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Abstract 
 

Increasing traffic flows on road infrastructures and the associated comfort and safety problems have led 
to an increased risk of accidents for road users. To take the proper corrective actions, it is fundamental to 
analyze the accident phenomenon in all its aspects. The purpose of the current paper was the development 
of an accident prediction model for rural road segments of Friuli-Venezia Giulia (FVG) Region. The model 
predicts the accident frequency as a function of Annual Average Daily Traffic (AADT), segment length, 
and both geometrical and environmental features related to the targeted road segment. The procedure is 
based on the Empirical Bayes (EB) method. The statistical model used to express the road segments’ safety 
was the multivariate regression structure of the Safety Performance Functions. Results of a CURE plots 
analysis verified that the model is highly reliable in predicting the accident dataset for AADT up to 12500 
vehicles per day. 
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1. Introduction 

The health of a community is based both on its environment safety and the quality of 
its members relationships. In this context, mobility plays a crucial role in terms of 
personal safety, public health, and environmental consequences. The continuous growth 
in travel needs over time has led to an exponential increase in the demand for both 
individual and collective transport. Road infrastructure has been part of this evolution as 
road transport is the most widely used for moving people and goods. In particular, the 
increase in traffic leads to an increased risk of accidents on road infrastructures, that is 
more pronounced if these are unable to handle the volume of traffic and/or are poorly 
designed or maintained. Road system interacts with the environment by means of the 
"Road-Vehicle-Driver" trinomial (AASHTO, 2014). Various aspects of this road system 
must be considered, ranging from problems related to environmental impact to purely 
operational aspects.  

In 2001, the European Union (EU) published an action program intended to reduce the 
number of accidents with the goal of a 50% reduction by 2010 and this goal has been 
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fully achieved. In 2010, the EU renewed its effort in improving road safety by setting a 
new goal: a 50% reduction in road deaths by 2020. Comparing 2018 with 2010 (the 
baseline year for road safety), fatalities were reduced by 21% in Europe and 19% in Italy. 
From 2001 to 2010, in Friuli Venezia Giulia (FVG) (CMRSS, 2016), there was a 
reduction in road fatalities (-50.2%) higher than the national average (-42.0%), whereas 
from 2010 to 2018 there were a reduction of -25.2% and -19%, respectively. Moreover, 
from 2010 to 2018, the fatality rate per 100 accidents decreased from 2.6 to 2.3 deaths in 
the region, whereas the national average stayed basically the same (1.9).  

The most serious accidents occurred on highways and rural roads. In order to achieve 
the objectives set, along with identifying strategies to remove or mitigate risk factors, in 
FVG efforts are focused on improving the road safety management system. 

2. Methodology 

To evaluate the effectiveness of a mitigation intervention, it is necessary to organize 
the analysis into two steps: estimating the expected accident frequency and predicting the 
accidents number. These problems can be solved by means of the Empirical Bayes (EB) 
approach (Hauer et al., 2002). It allows the regression-to-the-mean phenomenon to be 
solved and the number of accidents to be predicted for each reference period. To 
implement this methodology, it is essential to define a reference population, i.e., a group 
of sites that share the same safety characteristics with the analyzed road.  

For each location j, assigning kj and Kj as the predicted and recorded accidents in the 
reference period respectively, and denoting K as the accidents number occurred at the 
case-study site, a subset of the population consisting of the roads where exactly K 
collisions occurred and whose mean and variance are 𝐸 = {𝑘|𝐾} and 𝑉𝐴𝑅 = {𝑘|𝐾} can be 
built. Since the case-study site has the same characteristics and the same accidents number 
as those belonging to the subgroup, the number of predicted accidents k is also expected 
to be coincident.  

Accidents are rare and unpredictable events so, for a given site, the accident frequency 
naturally fluctuates over time. For this reason, the average "short-term" accident 
frequency can significantly change from the "long-term" one. This trend is known as 
"Regression-to-Mean" (RTM) and it is also associated with the high probability that a 
low-frequency period will be followed by a high-frequency one. Neglecting the RTM 
phenomenon can lead to errors known as "RTM bias" or "selection bias". For this reason, 
it is advisable to conduct analyses based on accident frequency data observed over a long 
period of time (AASHTO, 2014).  

To perform a statistical evaluation of safety performance, it is necessary to acquire data 
on accidents that occurred on the road network under investigation, such as accident type, 
date and time of the event, weather and pavement surface conditions, number of vehicles 
involved and number of injuries and/or fatalities. For this purpose, FVG Region has 
established the Regional Road Safety Monitoring Centre (CRMSS, 2016) aimed at 
collecting and processing accidents data recorded by the Police and linking them to the 
relevant health databases. This has resulted in an Integrated Monitoring System called 
MITRIS.  

