ≤ C‖f‖Hs(C(Ω)\Ω)‖h̃‖Hs(C(Ω)).

Taking the infimum among all possible h̃, we finally infer

|〈Λqf, h〉| ≤ C‖f‖Hs(C(Ω)\Ω)‖h‖Hs(C(Ω)\Ω).

�

Remark 3.11. Due to the symmetry of the bilinear form, we notice that for any f, h ∈ Hs(C(Ω)\Ω)

〈Λqf, h〉 = 〈Λqh, f〉.

Indeed, let uf = Pqf and uh = Pqh. In particular, this implies uf |C(Ω)\Ω = f and uh|C(Ω)\Ω = h.

Then,

〈Λqf, h〉 =Bq(uf , uh) = Bq(uh, uf) = 〈Λqh, f〉.

Here we opted for a definition of the Dirichlet-to-Neumann map by means of the Sobolev
spaces Hs, which assures as much symmetry as possible. Given the stronger well-posedness
result from Proposition 3.4, an alternative, less symmetric definition could have been imagined
based on the functions spaces from there. This however would have required substantially more
care in defining the corresponding duality pairing, which we thus do not discuss here.

Next, we turn to the notion of the Dirichlet-to-Neumann operator based on the bilinear form
B̃q. If the boundary data are compactly supported in C(Ω)\Ω, by virtue of Lemma 3.9 and
following (5), we can define the Dirichlet-to-Neumann operator as follows:
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Proposition 3.12 (The Dirichlet-to-Neumann operator Λ̃q). Let s ∈ (0, 1), Ω ⊂ Rn be a
bounded, Lipschitz open set, L(D) be as in (1) with a satisfying (A1)-(A3) and q ∈ L∞(Ω)

be such that 0 /∈ Σ̃q. There exists a well-defined, bounded Dirichlet-to-Neumann operator

Λ̃q : H̃
s(C(Ω)\Ω) →

(
H̃s(C(Ω)\Ω)

)∗
: f 7→ Λ̃qf,

given by

〈Λ̃qf, h〉 := B̃q(uf , h) for f, h ∈ H̃s(C(Ω)\Ω),

where uf denotes the extension by zero of the solution from Lemma 3.9, i.e. uf = EC(Ω)(Pqf).

Proof. We just need to notice that both uf , h ∈ H̃s(C(Ω)) ⊂ Hs(Rn) (see Remark 3.8) so the
operator is well-defined. Boundedness follows by Lemma 2.5. �

Remark 3.13. We highlight that in contrast to the operator Λq we have defined the operator Λ̃q

only on H̃s(C(Ω)\Ω) and not on Hs(C(Ω)\Ω). This again is due to the fact that B̃q necessitates
global information (see also the discussion below Definition 3.7). Thus, for a more general set-up
extensions would have had to be considered. With such a definition, in general the independence
of Λ̃q of such an extension would not have been obvious.

We remark that for this operator we have the representation stated in (5):

Lemma 3.14 (Distributional characterization). Let s ∈ (0, 1), let q ∈ L∞(Ω) be such that

0 /∈ Σq and let Λ̃q be the operator from Proposition 3.12. Let f ∈ H̃s(C(Ω)\Ω) and let uf
denote the extension by zero of the solution from Lemma 3.9 associated with the datum f . Then

Λ̃qf = L(D)uf |C(Ω)\Ω in the sense of distributions, i.e. for all ϕ ∈ H̃s(C(Ω)\Ω) it holds that

〈Λ̃qf, ϕ〉 = 〈L(D)uf , ϕ〉.

Proof. By Proposition 3.12 and Lemma 2.5

〈Λ̃qf, ϕ〉 = B̃q(uf , ϕ) =
(
L(D)

1
2uf , L(D)

1
2ϕ
)
L2(Rn)

+ (quf , ϕ)L2(Ω)

= 〈L(D)uf , ϕ〉.

�

While in general the Dirichlet-to-Neumann maps from Propositions 3.10 and 3.12 do not agree
(see Remark 3.16), we point out some cases in which these definitions coincide:

Lemma 3.15. Let s ∈ (0, 1), let q ∈ L∞(Ω) be such that 0 /∈ Σq and let Λq, Λ̃q be the operators

from above. Let W1,W2 ⊂ C(Ω)\Ω. Then for any f ∈ H̃s(W1)

Λqf |W2 = Λ̃qf |W2(34)

provided W1 ∩W2 = ∅ or C(W1 ∩W2) ⊂ C(Ω).

Here the statement in (34) is understood in the sense that

〈Λ̃qf, h〉 = 〈Λqf, h〉 for any h ∈ H̃s(W2).

Proof. The claim follows by the identity B̃q(uf , h) = Bq(uf , h) for h ∈ H̃s(W2) under the

geometric conditions on W1,W2. Indeed, let f ∈ H̃s(W1) and h ∈ H̃s(W2). Using the notation
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Ω

C(Ω)

W
C(W )

Figure 3. Example of a setting for which the second condition on Lemma 3.15
holds, i.e. W = W1 ∩W2 ⊂ C(Ω)\Ω and C(W ) ⊂ C(Ω). Notice that the last
condition is satisfied only for a small region close to Ω, which increases as the
opening angle of the cone is decreased.

from (23), applying Lemmas 3.9 and 2.7 and taking into account the supports of all the functions
involved (in particular the fact that W1,W2 ⊂ C(Ω)\Ω), we infer

B̃q(uf , h)−Bq(uf , h) = B̃q(uf − f, h)−Bq(uf − f, h) + B̃q(f, h)−Bq(f, h)

= B̃q(f, h)−Bq(f, h)

=
1

2

ˆ

Rn\C(Ω)

ˆ

Rn

(
f(x)− f(y)

)(
h(x)− h(y)

)
ka(x− y)dydx

+
1

2

ˆ

C(Ω)

ˆ

Rn\C(Ω)

(
f(x)− f(y)

)(
h(x)− h(y)

)
ka(x− y)dydx

=
1

2

ˆ

C(Ω)e

ˆ

Rn

f(y)h(y)ka(x− y)dydx+
1

2

ˆ

C(Ω)

ˆ

C(Ω)e

f(x)h(x)ka(x− y)dydx

=

ˆ

C(Ω)

ˆ

C(Ω)e

f(x)h(x)ka(x− y)dydx

=

ˆ

W1∩W2

ˆ

C(Ω)e

f(x)h(x)ka(x− y)dydx,

where ka is given in (23). If the supports of f and h are disjoint, i.e. W1 ∩W2 = ∅, then the last
integral vanishes. Otherwise, if C(W1 ∩W2) ⊂ C(Ω), then for any x ∈ W1 ∩W2, ka(x − y) 6= 0
provided y ∈ C(x) ⊂ C(Ω). Since the integral with respect to y is restricted to C(Ω)e, the
difference vanishes. �

Remark 3.16. In order to illustrate that it is necessary to impose geometric conditions for
the equality of the two Dirichlet-to-Neumann maps, we provide a counterexample. We consider
W1 = W2 = W ⊂ C(Ω)\Ω with C(W ) 6⊂ C(Ω), such that the conditions on Lemma 3.15 are no

longer satisfied. Let f ∈ H̃s(W ). By Lemma 3.9, the solutions based on each of the bilinear
forms agree in C(Ω). As a consequence,

〈Λ̃qf, f〉 − 〈Λqf, f〉 = B̃q(uf , f)−Bq(uf , f)

= B̃q(uf − f, f) + B̃q(f, f)−Bq(uf − f, f)−Bq(f, f)

= B̃q(f, f)−Bq(f, f),

where the last identity follows by Lemma 2.7 and the fact that uf − f ∈ H̃s(Ω). However, under

the assumed geometric conditions, B̃q(f, f)−Bq(f, f) > 0 by Remark 2.8.
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4. Antilocality, Unique Continuation and the Inverse Problem

In this section we discuss the structural properties of antilocality, unique continuation and
Runge approximation. We apply the corresponding results to deduce infinite (partial data) and
single measurement uniqueness results for the associated inverse problems.

4.1. Proofs of Proposition 1.4 and Theorem 1. Equipped with the well-posedness results
from the previous section, we next discuss the general results of Proposition 1.4 and of Theorem 1.
In particular, this shows that the class of operators from (A1)-(A3) satisfies a “weak type” of
directional antilocality property which is used in the analysis of the inverse problem below.

4.1.1. Proof of Proposition 1.4. We first turn to the proof of Proposition 1.4. Here the main part
of the proof consists in showing that condition (ii) can be reduced to [RS20b, Corollary 5.2],
and that the operator L(D) behaves analogously to the fractional Laplacian in that its complex
extension requires the presence of a branch-cut.

Proof of Proposition 1.4. Step 1: Condition (i). The claim that condition (i) implies that f ≡ 0
in Ω if f = 0 = L(D)f in C(Ω)\Ω is a direct consequence of the antilocality in cones (Lemma 2.9)
and of the fact that any point in Ω (actually any point) can be reached through a translated
two-sided cone of the form C({x0}) with x0 ∈ C(Ω)\Ω.

Step 2: Condition (ii). It thus remains to show that condition (ii) also implies the desired
result. To this end, we argue by contradiction as in the proof of [RS20b, Corollary 5.2] (with
the fractional Laplacian replaced by the operator L(D)) assuming that f 6= 0. We note that by
a mollification argument as in the proof of Lemma 2.9 we may without loss of generality assume
that f ∈ C∞

c (Rn).
Due to our assumption we have f = 0 in Rn\Ω. By virtue of the domain of dependence

structure, we then also obtain that L(D)f = 0 in Rn\Ω. Hence, we are in the setting of [RS20b,
Corollary 5.2], but instead of the fractional Laplacian we consider the operator L(D). More

precisely, by the Paley-Wiener theorem, both L̂f(ξ) and f̂(ξ) have analytic extensions into the

complex plane Cn. We infer that the quotient L(ξ) = L̂f(ξ)

f̂(ξ)
is thus a meromorphic function if

f̂(ξ) 6≡ 0.
In order to conclude as in [RS20b, Corollary 5.2], it remains to produce a contradiction to the

assumption that f̂ 6≡ 0. This will be achieved by proving that any continuation of the symbol
L(ξ) of the operator L(D) into the complex plane Cn necessitates the presence of a branch-cut
singularity, analogously as for the symbol |ξ|2s. In this case L(ξ) is not a meromorphic function,

and the identity L(ξ) = L̂f(ξ)

f̂(ξ)
could thus only be valid if f̂ ≡ 0. This would imply the desired

result.
As in [RS20b, Corollary 5.2] it suffices to study restrictions of L(ξ) to one-dimensional lines

which do not fully lie in the nodal set of f̂(ξ). If f̂ 6≡ 0, such lines exist. We assume without loss
of generality that one of these lines is given by λe1, with λ ∈ R and e1 denoting the first unit
vector. On this line, the symbol turns into

L(λe1) = C|λ|2s,

for some constant C > 0. Now, as a function of λ, this function has the property that any
analytic extension L(λ̃e1) with λ̃ ∈ C necessarily has a branch cut singularity. This contradicts

the fact that both Lf(λ̃e1) and f̂(λ̃e1) 6≡ 0 are analytic functions in λ̃ ∈ C. Hence, f̂(ξ) ≡ 0. �

4.1.2. Proof of Theorem 1. The proof of Theorem 1 follows along the same lines as the analogous
result for the fractional Laplacian in [GRSU18, Proposition 2.3]. The implication (b) ⇒ (a) is
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a consequence of the Hahn-Banach theorem, while the implication (a) ⇒ (b) follows by density
and the well-posedness of the equation.

Proof of Theorem 1. Step 1: (a) ⇒ (b). By the assumed Runge approximation property, for any

ψ ∈ H̃s(Ω) and any ǫ > 0 there exists a function f ∈ C∞
c (W ) such that

‖Pqf |Ω − ψ‖Hs(Rn) ≤ ǫ.

We notice that

〈v, ψ〉 = 〈v, ψ − Pqf |Ω〉+ 〈v, Pqf |Ω〉.

By virtue of Lemmas 2.5 and 2.7, the symmetry of B̃q and the assumption that L(D)w|W = 0,
we obtain for v ∈ H−s(Ω)

〈v, Pqf |Ω〉 = Bq(w,Pqf |Ω) = B̃q(w,Pqf |Ω) = B̃q(w,Pqf − f)

= −B̃q(w, f) = −〈L(D)w, f〉 = 0.

Now, by the assumed Runge approximation property,

|〈v, ψ〉| ≤ ‖v‖H−s(Ω)‖ψ − Pqf |Ω‖Hs(Ω) ≤ ǫ‖v‖H−s(Ω).

Considering ǫ → 0 then implies that 〈v, ψ〉 = 0 for all ψ ∈ H̃s(Ω). This entails that v ≡ 0 in Ω
and by the well-posedness of (13), we obtain that w ≡ 0 in C(Ω).

Step 2: (b) ⇒ (a). By the Hahn-Banach theorem, it suffices to show the following implication:

(35) If F ∈ H−s(Ω) such that 〈F, u〉 = 0 ∀u ∈ R ⇒ F ≡ 0 .

Therefore, let F ∈ H−s(Ω) verify the assumption of (35) and define φ ∈ H̃s(Ω) as the unique
solution of

(
L(D) + q

)
φ = −F in Ω,

φ = 0 in C(Ω)\Ω.

Let f ∈ C∞
c (W ) with W ⊂ C(Ω)\Ω. By the well-posedness assumption, Pqf |Ω = Pqf − f ∈

H̃s(Ω). Then, according to Definition 3.1 and Lemma 2.7, it follows that

0 = 〈F, Pqf |Ω〉 = −Bq(φ, Pqf |Ω) = −B̃q(φ, Pqf |Ω) = −B̃q(φ, Pqf) + B̃q(φ, f) .

However, since Pqf clearly verifies
(
L(D) + q

)
Pqf = 0 in Ω and by definition φ ∈ H̃s(Ω), the

term B̃q(φ, Pqf) = Bq(φ, Pqf) vanishes. Therefore, by Lemma 2.5, we are left with

0 = B̃q(φ, f) =
(
L

1
2 (D)φ, L

1
2 (D)f

)
L2(Rn)

+ (qφ, f)L2(Ω) = 〈L(D)φ, f〉.

By the arbitrary choice of f ∈ C∞
c (W ), we are lead to the conclusion that L(D)φ = 0 in W .

Assumption (b) implies that φ ≡ 0 in C(Ω) and F ≡ 0, which thus concludes the proof. �

4.2. Runge approximation and unique continuation. In this section, we relate the crucial
properties of antilocality, Runge approximation and unique continuation. We emphasize that –
in spite of ellipticity – the geometry of the operator now plays a more subtle role than in local
inverse problems.
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C

−C

⊙ θ

Br(θ)(θ)

Ω ⊙ x

Bdiam(Ω)(x)

W
⊙
x− diam(Ω)

r(θ) θ

Figure 4. On the possible location of W with respect to Ω in Theorem 2,
see Remark 4.1. In particular, the assumption Ω ⊂ C(W ) from our Runge
approximation result does not impose any size estimates for W .

4.2.1. Runge approximation (Proof of Theorem 2). We apply the assumed −C∪C-antilocality to
prove the Runge approximation property by exploiting the duality result of Theorem 1.

Proof of Theorem 2. By virtue of Theorem 1, it suffices to show that the assumption (b) in

Theorem 1 is satisfied. To this end, let w ∈ H̃s(Ω) solve
(
L(D) + q

)
w = v in Ω,

w = 0 in C(Ω)\Ω,

for some v ∈ H−s(Ω). Assume also L(D)w = 0 in W . Since W ⊂ C(Ω)\Ω, we have w = 0 =
L(D)w in W . Since L(D) is −C ∪ C-antilocal, by Lemma 2.9 it follows that w = 0 in C(W ).
Since Ω ⊂ C(W ), we have obtained that w = 0 in Ω. Recalling the boundary conditions, we
hence conclude that w ≡ 0 in C(Ω). Due to the domain of dependence of the operator L(D), this
implies v ≡ 0, so the proof is completed. �

Remark 4.1. We highlight that the condition Ω ⊂ C(W ) in Theorem 2 does not imply any
restriction in the size of W . Indeed, it can be taken arbitrarily small provided its distance from
Ω is large enough. In order to see this, for any θ ∈ (−C ∪ C) ∩ Sn−1 let r(θ) > 0 be the radius
of the largest ball contained in −C ∪ C and centered in θ. In addition, for any x ∈ Ω, we have

Ω ⊂ Bdiam(Ω)(x). Therefore, Ω ⊂ C
({
x − diam(Ω)

r(θ) θ
})

(see Figure 4). This implies that if there

are w ∈ W , x ∈ Ω and t ∈ R with

x = w+ tθ , dist(x,w) = |t| ≥
diam(Ω)

r(θ)
,

then Ω ⊂ C(W ) regardless of the shape and size of W . The conditions above are granted, e.g. if

W is at least diam(Ω)
r(θ) away from Ω in the direction −θ.

We next show that the geometric conditions in Theorem 2 for the validity of the approximation
are indeed necessary. We have already discussed that the domain of dependence of L(D) requires
W ⊂ C(Ω).

