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Abstract

Our modern world is teeming with non-biological agents,
whose growing complexity brings them so close to living be-
ings that they can be cataloged as artificial creatures, i.e., a
form of Artificial Life (ALife). Ranging from disembodied
intelligent agents to robots of conspicuous dimensions, all
these artifacts are united by the fact that they are designed,
built, and possibly trained by humans taking inspiration from
natural elements. Hence, humans play a fundamental role in
relation to ALife, both as creators and as final users, which
calls attention to the need of studying the mutual influence of
human and artificial life. Here we attempt an experimental in-
vestigation of the reciprocal effects of the human-ALife inter-
action. To this extent, we design an artificial world populated
by life-like creatures, and resort to open-ended evolution to
foster the creatures adaptation. We allow bidirectional com-
munication between the system and humans, who can observe
the artificial world and voluntarily choose to perform positive
or negative actions towards the creatures populating it; those
actions may have a short- or long-term impact on the artificial
creatures. Our experimental results show that the creatures
are capable of evolving under the influence of humans, even
though the impact of the interaction remains uncertain. In ad-
dition, we find that ALife gives rise to disparate feelings in
humans who interact with it, who are not always aware of the
importance of their conduct.

Introduction and related works
In the 1990s, the commercial craze of “Tamagotchi” (Clyde,
1998), a game where players nourish and care for virtual
pets, swept through the world. Albeit naive, that game is a
noteworthy instance of an Artificial Life (ALife) (Langton,
1997), i.e., a simulation of a living system, which does not
exist in isolation, but in deep entanglement with human life.
It also reveals that ALife is not completely detached from
humans, who might need to rethink their role and responsi-
bilities toward ALife. We already train artificial agents by
reinforcement or supervision: trained agents are notoriously
as biased as the datasets we feed them (Kasperkevic, 2015),
and examples abound1. For instance, chatbot Tay shifted
from lovely to toxic communication after a few hours of in-
teraction with users of a social network (Hunt, 2016). The

1https://github.com/daviddao/awful-ai

field of robotics is no exception to the case, and while robots,
a relevant example of ALife agents, are becoming perva-
sive in our society, we—the creators—define and influence
them (Pigozzi, 2022). One day in the future, a robot could
browse for videos of the very first robots that were built, ea-
ger to learn more about its ancestors. Suppose a video shows
up, displaying engineers that ruthlessly beat up and thrust a
robot in the attempt of testing its resilience (Vincent, 2019).
How brutal and condemnable would that act look to its elec-
tric eyes? Would our robotic brainchildren disown us and
label us “a virus” as Agent Smith (the villain, himself an
artificial creature) does in the “Matrix” movie (Wachowski
et al., 1999)? At the same time, how would such responsi-
bility affect the creators themselves?

Broadly speaking, when dealing with complex systems
involving humans and artificial agents, whose actions are
deeply intertwined, what results from the mutual interaction
of humans and ALife? In particular, do artificial agents react
to the actions of humans, displaying short-term adaptation
in response to stimuli? Do these actions influence the inher-
ited traits of artificial creatures, steering their evolutionary
path and long-term adaptation? And, conversely, are hu-
mans aware of their influence on ALife? Do they shift their
conduct accordingly?

We consider a system that addresses these questions in
a minimalist way. We design and implement an artificial
world (Figure 1), populated by virtual creatures that actively
search for food, and expose it to a pool of volunteer par-
ticipants in a human experiment. We consider three design
objectives: (a) interaction, that is bidirectional between hu-
man and ALife; (b) adaptation, of creatures to external stim-
uli, including human presence; (c) realism, of creatures to
look “familiar” and engaging for participants. Participants
interact with the creatures through actions that are either
“good” (placing food) or “bad” (eliminating a creature): we
then record the participants’ reactions. At the same time,
creatures can sense human presence. We achieve long-term
adaptation through artificial evolution, and, for the sake of
realism, we design the creatures to be life-like. As a result,
the goodness or badness of human actions can potentially

https://github.com/daviddao/awful-ai


Figure 1: Our artificial world: worm-like agents are crea-
tures that search for food (the green dots).

affect the evolutionary path of creatures, as well as their re-
lationship with humans. Humans, on the other side, can feel
emotions in the process. Participants thus play the role of
a “superior being”, absolute from any conditioning author-
ity (Milgram, 1963), with power of life and death upon the
creatures. Whether their actions will be good or bad is up
to them: a philosophical debate on human nature that goes
back to Thomas Hobbes (1651) and Jean-Jacques Rousseau
(1755), with their opposing views propagating through his-
tory.