Once the site to be investigated has been located, it was necessary to select the accidents 
occurred in the surrounding area; to do this, the partitioning into arcs and nodes is used. 
It was also necessary to identify the road segments proper length in order to model the 
case-study accident phenomenon. Excessive length could result in a very low 
concentration of accidents; conversely, using a too short length, could result in most 
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segments showing zero accidents (not very significant for the analysis purposes). It was 
decided to use a constant length of the road segments equal to 1000 m.  

As shown in figure 1, the focus was on rural road segments covered by the TrIM station 
network, under the responsibility of the company FVG Strade S.p.A, and characterized 
according to Annual Average Daily Traffic (AADT). FVG model proposed here is 
presented as a case study, but the methodology used can be easily extended to other 
investigation sites. 
 

 
Figure 1: Road segments investigated. 

3. Modeling 

3.1 Background 
 

Accident Prediction Models (APMs) are reliable tools for performing quantitative 
safety assessment; they are supported by mathematical equations that allow road 
engineers and national road authorities to correlate the number of accidents expected at a 
specific site with its geometric and environmental characteristics (Yannis et al., 2016). 
They also allow preventive interventions evaluation to be performed by estimating their 
safety benefits and their execution priorities. The APM proposed by the Highway Safety 
Manual (HSM) is a widely used approach to estimate the average accident frequency of 
a specific network or site. According to this procedure, the baseline accident frequency 
of a segment can be estimated by applying a regression model to accident data observed 
on a large number of sites.  

Regression equations (also called Safety Performance Functions – SPFs (Baldo and 
Miani, 2020)) are presented for several baseline conditions that account for the specific 
geometric design and traffic control characteristics of the baseline site. Under these 
conditions, the accident frequency depends only on the AADT and segment length 
(AASHTO, 2014).  

In order to account for the different geometric design and traffic control characteristics 
of the case-study site, Crash Modification Factors (CMFs) are introduced. Such 
multiplying factors are used to adjust the accident frequency with regard to the differences 
between the baseline situation and the case-study. They are usually identified by 
estimating the impact that an intervention is expected to have on safety by means of a 
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Before-After approach (La Torre et al., 2019). Many factors affect the accident frequency: 
climate, driver behavior, accident reporting method, etc. Therefore, a calibration factor 
(C) is usually implemented to improve HSM model prediction accuracy when applied to 
different road networks. The formulation of an APM by means of a SPF consists in the 
development of a statistical model that provides estimates of the average accident 
frequency of a unit (road segment, crossing, etc.) as a function of its features (traffic, 
geometry). Among the different statistical techniques, multivariate analysis has assumed 
a relevant importance in the accidents analysis.  

The first models developed with this technique were based on multiple linear regression 
while the approach currently in use is based on the generalized linear model (GLM) 
technique, which allows linear modeling to be extended to stochastic variables that are 
not normally distributed with a constant variance. Within stochastic processes, the 
accidents frequency at a specific location is generally treated as a random variable 
distributed according to the Poisson distribution and with a negative binomial error 
structure (Roque and Cardoso, 2014).  

The proposed accident prediction model consists of a basic SPF (Donnell et al., 2014) 
developed as a function of AADT combined with CMFs. It is developed using a 
generalized linear modeling approach, assuming an error structure described by a 
negative binomial distribution. The full model was then calibrated based on the total 
number of accidents observed in the full dataset. 
 

3.2 APM modeling 
 
APMs were developed according to the following scenario: 
 

Road type Single carriageway 
Site type Rural section (excluding crossings, junctions, etc.) 
Section One lane for each direction 

Accident type All accidents 
Accident 
severity 

Accidents with fatalities, with injuries, and with only property 
damage 

 
The model to estimate the predicted average accident frequency (𝑁௣௥௘ௗ௜௖௧௘ௗ) was 

developed following the HSM approach, combining both good flexibility and adaptability 
to local conditions with reliable accident prediction capabilities. It consists of a base SPF 
multiplied by CMFs and a calibration factor C, according to the equation: 

 
 𝑁௣௥௘ௗ௜௖௧௘ௗ,௫ = 𝑁௦௣௙,௫ ∙ (𝐶𝑀𝐹ଵ௫ ∙ 𝐶𝑀𝐹ଶ௫ … ∙ 𝐶𝑀𝐹௜௫) ∙ 𝐶௫ (1) 
where: 
 

𝑥 Specific road segment 

𝑁௣௥௘ௗ௜௖௧௘ௗ,௫ Expected average accident frequency for the case-study road section 
(referred to a specific year) 