Lemma 4.2. Assume that the conditions of Theorem 2 hold except for the assumption that
Ω ⊂ C(W ). Then, in general, the Runge approximation property fails.
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W

C(Ω)
Ω1

Ω2

Figure 5. Setting for the counterexample on the necessity of the geometric
condition Ω ⊂ C(W ) in the Runge approximation, see Lemma 4.2.

Proof. By virtue of Theorem 1, it suffices to prove that the statement (b) in Theorem 1 fails.
Let Ω1 := Ω∩C(W ) and Ω2 := Ω\Ω1 (see Figure 5). By assumption Ω2 6= ∅. Let w ∈ C∞

c (Ω2)
such that v :=

(
L(D)+q

)
w|Ω 6= 0. Since L(D)w ∈ C∞(Rn), we have v ∈ H−s(Ω). It is clear that

then w is a solution to (13). By construction of w, Ω1, Ω2 and W , it holds that L(D)w|W = 0.
Therefore, the condition (b) in Theorem 1 fails. �

4.2.2. Weak unique continuation for −C ∪C-antilocal operators. As a further consequence of our
structural assumptions, we argue that a two-sided antilocality property implies the weak unique
continuation property.

Proposition 4.3 (WUCP). Let C ⊂ Rn\{0} be an open, non-empty, convex cone. Let L(D) be
a −C∪C-antilocal operator. Then L(D) satisfies the following weak unique continuation property:
Let Ω be a connected, bounded differentiable domain and q ∈ L∞(Ω). If

(
L(D) + q

)
u = 0 in Ω

and u = 0 in U ⊂ Ω, then u = 0 in C(Ω).

Proof. Assume that u = 0 in U . By the equation and since U ⊂ Ω, it also holds that L(D)u = 0
in U . By the −C ∪ C-antilocality (Lemma 2.9), we infer u = 0 in C(U), which in particular
implies that u = 0 = L(D)u in U1 = C(U)∩Ω. Iterating this argument based on the antilocality
in the two-sided cone, we further obtain u = 0 = L(D)u in Ui+1 := C(Ui) ∩ Ω. Due to the
differentiablity of Ω and the two-sidedness of C(Ui), there exists N ∈ N such that UN = Ω (see
Figure 6 and Lemma C.4). Therefore, applying the −C ∪ C-antilocality argument iteratively, we
conclude that u = 0 in C(Ω). �

Remark 4.4. We remark that the proof of Proposition 4.3 strongly uses the two-sided antilocality
to deduce the WUCP. In particular, in cases with only one-sided antilocality it is not immediate
that antilocality implies the WUCP (see Lemma 5.25 for a counterexample in the one-sided setting
if s ∈

(
0, 12
)
).

4.3. Uniqueness for the inverse problem. With the Runge approximation and the WUCP
results from Theorem 2 and Proposition 4.3 in hand, we prove the uniqueness results from
Theorems 3 and 4.
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Ω U C(U)

U1

C(U1)

U2

Figure 6. Subsets involved in the proof of Proposition 4.3. The equation is
satisfied in Ω and the solution vanishes in U . In this illustration we have that
Ω ⊂ C(U2) and thus U3 = Ω which concludes the proof after three iterations.

Proof of Theorem 3. Let fj ∈ C∞
c (Wj) and uj := EC(Ω)Pqjfj for j = 1, 2. By Proposition 3.10

and Remark 3.11, we have the following Alessandrini identity:

〈(Λq1 − Λq2)f1, f2〉 = 〈Λq1f1, f2〉 − 〈Λq2f2, f1〉

= Bq1(u1, u2)−Bq2(u2, u1) =

ˆ

Ω

(q1 − q2)u1u2 dx .

Here we used of the fact that uj |C(Ω)\Ω = fj for j = 1, 2. Now the assumption on the Dirichlet-to-

Neumann maps implies that the above integral vanishes for all f1 ∈ C∞
c (W1) and f2 ∈ C∞

c (W2).
Let ǫ > 0 and g ∈ C∞

0 (Ω). By the Runge approximation property we can find f1 ∈ C∞
c (W1)

such that u1|Ω = g + r1 for u1 = Pqf1, with ‖r1‖Hs(Ω) < ǫ. Similarly, we can find f2 ∈ C∞
c (W2)

such that u2|Ω = 1 + r2 for u2 = Pqf2, with ‖r2‖Hs(Ω) < ǫ. Thus, by the support assumptions
we can write

0 =

ˆ

Ω

(q1 − q2)u1u2 dx =

ˆ

Ω

(q1 − q2)(g + gr2 + r1u2) dx.

For the term involving r2 we can estimate

|〈(q1 − q2)g, r2〉| ≤ ‖(q1 − q2)g‖H−s(Ω)‖r2‖Hs(Ω) ≤ ǫ‖q1 − q2‖L∞(Ω)‖g‖Hs(Ω) ,

and similarly for the term involving r1. Taking the limit ǫ → 0, we eventually obtain
´

Ω
(q1 −

q2)g dx = 0. By the arbitrary choice of g ∈ C∞
c (Ω), we are left with q1 = q2 in Ω. �

The claim of Remark 1.6 follows in exactly the same way. Notice that an analogous Alessan-
drini identity holds for Λ̃qj and B̃qj . Moreover, if W1 ∩ W2 = ∅, by Lemma 3.15, the two
Dirichlet-to-Neumann operators even coincide.

Proof of Theorem 4. We argue similarly as in the case of the fractional Laplacian [GRSU18].
Indeed, by the −C ∪ C-antilocality of L(D), the function u is uniquely determined in C(W2) by

the knowledge of u|W2 = f |W2 and L(D)(u)|W2 , which, by Lemma 3.14, is given by Λ̃q(f)|W2 .
Since by assumption Ω ⊂ C(W2), we in particular obtain u in Ω. Now, in Ω the function u
satisfies the equation

(
L(D) + q

)
u = 0 in Ω.

Hence, solving for the potential, we obtain q(x) = −L(D)u(x)
u(x) , provided the quotient is well-

defined on a sufficiently large set. Since q ∈ C0(Ω), it suffices to ensure that the quotient
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L(D)u(x)
u(x) is well-defined on open sets, i.e. that u(x) cannot vanish on open sets. In this case, for

any x̄ ∈ Ω and any r > 0 there always exists a sequence of points {xk}∞k=1 ⊂ Br(x̄) such that
u(xk) 6= 0 and xk → x̄. By continuity of q we then have

q(x̄) = lim
k→∞

q(xk) = lim
k→∞

(
−
L(D)u(xk)

u(xk)

)
.

Thus, it suffices to argue that u(x) cannot vanish on open sets. If we assume that there is an
open set U ⊂ Ω such that u ≡ 0 in U , then, by virtue of the equation, also L(D)u = 0 in U . Due
to the assumed two-sided antilocality of the operator and the regularity of Ω, by Proposition 4.3
we infer that u = 0 in C(Ω) and therefore f ≡ 0 in W1. This however is not possible by our
assumption f 6= 0. �

Remark 4.5. We remark that as in [GRSU18] it would also be possible to turn the above proof
into an algorithmic reconstruction argument, for instance by using a Tychonov regularization
argument.

Remark 1.7 follows from Theorem 4 and Lemma 3.15 under the stated geometric conditions on
W1, W2. Notice that here, contrary to Remark 1.6, the proof uses that Λq(f)|W2 = L(D)uf |W2 ,
which holds provided the conditions of Lemma 3.15 are satisfied.

5. Examples: Direct and Inverse Problems for a Class of Non-Symmetric

Directionally Antilocal Operators

In this section, we collect some prototypical examples of (not necessarily symmetric) operators
with directional antilocality properties and discuss the corresponding direct and inverse problems.
The antilocality of most of these operators has been studied in [Ish86, Ish88, Ish89]. We postpone
a further systematic study of more general nonlocal operators to future work. Due to the fact that
not all of the operators under consideration are symmetric, further new phenomena arise in the
formulation and derivation of the corresponding results for the inverse problems. In particular,
this will necessitate the introduction of adapted function spaces. We will highlight these aspects
in the corresponding sections below.

Let us begin by introducing the class of operators which we will focus on in this section. To
this end, let p ∈ [0, 1] and let Γ ⊂ Rn\{0} be an open, non-empty, convex cone. We define

As
p,Γ(D)f(x) :=





ˆ

Rn

(f(x)− f(x+ y))νsp,Γ(y)dy if s ∈
(
0, 12
)
,

ˆ

Rn

(
f(x)− f(x+ y) + y · ∇f(x)e−

|y|
e

)
νsp,Γ(y)dy if s = 1

2 ,
ˆ

Rn

(
f(x)− f(x+ y) + y · ∇f(x)

)
νsp,Γ(y)dy if s ∈

(
1
2 , 1
)
,

(36)

with

νsp,Γ(y) :=
pχ−Γ(y) + (1− p)χΓ(y)

|y|n+2s
,(37)

where χ±Γ denotes the characteristic function of±Γ. These operators are motivated by stochastic
applications for stable processes. For n = 1, 2 and s 6= 1

2 , subclasses of the operators As
p,Γ(D)

and their rigidity properties have been studied in a sequence of articles [Ish86, Ish88, Ish89]. We
refer to Section 5.1 for more on this.
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The operators As
p,Γ(D) in (36) correspond to the following Fourier symbols (see Lemma A.2)

As
p,Γ(ξ) =





cs

ˆ

Γ∩Sn−1

(
1− i(1− 2p) tan(πs) sgn(θ · ξ)

)
|θ · ξ|2sdθ if s ∈

(
0, 12
)
∪
(
1
2 , 1
)
,

ˆ

Γ∩Sn−1

(π
2
− i(1− 2p) sgn(θ · ξ) log(|θ · ξ|)

)
|θ · ξ|dθ if s = 1

2 ,

(38)

where cs = −Γ(−2s) cos(πs) > 0. From this we observe that As
p,Γ(D)∗ = As

1−p,Γ(D) = As
p,−Γ(D),

since As
p,Γ(ξ) = As

1−p,Γ(ξ). In particular, in global H̃s(−Γ ∪ Γ) spaces the adjoint operator of

As
0,Γ(D) (which only sees the cone Γ) is As

1,Γ(D) (which only sees the cone −Γ). With the

exception of the case p = 1
2 , the operators As

p,Γ(D) are not symmetric.
We emphasize that due to the fact that we here deal with non-symmetric operators, new

features arise. For instance, for p ∈ {0, 1}, due to the one-sided antilocality,

• new local and nonlocal data spaces will be considered (see Section 5.2.3),
• further geometric restrictions on the measurement location of the inverse problem have
to be imposed (see Remark 5.20),

• and, in general, the unique continuation properties of the one-sided operators are sub-
stantially weaker than for their symmetric counterparts (see Lemma 5.25).

Moreover, contrary to the operators from Sections 3-4, the operators As
1,Γ(D) and As

0,Γ(D) only
“see” information in a one-sided cone and are thus of special interest to us.

In the following we recall the known antilocality results for the operators As
p,Γ(D), formulate

associated direct and inverse problems and study the features arising from the non-symmetric,
possibly only one-sided directional antilocality properties of these operators.

5.1. Directional antilocality. We start by recalling some directional antilocality results in
the sense of Definition 1.1 from [Ish86, Ish88, Ish89] for the operators As

p,Γ(D) in one and two
dimensions and provide some variations of these results. A more general, systematic discussion
of the antilocality properties of these and related operators is postponed to future work.

5.1.1. Some observations by Ishikawa in one and two dimensions and variations of these. We
begin by recalling the known one-dimensional results on the antilocality properties of the oper-
ators from (36). To this end, we first observe that since we focus on Γ ⊂ Rn\{0} convex, in one
dimension, we either obtain Γ = R+ or Γ = R−. Notice that As

p,Γ(D) = As
1−p,−Γ(D), hence all

the possible cases in one dimension are included in the simplified notation

As
p(D) := As

p,R+
(D),

omitting the dependence on Γ, which we will thus use in the sequel. Moreover, we also say
that such an operator is antilocal to the right or left if it is directionally antilocal in R+ or R−,
respectively. In this setting, the following antilocality property is valid:

Lemma 5.1 ([Ish86, Ish88]). Let s ∈ (0, 1)\
{
1
2

}
. The operator As

p(D) is Yp-antilocal, where

Yp =





R+ if p = 0,

R if p ∈ (0, 1),

R− if p = 1,

(39)

i.e. As
p(D) is antilocal if p ∈ (0, 1) and only directionally antilocal to the right/left in the case

that p ∈ {0, 1}, respectively.

We emphasize that in [Ish88, Theorem 2.3] Ishikawa provided a more general result by connect-
ing the global property of antilocality (to the left/right) for one-dimensional operators with the
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U

Figure 7. Function for the counterexample of Lemma 5.3

anti-transmission property (to the right/left). These properties are satisfied by larger classes of
operators, including rather general operators of fractional Laplacian type (c.f. the µ-transmission
condition from [Gru15]).

For completeness and in order to illustrate that the results from Lemma 5.1 are sharp, we
recall an example from [Ish86] (which is formulated for s ∈ (0, 12 ) there, but which remains valid

for s ∈
(
1
2 , 1
)
), showing that As

0 indeed does not possess the antilocality condition to the left
(see Figure 7):

Lemma 5.2 ([Ish86], p.8). Let s ∈ (0, 1). Then there exist an open set U ⊂ R and a function
f ∈ C∞

c (R) such that f = 0 = As
0(D)f in U but f 6= 0.

Proof. Following [Ish86] it suffices to consider f ∈ C∞
c (R) with the property that

f(x) =

{
1 for x ∈ (−3,−2),
0 for x ∈ (−∞,−4) ∪ (−1,∞),

and to smoothly connect these two intervals (see Figure 7). Then, due to the domain of depen-
dence structure, the claim follows with, for instance, U =

(
− 1

2 ,
1
2

)
. �

Ishikawa’s results in one dimension do not consider the case s = 1
2 except for p = 1

2 . Next we

provide an alternative proof of the one-sided antilocality which also holds for the case s = 1
2 (and

general p ∈ [0, 1]) and which builds on the ideas in [GFR20]. We present the result for As
0(D),

but an analogous result is valid for As
1(D). This, together with the antilocality for p = 1

2 and
Lemma 5.6 below, gives antilocality for any p ∈ (0, 1) in one dimension.

Lemma 5.3. Let s ∈ (0, 1). Then the operator As
0(D) is R+-antilocal.

Proof. Let f ∈ C∞
c (R) and let U ⊂ R be an open bounded interval where f = 0 = As

0(D)f . We
seek to deduce that f = 0 in U+ = U + R+.

Without loss of generality (by scaling and translation), we assume U = (0, β), with β < 1,
and supp(f) ⊂ R− ∪ [2,+∞). Notice that then f(x+ y) = 0 for any x ∈ U and y ∈ (0, 1).

By assumption, for any x ∈ U it holds

As
0(D)f(x) =

ˆ ∞

1

f(x+ y)

y1+2s
dy = 0.

In addition, all the derivatives of As
0(D)f vanish in U , which after integrating by parts implies

ˆ ∞

1

f(x+ y)

y1+2s+k
dy = 0, k ∈ N0.

Fixing any x ∈ U and applying the change of variables y = z−1, we infer
ˆ 1

0

Fx(z)z
kdz = 0, k ∈ N0,

where Fx(z) = z2s−1f
(
x+ 1

z

)
∈ L2((0, 1)). By the uniqueness of the Hausdorff-moment problem

(see for instance [Tal87]), Fx(z) = 0 for all z ∈ (0, 1), and thus, f(x + y) = 0 for y > 1. As a
consequence, f = 0 in R+ = U+. �
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Using the observations from [GFR20], it is further possible to turn the uniqueness results
provided by antilocality into a conditional stability estimate:

Lemma 5.4. Let s ∈ (0, 1) and let Ω, U ⊂ R be open, bounded intervals with Ω to the right of
U . Then there exists a constant C > 1 (depending on Ω, U and s) such that for any f ∈ C∞

c (Ω)
it holds

‖f‖L2(Ω) ≤ Ce
C

‖f‖
H1(Ω)

‖f‖
L2(Ω) ‖As

0(D)f‖L2(U).

Proof. Without loss of generality, by scaling and translation, we may assume U = (0, β), with
β < 1, and Ω ⊂ (2,+∞). Let x ∈ U and consider the function Fx(z) = z2s−1f

(
x + 1

z

)
, with

supp(Fx) ⊂ I =
(
0, 1

2−x

)
.

Arguing as in the previous lemma, we observe that the moments of Fx are given by

F k
x = c−1

s,k

dk

dxk
(
As

0(D)f
)
(x),

where cs,k = Γ(1+2s+k)
Γ(1+2s) . In addition, we have

‖Fx‖
2
L2(I) =

ˆ ∞

2−x

f(x+ y)2

y4s
dy,

‖F ′
x‖

2
L2(I) =

ˆ ∞

2−x

(
(2s− 1)f(x+ y)y1−2s − f ′(x+ y)y2−2s

)2
dy.

Since Fx ∈ H1(I), by [GFR20, Lemma 2.4], there is C > 1 such that

‖Fx‖
2
L2(I) ≤ C

eC(NFx+1)

mink≤NFx

cs,k
k!