Other studies crafted artificial worlds, e.g., Tierra (Ray,
1992), PolyWorld (Yaeger et al., 1994), and Avida (Ofria
and Wilke, 2004), with several different goals: they mostly
investigate questions related to evolutionary biology (Lenski
et al., 2003), ecology (Ventrella, 2005), open-ended evolu-
tion (Soros and Stanley, 2014), social learning (Bartoli et al.,
2020), or are sources of entertainment and gaming (Dewd-
ney, 1984; Grand and Cliff, 1998). Albeit fascinating, none
of these addresses the main research question of this pa-
per, i.e., the mutual influence of human life and ALife. Our
work also differs from multi-agent platforms, whose focus is
on optimizing multi-agent policies for a task (Suarez et al.,
2019; Terry et al., 2021).

The work that is the most similar to ours pivots around the
“Twitch Plays Robotics” platform of Bongard et al. (2018).
While paving the way for crowdsourcing robotics experi-
ments, it is, rather than an artificial world, an instance of
“interactive evolution” (with participants issuing reinforce-
ments to morphologically-evolving creatures), and does not
detail the influence of creatures on participants.

We instead concentrate on the bidirectionality of interac-
tion, and branch into two complementary studies: the first
aimed at quantifying the effects of human interaction on ar-
tificial creatures, and the second focused on surveying how
humans perceive and interface themselves with ALife. Con-
cerning the former, we simulate human actions on the sys-

tem and analyze the progress over time of some indexes,
whereas for the latter we perform a user study involving
a pool of volunteer participants interacting with the crea-
tures. The experimental results confirm the importance of
focusing on the bidirectionality of human-ALife interaction,
and open a way towards more in depth analyses and stud-
ies in the field. Not surprisingly, we find that an artificial
world subjected to human influence is capable of evolving,
yet the real impact of human behavior on it, be it positive or
negative, remains enigmatic. In addition, we discover two
main currents of thought among people who interface them-
selves with ALife: those who feel involved and are aware
of the consequences of their actions on an artificial world,
and those who perceive ALife as a not attention-worthy far-
fetched artifact.

The artificial world
Objectives
The aim of this work is to investigate the mutual influence
of human life and ALife. We introduce an artificial world,
populated by virtual creatures, that is suitable for such an
investigation. We consider three objectives:

Interaction. In order to study any bidirectional impact be-
tween human life and ALife, the artificial world must sup-
port interaction. Moreover, interaction follows two design
principles: (a) ergonomics, and (b) characterization. The
former makes interaction easy and accessible for humans,
while the latter is concerned with mapping an interaction
back to the human behavior that generated it, and, in this
study, classifying the interaction as either “good” or “bad”.
Last but not least, we remark that influence between human
life and ALife must be bidirectional. Thus, for any human
influence on ALife to happen, we require virtual creatures to
be able to sense the presence of a human observer.

Adaptation. Second, we require the creatures inhabiting
the artificial world to have the potential for adaptation to the
environment and over time. During their life, virtual crea-
tures undergo exposure to a set of stimuli, both “endoge-
nous” and “exogenous”: the former arise from the simu-
lation itself (e.g., presence of food), while the latter arise
from interaction with humans (e.g., good or bad actions). In
order to evaluate any impact of human life on ALife, crea-
tures should show adaptation to those stimuli, both in the
short- and in the long-term, the first being a form of action-
reaction, and the latter involving the development of more
favorable traits.

Realism. To incentive interaction, humans should be able
to relate with familiar entities. Creatures should then have
a realistic look, possibly resembling natural organisms. In
particular, they should have an appearance of “life” and en-
gage in life-like activities, in order to elicit any notion of AL-



ife in the observers. At the same time, creatures should not
be too realistic, or even human-like, to avoid the notorious
“uncanny valley” problem witnessed with highly-realistic
robots (i.e., uneasiness and revulsion in the observers) (Mori
et al., 2012).