𝑁௦௣௙,௫ Predicted average accident frequency for the case-study road section 
determined for base conditions  

𝐶𝑀𝐹௜௫ Crash modification factors specific to SPF for road section 

𝐶௫ 
Calibration factor to adjust the SPF to local conditions for road 
section 
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Since the dataset size was relatively limited, focus was on three main parameters: road 

width, road type, and road hazard level. Sites analyzed are straight sections of main rural 
roads belonging to the FVG road network: they all have a homogeneous length of 1 km. 
The key factors behind the present study are: 

Accident Frequency, defined as the average number of accidents that occurred during 
the 10-year time period. It is calculated as: 

 

 𝑓௝ =
𝑁௝

𝑛
 (2) 

 
where: 
 

𝑓௝ Accident frequency of site j (accidents/year) 

𝑁௝ Number of accidents occurred at the j-th site during the analysis 
period 

𝑛 Number of years composing the analysis period 
 
Accident Rate, defined as the ratio between the number of accidents recorded on a given 

section in a specific time period and any exposure measure. In road safety studies, the 
most commonly used exposure measure is traffic volume. Therefore, the accident rate is 
calculated as: 

 

 𝑅௝ =
𝑓௝  10଺

365,25 𝑛 𝐿௝  𝑄௝
 (3) 

 
where: 
 

𝑅௝ Accident rate of j-th site (accidents/million vehicles per km) 

𝐿௝ Length (km) of j-th road section belonging to the reference 
population 

𝑄௝ AADT value of j-th site (vehicles/day) 
 

Annual Average Daily Traffic (AADT), obtained from the combination of heavy and 
light vehicles number passing through a given road section for a year divided by 365 days.  

Shoulder size, defined as the part of the road free from any obstacle (vertical signs, 
reflectors, restraint devices), between the roadway edge and the nearest of the following 
longitudinal elements: sidewalk, central reservation, embankment, inner edge of the 
bump, upper edge of the embankment. 

Road Hazard Rating (RHR), evaluated on a scale of seven possible levels, represent the 
different scenarios that can occur beyond the end of the roadway. They must be 
considered because they also affect accidents from the driver's psychological viewpoint. 

 
3.3 Classes identification 

 
By statistically analyzing the available dataset, standard conditions were identified 

using frequency distribution plots for each analysis variable. Road sections where the 
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CMF is within ± 10% of the calculated maximum value are considered standard and are 
used for baseline model development. After defining the standard conditions for each 
analyzed variable and evaluating the corresponding CMF values, a correction coefficient 
was calculated to adjust the SPFs for conditions different from the HSM baseline 
(AASHTO, 2014) according to: 

 

 ෑ 𝐶𝑀𝐹௜

௡

௜ୀଵ
 (4) 

 
Parameters described in the previous paragraph were then calculated, defining 

homogeneous classes of data so that road segments belonging to the same class would 
have the same characteristics.  

To define the classes related to shoulder size, it was determined how often a certain 
value of shoulder occurs in the available data; it was observed that the frequencies are 
nearly in accordance with a Gaussian distribution. Subsequently, road segments evaluated 
as critical were identified for each class by means of the following procedure. Road 
segments were sorted in descending order with respect to accident frequency value within 
each reference population. A maximum accidental frequency was established for each 
reference population. In this way, by comparing it with the accidental frequency of the 
investigated sites, it became possible to identify those that showed too high and therefore 
not acceptable risk levels.  

For each reference population, since no nationally collected frequency values are 
available, critical accidental frequency can be calculated according to: 

 

 𝑓௖௥௣ =  𝑓௠௣ + 𝐾ඨ
𝑛௘ 𝑓௠௣ 10଺

365,25 𝑛 ∑ ൫𝐿௝  𝑄௝൯
௡೐

௝ୀଵ

+
𝑛௘ 10଺

730,5 𝑛 ∑ ൫𝐿௝  𝑄௝൯
௡೐

௝ୀଵ

 (5) 

 
where: 
 

𝑓௖௥௣ Critical accident frequency of the reference population the site 
belongs to 

𝑓௠௣ Average accident frequency of the reference population 
(accidents/year) 

𝐾 
Probability constant equal to: 1,036 for an 85% confidence level; 
1,282 for a 90%; 1,645 for a 95%; 2,326 for a 99%; 

𝑛௘ Number of elements belonging to the reference population 
 
For each investigated site, the above-mentioned factors were determined by calculating 

the overall mean and then the critical indicator assuming a Poisson distribution and a 
confidence level of 85%. 