∥∥∥
∞∑

k=0

cs,k
k!
F k
x z

k
∥∥∥
2

L2(I)
,

where NFx + 1 ≃
‖F ′

x‖L2(I)

‖Fx‖L2(I)
. Using the previous identities, the compact support of f , the fact

that
cs,k
k! is an increasing sequence and considering only x ∈ U , we infer

‖f‖2L2(Ω) ≤ CeC(Nf+1)
∥∥∥

∞∑

k=0

cs,k
k!
F k
x z

k
∥∥∥
2

L2(I)
,(40)

where Nf + 1 ≤ C
‖f‖H1(Ω)

‖f‖L2(Ω)
.

In order to relate the right hand side of (40) to As
0(D)f in U , we notice that As

0(D)f is real
analytic in R\supp(f) and for any y ∈ (0, 1)

As
0(D)f(y) =

∞∑

k=0

cs,k
k!
F k
x (y − x)k.

Hence,

‖As
0(D)f‖2L2(U) =

ˆ β

0

( ∞∑

k=0

cs,k
k!
F k
x (y − x)k

)2
dy

=

ˆ β−x

−x

( ∞∑

k=0

cs,k
k!
F k
x z

k
)2
dz.
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If I ⊂ U − x (i.e. 1
2−x < β − x), which holds provided β > 1

2 and x is taken small enough, we
conclude

∥∥∥
∞∑

k=0

cs,k
k!
F k
x z

k
∥∥∥
L2(I)

≤ ‖As
0(D)f‖L2(U).

Otherwise, we invoke quantitative analytic continuation. Indeed, we seek to apply [GFR20,
Remark 2.6], based on quantitative analytic continuation results from [Ves99, AE13]. For any
y ∈ (0, 1)

∣∣∣ d
k

dyk
(
As

0(D)f
)
(y)
∣∣∣ ≤ cs,k

ˆ ∞

1

|f(y + y′)|dy′ ≤ (k + 3)!‖f‖L2(Ω) ≤ k!e3k‖f‖L2(Ω).

Then, there is C > 1 and θ ∈ (0, 1) such that

‖As
0(D)f‖L2((0,1)) ≤ C‖f‖1−θ

L2(Ω)‖A
s
0(D)f‖θL2(U).

Taking x < 1
2 , it holds that I ⊂ (−x, 1 − x), and therefore we can conclude

∥∥∥
∞∑

k=0

cs,k
k!
F k
x z

k
∥∥∥
L2(I)

≤ ‖f‖1−θ
L2(Ω)‖A

s
0(D)f‖θL2(U),

which together with (40) implies the desired result. �

We conclude our discussion of the observations by Ishikawa and related ideas by quoting the
result from [Ish89] which provides directional antilocality of our operators also in two dimensions.

Lemma 5.5 ([Ish89], Theorem 2.4). Let s ∈ (0, 1)\
{
1
2

}
and Γ ⊂ R2\{0} be an open, non-empty,

convex cone. Then the operators As
0,Γ(D), As

1,Γ(D) given in (36) for n = 2 are Γ-antilocal and
−Γ-antilocal, respectively.

5.1.2. Partial antilocality in higher dimensions. While we postpone a systematic n-dimensional
discussion of the ideas from [Ish89] (which focuses on two dimensions and particular choices of p ∈
[0, 1]) to a future project, in this section we illustrate that certain weaker antilocality conditions
can be derived under appropriate assumptions on the set where f and As

p,Γ(D)f vanish and on the
set where f may be supported. This is achieved by a suitable reduction argument. In Lemma 6.3
we present similar directional antilocality results under suitable geometric assumptions. The
operators considered there however are not antilocal in general domains.

Similarly to the one-dimensional setting from above, we introduce the following notation:

Γp =





Γ if p = 0,

−Γ ∪ Γ if p ∈ (0, 1),

−Γ if p = 1.

(41)

Seeking to provide (directional) antilocality results in arbitrary dimensions for the operators
from (36), we first reduce the general property of Γp-antilocality to the knowledge of that for the
two special cases p = 0 (or p = 1) and p = 1

2 .

Lemma 5.6. Let s ∈ (0, 1) and Γ ⊂ Rn\{0} be an open, non-empty, convex cone. Assume that
As

p,Γ(D) is Γp-antilocal for the cases p ∈
{
0, 12

}
. Then As

p,Γ(D) is Γp-antilocal for any p ∈ [0, 1].

Proof. We first observe that using the identity As
1,−Γ = −As

0,Γ, the result for p = 1 is immediate.

Let thus p ∈ (0, 1)\
{
1
2

}
. Let f ∈ C∞

c (Rn) be such that f = 0 = As
p,Γ(D)f in U and assume that

f 6= 0 in U + Γp. Notice that

As
p,Γ(D)f = pAs

1,Γ(D)f + (1− p)As
0,Γ(D)f.

By Γp-antilocality for p ∈ {0, 1}, it is not possible that f 6= 0 only on Γ + U or on −Γ + U .
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U

U0

U0 + ΓU0 − Γ

U1

Figure 8. Setting for deducing the Γp-antilocality for p ∈ (0, 1) in the proof of
Lemma 5.6. The subset Uj is chosen such that we already know that f vanishes
in the intersection of the cones.

For n = 1, we have f = f+ + f− with f± = f |U+R± ∈ C∞
c (R). By the assumptions for f , it

holds that As
1/2(D)g = As

p(D)f = 0 in U for g := 2pf− + 2(1− p)f+ ∈ C∞
c (R). The antilocality

of As
1/2(D) now implies g = 0 in R, and therefore f = 0 in R.

The higher dimensional case holds similarly but requires a bit more care, since we cannot
simply split f into two contributions while preserving its smoothness. Instead, we start by
considering an open subset U0 ⊂ U such that (U0 + Γ) ∩ (U0 − Γ) ⊂ U (see Figure 8). Further,
let η be a smooth function such that η = 1 in (U0+Γ)\U and η = 0 in (U0−Γ)\U . Let f+ = ηf
and f− = (1− η)f . Then, f± ∈ C∞

c (Rn) and f |U0±Γ = f±, so we can argue as above. We iterate
this argument in subsets Uj ⊂ U provided that (Uj + Γ) ∩ (Uj − Γ) ⊂ U ∪

(
Uj−1 + (−Γ ∪ Γ)

)
,

where we already know that f = 0, until U is completely covered. �

Lemma 5.7. Let s ∈ (0, 1), p ∈ [0, 1] and Γ ⊂ Rn\{0} be an open, non-empty, convex cone. Let
Ω ⊂ Rn and U ⊂ Rn\Ω be connected and assume that

Ω ∩ (U + Γp) ⋐
⋂

x∈U

(x + Γp).

Let f ∈ C∞
c (Ω) be such that As

p,Γ(D)f = 0 in U . Then f = 0 in Ω ∩ (U + Γp).

In the following, we will refer to antilocality results of the type as in Lemma 5.7 by saying
that the operator As

p,Γ(D) is Γp-antilocal from U to Ω.
We refer to Figure 9 for an illustration of the assumptions on the subsets Ω and U . Notice

that the geometric assumption implies that

U ⊂ Ω+ Γ1−p.

Proof. By Lemma 5.6, it is enough to prove the result for p = 0 and p = 1
2 . Consider f ∈ C∞

c (Ω)

and let f̃p = EU+Γpf be the extension of f by zero outside of U +Γp. By assumption, it satisfies

f̃p ∈ C∞
c (U + Γp).

We notice that by the assumptions for p = 1
2 it holds that

As
1/2,Γ(D)f(x) = cn,s(−∆)sf̃1/2(x) for x ∈ U,

and for p = 0 we have that

As
0,Γ(D)f(x) = 2cn,s(−∆)sf̃0(x) for x ∈ U.

This follows from the fact that f̃p = 0 outside x + Γp for all x ∈ U . As a consequence, in this

geometric setting, for p ∈
{
0, 12
}

it holds that (−∆)sf̃p(x) = 0 and f̃p(x) for x ∈ U . Then,
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ΩU

U + Γp

Figure 9. An example of the setting for the partial antilocality results for As
p,Γ

with p ∈ (0, 1) (see Lemma 5.7). We assume that f ∈ C∞
c (Rn) is supported in

Ω, which, in turn, is contained in the intersection of the cones x+Γp for x ∈ U .
Then we deduce f = 0 in U + Γp, which consists of the blue areas.

applying the antilocality of the fractional Laplacian, we infer f̃p = 0 in Rn and therefore f = 0
in U + Γp for p ∈

{
0, 12
}
. Hence, As

1/2,Γ(D) and As
0,Γ(D) are directionally antilocal from U to

Ω. �

Last but not least, we observe that along the same lines as in the proof of Proposition 1.4 we
obtain the following antilocality from the exterior result:

Proposition 5.8 (Exterior antilocality). Let s ∈ (0, 1), p ∈ [0, 1], Γ ⊂ R2\{0} be an open,

non-empty, convex cone, As
p,Γ(D) be as in (36) and let f ∈ H̃r(Ω), r ∈ R. If As

p,Γ(D)f = 0 in

(Ω + Γ1−p)\Ω, then f ≡ 0 in Ω.

Proof. This follows along the same lines as the Step 2 of the proof of Proposition 1.4. We
just need to observe that because of the domain of dependence of the operator, it holds that
As

p,Γ(D)f = 0 also in Rn\(Ω + Γ1−p). �

5.2. The direct problem: Well-posedness. In this section we study the direct problem
associated with As

p,Γ(D) for any p ∈ [0, 1], any s ∈ (0, 1)\
{
1
2

}
and any dimension n ∈ N. Since

the operators from (36) are in general not symmetric, additional features arise compared to our
discussion in Section 3. This in particular involves our choice of the bilinear forms and function
spaces in the cases p ∈ {0, 1}, in which different parts of ∂Ω play different roles (depending on
whether they are contained in Ω + Γp or the remainder of ∂Ω). For s > 1

2 and p ∈ {0, 1} these
are of particular interest, since they allow for both local and nonlocal data.

As in Section 3, well-posedness could in principle be discussed in various slightly different
settings. One natural setting corresponds to a Fourier space definition of the operators under
consideration. This is associated with the bilinear form B̃s

p,Γ;q defined below. Alternatively, one
could consider a “more local” interpretation in the spirit of the bilinear form Bs

q from Section 3.
Since the more local definition requires dealing with additional technical difficulties, we only
discuss the Fourier version here but complement this discussion by the investigation of the local
version in Appendix B.

Throughout this section, we assume that Ω ⊂ Rn is an open, bounded Lipschitz domain.

5.2.1. The bilinear form. We begin by providing a suitable weak formulation of our problem
and by introducing the associated bilinear form. Similarly as in the discussion of symmetric
operators, we prescribe data only in the region which the operators “sees”, and thus study the
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weak form of the following equation
(
As

p,Γ(D) + q
)
u = 0 in Ω,

u = f in (Ω + Γp)\Ω.
(42)

Here q is a real-valued, bounded, measurable function on Ω and Γp is given in (41).
In parallel to our discussion from Section 3, we introduce the following bilinear form for

s ∈ (0, 1)\
{
1
2

}
, which is motivated by a Fourier version of the equation and which is analogous

to (4): For u, v ∈ Hs(Rn) we set

B̃s
p,Γ;q(u, v) := βs

ˆ

Rn

ˆ

Γp

(
u(x)− u(x+ y)

)(
v(x) − v(x− y)

)
νsp,Γ(y)dydx+ (qu, v)L2(Ω),(43)

where βs = (2 − 22s)−1 and νsp,Γ is given in (37). Compared to the bilinear form Bs
p,Γ;q from

(57) in Appendix B, it corresponds to a “more global” version of the operator from (42) (in a

sense the analogue to the bilinear form B̃q from Section 3). More precisely, we note that for
u, v ∈ Hs(Rn)

B̃s
p,Γ;q(u, v) =

(
As

p,Γ

(
ξ

|ξ|

)
|ξ|sû, |ξ|sv̂

)

L2(Rn)

+ (qu, v)L2(Ω),(44)

with the symbol As
p,Γ(ξ) as in (38). Indeed, this follows from Fourier-transforming the bilinear

form B̃q: Arguing similarly as in Remark B.1 (which also gives rise to the normalizing prefactor
βs), for u, v ∈ C∞

c (Rn)

B̃s
p,Γ;q(u, v) =

(
As

p,Γ;q(D)u, v
)
L2(Rn)

+ (qu, v)L2(Ω)

=
(
As

p,Γ(ξ)û, v̂
)
L2(Rn)

+ (qu, v)L2(Ω).

The claimed identity (44) is a consequence of the fact that As
p,Γ(ξ) = As

p,Γ

(
ξ
|ξ|

)
|ξ|2s for the symbol

from (38).
We note that in one dimension and for p ∈ {0, 1}, the Fourier based representation from (44)

can be formulated more symmetrically using the adjointness properties of the operators As
p(D)

and As
1−p(D).

Remark 5.9 (Alternative factorization of B̃s
p,Γ;q, one dimension, p ∈ {0, 1}). We note that in

one dimension and for p ∈ {0, 1} and for s ∈ (0, 1)\{ 1
2}º, we could also write

B̃s
p;q(u, v) :=

cs
c2s/2

(
A

s/2
p û, A

s/2
1−pv̂

)
L2(Rn)

+ (qu, v)L2(Ω).

This formulation is based on the identity

(
cos
(πs
2

)
± i sin

(πs
2

)
sgn(ξ)

)2
= cos2

(πs
2

)
− sin2

(πs
2

)
± i2 cos

(πs
2

)
sin
(πs
2

)
sgn(ξ)

= cos(πs)± i sin(πs) sgn(ξ).

The case p = 1
2 (for any dimension) is included in Section 3 (with C = Γ and a = 1

2χ−Γ∪Γ),
for which, since As

1/2,Γ(ξ) is real-valued, we can take

B̃s
1/2,Γ;q(u, v) :=

(
(As

1/2,Γ(ξ))
1
2 û, (As

1/2,Γ(ξ))
1
2 v̂
)
L2(Rn)

+ (qu, v)L2(Ω).
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Remark 5.10 (The case s = 1
2 , p 6= 1

2 ). If s = 1
2 and p 6= 1

2 , there is an extra term in the
definition of the bilinear form originating from the logarithm in the symbol of As

p,Γ:

B̃
1/2
p,Γ;q(u, v) :=

(
A

1/2
p

(
ξ

|ξ|

)
|ξ|

1
2 û, |ξ|

1
2 v̂

)

L2(Rn)

+ (qu, v)L2(Ω)

+

(
αp,Γ

(
ξ

|ξ|

)
log(|ξ|)|ξ|

1
2 û, |ξ|

1
2 v̂

)

L2(Rn)

,

where αp,Γ(ξ) = −i(1− 2p)
´

Γ∩Sn−1(θ · ξ)dθ. This term does not verify the continuity properties
(see the proof of Proposition 5.12). We do not discuss this case in the sequel. Since the case
s = 1

2 and p = 1
2 is already included in Sections 3 and 4, in the remaining of this section we only

consider s ∈ (0, 1)\
{
1
2

}
.

5.2.2. The interior problem. Arguing in parallel to the discussion of the symmetric setting from
Section 3, we first study the well-posedness of the problem in the presence of an interior source
term:

(
As

p,Γ(D) + q
)
u = g in Ω,

u = 0 in (Ω + Γp)\Ω.
(45)

In this context, we will work with the following set-up:

Definition 5.11. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1] and let B̃s

p,Γ;q be the bilinear form from (43).

For g ∈ H−s(Ω), a function u ∈ H̃s(Ω) is a (weak) solution to (45) if

B̃s
p,Γ;q(u, v) = 〈g, v〉 for all v ∈ H̃s(Ω).

Given this notion, the well-posedness of the problem (45) follows along similar lines as in the
symmetric (and in the whole space) settings.

Proposition 5.12. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1], Ω ⊂ Rn be a bounded, Lipschitz open set,

Γ ⊂ Rn\{0} be an open, non-empty, convex cone and q ∈ L∞(Ω). Then there is a countable

set Σ̃s
p,Γ;q ⊂ C such that if λ /∈ Σ̃s

p,Γ;q, for any g ∈ H−s(Ω), there is a unique (weak) solution

u ∈ H̃s(Ω) of
(
As

p,Γ(D) + q − λ
)
u = g in Ω,

u = 0 in (Ω + Γp)\Ω.
(46)

In addition, the solution satisfies

‖u‖Hs(Rn) ≤ C‖g‖H−s(Ω).

Proof. The proof follows along the same lines of Proposition 3.2. Let γ = ‖q−‖L∞(Ω), where

q−(x) := min{0, q(x)}. We first prove that the bilinear form B̃s
p,Γ;q+γ is continuous and coercive

in H̃s(Ω). Indeed, we notice that for s 6= 1
2 , ξ̇ ∈ Sn−1

|As
p,Γ(ξ̇)| ≤ |Γ(−2s)|

ˆ

Γ∩Sn−1

|θ · ξ̇|2sdθ ≤ |Γ(−2s)||Γ ∩ Sn−1| ≤ Cs.

Therefore, for any u, v ∈ H̃s(Ω) it holds

|B̃s
p,Γ;q(u, v)| ≤ Cs‖| · |

sû‖L2(Rn)‖| · |
sv̂‖L2(Rn) + ‖q‖L∞(Ω)‖u‖L2(Rn)‖v‖L2(Rn)

≤ C̃s‖u‖Hs(Rn)‖v‖Hs(Rn).
(47)
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Ω Γ + Ω∂ΓΩ

Figure 10. Sets in Lemma 5.13 for p = 0, so Γp = Γ.