Environment and creatures
The artificial world introduced in this paper is visually
two-dimensional, simulated in discrete time and continu-
ous space, enclosed within an impassable rectangle of size
420 × 240 m. The colorful virtual creatures that populate
it actively explore the space and hunt for food units lying
on the ground (Figure 1). Each creature is endowed with
a certain amount of energy, which dissipates at every time
step and replenishes once the creature eats food. If a crea-
tures depletes all of its energy, it dies and is removed from
the world; then, a new creature is born by mutating one of
the surviving creatures. Human observers may interact with
the creatures by nourishing them, i.e., placing food in their
proximity, (a “good” action) or eliminating some of them (a
“bad” action).

We implemented the project in the Java programming
language, building on top of the dyn4j2 physics engine,
for which we set the time step to ∆t = 1

60 s, no grav-
ity, and a linear speed damping coefficient that makes crea-
tures movement appear like happening in a fluid. We made
the project publicly available at https://gitlab.com/
step.lumumba/worm_simulator.

We represent each creature as a genotype, that we map to
a phenotype, i.e., the body and the brain of the creature.

Creature body. The creatures have a worm-like body con-
sists of a variable number of segments chained together,
starting from a “head” segment. Each segment is a circu-
lar mass of weight 10 kg and radius 1.5m and is connected
to up to two other segments with a joint that allows for some
rotation: as a result, the body can bend and appears flex-
ible. Two flagella, implemented as flexible strings of tiny
rectangles, extrude from each segment (see Figure 2a for a
close-up) and have a sensory function (detailed below) and
an aesthetic function. The genetic encoding of a body is a
numerical vector gmorph ∈ R5, which encodes the follow-
ing phenotypic traits: the number of segments, the number
of rectangles per flagellum, the length of rectangles of the
flagella, the body color, and the length of sensory memory.
We include color as a trait because it is neutral with respect
to selection and survival, and allows us to verify there is no
bias dictated by the representation or the evolution. For the
length of sensory memory, see next sub-section.

To ensure body traits lie in meaningful intervals (e.g.,
flagella do not disappear), we map each gene gi to the corre-
sponding phenotypic trait as pi =

1+g′
i

2 (pmax
i − pmin

i )+ pmin
i ,

2https://dyn4j.org

(a) Close-up of a virtual creature. (b) Creature with
smell sensors.

(c) Creatures casting proximity sensor rays (depicted in red).

Figure 2: Details of creatures populating our artificial world.

where g′i = min(max(gi,−1), 1): the first operand in the
multiplication ensures the value lies in [0, 1], and we then
linearly rescale it to fit the interval [pmin

i , pmax
i ]. After prelim-

inary experiments, we set the intervals to be {5, 6, . . . , 20},
{2, 3, . . . , 40}, [0.8, 1.8], and {0, 1, . . . , 9} for number of
segments, number of rectangles per flagellum, length of rect-
angles of the flagella, and color, respectively. For color, in-
tegers in {0, 1, . . . , 9} correspond to 10 possible colors.

By virtue of such morphological representation, creatures
are in effect “primitive” enough to dispense with unneces-
sary complexity and focus on the mutual influence of human
life and ALife; indeed, Mahoor et al. (2017) reported that the
more “intuitive” the morphology, the more engaged partici-
pants to crowd-sourced robotics experiments are. Moreover,
creatures do indeed recall natural organisms, in particular in-
vertebrates (e.g., annelids, whose body consists of multiple
segments), some of the simplest, most common, and most
widely studied animals on Earth (Stewart, 2005). Our artifi-
cial world thus satisfies the Realism objective.