In order to prove coercivity, it suffices to consider B̃s
p,Γ;0. We first observe that for ξ̇ ∈ Sn−1

Re As
p,Γ(ξ̇) = −Γ(−2s) cos(πs)

ˆ

Γ∩Sn−1

|θ · ξ̇|2sdθ.

Hence, for any s ∈ (0, 1), since −Γ(−2s) cos(πs) > 0, there is a positive constant Cs such that

for any v ∈ H̃s(Ω)

Re B̃s
p,Γ;0(v, v) =

ˆ

Rn

Re As
p,Γ(ξ̇)

(
|ξ|sv̂(ξ)

)2
dξ ≥ Cs‖v‖

2
Ḣs(Rn)

.

Finally, by the Poincaré inequality, for v ∈ H̃s(Ω),

Re B̃s
p,Γ;0(v, v) ≥ Cs‖v‖

2
Hs(Rn).

Therefore there is a unique u = Kp,Γg ∈ H̃s(Ω) satisfying

B̃s
p,Γ;q(u, v) + γ(u, v)L2(Rn) = 〈g, v〉 for all v ∈ H̃s(Ω)

and ‖u‖Hs(Rn) ≤ C‖g‖H−s(Ω). By the compactness of the inclusion H̃s(Ω) →֒ Ls(Ω), we infer

that Kp,Γ : L2(Ω) → L2(Ω) is compact. By the Fredholm alternative, the claim follows. �

Next we seek to study the well-posedness of the exterior problem (42). While it is possible to
study its well-posedness in spaces in the spirit of V s(Ω, a), we here focus on the more symmetric
setting of Sobolev spaces. A discussion in spaces of the type V s(Ω, a) for the bilinear form Bs

p,Γ;q

is carried out in Section B.2 in Appendix B.

5.2.3. Function spaces for the exterior problem. In our discussion of the exterior problem, fea-
tures of the (possibly) only one-sided domain of dependence structure of the operator now play
a significant role and give rise to differences with respect to the setting of symmetric operators
(with two-sided domain of dependence structures). Indeed, in order to take the different parts
of ∂Ω into account in the case p ∈ {0, 1} (one part contained in Ω + Γp while the other is not,
see Figure 10 for an example of such sets in the case p = 0), we will choose boundary data and
corresponding solutions which respect these differences. In particular, for s > 1

2 and p ∈ {0, 1}
this will include both local and nonlocal data.

Relying on the bilinear form introduced in (43) above, for technical reasons, we again work
with corresponding quotient spaces, which in a sense again interpret the problem as a “global”
problem in Rn. To this end, for s ∈ (0, 1) we introduce the following quotient space

Hs
p,Γ(Ω) :=

Hs(Rn)
/
H̃s(Ω)⊕ H̃s(Rn\(Ω + Γp)).
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Hs
p,Γ(Ω) is the space of equivalence classes {[f ] : f ∈ Hs(Rn)}, where

[f ] =
{
f̃ ∈ Hs(Rn) : f̃ − f ∈ H̃s(Ω)⊕ H̃s(Rn\(Ω + Γp))

}
.

Here f̃−f ∈ H̃s(Ω)⊕H̃s(Rn\(Ω+Γp)) means that there exist f1 ∈ H̃s(Ω) and f2 ∈ H̃s(Rn\(Ω+

Γp)) such that f̃ − f = f1 + f2. We equip the space Hs
p,Γ(Ω) with the quotient topology, i.e. for

any f ∈ Hs
p,Γ(Ω)

‖f‖Hs
p,Γ(Ω) := min

{
‖f̃‖Hs(Rn) : f̃ ∈ Hs(Rn), f̃ ∈ [f ]

}
.

We remark that these spaces inherit the Banach structure from the Hs(Rn) spaces. With slight
abuse of notation, in the following, and in parallel to the usual notation for f ∈ Hs(Ω), we will
simply write f ∈ Hs

p,Γ(Ω) and we will only refer to the equivalence class [f ] when necessary.

In order to illustrate the information contained in the space Hs
p,Γ(Ω), we relate it to more

“standard” function spaces under suitable assumptions. While strictly speaking it is not nec-
essary in the following sections, this discussion provides important intuition on these rather
abstractly defined function spaces. For s > 1

2 and p ∈ {0, 1} we define the following “trace
space” which combines a “local” boundary contribution and “nonlocal” boundary data:

W s
p,Γ(Ω) :=

{
(g, h) ∈ Hs− 1

2 (∂ΓpΩ)×Hs((Ω + Γp)\Ω) :

there exists f̃ ∈ Hs(Rn) with f̃ |∂ΓpΩ = g, f̃ |(Ω+Γp)\Ω
= h

and ‖f̃‖Hs(Rn) ≤ C‖(g, h)‖W s
p,Γ(Ω)

}
,

where ∂ΓpΩ = ∂Ω\(Ω + Γp),

‖(g, h)‖W s
p,Γ(Ω) := ‖g‖

Hs− 1
2 (∂ΓpΩ)

+ ‖h‖Hs((Ω+Γp)\Ω),

and where C > 1 denotes a fixed constant. We remark that the completeness of the space
W s

p,Γ(Ω) is inherited from the corresponding Hs spaces.

Lemma 5.13. Let Ω ⊂ Rn be a bounded, Lipschitz open set and Γ ⊂ Rn\{0} be an open,
non-empty, convex cone. The following identifications hold:

(i) If p ∈ (0, 1) or s < 1
2 , then

Hs
p,Γ(Ω) = Hs((Ω + Γp)\Ω),

and ‖f‖Hs((Ω+Γp)\Ω) = ‖f‖Hs
p,Γ(Ω).

(ii) Let p ∈ {0, 1} and s > 1
2 . For any f ∈ Hs

p,Γ(Ω) there exists (g, h) ∈ W s
p,Γ(Ω) such that

for any f̃ ∈ Hs(Rn) with f̃ ∈ [f ] it holds

f̃ |∂ΓpΩ = g, f̃ |(Ω+Γp)\Ω
= h,

and

‖(g, h)‖W s
p,Γ(Ω) ≤ C‖f‖Hs

p,Γ(Ω).

Conversely, let (g, h) ∈ W s
p,Γ(Ω). Then all f̃ ∈ Hs(Rn) such that (f̃ |∂ΓpΩ, f̃ |(Ω+Γp)\Ω

) =

(g, h) ∈W s
p,Γ(Ω) belong to the same equivalence class [f ] in Hs

p,Γ(Ω) and

‖f‖Hs
p,Γ(Ω) ≤ C‖(g, h)‖W s

p,Γ(Ω).

Thus, as Banach spaces, we may identify

Hs
p,Γ(Ω) =W s

p,Γ(Ω).

(iii) If n = 1, the previous identification can be simplified to read

Hs
p,R+

(Ω) =
{
(r, h) ∈ R×Hs((Ω + Yp)\Ω)

}
.
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We emphasize that in particular (ii) is of interest in the context of inverse problems since it
allows one to consider problems with local and nonlocal boundary contributions simultaneously.
Further, due to the generally non-Lipschitz regularity of (Ω+Γp)\Ω (which may contain cusps),
the existence of the extension as in the definition for W s

p,Γ(Ω) is not immediate in general ge-
ometries. This explains the requirement on the existence of an extension in the definition of
the function spaces from above. Avoiding the cusp region (e.g. by imposing suitable support
assumptions), it is possible to prove the existence of an extension as in the definition of the space
W s

p,Γ(Ω).

Proof. Step 1: (i). The first part follows from the observation that

H̃s(Ω)⊕ H̃s
(
Rn\(Ω + Γp)

)
= H̃s

(
(Rn\(Ω + Γp)) ∪ Ω

)
.

If p ∈ (0, 1), this holds by Lemma 2.2. If p ∈ {0, 1} and s < 1
2 , the identity follows by the

identification Hs(U) = H̃s(U) in Lemma 2.1. Then, if h ∈ H̃s((Rn\(Ω+ Γp)) ∪Ω) we can write
h = h|Ω+h|Rn\(Ω+Γp). Since both Ω and Rn\(Ω+Γp) satisfy the assumptions of Lemma 2.1, the

restriction of h to these sets belongs to the corresponding H̃s space. The equality of the norms
follows by definition.

Step 2: (ii). For the second part of the lemma, we first seek to see that any equivalence

class in Hs
p,Γ(Ω) can be identified with a pair (g, h) ∈ Hs− 1

2 (∂ΓpΩ)×Hs((Ω + Γp)\Ω) as in the

definition of W s
p,Γ(Ω). Indeed, let f ∈ Hs

p,Γ(Ω) and let f̃j ∈ Hs(Rn), j ∈ {1, 2}, be such that

f̃j ∈ [f ]. Then f̃1 − f̃2 = ϕ1 + ϕ2, with ϕ1 ∈ H̃s(Ω) and ϕ2 ∈ H̃s(Rn\(Ω + Γp)). If s ∈
(
1
2 , 1
)
,

by (15) the functions in H̃s(Ω) have zero trace on ∂Ω. Therefore,

(f̃1 − f̃2)
∣∣
(Ω+Γp)\Ω

= 0, (f̃1 − f̃2)
∣∣
∂ΓpΩ

= 0.

Hence, it suffices to set g = f̃j|∂ΓpΩ and h = f̃j |(Ω+Γp)\Ω
. Both belong to the claimed spaces by

definition.
In order to prove the equivalence of norms, we observe that by trace estimates and the defi-

nition of Hs spaces, for f̃ ∈ Hs(Rn)
∥∥f̃ |∂ΓpΩ

∥∥
Hs− 1

2 (∂ΓpΩ)
≤ C‖f̃‖Hs(Ω) ≤ C‖f̃‖Hs(Rn),

∥∥f̃ |(Ω+Γp)\Ω

∥∥
Hs((Ω+Γp)\Ω)

≤ ‖f̃‖Hs(Rn).

Moreover, by the above consideration f̃ |∂ΓpΩ = g and f̃ |(Ω+Γp)\Ω
= h for all f̃ ∈ [f ]. Thus,

‖(g, h)‖W s
p,Γ(Ω) ≤ C‖f̃‖Hs(Rn).

Taking the infimum among all possible extensions f̃ ∈ Hs(Rn) such that f̃ ∈ [f ] implies the first
estimate.

The converse statement can be proved as follows: Let (g, h) ∈ W s
p,Γ(Ω) and f̃j ∈ Hs(Rn),

j ∈ {1, 2}, be such that f̃j |∂ΓpΩ = g and f̃j|(Ω+Γp)\Ω
= h. Then, arguing as above, we infer

f̃1 − f̃2 ∈ H̃s(Ω)⊕ H̃s(Rn\(Ω + Γp)).
In order to prove the corresponding estimate, we argue by contradiction. Let us assume that

for any k ∈ N there exists (gk, hk) ∈ W s
p,Γ(Ω) with

‖(gk, hk)‖W s
p,Γ(Ω) = 1,(48)

but such that

‖fk‖Hs
p,Γ(Ω) > k,
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where fk ∈ Hs
p,Γ(Ω) denotes the equivalence class of functions f̃k ∈ Hs(Rn) with f̃k|∂ΓpΩ = gk,

f̃k|(Ω+Γp)\Ω
= hk. This means that for any f̃k ∈ [fk]

‖f̃k‖Hs(Rn) > k.(49)

This however contradicts the norm bound in the definition of the space W s
p,Γ(Ω).

Step 3: (iii). Finally, if n = 1, we notice that for any (r, h) ∈ R ×Hs((Ω + Yp)\Ω) there is

always a function f̃ ∈ Hs(R) such that f̃ |∂ΓpΩ = r and f̃ |(Ω+Yp)\Ω
= h. We just need to observe

that the point x0 = ∂ΓpΩ and (R± +Ω)\Ω are always separated. Then we can take f̃ = h̃1 + h̃2,

where h̃1 ∈ Hs(R) is an extension of h supported in Ω + R± and h̃2 ∈ Hs(R) is supported in

Ω + R∓ and verifies h̃2(x0) = r. �

5.2.4. The exterior problem. With the properties of the function spaces associated with the
bilinear form B̃s

p,Γ;q in hand, we define our notion of a weak solution based on this bilinear form:

Definition 5.14. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1] and let B̃s

p,Γ;q be the bilinear form from (43).

Given f ∈ Hs
p,Γ(Ω), a function u ∈ Hs(Ω + Γp) is a (weak) solution of (42) based on B̃s

p,Γ;q if

B̃s
p,Γ;q(ũ, v) = 0 for all v ∈ H̃s(Ω) and any ũ ∈ Hs(Rn) such that ũ|Ω+Γp = u

and EΩ+Γp(u− f̃) ∈ H̃s(Ω) for any f̃ ∈ Hs(Rn) with f̃ ∈ [f ].

Remark 5.15. We emphasize that B̃s
p,Γ;q(ũ, v) does not depend on the extension ũ. Indeed, let

ũj ∈ Hs(Rn) be such that ũj |Ω+Γp = u for j ∈ {1, 2}. Let w := ũ1 − ũ2 ∈ H̃s(Rn\(Ω + Γp)).

Then, for any v ∈ H̃s(Ω), (43) can be reduced to

B̃s
p,Γ;0(w, v) = −βs

ˆ

Rn\(Ω+Γp)

ˆ

Γp

(
w(x) − w(x + y)

)
v(x − y)νsp,Γ(y)dydx.

Since x − y /∈ Ω for any y ∈ Γp and x /∈ Ω + Γp, for these values of x, y ∈ Rn we obtain
v(x− y) = 0 and the integral vanishes.

Remark 5.16. As an alternative, we could also consider data in more restrictive data space

H̃s((Ω + Γp)\Ω). In this case, we infer that the solution u from Definition 5.14 satisfies u ∈

H̃s(Ω + Γp) and it is not necessary to consider arbitrary extensions but only the (in this case
canonical) extension by zero outside the region of definition.

Proposition 5.17. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1], Ω ⊂ Rn be a bounded, Lipschitz open set,

Γ ⊂ Rn\{0} be an open, non-empty, convex cone and q ∈ L∞(Ω). Then there is a countable set

Σ̃s
p,Γ;q ⊂ C such that if λ /∈ Σ̃s

p,Γ;q, for any f ∈ Hs
p,Γ(Ω) and g ∈ H−s(Ω), there is a unique weak

solution u ∈ Hs(Ω + Γp) based on B̃s
p,Γ;q of

(
As

p,Γ(D) + q − λ
)
u = g in Ω,

u = f in (Ω + Γp)\Ω.

Moreover,

‖u‖Hs(Ω+Γp) ≤ C
(
‖f‖Hs

p,Γ(Ω) + ‖g‖H−s(Ω)

)
.

Proof. We reduce this problem to the interior one in (45), solved in Proposition 5.12. Let

f ∈ Hs
p,Γ(Ω) and let f̃ ∈ Hs(Rn) such that f̃ ∈ [f ]. We construct ũ = w + f̃ ∈ Hs(Rn), where

w ∈ H̃s(Ω) is the solution of (46) with inhomogeneous term g = g− (As
p,Γ(D) + q− λ)f̃ |Ω. This
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requires proving that As
p,Γ(D)f̃ |Ω ∈ H−s(Ω) (interpreted weakly) for f̃ ∈ Hs(Rn). Arguing as

in (47), we obtain for any v ∈ H̃s(Ω)

|B̃s
p,Γ;q(f, v)| ≤ C‖f̃‖Hs(Rn)‖v‖Hs(Rn).

This implies that g ∈ H−s(Ω) and ‖g‖H−s(Ω) ≤ C‖f̃‖Hs(Rn) + ‖g‖H−s(Ω).

By Proposition 5.12, if λ /∈ Σ̃s
p,Γ;q, a weak solution w ∈ H̃s(Ω) exists, is unique and satisfies

‖w‖Hs(Rn) ≤ C‖g‖H−s(Ω) ≤ C
(
‖f̃‖Hs(Rn) + ‖g‖H−s(Ω)

)
.

Therefore,

‖ũ‖Hs(Rn) ≤ C
(
‖f̃‖Hs(Rn) + ‖g‖H−s(Ω)

)
.

Taking the infimum among all possible f̃ and defining u := ũ|Ω+Γp yields the result.
�

With this well-posedness result in hand, we define a corresponding Poisson operator:

Definition 5.18 (Poisson operator). Let s ∈ (0, 1)\
{
1
2

}
and p ∈ [0, 1]. Let Ω and Γ be as in

Proposition 5.17. Let q ∈ L∞(Ω) be such that 0 /∈ Σ̃s
p,Γ;q. We define the Poisson operator as the

mapping

P̃p,Γ;q : Hs
p,Γ(Ω) → Hs(Ω + Γp), f 7→ P̃p,Γ;qf = u,(50)

where u is the (weak) solution to (42) from Proposition 5.17.

5.2.5. The Dirichlet-to-Neumann map. In this section, we seek to define the Dirichlet-to-Neumann
operator, in order to formulate the associated inverse problem. In the sequel, we will always as-
sume that 0 /∈ Σ̃s

p,Γ;q ∩ Σ̃s
1−p,Γ;q.