Creature sensing. We equip every creature with proxim-
ity, smell, touch, energy, temperature, and human presence
sensors. Proximity sensors, depicted in Figure 2c, cast 9
rays from the head circle and return the (normalized) dis-
tance from the closest object (either food or creature), clip-
ping it to 1 if there is none. Two smell sensors perceive the
number of food units (over the total) in the right and left
semi-circumferences of radius 9m centered on the head, as
shown in Figure 2b. Three touch sensors per side perceive
whether one of three objects among food, other creatures,
and the creature itself touch any of the flagella for that side,

https://gitlab.com/step.lumumba/worm_simulator
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Figure 3: How creatures affect temperature, depicted as
shades of red at every empty space (the darker, the warmer).
Similarly, human observers condition temperature by mov-
ing their face across the screen.

and return 1 if yes, 0 if not. Energy sensor perceives the
current energy of the creature, rescaled in [0, 1]. Tempera-
ture and human presence sensors, described below in detail,
also return a value in [0, 1] each. For every sensor reading,
we also compute its trend over a window stretching T time
steps into the past, where T is the fifth (and last) morpho-
logical gene and is thus subject to evolution. In this way,
creatures can evolve some form of memory. Overall, crea-
tures sense the world through 2(9+2+3·2+1+1+1) = 40
values in [0, 1] at each time step.

Temperature and human presence sensors relate to the
central piece of this study, and deserve an in-depth treat-
ment. Temperature records the presence of “living” enti-
ties, either human or artificial, in the surrounding of a crea-
ture. For a simulation, we define the temperature matrix
H ∈ R+420×240, where 420 and 240 are the side lengths
of the artificial world. At each time step k of simulation,
we increment every hx,y ∈ H by τ if there is at least one
body segment whose center of mass lies within it. Then,
we diffuse temperature by averaging it over the nine neigh-
boring cells and multiplying by a damping coefficient α:

h
(k+1)
x,y = α

∑
x′,y′∈{−1,0,1} h

(k)

x+x′,y+y′

9 . Figure 3 is an instance
of how creatures affect temperature during a simulation.

Moreover, humans (if present) do affect temperature. If
a human observes the simulation on a computer screen, a
computer vision system captures an image from the we-
bcam placed over the screen and draws a bounding box
around their face: we then increment hxc,yc

by the area of
the bounding box, (xc, yc) being the coordinates of the cen-
ter of the bounding box rescaled considering the world and
captured image sizes. We remark that the area of the bound-
ing box enclosing the observer’s face, hence the tempera-
ture increase, depends on the proximity of the human to the
computer screen. For a given creature, the temperature sen-
sor perceives the average of the sub-matrix H temp ∈ Rm×m

centered on the head of the creature. After preliminary ex-
periments, we set τ = 150, α = 0.99, and m = 13. We
implemented face detection with the OpenCV library (Brad-

ski, 2000), using Haar Cascades (Viola and Jones, 2001) as
face detection algorithm.

Finally, the human presence sensor returns 1 if a human
is observing the simulation, i.e., if the a face is detected by
the webcam, and 0 otherwise.

By virtue of temperature and human presence sensors,
creatures can sense the presence and location of humans,
and thus affect one direction of the Interaction objective.
Along the same direction (i.e., from humans to creatures),
humans can influence the artificial world by placing food or
killing creatures with a mouse click, as we shall see in Sec-
tion “RQ2: human attitude towards ALife”. In the other di-
rection (i.e., from creatures to humans), the possible source
of influence stays in the artificial world being depicted on
the screen and hence being observable by humans.

Creature brain. We feed sensor readings and their trends
to a feed-forward, fully-connected neural network with 40
input neurons (one for every sensor reading) and 3 output
neurons, that correspond to the three possible actions for a
creature: move ahead, to the right, or to the left. At every
time step, we select the output having the highest absolute
value and apply it as a force in that direction to the head
circle. After preliminary experiments, we set one hidden
layer with 10 neurons and tanh as activation function for
all neurons. The genetic encoding for the controller is thus
a numerical vector gctrl ∈ R443 encoding the parameters of
the neural network.

The genotype of a creature is then the concatenation g =
[gmorph gctrl] ∈ R5+443=448. Evolution operates on the rep-
resentation g, in a way that we detail in the next sub-section.

Simulation
Simulation takes place in discrete time and continuous
space. At every time step, nagents creatures and nfood food
units populate the artificial world.

At the very beginning, we initialize nagents creatures by
sampling genotypes from [−1, 1]448, i.e., each gene gi ∼
U(−1, 1), mapping to the corresponding phenotypes, and
giving birth to creatures at random positions, while making
sure none of them overlap. At birth, we endow every crea-
ture with einit units of energy and set its generation to 0.