We define the Dirichlet-to-Neumann map for boundary data compactly supported in (Ω +
Γp)\Ω, which avoids possible non-uniqueness issues originating from the choice of an extension
(c.f. Remark 3.13), as follows:

Definition 5.19 (Dirichlet-to-Neumann operator Λ̃p,Γ;q). Let s ∈ (0, 1)\{ 1
2}, p ∈ [0, 1]. Let Ω

and Γ be as in Proposition 5.17. Let q ∈ L∞(Ω) be such that 0 /∈ Σ̃s
p,Γ;q and let B̃s

p,Γ;q be the

bilinear form (43). We set

Λ̃p,Γ;q : H̃
s((Ω + Γp)\Ω) → H−s(Rn) : f 7→ Λ̃p,Γ;qf,

given by

〈Λ̃p,Γ;qf, h〉 = B̃s
p,Γ;q(uf , h) for any h ∈ Hs(Rn)

where uf := EΩ+Γp(P̃p,Γ;qf).

Remark 5.20. We highlight that the Dirichlet-to-Neumann operator contains non-trivial infor-
mation about uf only in (Ω + Γ1−p). Indeed, notice that we need to “see” uf in Ω, since in

the remaining region uf corresponds to the known exterior data f . By the definition of B̃s
p,Γ;q,

this requires considering test functions h with supp(h) ∩ (Ω + Γ1−p) 6= ∅. This is particularly of
relevance for the cases p ∈ {0, 1}.

Furthermore, thinking of applications of inverse problems, usually Ω is not accesible for mea-
surements, so we will be particularly interested in the Dirichlet-to-Neumann maps in subsets of
(Ω + Γ1−p)\Ω.

We next relate the two Dirichlet-to-Neumann operators Λ̃p,Γ;q and Λ̃1−p,Γ;q for data supported
in appropriate sets (they differ only if p ∈ {0, 1}). This will be crucial for the Alessandrini identity
and thus the uniqueness results for the inverse problem.
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Lemma 5.21. Let s ∈ (0, 1)\{ 1
2}, p ∈ [0, 1]. Let Ω and Γ be as in Proposition 5.17. Let q ∈

L∞(Ω) be such that 0 /∈ Σ̃s
p,±Γ;q and let Λ̃s

p,Γ;q be the operator from above. Let f ∈ H̃s((Ω+Γp)\Ω)

and h ∈ H̃s((Γ1−p +Ω)\Ω). Then,

〈Λ̃p,Γ;qf, h〉 = 〈Λ̃1−p,Γ;qh, f〉.

Proof. The claim follows from the definition of the Dirichlet-to-Neumann maps Λ̃s
p,Γ;q. To this

end, let uf ∈ H̃s(Ω + Γp) and wh ∈ H̃s(Γ1−p + Ω) be the extensions by zero of P̃p,Γ;qf and

P̃1−p,Γ;qh, respectively. Recall that uf − f, wh − h ∈ H̃s(Ω). Therefore,

〈Λ̃p,Γ;qf, h〉 = B̃s
p,Γ;q(uf , h) = B̃s

p,Γ;q(uf , wh)− B̃s
p,Γ;q(uf , wh − h)

= B̃s
p,Γ;q(uf − f, wh) + B̃s

p,Γ;q(f, wh),

= B̃s
1−p,Γ;q(wh, f) = 〈Λ̃1−p,Γ;qh, f〉.

�

Finally, as in Section 3, we discuss how to exploit the Dirichlet-to-Neumann operator as data
for the inverse problem associated with the operators As

p,Γ(D) by deducing its distributional
form:

Lemma 5.22 (Distributional characterization). Let s ∈ (0, 1)\{ 1
2}, p ∈ [0, 1]. Let Ω and Γ

be as in Proposition 5.17. Let q ∈ L∞(Ω) be such that 0 /∈ Σ̃s
p,Γ;q and let Λ̃p,Γ;q be the oper-

ator from Proposition 3.12. Let f ∈ H̃s((Ω + Γp)\Ω) and let uf = P̃p,Γ;qf . Then Λ̃p,Γ;qf =

As
p,Γ(D)uf |C(Ω)\Ω in the sense that for all ϕ ∈ C∞

c ((Ω + Γp)\Ω) it holds that

〈Λ̃p,Γ;qf, ϕ〉 = 〈As
p,Γ(D)uf , ϕ〉.

Proof. The proof follows directly from the Fourier characterization of the bilinear form (44). �

5.3. Runge approximation and unique continuation. In the next results, both directional
antilocality and geometric assumptions play a crucial role. In order to work in the settings for
which directional antilocality is known, we will consider one of the following assumptions for the
sets Ω,W ⊂ Rn specified below:

(a) n = 1 and p ∈ [0, 1] arbitrary,
(b) n = 2, p ∈ {0, 1} and Ω ⊂W + Γ1−p,
(c) Ω ⊂

⋂
x∈W (x + Γ1−p), for any n ≥ 2 and p ∈ [0, 1].

Notice that in the first two cases the Γp-antilocality of As
Γ,p is ensured by Ishikawa’s results

in Lemmas 5.1 and 5.5 (also Lemma 5.3). The geometric assumption in (b) is irrelevant for
deducing the directional antilocality but crucial for exploiting the directional antilocality and
thus for deriving the result. Under the hypotheses in (c), by virtue of Lemma 5.7, we have
that As

1−p,Γ is Γ1−p-antilocal from U for functions supported in Ω. Notice that in this case the
geometric assumption is already necessary for deducing the antilocality property. We emphasize
that the conditions (a)-(c) are not expected to be exhaustive for the results presented below;
any condition under which sufficiently strong antilocality properties are guaranteed would be
admissible.

5.3.1. Runge approximation. We remark that even in the case of only one-sided antilocality of
the operators, analogous density results hold as in the fully antilocal setting:

Proposition 5.23 (Runge approximation). Let s ∈ (0, 1)\{ 1
2}, Γ ⊂ Rn\{0} be an open, non-

empty, convex cone, Ω ⊂ Rn be open, bounded, Lipschitz and let W ⊂ (Ω + Γp)\Ω be open.
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Assume that one of the conditions (a), (b) or (c) holds. Let q ∈ L∞(Ω) and suppose that

0 /∈ Σ̃s
p;q ∪ Σ̃s

1−p;q. Then, the set

R := {u := P̃p,Γ;qf |Ω : f ∈ C∞
c (W )}

is dense in L2(Ω).

Proof. The proof is analogous to Step 2 of the proof of Theorem 1 and the proof of Theorem 2,
but requires taking into account the non-self-adjointness of the operator when p 6= 1

2 .

Let F ∈ L2(Ω) be such that 〈F, P̃p,Γ;qf |Ω〉 = 0 for any f ∈ H̃s(W ) with W ⊂ (Ω + Γp)\Ω.

Let φ ∈ H̃s(Ω) be the solution to
(
As

1−p,Γ(D) + q
)
φ = F in Ω,

φ = 0 in (Γ1−p +Ω)\Ω.

This implies that for all v ∈ H̃s(Ω),

〈F, v〉 = B̃s
1−p,Γ;q(φ, v).

Thus, for any f ∈ H̃s(W ),

0 = 〈F, P̃p,Γ;qf |Ω〉 = 〈F, P̃p,Γ;qf − f〉 = B̃s
1−p,Γ;q(φ, P̃p,Γ;qf − f)

= B̃s
1−p,Γ;q(φ, P̃p,Γ;qf)− B̃s

1−p,Γ;q(φ, f) = −〈As
1−p,Γ(D)φ, f〉.

Here have used that by (43)

B̃s
1−p,Γ;q(φ, P̃p,Γ;qf) = B̃s

p,Γ;q(P̃p,Γ;qf, φ),

and, since φ ∈ H̃s(Ω), B̃s
p,Γ;q(P̃p,Γ;qf, φ) = 0.

This implies As
1−p,Γ(D)φ = 0 = φ in W . By virtue of the assumptions (a), (b) or (c), As

1−p,Γ

is Γ1−p-antilocal (at least from W to Ω). We hence infer that φ = 0 in Ω. Therefore, F = 0 and
the density result follows by the Hahn-Banach theorem. �

5.3.2. Weak unique continuation. We have already seen in Proposition 4.3 that if a (not nec-
essarily symmetric) operator is antilocal in the two-sided cone −C ∪ C, then the weak unique
continuation property holds in differentiable domains. This in particular includes As

p,Γ(D) for

p ∈ (0, 1). For p ∈ {0, 1}, by relying on well-posedness, we show that weak unique continuation
holds for n = 1 and that it may not hold in general for n ≥ 2.

Lemma 5.24 (WUCP for As
0(D)). Let s ∈ (0, 1)\

{
1
2

}
and let Ω ⊂ R be bounded, open, Lipschitz

and q ∈ L∞(Ω) such that 0 /∈ Σ̃s
0;q. Assume that

(
As

0(D) + q
)
u = 0 in Ω,

and that u = 0 in some open set U ⊂ Ω. Then, u ≡ 0 in R+ +Ω.

Proof. By virtue of the equation, if u = 0 in U , then As
0(D)u = 0 in U . By the antilocality to

the right, it follows that u ≡ 0 in R+ + U . Hence, the Dirichlet data for the problem vanish.
Thus, by well-posedness u ≡ 0 also in Ω. �

Lemma 5.25 (Lack of WUCP for As
0,Γ, s <

1
2 ). Let 0 < s < 1

2 and assume that As
0,Γ(D) is

Γ-antilocal. Let Ω ⊂ Rn be bounded, open, Lipschitz and let q ∈ L∞(Ω) be such that 0 /∈ Σ̃s
0;q.

Assume that there is W ⊂ Ω + Γ such that, if Ω1 := Ω ∩ (W − Γ) and Ω2 := Ω\Ω1, then zero
is not a Dirichlet eigenvalue for As

0,Γ(D) + q in Ω2. Then there exist an open set U ⊂ Ω and a

non-trivial u ∈ Hs(Γ + Ω) such that
(
As

0(D) + q
)
u = 0 in Ω,
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and u = 0 in U .

Proof. Let f ∈ H̃s(W ) be non-trivial and let u ∈ H̃s(Γ + Ω) (see Remark 5.16) be the unique
solution to (

As
0,Γ(D) + q

)
u = 0 in Ω,

u = f in (Ω + Γ)\Ω.
(51)

Notice that u 6= 0 in Ω, otherwise by the Γ-antilocality, it would follow that f = 0.

Let uj = u|Ωj ∈ Hs(Ωj), j ∈ {1, 2}. Since s < 1
2 and Ωj is Lipschitz, uj ∈ H̃s(Ωj). By the

construction of the subsets, we observe that u2 solves
(
As

0,Γ(D) + q
)
u2 = 0 in Ω2,

u2 = 0 in (Ω2 + Γ)\Ω2.

Indeed, u2 ∈ H̃s(Ω2) and for any ϕ ∈ H̃s(Ω2) ⊂ H̃s(Ω)

B̃s
0,Γ;q(u2, ϕ) = B̃s

0,Γ;q(u, ϕ)− B̃s
0,Γ;q(u1, ϕ)) − B̃s

0,Γ;q(f, ϕ).

Since u is a solution to (51), it follows that B̃s
0,Γ;q(u, ϕ) = 0. In addition, since supp(u1) ⊂ Ω1

and supp(ϕ) ⊂ Ω2, it holds by (43)

B̃s
0,Γ;q(u1, ϕ) = −βs

ˆ

Ω1

ˆ

Γ

(
u1(x)− u1(x+ y)

)
ϕ(x − y)νsp,Γ(y)dydx

− βs

ˆ

(Ω1−Γ)\Ω1

ˆ

Γ

u1(x + y)
(
ϕ(x)− ϕ(x − y)

)
νsp,Γ(y)dydx.

Since Ω2 ∩ (Ω1 − Γ) = ∅, both integrals vanish. Similarly, taking into account the supports of ϕ

and f and that Ω2 ∩ (W − Γ) = ∅, we infer B̃s
0,Γ;q(f, ϕ) = 0.

We remark that in the problem for u2 no data on ∂ΓΩ2 = (∂ΓΩ ∩ Ω2) ∪ (Ω1 ∩ Ω2) needs to
be chosen, according to Lemma 5.13 for s < 1

2 . By the well-posedness of the problem on Ω2, we
finally conclude that u|Ω2 = u2 = 0. Therefore, by the equation u = 0 = As

0,Γ(D)u in Ω2. �

Remark 5.26. We highlight that the previous argument does not work for s ∈
(
1
2 , 1
)
due to the

possible presence of traces on ∂Ω1 ∩ ∂Ω2.

5.4. The inverse problem. Using the results from the previous subsection, we study the inverse
problem associated with the operators As

p,Γ(D) under conditions ensuring (partial) directional
antilocality. As discussed in Remark 5.20, in the case of operators seeing only one cone, we are
forced to take measurements in the opposite cone of Ω in order to capture information on the
solution. Hence we need to modify the conditions (b) and (c) to include both cones as follows
(for sets W1,W2,Ω ⊂ Rn specified below):

(b′) n = 2, p ∈ {0, 1} and Ω ⊂ (W1 + Γ1−p) ∩ (W2 + Γp),
(c′) Ω ⊂

(⋂
x∈W1

(x+ Γ1−p)
)
∩
(⋂

x∈W2
(x+ Γp)

)
, for any n ≥ 2 and p ∈ [0, 1].

As above, we do not expect that these conditions are exhaustive for the following results to hold.

Proposition 5.27 (Uniqueness). Let s ∈ (0, 1)\{ 1
2}, Γ ⊂ Rn\{0} be an open, non-empty, convex

cone and Ω ⊂ Rn be open, bounded, Lipschitz. Let q1, q2 ∈ L∞(Ω) be such that 0 /∈ Σ̃s
p,Γ;qi

. Let
W1 ⊂ Ω + Γp, W2 ⊂ Ω + Γ1−p be open, non-empty sets and assume that one of the conditions

(a), (b′) or (c′) holds. If for any f ∈ H̃s(W1)

Λ̃p,Γ;q1f |W2 = Λ̃p,Γ;q2f |W2 ,

then q1 = q2.
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Proof. Let fj ∈ H̃s(Wj) for j ∈ {1, 2}. Let uj ∈ Hs(Rn) be the solutions to
(
As

p,Γ(D) + q1
)
u1 = 0 in Ω,

u1 = f1 in (Ω + Γp)\Ω,

(
As

1−p,Γ(D) + q2
)
u2 = 0 in Ω,

u2 = f2 in (Γ1−p +Ω)\Ω.

By Lemma 5.21 the following Alessandrini identity holds:

〈(Λ̃p,Γ;q1 − Λ̃p,Γ;q2)f1, f2〉 = 〈Λ̃p,Γ;q1f1, f2〉 − 〈Λ̃1−p,Γ;q2f2, f1〉

= B̃s
p,Γ;q1(u1, f2)− B̃s

1−p,Γ;q2(u2, f1)

= B̃s
p,Γ;q1(u1, u2)− B̃s

p,Γ;q2(u1, u2) = ((q1 − q2)u1, u2)L2(Ω).

Now, by the Runge approximation result from Proposition 5.23 applied to both W1 and W2,
we obtain a dense set of functions {u1u2} and conclude the desired uniqueness result analogously
as in the proof of Theorem 3. �

In the investigation of uniqueness by only one single measurement, in order to avoid conditions
on the (exact) support of f , we impose stricter geometric assumptions on W1 but essentially do
not modify the ones on W2. In order to avoid confusion, we state the particular alternative
conditions on W2 here:

(b′′) n = 2, p ∈ {0, 1}, Ω ⊂ (Γp +W2) and W1 ⊂
⋂

x∈Ω(x+ Γp),
(c′′) Ω ⊂

⋂
x∈W2

(Γp + x) and W1 ⊂
⋂

x∈Ω(x+ Γp), for any n ≥ 2 and p ∈ [0, 1].

Proposition 5.28 (Single measurement uniqueness). Let s ∈ (0, 1)\{ 1
2}, Γ ⊂ Rn\{0} be an

open, non-empty, convex cone and Ω ⊂ Rn be open, bounded, Lipschitz. Let q ∈ C0(Ω) be such

that 0 /∈ Σ̃s
p,Γ;q. Let W1 ⊂ Ω+Γp, W2 ⊂ Ω+Γ1−p be open, non-empty Lipschitz sets and assume

that one of the conditions (a), (b′′) or (c′′) holds. Let f ∈ H̃s(W1)\{0}. Then the knowledge of

f and Λ̃p,Γ;qf |W2 determines q uniquely.

Proof. Let u ∈ H̃s(Ω ∪ W1) be the solution of (42) with f ∈ H̃s(W1)\{0}. By (a) or (b′′),
As

p,Γ(D) is Γp-antilocal. If (c′′) holds, then we have Γp-antilocality from W2 to Ω ∪W1 (notice

that W1 ⊂ Ω+Γp ⊂
⋂

x∈W2
(x+Γp)). Therefore the function u is uniquely determined in Ω+Γp

by u|W2 = 0 and As
p,Γ(D)u|W2 = Λ̃p,Γ;qf |W2 . Since Ω ⊂ W2 + Γp, we recover the function u in

Ω. Together with the fact that u = f in (Ω + Γp)\Ω, we can calculate As
p,Γ(D)u in Ω.