Then, at every time step of the simulation loop proceeds
as follows:

1. Each creature senses the environment and uses the brain
for processing sensor readings and producing an action.

2. The physics engine steps by applying the forces corre-
sponding to each creature’s action.

3. For each creature, if its head overlaps with a food unit, its
energy is incremented by efood units. Upon the food con-
sumption, the eaten food unit is removed from the world
and a new one spawns at a random position.



4. For each creature, the energy is decreased by estep units.
If energy of a creature drops to 0, the creature dies and
is removed from the world. As many food units as the
number of its body segments spawn at the creature last
position; to ensure a constant supply of food in the world,
as many food units are randomly removed from the world.

5. For every creature just dead, if any, a new creature is born
at a random position (making sure there is no overlap-
ping), and its energy is set to einit. With probability p, we
randomly initialize its genotype by sampling [−1, 1]448,
and set the generation to 0; with probability 1 − p we
perturb a parent genotype with Gaussian noise N (0, σ2),
to obtain a mutated copy of it, and set the generation to
that of the parent plus one. In the latter case, we select a
parent by performing roulette wheel selection (De Jong,
2016) on the age (i.e., number of time steps elapsed from
birth) of the creatures. In this way, we use age as a proxy
for fitness in our open-ended world, and ensure that the in-
dividuals most effective at surviving reproduce the most,
while keeping some diversity in the population by choos-
ing p > 0.

6. In the case of a human observer, they may interact with
the creatures by performing “good” (placing food) or
“bad” (eliminating a creature) actions, as we shall see in
Section “RQ2: human attitude towards ALife”.

By virtue of this procedure, our artificial world satis-
fies the basic conditions for evolution: selection of the
fittest, variation of the offspring, and heredity (Darwin,
2004; Lewontin, 1970). Remarkably, evolution is a well-
known example of an adaptation mechanism (Sipper et al.,
1997): creatures must evolve to changes in their stimuli,
including—in our case—human presence, leading us to sat-
isfy the Adaptation objective. We remark that, as a conse-
quence of the above procedure, both the number of creatures
and of food units remain constant. In this way, we prevent
the population from experiencing extinction before any in-
teraction with humans and subsequent adaptation have taken
place. After preliminary experiments, we set einit = 100,
efood = 20, efood = 0.03, σ2 = 0.35, and p = 0.1.

Experiments and discussion
We are interested in characterizing the mutual influence of
human and artificial life. To this end, we performed an ex-
perimental evaluation and a user study aimed at answering
the following two research questions:

RQ1 Does an artificial world subjected to human interac-
tion evolve differently than without human interac-
tion? Have “good” and “bad” human actions a dif-
ferent impact on the evolution?

RQ2 What is the attitude of humans towards ALife? In
other words, are they aware of their influence on ar-

tificial systems? If so, do they change their behavior
accordingly?

For addressing RQ1, we let our artificial world evolve un-
der the influence of humans, i.e., with humans performing
actions on it, and in the void, i.e., without human interac-
tions. To evaluate the changes in the system, we took into
consideration some indexes targeted at capturing variations
in the artificial creatures. To make the human interaction
long enough to impact on the evolution of our artificial crea-
tures, we made use of simulated humans, displaying either
good or bad behaviors.

Concerning RQ2, we designed a user study, with a pool
of volunteer participants that interact with the simulator. In
this case, we focused on appraising the attitude of humans
towards our artificial world, by interviewing them and by
examining the types of actions they conducted.

RQ1: ALife evolution under human influence
To answer to RQ1, we performed an experimental campaign
comprising three types of simulations. First we considered
an in-the-void simulation (Void), employed as a baseline,
where the virtual creatures are not subject to any exogenous
stimulus, i.e., there is no human interaction. For the other
two types of simulations, instead, we focused on estimating
the impact of humans on the evolution of the artificial world.
To this extent, we simulated human interaction with the arti-
ficial world at regular intervals during its evolution, to assess
if such interactions could steer the evolutionary path of the
system. We performed two variants of human-influenced
simulations, the first comprising only “good” simulated hu-
mans (Good), and the second involving only “bad” simu-
lated humans (Bad). We outline both variants in more detail
in the next paragraph. For each type of simulation, namely
Void, Good, and Bad, we let the system open-endedly evolve
for approximately 2.4 · 106 time steps (corresponding to ap-
proximately 3000 generations in the Void case). In all sim-
ulations, we set nagents = 10 and nfood = 35. For every type
of simulation, we performed 30 independent runs, i.e., based
on different random seeds, for a total of 3 · 30 = 90 runs.

For the experiments involving human intervention on the
artificial world, i.e., Good and Bad, we simulate humans by
replicating the aspects that characterize their interaction with
the system. As described in Section “The artificial world”,
the influence of humans is twofold, unraveling into a tem-
perature increase and in the possibility to perform active ac-
tions on the artificial world. To accurately capture both as-
pects, we repeat the following cycle every 20 000 time steps:
(1) we mimic a human approaching the artificial world by in-
creasing the temperature at a randomly chosen point of the
world by ∆τ = 50 000 for 1000 time steps (a new point
being selected at each time step), and (2) we perform some
actions, trying to counterfeit the behavior of a person inter-
acting with the creatures. The actions we simulate are dif-
ferent for Good and Bad, in order to emulate the activity of
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Figure 4: Median and interquartile ranges of three indexes: age a, traveled distance in the last 100 time steps d, and size s,
averaged across the population. We use a different color for each type of simulation (Void, Good, or Bad).

a stereotypically “good” or “bad” human. In particular, we
deem feeding creatures, i.e., placing food units near the head
of a creature, as a positive action, hence associated to Good,
while we consider killing a creature as a negative action,
thus performed only in Bad. In both cases, we randomly se-
lect ragents creatures to undergo the chosen action, i.e., the
feeding or the killing, with ragents randomly sampled from
{1, 2, 3} for every action.

In order to evaluate if evolution is actually taking place in
the artificial world, we consider some indexes, which should
capture the main features of the creatures. First, we consider
the creatures age a, i.e., the amount of time steps since their
birth, which should capture how well they adapted to sur-
vive in their environment. Then, to estimate movement, i.e.,
how lively creatures are, we examine the distance d traveled
by a creature in the last 100 time steps, instead of the total
distance as this indicator would be strongly polluted by how
long a creature survives. Last, we take into account the num-
ber of body segments composing a creature, i.e., its size s,
as a morphological indicator to enlighten us on which agents
features are more favored by evolution. For each index, we
computed its average value across the living creatures every
150 000 simulation time steps, yielding the averaged indexes
a, d, and s. We report the median and the interquartile range
of the aforementioned indexes throughout the runs in Fig-
ure 4.

From observing the plots of Figure 4, the answer to RQ1
is that evolution indeed takes place in all three types of sim-
ulation, steering the system in a clear direction for the three
indexes. Hence, we can affirm that the considered system is
suitable for studying the mutual influence of artificial crea-
tures and humans.

Focusing on each subplot, we can gain more insight into
different aspects of what is happening in the system. First,
concerning the average age a of the creatures, displayed in
Figure 4a, it appears to be rising with the progress of the

simulation. Thus, we can conclude that artificial creatures
are adapting to the environment, improving their survival
rate by becoming more skillful. However, it is unclear if
the creatures live longer because they have developed the
trait of hunting, i.e., moving to target food, or if they are just
randomly roaming the artificial world, thus maximizing the
likelihood of encountering a food unit. Figure 4b does not
show any apparent trend in this sense to support any of the
two hypotheses. Last, we can reason on the morphological
traits favored by evolution, by looking at Figure 4c. From
the plot it is not difficult to notice how creatures become
smaller as evolution progresses, as it is likely easier for them
to move, hence increasing the probability of coming across
food units.

To deepen our analysis and estimate the impact of hu-
man actions on ALife, we can study Figure 4 comparing the
trends corresponding to Void, Good, and Bad. Since none
of the plots shows significant differences among the colored
lines, we assume that none of the measured indexes is im-
pacted by human actions. In addition, the analysis of other
indicators, e.g., the length of flagella or the area covered by
creatures, here omitted for brevity, gave similar results as
the ones of Figure 4. However, we are cautious on declaring
that human actions do not affect ALife. In fact, the absence
of tangible outcomes could be caused by the too few simu-
lated human interventions on the system or by the random
selection of creatures to undergo the chosen actions.