Now, since (As
p,Γ(D)+q)u = 0 in Ω, we can recover q provided u does not vanish on open sets.

But this cannot be the case, because if u = 0 in U ⊂ Ω, it would also hold that As
p,Γ(D)u = 0.

By the Γp-antilocality and the assumption on W1, we would conclude that u = f = 0 in W1

contradicting our assumption that f ∈ H̃s(W1)\{0}. In the case of the validity of the hypothesis
(c′′), the geometric assumption on W1 is also used for the Γp-antilocality from any U ⊂ Ω to
W1. �

6. More Examples of Partially Antilocal Operators

In this section, we discuss further examples of operators with certain (weaker) directional
antilocality properties and provide counterexamples to (strong forms of) directional antilocality
of these and related nonlocal elliptic operators.

6.1. Non-antilocal operators. We now consider combinations of one-dimensional operators
As

p(D) acting on independent directions. These operators are not directionally antilocal in
general, yet we prove certain forms of partial directional antilocality under suitable assumptions
on the sets where the function may be supported and where the observation is made.
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Let p = (p1, . . . , pn) ∈ [0, 1]n. We define the n-dimensional operator As
p
(D) by

As
p
(D) :=

n∑

k=1

As
pk
(Dxk

).

This operator only “sees” the region given by ∪n
k=1Zk, where

Zk = {(0,
(k−1)
· · · , 0, t, 0,

(n−k)
· · · , 0) : t ∈ Ypk

},

and Yp as in (39). Notice that for p =
(
1
2 , . . . ,

1
2

)

As
p
(D) =

1

2

n∑

k=1

(−∂xk
)2s.(52)

We remark that operators of the type (52) can still be viewed in a generalized framework as the
one outlined in (1). In addition to dropping the symmetry condition, the operators from now no
longer have convex, open cones as the support of their kernels, but only consist of the union of
convex, non-open cones.

Remark 6.1. The operator 1
2

∑n
k=1(−∂xk

)2s and its quantitative nonlocality properties were
studied in [GFR19]. A qualitative version of the statement studied there (see [GFR19, (85)])
would be the following:

If u is supported in Ω = (−1, 1)n and if

n∑

k=1

(−∂xk
)2su = 0 in U ⊂ Ωe, then u = 0.(53)

We emphasize that this result requires geometric conditions on U (which were stated and
assumed in the proof of [GFR19, Proposition 8.1], but not formulated explicitely in the result
itself). Step 1 of the proof of [GFR19, Proposition 8.1] uses the assumption that

Ω ∩ (U ± Z̃k) = Ω for all k ∈ {1, . . . , n},

where

Z̃k = {(0,
(k−1)
· · · , 0, t, 0,

(n−k)
· · · , 0) : t ∈ R+}.(54)

This condition is in the spirit of the antilocality from the exterior in Proposition 1.4.
For the qualitative statement (53), this is not optimal; a weaker sufficient condition for (53)

(see Lemma 6.3 and Remark 6.4 from below) would be that

Ω ⊂ U +
( n⋃

k=1

Zk

)
,(55)

where in this case

Zk = {(0,
(k−1)
· · · , 0, t, 0,

(n−k)
· · · , 0) : t ∈ R}.

Motivated by these considerations for the special operator
∑n

k=1A
s
1/2(Dxk

), we prove that also

for a general choice of p ∈ [0, 1]n geometric conditions have to be imposed in order to obtain
antilocality and that, without these, antilocality fails in general.

Lemma 6.2. Let s ∈ (0, 1) and p ∈ [0, 1]n. Then the operator As
p
(D) is not antilocal in general.

Proof. For simplicity, we present the proof for the case n = 2 only. The generalization to higher
dimensions is immediate.

We construct a counterexample consisting of a function u ∈ C∞
c (R2) and an open set U ⊂ R2,

such that u = 0 = As
p
(D)u in U and u 6= 0 in U + (Z1 ∪ Z2). We only consider the case

p1, p2 ∈ [0, 1). The remaining cases can be covered by suitable symmetrization.



NONLOCAL ELLIPTICITY AND GAUGES 51

U Ω1

Ω2

U + Z1

U + Z2

Figure 11. Counterexample for the proof of Lemma 6.2 with p ∈ (0, 1)2.

Let U = (−1, 1)2 and let W ⊂ (1,+∞) be a bounded open interval. Let f ∈ C∞
c (W ) and

g = As
0(D)f ∈ C∞(R). Let η ∈ C∞

c ((−2, 2)) with η = 1 in (−1, 1). We define

u(x1, x2) :=
1

1− p1
f(x1)g(x2)η(x2)−

1

1− p2
g(x1)η(x1)f(x2) ∈ C∞

c (R2).

We observe that supp(u) ⊂ Ω1∪Ω2 with Ω1 =W × (−2, 2) and Ω2 = (−2, 2)×W , see Figure 11.
Moreover, for (x1, x2) ∈ (−1, 1)2 due to the one-sided support of the data

As
p
(D)u(x1, x2) =

(
(1 − p1)A

s
0(Dx1) + (1− p2)A

s
0(Dx2)

)
u(x1, x2)

= g(x1)g(x2)− g(x1)g(x2) = 0.

We summarize that this construction yields an example of a function with data supported to the
right and to the top of U such that u = 0 = As

p
(D)u in U .

We next show that this can be strengthened to an example of a function with data supported
on all sides of U : For p1, p2 6= 0, we could also consider

u(x1, x2) :=

(
1

1− p1
f(x1)g(x2) +

1

p1
f ′(x1)g

′(x2)

)
η(x2)

−

(
1

1− p2
g(x1)f(x2) +

1

p2
g′(x1)f

′(x2)

)
η(x1) ∈ C∞

c (R2).

with f ′ ∈ C∞
c (W ′), W ′ ⊂ (−∞,−1) bounded, and g′ = As

1(D)f ′. Then Ω ⊃ supp(u) and U
satisfy

U ∩ (Ω± Z̃k) = U,

with Z̃k as in (54). �

The following result recovers a certain weak form of directional antilocality in two dimen-
sions under some assumptions on the support of the function and the subset U , in the spirit of
Lemma 5.7.

Lemma 6.3. Let s ∈ (0, 1) and p ∈ [0, 1]2. Let Ω ⊂ R2 be open and let U ⊂ R2\Ω be connected
and open. Assume that there exists k ∈ {1, 2} such that

U ∩ (Ω− Zk) 6= U.

Let u ∈ C∞
c (Ω). If As

p
(D)u = 0 in U , then u = 0 in Ω ∩

(
U + (∪2

k=1Zk)
)
.
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Ω

U1 + Z2

U2 + Z1

U

U1

U2

Ω

U1 + Z2

U2 + Z1

Ũ

U

U2 = U1

Figure 12. Illustration of the setting from Lemma 6.3. Left: The domains in
the proof for p1 = p2 = 0. This implies Z1 = R+×{0} and Z2 = {0}×R+. Right:
A geometry illustrating that the conclusion fails for non-connected domain U ,
as explained in Remark 6.4.

Proof. Without loss of generality, we assume that U ∩ (Ω − Z1) ( U (see the left panel in
Figure 12). Then As

p1
(Dx1)u = 0 in U1 := U\(Ω − Z1). However, since As

p
(D)u = 0 in U , this

implies As
p2
(Dx2)u = 0 in U1. By the Yp2 -antilocality of As

p2
(Dx2), we infer that u = 0 in U1+Z2.

This results in As
p2
(Dx2)u = 0 in U2 := U ∩ (U1 + Z2). Again by the fact that As

p
(D)u = 0 in

U this also implies that As
p1
(Dx1)u = 0 in U2. Repeating the same argument, u = 0 in U2 + Z1.

Iterating this argument and since U is connected, we finally obtain u = 0 in U + Z1. Therefore,
As

p2
(Dx1)u = 0 in U and hence u = 0 in U + Z2. �

Remark 6.4. If U were not connected, the assumption on Ω would have to be required for every
compact connected component of U . Indeed, the right panel of Figure 12 provides a counterexam-
ple for that. Let us consider p1 = 0 = p2. Arguing as in the proof of Lemma 6.3, we can conclude
u = 0 in Ω∩ (U1+Z2). But nothing can be inferred about u from the other connected component

Ũ ; on the contrary, it is even possible to choose u such that it is nontrivial in Ω∩(Ũ+(Z1∪Z2)).
Indeed, we can construct u as in the proof of Lemma 6.2 after a suitable change of variables.

Remark 6.5. A similar weak form of directional antilocality can be deduced in general dimen-
sions. However, the geometric conditions become less transparent: Let us assume there is a finite
sequence n1, . . . , nN ∈ {1, . . . , n} such that

UN = U,

where:

Uj =
n⋂

k=1
k 6=nj

U ′
j−1,k, j ∈ {1, . . . , N},

U ′
j,k = U\(Ωj − Zk), j ∈ {0, . . . , N − 1},

Ω0 = Ω, Ωj = Ω\(Uj + Znj ), j ∈ {1, . . . , N − 1}.

Then, arguing as above, we can conclude that u = 0 in Ω ∩
(
U + ∪n

k=1Zk

)
.

Indeed, by construction, we know As
pk
(Dxk

)u = 0 in U0,k, for k ∈ {1, . . . , n}. Let us assume
that there is n1 ∈ {1, . . . , n} such that U1 6= ∅. We have As

p
(D)u = As

pn1
(Dxn1

)u = 0 in U1,

and applying the Ypn1
-antilocality, we deduce u = 0 in Ω ∩ (U1 + Zn1). We can now repeat the

argument ignoring that part of the assumed support, i.e. with Ω1 in the role of Ω. See Figure 13
for a setting in which the previous conditions hold.
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U

U1
U2

Ω

x1

x2

x3

Figure 13. Illustration of the setting from Remark 6.5 with p1 = 0 = p2,
p3 = 1. Choosing for instance {n1, . . . , nN} = {1, 2, 3, 1}, we can conclude
u = 0 in Ω ∩ (U + ∪3

k=1Zk).

Remark 6.6. We remark that in none of the results from this section, it played a role that
As

p
(D) was defined as the sum of one-dimensional fractional Laplacians with the same index s.

All the above presented results remain valid for operators of the form

As

p
(D) :=

n∑

k=1

Ask
pk
(Dxk

),

where s = (s1, . . . , sn) ∈ (0, 1)n. Harnack inequalities for these and similar operators have
recently been studied in [CK20].

6.2. Inverse operators inheriting directional-antilocality. Here, as a model setting, we
consider the following one-dimensional operator for s ∈

(
0, 12
)

Bs
p(D)f(x) =

ˆ ∞

−∞

f(x+ y)
(
pχR−(y) + (1− p)χR+(y)

) dy

|y|1−2s
.

This corresponds, up to a constant, to (As
p(D))−1 (see Lemma A.3). Reducing the antilocality

of Bs
p(D) to that of As

p(D), we can see that the two operators enjoy the same Yp-antilocality.

Lemma 6.7. Let p ∈ [0, 1] and s ∈
(
0, 12
)
. Then the operator Bs

p(D) is Yp-antilocal, i.e. it is
antilocal to the right if p = 0, antilocal to the left if p = 1 and antilocal (to both directions) for
p ∈ (0, 1).

Proof. Let u ∈ C∞
c (R) and U ⊂ R be such that u = 0 = Bs

p(D)u in U . Let v := Bs
p(D)u. By

Lemma A.3 we thus have As
p(D)v = c̃s(p)

−1u. Then, by definition, v = 0 = As
p(D)v in U and

by the Yp-antilocality of As
p(D), we infer that v = 0 in U + Yp. By the domain dependence of

the operator As
p(D), we finally conclude u = c̃s(p)A

s
p(D)v = 0 also in U + Yp. �

We remark that, while we proved the above result for the operator Bs
p(D), the proof shows

that the statement encodes a more general principle stating that antilocality of a given operator
also imply the antilocality of the inverse operator:

Proposition 6.8. Let Γ ⊂ Rn be an open, non-empty, convex cone, let L(D) be an elliptic,
Γ-antilocal operator and let L(D)−1 denote its (whole-space) inverse operator. Then, L(D)−1 is
also Γ-antilocal.

Proof. The proof follows the same scheme as the one of Lemma 6.7. �
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Appendix A. Symbol Calculations and Inverses of the Operators

This appendix contains some results involving properties of the operators from the previous
sections and their symbols.

A.1. Fourier symbols of the operators. We begin by computing the symbols of the operator
L in (1) and the operator As

p,Γ in (36).

Lemma A.1. The symbol of the operator L defined in (1) with s ∈ (0, 1) is given by:

L(ξ) = 2cs

ˆ

Sn−1

|ξ · θ|2sa(θ)dθ,

where cs = −Γ(−2s) cos(πs).

Proof. If u ∈ D(Rn), for any ξ ∈ Rn we have

F
(
Lu
)
(ξ) =

ˆ

Rn

(
2− eiy·ξ − e−iy·ξ

)
Fu(ξ)

a(y/|y|)

|y|n+2s
dy = L(ξ)Fu(ξ).

Therefore

L(ξ) = 2

ˆ

Rn

(
1− cos(y · ξ)

) a(y/|y|)
|y|n+2s

dy = 2

ˆ

Sn−1

ˆ ∞

0

(
1− cos(rθ · ξ)

) a(θ)
r2s+1

drdθ

= 2

ˆ ∞

0

1− cos(ρ)

ρ2s+1
dρ

ˆ

Sn−1

|ξ · θ|2sa(θ)dθ = 2cs

ˆ

Sn−1

|ξ · θ|2sa(θ)dθ.

The constant cs, which is finite for s ∈ (0, 1), can be computed as follows:

cs =

ˆ ∞

0

1− cos(ρ)

ρ2s+1
dρ = −

1

2s

ˆ ∞

0

(
1− cos(ρ)

) ( 1

ρ2s

)′

dρ =
1

2s

ˆ ∞

0

sin(ρ)

ρ2s
dρ

=
1

2s
Γ(1− 2s) sin

(π
2
(1− 2s)

)
= − cos(πs)Γ(−2s).

(56)

The value of
´∞

0 ρ(1−2s)−1 sin(ρ)dρ is given e.g. in [Olv10, 5.9.7]. Notice that we have used the
fact that s ∈ (0, 1) for both this identity and the integration by parts arguments. �

Lemma A.2. The Fourier symbol of the operator As
p,Γ(D) given in (36) with p ∈ [0, 1] and

Γ ⊂ Rn\{0} an open, convex cone is

As
p,Γ(ξ) =




cs
´

Γ∩Sn−1

(
1− i(1− 2p) tan(πs) sgn(θ · ξ)

)
|θ · ξ|2sdθ if s ∈

(
0, 12
)
∪
(
1
2 , 1
)
,

´

Γ∩Sn−1

(
π
2 − i(1− 2p) sgn(θ · ξ) log(|θ · ξ|)

)
|θ · ξ|dθ if s = 1

2 ,

where cs = −Γ(−2s) cos(πs).

Proof. The symbol of the operator (36) in the case of s ∈
(
0, 12
)
is given by

As
p,Γ(ξ) =

ˆ

Rn

(1− eiy·ξ)
pχ−Γ(y) + (1− p)χΓ(y)

|y|n+2s
dy

=
1

2

ˆ

(−Γ∪Γ)∩Sn−1

ˆ ∞

0

(1 − eirθ·ξ)
1 + (2p− 1)(χ−Γ(θ) − χΓ(θ))

r1+2s
drdθ

=
1

2

ˆ

Γ∩Sn−1

ˆ ∞

0

2− eirθ·ξ − e−irθ·ξ

r1+2s
drdθ +

1

2
(2p− 1)

ˆ

Γ∩Sn−1

ˆ ∞

0

eirθ·ξ − e−irθ·ξ

r1+2s
drdθ

=

ˆ

Γ∩Sn−1

ˆ ∞

0

1− cos(rθ · ξ)

r1+2s
drdθ − i(1− 2p)

ˆ

Γ∩Sn−1

ˆ ∞

0

sin(rθ · ξ)

r1+2s
drdθ.
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Applying (56) to the first integral, which is valid for s ∈ (0, 1) (with −Γ(−2s) cos(πs) = π
2 for

s = 1
2 ), and [Olv10, (5.9.7)] to the second integral (valid only for s ∈

(
0, 12
)
), it follows that

As
p,Γ(ξ) = −Γ(−2s)

ˆ

Γ∩Sn−1

(
cos(πs) − i(1− 2p) sin(πs) sgn(θ · ξ)

)
|θ · ξ|2sdθ.

In the case of s ∈
(
1
2 , 1
)
, we have

As
p,Γ(ξ) =

ˆ

Rn

(1− eiy·ξ + iy · ξ)
pχ−Γ(y) + (1− p)χΓ(y)

|y|n+2s
dy.

We observe that the symmetric contribution does not change, while the antisymmetric one is
now given by

i(2p− 1)

ˆ

Γ∩Sn−1

ˆ ∞

0

sin(rθ · ξ)− rθ · ξ

r1+2s
drdθ

= i(2p− 1)

ˆ

Γ∩Sn−1

sgn(θ · ξ)|θ · ξ|2s
(
ˆ ∞

0

sin(ρ)− ρ

ρ1+2s
dρd

)
θ.

The integral can be computed as follows, taking into account that 2s − 1 ∈ (0, 1) and finally
applying (56):

ˆ ∞

0

sin(ρ)− ρ

ρ1+2s
dρ =

−1

2s

ˆ ∞

0

(
1

ρ2s

)′ (
sin(ρ)− ρ

)
dρ

=
1

2s

ˆ ∞

0

cos(ρ)− 1

ρ2s
dρ =

sin(πs)Γ(1 − 2s)

2s
= − sin(πs)Γ(−2s).

Therefore, the symbol of the antisymmetric part is the same as for s ∈
(
0, 12 ).

Finally, for s = 1
2 , we can argue similarly for the antisymmetric part. This leads to the integral

ˆ ∞

0

ρe−
ρ

|θ·ξ| − sin(ρ)

ρ2
dρ = lim

ǫ→0+

(
Ci(ǫ)−

sin(ǫ)

ǫ
+ E1(ǫ|θ · ξ|)

)
,

where Ci and E1 are the cosine integral and exponential integral, respectively, defined in [Olv10,
(6.2.11), (6.2.1)]. By the power expansions in [Olv10, (6.6.6), (6.6.2)],

ˆ ∞

0

ρe−
ρ

e|θ·ξ| − sin(ρ)

ρ2
dρ = lim

ǫ→0+

(
−
sin(ǫ)

ǫ
+ log(ǫ)− log

( ǫ

e|θ · ξ|

)
+O(ǫ)

)
= log(|θ · ξ|).

�

A.2. Inverse of the operators. This section is devoted to the derivation of an explicit real-
space formula for the inverse operators of As

p(D) in the one-dimensional case.

Lemma A.3 (Inverse operator, 1D case). The inverse of the operator As
p(D) defined in (11) for

s ∈
(
0, 12
)
and p ∈ [0, 1] is given by

(As
p(D))−1f(x) = c̃s(p)

ˆ ∞

−∞

f(x+ y)
(
pχR−(y) + (1− p)χR+(y)

) dy

|y|1−2s
,

where

c̃s(p) :=
4s sin(2πs)

1 + 2p(1− p)
(
cos(2πs)− 1

) .
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Proof. By Lemma A.2, the symbol of the inverse operator (As
p(D))−1 is given by

(As
p(ξ))

−1 =
2s

Γ(1− 2s)

1

cos(πs)− i(1− 2p) sin(πs) sgn(ξ)
|ξ|−2s

=
2s

Γ(1− 2s)

cos(πs) + i(1− 2p) sin(πs) sgn(ξ)

cos2(πs) + (1 − 2p)2 sin2(πs)
|ξ|−2s.

Now, we notice the following correspondence between symbols and operators:

|ξ|−2sf(ξ)
F−1

−→ 2Γ(1− 2s) sin(πs)

ˆ ∞

−∞

f(x− y)
dy

|y|1−2s
,

−i sgn(ξ)|ξ|−2sf(ξ)
F−1

−→ 2Γ(1− 2s) cos(πs)

ˆ ∞

−∞

f(x− y) sgn(y)
dy

|y|1−2s
.

The first one is just the Riesz potential, which holds for s ∈
(
0, 12
)
. Here the constant can be

rewritten as π
1
2

22s
Γ
(

1
2−s
)

Γ(s) . Both correspondences can be obtained from [Olv10, (5.9.6)-(5.9.7)].

Therefore,

(
As

p(D)
)−1

f(x) =
2s

Γ(1− 2s)

2Γ(1− 2s) cos(πs) sin(πs)

cos2(πs) + (1 − 2p)2 sin2(πs)

ˆ ∞

−∞

f(x− y)
1− (1− 2p) sgn(y)

|y|1−2s
dy

= c̃s(p)

ˆ ∞

−∞

f(x− y)
(
(1− p)χR−(y) + pχR+(y)

) dy

|y|1−2s

= c̃s(p)

ˆ ∞

−∞

f(x+ y)
(
pχR−(y) + (1− p)χR+(y)

) dy

|y|1−2s
,

with

c̃s(p) =
8s cos(πs) sin(πs)

cos2(πs) + (1 − 2p)2 sin2(πs)
=

4s sin(2πs)

1 + 2p(1− p)
(
cos(2πs)− 1

) .

�

Appendix B. A “More Local” Variant of the Problem from Section 5

In this appendix we present and discuss an alternative bilinear form associated with the
problem (42). We compare the resulting notion with the one from Section 5.

From now on, we assume Ω ⊂ Rn is an bounded, Lipschitz open domain, Γ ⊂ Rn\{0} is an
open, non-empty, convex cone and s ∈ (0, 1)\

{
1
2

}
.

B.1. An alternative bilinear form. As an alternative version of the bilinear form from Sec-
tion 5, we here introduce the following “more local” bilinear form for s 6= 1

2 :

Bs
p,Γ;q(u, v) := βs

ˆ

Ω+Γp

ˆ

Γp

(
u(x)− u(x+ y)

)(
v(x)− v(x − y)

)
χΩ+Γp(x+ y)νsp,Γ(y)dydx

+ (qu, v)L2(Ω),

(57)

where βs = (2− 22s)−1, χΩ+Γp is the characteristic function of Ω+Γp, and ν
s
p,Γ is given in (37).

Equivalently, we may write

Bs
p,Γ;q(u, v) = βs

ˆ

Ω+Γp

ˆ

Ω+Γp

(
u(x)− u(z)

)(
v(x) − v(2x− z)

)
νsp,Γ(z − x)dydx

+ (qu, v)L2(Ω).

We observe that the first argument of Bs
p,Γ;q is “rather local”, in the sense that for the first

slot occupied by the function u it suffices to be defined in the domain of dependence Ω + Γp,
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while only the second one is required to be defined in Rn (due to the shift in the arguments of
v).

Remark B.1. We emphasize that the bilinear form Bs
p,Γ;q(u, v) evaluated at a function v sup-

ported in Ω is consistent with the weak form of the equation (42) in the sense that it gives rise
to a weak form of the interior equation in (42). In other words, it can be derived from the strong
form of the (interior) equation in (42) if this is tested with v, after a suitable change of variables
and suitable recombinations of these expressions, which ultimately leads to the stated expression.
For the sake of simplicity, we discuss this for the case p = 1 and q = 0. For s ∈

(
0, 12 ), applying

different changes of variables, we obtain the following identities for v ∈ H̃s(Ω):
ˆ

Ω

(
As

p,Γ(D)u(x)
)
v(x)dx =

ˆ

Ω

ˆ

Γp

(
u(x)− u(x+ y)

)
v(x)νsp,Γ(y)dydx

=

ˆ

Ω+Γp

ˆ

Γp

(
v(x)− v(x − y)

)
u(x)νsp,Γ(y)dydx

= 2−2s

ˆ

Ω+Γp

ˆ

Γp

(
v(x) − v(x− 2y)

)
u(x)νsp,Γ(y)dydx

= 2−2s

ˆ

Ω+Γp

ˆ

Γp

(
v(x + y)− v(x − y)

)
u(x+ y)χΩ+Γp(x+ y)νsp,Γ(y)dydx.

We remark that in the last identity the characteristic function χΩ+Γp(x + y) is not necessary
due to the imposed support assumption for v, but it will be necessary in defining the full bilinear
expression (for functions which are not necessarily supported in Ω).

By suitably combining the previous integral expressions, we infer

(2 − 22s)

ˆ

Ω

(
As

p,Γ(D)u(x)
)
v(x)dx

=

ˆ

Ω

ˆ

Γp

(
u(x)− u(x+ y)

)
v(x)νsp,Γ(y)dydx

+

ˆ

Ω+Γp

ˆ

Γp

(
v(x)− v(x − y)

)
u(x)νsp,Γ(y)dydx

−

ˆ

Ω+Γp

ˆ

Γp

(
v(x+ y)− v(x− y)

)
u(x+ y)χΩ+Γp(x+ y)νsp,Γ(y)dydx

=

ˆ

Ω+Γp

ˆ

Γp

(
u(x)− u(x+ y)

)(
v(x) − v(x− y)

)
χΩ+Γp(x + y)νsp,Γ(y)dydx.

If s ∈
(
1
2 , 1
)
, we repeat these arguments with additional terms of the form ∇u(x)v(x), but these

finally cancel out.

Remark B.2. We highlight that the derivation of the bilinear form B1/2,Γ;q differs from that of
Bq from the beginning of this article. In particular, this leads to a lack of symmetry of νsp,Γ,

except if p = 1
2 , but allows to treat the cases Bp,Γ;q with p ∈ [0, 1] simultaneously. The difference

between (57) for p = 1
2 and (7) with a(θ) = 1

2χSn−1∩(−Γ∪Γ)(θ) corresponds to

Bs
1/2,Γ;q(u, v)−Bq(u, v)

=
1

2

ˆ

Ω+Γ1/2

ˆ

Ω+Γ1/2

(
u(x)− u(z)

)( v(x)

21−2s − 1
−
v(2x− z)

1− 22s−1
+ v(z)

)
νs1/2,Γ(x− z)dzdx.

Comparing the two bilinear forms from (57) and (43), we collect the following observations:
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Lemma B.3. Let s ∈ (0, 1)\
{
1
2

}
and p ∈ [0, 1]. Let u, v ∈ Hs(Rn). Then Bs

p,Γ;q(u, v) =

B̃s
p,Γ;q(u, v) if one of the following holds:

• v ∈ H̃s(Ω),

• p ∈ (0, 1) and u ∈ H̃s(Ω),

• p ∈ {0, 1}, u ∈ H̃s(Ω) and v = 0 in (Γ1−p +Ω)\Ω.

Proof. We deal with the three cases separately. If v ∈ H̃s(Ω), by the arguments from Remark B.1
we note that the bilinear forms agree (and can be reduced to the same strong form of the
equation).

Let now u ∈ H̃s(Ω). According to the definitions (57) and (43), the difference of the bilinear
forms is given by

B̃s
p,Γ;q(u, v)−Bs

p,Γ;q(u, v)

= −βs

ˆ

Rn\(Ω+Γp)

ˆ

Γp

u(x+ y)
(
v(x) − v(x− y)

)
νp,Γ(y)dydx

+ βs

ˆ

Ω

ˆ

Γp

u(x)
(
v(x) − v(x− y)

)
νp,Γ(y)χRn\(Ω+Γp)

(x + y)dydx

=: I1 + I2.

On the one hand, the second contribution I2 always vanishes since x+ y ∈ Ω+ Γp for all x ∈ Ω
and y ∈ Γp. On the other hand, the integrand in I1, in general, needs not vanish if x+ y ∈ Ω for

x ∈ Rn\(Ω+Γp) and y ∈ Γp. This situation cannot happen for p ∈ (0, 1) due to the two-sidedness
of the cone.

However, if p ∈ {0, 1} and x ∈ (Ω+Γ1−p)\Ω ⊂ Rn\(Ω+Γp), then x+ y ∈ Ω for some y ∈ Γp.
Therefore, I1 = 0 requires that v(x) − v(x − y) = 0 a.e. for x ∈ Ω + Γ1−p and y ∈ Γp, i.e. v is

constant a.e. in (Ω + Γ1−p)\Ω. But since the subset is unbounded and we require v ∈ L2(Rn),

it holds that v = 0 a.e. in (Ω + Γ1−p)\Ω. �

B.2. Function spaces. We next discuss the well-posedness of the direct problem associated
with the bilinear form Bs

p,Γ;q.
Heading towards an analysis of the exterior problem, we introduce the following space for

s ∈ (0, 1), Γ ⊂ Rn\{0} an open, non-empty, convex cone and Ω ⊂ Rn open:

Vs
p,Γ(Ω) :=

{
u : Ω + Γp → R : u ∈ L2(Ω),

u(x)− u(x+ y)

|y|
n
2 +s

∈ L2(Ω× Γp)
}

endowed with the norm

‖u‖2Vs
p,Γ(Ω) := ‖u‖2L2(Ω) + [u, u]Vs

p,Γ(Ω),

where

[u, v]Vs
p,Γ(Ω) =

ˆ

Ω

ˆ

Γp

(
u(x)− u(x+ y)

)(
v(x) − v(x + y)

)pχ−Γ(y) + (1− p)χΓ(y)

|y|n+2s
dydx.

Analogously to (16) and (17), it holds that

Hs(Rn) = Vs
p,Γ(R

n),

Hs(Ω + Γp) ⊂ Vs
p,Γ(Ω).

The first statement follows as in Lemma 2.3. The second inclusion can be proved as Lemma 2.4.
Lastly, we introduce the space for the exterior data:

Vs
p,Γ(Ω)e :=

Vs
p,Γ(Ω)

/
H̃s(Ω), equipped with the quotient topology.
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Comparing the Hs
p,Γ and Vs

p,Γ based spaces (see Section 5.2.3 for the definition of Hs
p,Γ), we

observe that

Hs
p,Γ(Ω) ⊂ Vs

p,Γ(Ω)e.

Building on this, analogously to Lemma 2.6, we infer a corresponding bound for Bs
p,Γ;q:

Lemma B.4. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1] and Bs

p,Γ;q be as in (57). If u ∈ Vs
p,Γ(Ω + Γp) and

v ∈ Hs(Rn), then

|Bs
p,Γ;q(u, v)| ≤ C‖u‖Vs

p,Γ(Ω+Γp)‖v‖Hs(Rn).(58)

Proof. The argument for the estimate is analogous to the ones which were used for the bilinear
form Bq in Section 3. Indeed, we have

|Bs
p,Γ;0(u, v)| ≤ βs[u, u]

1
2

Vs
p,Γ(Ω+Γp)

[v, v]
1
2

Vs
1−p,Γ(Ω+Γp)

≤ βs[u, u]
1
2

Vs
p,Γ(Ω+Γp)

[v, v]
1
2

Vs
1−p,Γ(R

n)

≤ C[u, u]
1
2

Vs
p,Γ(Ω+Γp)

‖v‖Hs(Rn).

�

B.3. The exterior problem. With the properties of the function spaces associated with the
bilinear form Bs

p,Γ;q in hand, we define our notion of a weak solution based on this bilinear form:

Definition B.5. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1] and let Bs

p,Γ;q be the bilinear form in (57). Given

f ∈ Vs
p,Γ(Ω)e, a function u ∈ Vs

p,Γ(Ω) is a (weak) solution of (42) (based on Bs
p,Γ;q) if

Bs
p,Γ;q(u, v) = 0 for all v ∈ H̃s(Ω)

and EΩ+Γp(u− f̃) ∈ H̃s(Ω) for any f̃ ∈ V s
p,Γ(Ω) with f̃ ∈ [f ].

We emphasize that the more local character of the bilinear form Bp,Γ;q is of significance here
in that in its first slot Bp,Γ;q only needs to be defined on Ω + Γp.

We can now deduce the desired well-posedness result.

Proposition B.6. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1], Γ ⊂ Rn\{0} be an open, convex cone, Ω ⊂ Rn

be open, bounded, Lipschitz and q ∈ L∞(Ω). Then there is a countable set Σs
p,Γ;q ⊂ C such that

if λ /∈ Σs
p,Γ;q, for any f ∈ Vs

p,Γ(Ω)e, there is a unique solution u ∈ Vs
p,Γ(Ω) of

(
As

p,Γ(D) + q − λ
)
u = 0 in Ω,

u = f in (Ω + Γp)\Ω.

In that case,

‖u‖Vs
p,Γ(Ω) ≤ C‖f‖Vs

p,Γ(Ω)e .

Proof. We reduce this problem to the interior one in (45), solved in Proposition 5.12. Let

f ∈ Vs
p,Γ(Ω)e and let f̃ ∈ Vs

p,Γ(Ω) such that f̃ ∈ [f ], i.e. EΩ+Γp(f̃ − f) ∈ H̃s(Ω). We construct

u = w + f̃ , where w ∈ H̃s(Ω) is the solution of the inhomogeneous problem (42) with g =

−(As
p,Γ(D) + q−λ)f̃ |Ω. This requires proving that As

p,Γf̃ |Ω ∈ H−s(Ω) (weakly) for f̃ ∈ Vs
p,Γ(Ω).

We present here the proof for p = 0. As usually, we can derive similar results for p = 1 and the

general case follows by the fact that As
p,Γ(D) = pAs

1,Γ(D)+(1−p)As
0,Γ(D). For any v ∈ H̃s(Rn),
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testing As
0,Γ(D)f̃ with v we obtain:

ˆ

Ω

ˆ

Γ

u(x)− u(x+ y)

|y|n+2s
v(x)dydx

=

ˆ

Ω

ˆ

Γ∩(−x+Ω)

u(x)− u(x+ y)

|y|n+2s
v(x)dydx +

ˆ

Ω

ˆ

Γ\(−x+Ω)

u(x)− u(x+ y)

|y|n+2s
v(x)dydx

= I1 + I2.