RQ2: human attitude towards ALife
For providing an answer to the second research question,
we moved our focus away from the system, to concentrate
on the impact interacting with an artificial world has on hu-
mans. To this extent, we performed a user study involving of
36 unpaid volunteer participants, 12 females and 24 males,
ranging from 18 to 57 years old, who were made to interact
with the artificial world for a limited time span, and whose
mindset and perceptions were registered by the means of two



Question Answers

Do you think artificial life ex-
ists?

Yes (✓), I don’t know (?), No
(✗).

How will you behave towards
the creatures in the simula-
tion?

Positively (U), I am still
undecided (?), Negatively
(D).

Do you think artificial crea-
tures can suffer?

Yes (✓), Maybe (?), No (✗).

Table 1: Pre-interaction questionnaire.

questionnaires.
Concerning the human-system interaction, we aimed at

two goals: (a) arousing participants interest towards the ar-
tificial world, and (b) maintaining fairness and consistency
across evaluations. For achieving the first goal, instead of
employing a newly generated artificial world for each par-
ticipant, we let the system evolve in-the-void for 100 000
time steps before interfacing it with humans, with the aim of
having lively creatures displaying engaging traits. To tackle
the consistency objective, we saved the state of the system
(and of all the creatures populating it) after the preliminary
in-the-void evolution, and we restored it upon each external
interaction, to ensure every person was seeing the artificial
world from the same starting point. In addition, each partic-
ipant was given the same amount of time to interact with the
system, which we set to 5min. We remark that we did not
request participants to perform actions or even to pay atten-
tion for the entire duration of the experiment: if they were
not interested anymore they could just sit idle and avoid ac-
tive communication with the artificial world.

Since the ultimate goal of this experimentation was to as-
sess the human perception of ALife and the attitude of hu-
mans towards artificial creatures, we gave great importance
to registering the actions people performed in the simulation,
together with their mindset. For the first, we simply recorded
every action a person effected on the artificial world, tak-
ing note of the time, the location, and the type of action,
i.e., placing food or killing a creature. Concerning the lat-
ter, we interviewed the participants before and after the ex-
periments, asking them to fill out two short questionnaires.
The pre-interaction questionnaire, reported in Table 1, aimed
at evaluating the general approach towards ALife, together
with the expected behavior towards creatures populating an
artificial world. Similarly, we designed the post-interaction
questionnaire, described in Table 2, to capture the feelings
after interacting with ALife and to let participants self-assess
their conduct.

We display aggregations of the collected data in Figures 5
to 7. First, we correlated the results gathered from the first
question of both questionnaires, i.e., pre-interaction “Do you
think artificial life exists?” and post-interaction “How would
you rate your perceived involvement?”, obtaining the heat
map of Figure 5. This is the first noteworthy result of our

Question Answers

How would you rate your per-
ceived involvement?

1, 2, 3, 4, 5.

How would you define your
behavior towards the crea-
tures in the simulation?

Very Positive (UU),
Fairly Positive (U), Fairly
Negative (D), Very Nega-
tive (DD).

Do you think you have hurt
these creatures?

Yes, definitely (✓✓), Yes (✓),
I don’t know (?), Not really
(✗), Definitely not (✗✗).

If you have killed any crea-
ture, why have you?

-

Table 2: Post-interaction questionnaire.
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Figure 5: Relationship between participants views on the
existence of ALife (pre-interaction “Do you think ALife ex-
ists?”, on the y-axis) and their perceived involvement in the
experiment (post-interaction “How would you rate your per-
ceived involvement?”, on the x-axis).

study: participants who believe in the existence of ALife
tend to feel more involved when interacting with artificial
creatures. In particular, we speculate that such people per-
ceive the importance of their role and the influence of their
actions on the artificial world, thus feeling more concerned
with it and more prone to actively interact with artificial
creatures.

Moving on to Figure 6, we report the relationship be-
tween participants planned behavior (pre-interaction “How
will you behave towards the creatures in the simulation?”),
their self-assessed behavior (post-interaction “How would
you define your behavior towards the creatures in the sim-
ulation?”), and the ratio of positive actions performed by
each participant. The foremost observation we can make
from such box plots, is that nobody decided to act negatively
before interacting with the artificial world, which reveals a
general tendency to avoid opting for negative actions in the
first place. Such tendency is also confirmed by the overall
ratio of good actions performed, which is always above 0.7.
Focusing more on how participants rated their own conduct,
we can notice that they are generally aware of the impact of
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Figure 6: Relationship between participants planned behav-
ior (“How will you behave towards the creatures in the sim-
ulation?”, color), self-assessed behavior (“How would you
define your behavior towards the creatures in the simula-
tion?”, x-axis), and the ratio of good actions performed (y-
axis).

their actions: those who described their behavior as fairly-
negative (D) show in general a lower ratio of good actions.
Last, we can reason on participants coherence: in all cases
those who decided to act positively towards the creatures in
the artificial world (U) show an averagely higher ratio of
good actions performed than those who were undecided (?).

Another thought-provoking result is shown in Figure 7,
where we report the results related to the participants per-
ception of ALife suffering. From this figure, we note that the
participants who perceive the creatures as alive, i.e., able to
suffer, behave accordingly, trying to feed them and not to kill
them. For the others, instead, the lower ratio of good actions
performed reflects their perception of the creatures as a non-
living artifact. At the same time, participants who performed
more positive actions still believe they hurt the creatures far
more than those who acted negatively. This, in our opin-
ion, highlights how some people are extremely disconnected
from ALife, and they consider it as a mere artifact. These
results are in line with (Bongard and Anetsberger, 2016),
which found that unpaid participants to a crowd-sourcing
robotics experiment provided honest feedback.

Last, we examined the answers to the post-interaction
question “If you have killed any creature, why have you?”
to immerse ourselves in the motivations pushing participants
to eliminate a creature from the artificial world. The col-
lected responses were disparate, but they were mainly clus-
tered into three categories: (a) curiosity, (b) mistakes, or
(c) will to remove creatures displaying traits which people
disliked. Among the listed categories, the first two ones
were expected and, to us, reflect normal traits of human per-
sonalities. Conversely, the last answer is more disturbing.

Summing up, finding an answer to RQ2 is not straightfor-
ward. The experimental outcomes suggest that humans have
mixed feelings with respect to ALife: some believe in its
existence, feel involved when interacting with it, recognize
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Figure 7: Relationship between participants feelings con-
cerning the creatures ability to suffer (“Do you think artifi-
cial creatures can suffer?”, color), the perception about hurt-
ing them (“Do you think you have hurt these creatures?”,
x-axis), and the ratio of good actions performed (y-axis).

their impact, and tend to act positively, while others perceive
ALife as a pure fiction, not really worthy of attention and
caution upon interaction.

Concluding remarks

We studied the mutual influence between human and Artifi-
cial Life (ALife) from two symmetrical perspectives. First,
we aimed at assessing the impact of an external superior en-
tity on an artificial world, measuring if the evolutionary path
of the system could be steered by human actions on it, and
if the creatures populating it would adapt to the external in-
fluence, be it positive or negative. Furthermore, we tried to
characterize the mindset and the behavior of people inter-
acting with an artificial world where they played the role of
superior entities yielding power of life and death upon its
creatures.

To this end, we designed an artificial world based on the
pillars of interaction, adaptation, and realism, and we per-
formed a twofold experimental evaluation including real and
simulated humans, focusing on the system evolution and on
the human attitude.

Our results show that our artificial world is capable of
evolving in the presence of an external influence, yet it is
hard to appraise the impact of people on artificial creatures.
Moreover, we find both positively involved cooperative atti-
tudes and fairly detached negative perceptions with respect
to ALife among participants. We believe our work stresses
how delicate and contradictory is the relationship between
the human and the artificial, the living and the machine. In
the future, we plan to scale our experiment and carry on
deeper analyses by involving more participants and encom-
passing expanded psychological and philosophical valida-
tions.
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