Taking into account that v is supported in Ω and making a suitable change of variables in I1, we
can rewrite both integrals as follows:

I1 =
1

2

ˆ

Ω

ˆ

Γ∩(−x+Ω)

(
u(x)− u(x+ y)

)(
v(x) − v(x− y)

)

|y|n+2s
dydx

I2 =

ˆ

Ω

ˆ

Γ\(−x+Ω)

(
u(x)− u(x+ y)

)(
v(x) − v(x+ y)

)

|y|n+2s
dydx

Then

|I1| ≤
1

2
[u, u]

1
2

Vs
0,Γ(Ω)[v, v]

1
2

Vs
1,Γ(Ω) ≤ C‖u‖Vs

p,Γ(Ω)‖v‖Hs(Rn),

|I2| ≤ [u, u]
1
2

Vs
0,Γ(Ω)[v, v]

1
2

Vs
0,Γ(Ω) ≤ C‖u‖Vs

p,Γ(Ω)‖v‖Hs(Rn).

This implies g ∈ H−s(Ω) and ‖g‖H−s(Ω) ≤ C‖u‖Vs
p,Γ(Ω).

By Proposition 5.12, if λ /∈ Σ̃s
p,Γ;q = Σs

p,Γ;q, w ∈ H̃s(Ω) exists, is unique and satisfies

‖w‖Vs
p,Γ(Ω) ≤ ‖w‖Vs

p,Γ(R
n) ≤ C‖w‖Hs(Rn) ≤ C‖f̃‖Vs

p,Γ(Ω).

We emphasize here that u is independent of the choice of f̃ ∈ Vs
p,Γ(Ω) with f̃ ∈ [f ]. Indeed,

let us consider f̃1, f̃2 ∈ Vs
p,Γ(Ω) such that f̃1, f̃2 ∈ [f ], i,e, EΩ+Γp(f̃1 − f̃2) ∈ H̃s(Ω). Let u1, u2 be

constructed as above with f̃1, f̃2, respectively. Let v = EΩ+Γp(u1 − u2). Since EΩ+Γp(f̃1 − f̃2) ∈

H̃s(Ω) and w1, w2 ∈ H̃s(Ω), we have v ∈ H̃s(Ω). In addition,
(
As

p,Γ(D) + q − λ)v = 0 and

v|(Ω+Γp)\Ω
= 0 by construction. Since λ /∈ Σs

p,Γ;q, by Proposition 5.12, v = 0.

Finally, we observe that

‖u‖Vs
p,Γ(Ω) ≤ ‖f̃‖Vs

p,Γ(Ω) + ‖w‖Vs
p,Γ(Ω) ≤ C‖f̃‖Vs

p,Γ(Ω).

Taking the infimum among all possible f̃ , the estimate follows. �

We conclude the discussion about well-posedness with a direct corollary of Proposition B.6 in
the more restrictive function spaces related to Hs(Ω + Γp).

Corollary B.7. Under the same conditions as in Proposition B.6, if λ /∈ Σs
p,Γ;q and f ∈ Hs

p,Γ(Ω),

the unique solution satisfies u ∈ Hs(Ω + Γp) and

‖u‖Hs(Ω+Γp) ≤ C‖f‖Hs
p,Γ(Ω).

Proof. Let f̃ ∈ Hs(Rn) such that f̃ ∈ [f ]. Then f̃ |Ω+Γp ∈ Vs
p,Γ(Ω) and

‖f̃‖Vs
p,Γ(Ω) ≤ ‖f̃‖Vs

p,Γ(R
n) ≤ C‖f̃‖Hs(Rn).

Arguing as in Proposition B.6, we construct ũ ∈ Hs(Rn) as ũ = w+ f̃ , where w ∈ H̃s(Ω) and

‖w‖Hs(Rn) ≤ C‖f̃‖Vs
p,Γ(Ω) ≤ C‖f̃‖Hs(Rn).
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This finally implies

‖ũ‖Hs(Rn) ≤ C‖f̃‖Hs(Rn).

The result follows by taking the infimum among all possible f̃ and defining u := ũ|Ω+Γp .

We emphasize again that u does not depend on the choice of f̃ (ũ does, but outside (Ω+Γp)\Ω)
which follows as in Proposition B.6. �

Lemma B.8. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1], Γ ⊂ Rn\{0} be an open, convex cone, Ω ⊂ Rn

be open, bounded, Lipschitz and q ∈ L∞(Ω) be such that 0 /∈ Σs
p,Γ;q. Let f ∈ Hs

p,Γ(Ω) and

let u ∈ Hs(Ω + Γp) be the solution to the exterior value problem from Corollary B.7. Then

u = P̃p,Γ;qf from Definition 5.18.

Proof. The proof works as the one of Lemma 3.9. It suffices to note that the constructions of u
in Corollary B.7 and Proposition 5.17 agree. �

B.4. The Dirichlet-to-Neumann operator. Based on the bilinear form Bs
q,Γ;q, we define the

Dirichlet-to-Neumann operator as follows:

Definition B.9 (Dirichlet-to-Neumann operator Λp,Γ;q). Let s ∈ (0, 1)\
{
1
2

}
, p ∈ [0, 1], q ∈

L∞(Ω) be such that 0 /∈ Σs
p,Γ;q and Bs

p,Γ;q be as in (57). We set

Λp,Γ;q : Hs
p,Γ(Ω) → H−s(Rn) : f 7→ Λp,Γ;qf,

with

〈Λp,Γ;qf, h〉 := Bs
p,Γ;q(uf , h) for any h ∈ Hs(Rn),(59)

where uf = P̃p,Γ;qf ∈ Hs(Ω + Γp).

We remark that in this definition, because of the domains of dependence in (57), there is no
need to consider an extension of uf . This makes possible to define Λp,Γ;q on Hs

p,Γ(Ω) and not

only on H̃s((Ω+ Γp)\Ω) as for Λ̃p,Γ;q in Definition 5.19. We also notice that the operator Λp,Γ;q

is bounded and well-defined, which follows from (58).

We next observe that it is possible to relate the Dirichlet-to-Neumann operators Λ̃p,Γ;q and
Λp,Γ;q under appropriate geometric assumptions.

Lemma B.10. Let s ∈ (0, 1)\
{
1
2

}
, p ∈ (0, 1), q ∈ L∞(Ω) be such that 0 /∈ Σs

p,Γ;q and Λp,Γ;q,

Λ̃p,Γ;q be as in Definitions B.9 and 5.19, respectively. Let W1,W2 ⊂ (Ω + Γp)\Ω and let f ∈

H̃s(W1). Then,

Λp,Γ;qf |W2 = Λ̃p,Γ;qf |W2

if one of the following conditions holds:

• W1 ⊂ (Ω± Γ)\(Ω∓ Γ) and W2 ⊂ (Ω∓ Γ)\(Ω± Γ),
• Wj + Γ ⊂ Ω + Γ for j ∈ {1, 2},
• W1 ∩ (W2 + Γ) = ∅.

Proof of Lemma B.10. We seek to prove that B̃s
p,Γ;q(uf , h) = Bs

p,Γ;q(uf , h) for h ∈ H̃s(W2) under
the stated geometric conditions on W1,W2. Indeed, by Proposition 5.17

B̃s
p,Γ;q(uf , h)−Bs

p,Γ;q(uf , h) = Bs
p,Γ;q(uf − f, h)−Bs

p,Γ;q(uf − f, h) + B̃s
p,Γ;q(f, h)−Bs

p,Γ;q(f, h).

Since uf − f ∈ H̃s(Ω), by Lemma B.3, for p ∈ (0, 1) it holds

B̃s
p,Γ;q(uf , h)−Bs

p,Γ;q(uf , h) = B̃s
p,Γ;q(f, h)−Bs

p,Γ;q(f, h)
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Now, using the definitions (57) and (43),

B̃s
p,Γ;q(f, h)−Bs

p,Γ;q(f, h)

= βs

ˆ

Rn\(Ω+Γp)

ˆ

Γp

f(x+ y)h(x− y)νp,Γ(y)dydx

+ βs

ˆ

Ω+Γp

ˆ

Γp

f(x)
(
h(x)− h(x− y)

)
νp,Γ(y)χRn\(Ω+Γp)

(x+ y)dydx

= βs

ˆ

W1

ˆ

Γp

f(x)
(
h(x)− h(x− y)

)
νp,Γ(y)χRn\(Ω+Γp)

(x + y)dydx

= βs

ˆ

W1∩W2

ˆ

Γp

f(x)h(x)νp,Γ(y)χRn\(Ω+Γp)
(x + y)dydx

− βs

ˆ

W1

ˆ

Γp

f(x)h(x− y)νp,Γ(y)χRn\(Ω+Γp)
(x+ y)dydx .

The first term vanishes if W1 ∩W2 = ∅ or if (W1 ∩W2) + Γp ⊂ Ω + Γp (so x + y ∈ Ω + Γp, see
Figure 3).

It is clear that the second term vanishes in any of the following cases:

• W1 + Γp ⊂ Ω+ Γp, since again in this case x+ y ∈ Ω+ Γp.
• W2 + Γp ⊂ Ω+ Γp, since (x− y) + 2y ∈ Ω+ Γp.
• W1∩ (W2+Γp) = ∅ or W2 ∩ (W1+Γ1−p) = ∅, since then f(x)h(x− y) = 0 for all x ∈ W1

and y ∈ Γp.

In general, the integral vanishes if for all x ∈ W1 and y ∈ Γp such that x + y /∈ Ω + Γp, one has
x− y ∈W2. This is in particular satisfied in the following further setting:

• W1 ⊂ (Ω + Γ)\(Ω − Γ) and W2 ⊂ (Ω − Γ)\(Ω + Γ) (or the other way around). In this
case, if x+ y /∈ Ω+Γp, then y ∈ −Γ and so x− y ∈ Ω+Γ, which does not intersect W2.

�

Remark B.11. We remark that the conditions given in Lemma B.10 are not exhaustive. As the
proof illustrates, it would for instance have been possible to impose any condition ensuring that
the two integrals giving the difference of the bilinear forms vanish.

Remark B.12. In the case p ∈ {0, 1}, we do not have a similar identification as above if
W2 ⊂ (Ω + Γ1−p)\Ω, which is the relevant region containing information about uf . Indeed,

by the previous discussion, if p ∈ {0, 1}, W1 ⊂ (Ω + Γp)\Ω and W2 ⊂ (Ω + Γ1−p)\Ω, then

B̃s
p,Γ;q(f, h) = Bs

p,Γ;q(f, h). However, by Lemma B.3, B̃s
p,Γ;q(uf − f, h) 6= Bs

p,Γ;q(uf − f, h) for
h 6= 0 supported in W2.

Last but not least, we remark that as for the bilinear form B̃p,Γ;q one could also study the

inverse problem for Bp,Γ;q. In the cases in which Λp,Γ;q = Λ̃p,Γ;q which for instance hold for W1

and W2 as in Lemma B.10, we may invoke the antilocality results from above. In general, the
settings however differ and we lack a good Alessandrini identity. We do not pursue this any
further here.

Appendix C. Technical Results on Domains

This appendix contains some technical results involving two-sided cones that are used in the
article. Throughout the whole section, we assume that C ⊂ Rn\{0} is a convex, non-empty, open
cone.
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Lemma C.1. Let Ω ⊂ Rn be a bounded differentiable domain. Then

Ω ⋐ C(Ω).

Proof. We argue by contradiction. Assume that ∂Ω is differentiable but Ω 6⋐ C(Ω). Since
Ω ⊂ C(Ω) but Ω 6⊂ C(Ω), there must exist a point x ∈ ∂Ω ∩ ∂C(Ω). Since ∂Ω is differentiable at
x, the tangent space T to Ω through x is a well-defined hyperplane.

We claim that there exists θ ∈ Sn−1 such that θ ∈ −C ∪ C but {x + tθ, t ∈ R} 6⊂ T . Indeed,
the opposite statement would mean C({x}) ⊆ T , which cannot be true because of the openness
of C. This implies that there exists y ∈ Ω such that y = x+ tθ for some t ∈ R. However, since we
are considering two-sided cones, we have x ∈ C({y}) ⊂ C(Ω), which contradicts the assumption
x ∈ ∂C(Ω). �

Remark C.2. The two-sidedness of C({y}) is essential for the validity of the above lemma. In
fact, for a one-sided cone one can easily cook up examples in which Ω ⋐ C(Ω) does not hold, as
shown in Figure 10.

Lemma C.3. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then

Hn−1
(
Ω ∩ (Rn\C(Ω))

)
= 0.

Proof. Since Ω ⊂ C(Ω), we have Ω ∩ (Rn\C(Ω)) = ∂Ω ∩ ∂C(Ω). We have already seen in the
proof of Lemma C.1 that if ∂Ω is differentiable at x, then x /∈ ∂C(Ω). This implies

∂Ω ∩ ∂C(Ω) ⊂ {x ∈ ∂Ω : ∂Ω is not differentiable at x}.

Finally, since ∂Ω is Lipschitz, by the Rademacher’s theorem it holds

Hn−1({x ∈ ∂Ω : ∂Ω is not differentiable at x}) = 0,

which concludes the proof. �

Lemma C.4. Let Ω ⊂ Rn be a connected, bounded, differentiable domain. For any U0 ⊂ Ω, let
Uj+1 := Ω ∩ C(Uj) for j ∈ N0. Then there exists an integer N ∈ N such that Uj = Ω for j ≥ N .

Proof. We argue by contradiction. Let us assume that there is an open set U0 ( Ω such that
Uj ( Ω for all j ∈ N, where Uj = C(Uj−1) ∩ Ω. Then, either

(i) there is an integer J ∈ N such that Uj = UJ ( Ω for all j ≥ J , or
(ii) Uj ( Uj+1 ( Ω for all j ∈ N0.

Step 1. If condition (i) is satisfied, then C(UJ)∩Ω = UJ ( Ω. Since Ω is connected, ∂UJ∩Ω 6= ∅.
Let z ∈ ∂UJ ∩ Ω and τ > 0 be such that Bτ (z) ⊂ Ω. For any x ∈ Bτ/2(z)\UJ , let us define

ǫ := sup{δ > 0 : Bδ(x) ⊂ Ω\UJ} > 0.

We know that Bǫ′(x) ⊂ C(Bǫ(x)) ∩ Ω for ǫ′ > ǫ small enough. Because of the choice of ǫ, there
must be y ∈ Bǫ′(x)∩UJ . However, this implies C({y})∩Bǫ(x) 6= ∅. In addition, C({y})∩Bǫ(x) ⊂
C(UJ)∩Ω = UJ , which implies Bǫ(x)∩UJ 6= ∅. Since this is absurd, condition (i) does not hold.

Step 2. If condition (ii) holds, we can find xj ∈ Uj+1\U j for all j ∈ N. Due to the boundedness

of Ω, there exists a subsequence {xjk}
∞
k=1 converging to x ∈ Ω. Firstly, we observe that C({x})∩

Ω 6= ∅. This is immediate if x ∈ Ω, while if x ∈ ∂Ω it follows from the differentiability of ∂Ω at x
and Lemma C.1. Secondly, we notice that, by construction, x /∈ U j for all j ∈ N0. In addition,

xj /∈ C({x})∩Ω. Indeed, if xj ∈ C({x})∩Ω, then x ∈ C({xj})∩Ω ⊂ C(Uj+1)∩Ω = U j+2, which
is false.

If y ∈ C({x}) ∩ Ω, then it holds y /∈ Uj for all j ∈ N, otherwise x ∈ C({y}) ∩ Ω ⊂ U j+1.
Moreover, xj /∈ C({y}), since the contrary would imply y ∈ C({xj}) ∩ Ω ⊂ Uj+2. Finally, let
ǫ > 0 be so small that Bǫ(x) ⊂ C({y}). Then we conclude that xj /∈ Bǫ(x) for all j ∈ N,
contradicting that limk→∞ xjk = x. �
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Ω

U1

(0, y1)

U0

(0, y0)

U2

C
α

β

Figure 14. Counterexample of Lemma C.4 for Lipschitz doimains, as explained
in Remark C.5.

Remark C.5. If Ω is Lipschitz but not differentiable, Lemma C.4 may not hold. Indeed, let us
consider the following 2-dimensional counterexample (see also Figure 14):

C = {(t cos θ, t sin θ) : t > 0, θ ∈ (−α, α)},

Ω = {(t sin θ, t cos θ) : t > 0, θ ∈ (−β, β), t cos θ < h}.

Let U0 be such that

U1 = C(U0) ∩ Ω =
{
(x, y) ∈ Ω : y > min{y0 + (tanα)x, y0 − (tanα)x}

}

for some y0 < h. By simple geometric calculations, we can infer

U2 = C(U1) ∩ Ω =
{
(x, y) ∈ Ω : y > min{y1 + (tanα)x, y1 − (tanα)x}

}
,

where

y1 = y0

(
(tanβ)−1 − tanα

(tanβ)−1 + tanα

)
.

Iterating this argument, it follows

Uj+1 =
{
(x, y) ∈ Ω : y > min{yj + (tanα)x, yj − (tanα)x}

}
,

with

yj = y0

(
(tanβ)−1 − tanα

(tanβ)−1 + tanα

)j

.

If (tanβ)−1 > tanα, i.e. α + β < π
2 , we have limj→∞ yj = 0, but 0 can not be achieved in a

finite number of steps
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[GFR19] Maŕıa Ángeles Garćıa-Ferrero and Angkana Rüland. Strong unique continuation for the higher order
fractional Laplacian. Mathematics in Engineering, 1(4):715–774, 2019.
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Journées équations aux dérivées partielles, pages 1–10, 2018.
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