 
 

3.4 Model fitting 
 
The baseline SPF was identified by means of negative binomial regression models 

estimated using a generalized linear model technique (Dong et al., 2014). In fact, 
according to the HSM, the response variable is assumed to follow a negative binomial 
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distribution, allowing for data over-dispersion, whereas link function is assumed to be 
logarithmic.  

To correlate the accident frequency with the characteristics outlined in the above 
paragraphs, the accident frequency for sites with baseline conditions (𝑁௦௣௙,௫) has been 
identified. To do this, a statistical data analysis software, called R, was employed. It 
returned an intercept value and a coefficient to be applied to the AADT (𝑏஺஺஽்௦௘௚௠௘௡௧௦) 
equal to 1,430 and 8,557 ∙ 10ିହ, respectively.  

Using Equation 1 and the results obtained from the software, the accident frequency 
related to average daily traffic for sites with baseline conditions (grassed shoulder with a 
hazard level of 3 and less than 1 meter wide) is calculated as: 

 
 𝑁௦௣௙,௫ = 𝑒ଵ,ସଷ଴ା଼,ହହ଻∙ଵ଴షఱ∙஺஺஽் (6) 
 
The coefficient of determination R2 was determined to evaluate the statistical accuracy 

of the results. In addition, Cumulative Residuals (CURE) plots were generated to visually 
figure out if and where the model overestimates or underestimates the actual data. By 
sorting data according to traffic volumes and calculating for each site the difference 
between accidents recorded and those predicted, cumulative residuals trend can be 
plotted. An increasing graph refers to areas where the observed accidents are greater than 
those predicted, therefore where the model equation underestimates the results. 
Conversely, a decreasing graph refers to areas where there is an overestimation of the 
results. A fluctuation of the CURE plot is acceptable as long as it is limited within the 
equation curves: 

 

 ±2𝜎௦
ᇱ(𝑖) = 2 ∙ ቌ±𝜎௦(𝑖)ඨ1 −

𝜎௦
ଶ(𝑖)

𝜎௦
ଶ(𝑛)

ቍ (7) 

 
where 𝜎௦(𝑖) and 𝜎௦(𝑛) are the standard deviations of i-th and n-th element (the last in 

terms of AADT in ascending order), respectively. 
 

3.5 Crash Modification and Calibration Factors definition 
 
To account for site-specific conditions that differ from the base conditions, CMFs have 

been defined. CMF estimation involves calculating the ratio between averaged accident 
frequency of the segments belonging to the base class and that of the segments belonging 
to the i-th class analyzed. 

 

 𝐶𝑀𝐹 =
𝑁௪௜௧௛

𝑁௪௜௧௛௢௨௧
 (8) 

 
 
where: 
 
 
 



European Transport \ Trasporti Europei (2023) Issue 91, Paper n° 6, ISSN 1825-3997 
 

 

 8 

𝑁௪௜௧௛ 
averaged accident frequency of the segments belonging to the base 
class 

𝑁௪௜௧௛௢௨௧ 
averaged accident frequency of the segments belonging to the i-th 
class analyzed 

 
When HSM model is transferred to road networks different from the one which the 

model was developed for, a calibration factor C is usually considered. It is defined as the 
ratio between the observed accidents (𝑁௢௕௦) and the accidents predicted by the 
uncalibrated model (𝑁௣௥௘ௗ). 

 

 𝐶 =
∑ ∑ 𝑁௢௕௦,௜௝

௔௟௟௬௘௔௥௦
௝ୀଵ

௔௟௟௦௜௧௘௦
௜ୀଵ

∑ ∑ 𝑁௣௥௘ௗ,௜௝
௔௟௟௬௘௔௥௦
௝ୀଵ

௔௟௟௦௜௧௘௦
௜ୀଵ

 (9) 

 
The calculated calibration factor is equal to 0.998 (this value may change for a different 

network). Since it is slightly less than 1, the model tends to slightly overestimate the 
accident frequency. Then, the model was validated by applying calibration and crash 
modification factors to all road sections. 

 

 
Figure 2: Cumulative residuals plot model. 

 
For an AADT between 1000 and 5000 vehicles per day, the model overestimates 

accident frequency; between 5000 and 7000 the trend is reversed; above this threshold, 
predicted frequencies are again higher than the observed (Figure 2).  

Figure 3 shows a correlation value between the predicted data of 0.309, consistent with 
the low correlation shown between the observed data and the relatively small sample size.  
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Figure 3: Accident frequency vs AADT. 

 
Figure 4 shows the observed and predicted accident frequencies for the defined model; 

the model underestimates the accidents number in sections where the observed arrests are 
higher than the average values.  

Finally, Figure 5 shows a non-random residuals distribution, typical of negative 
binomial models in which residuals increase as predicted accidents increase. 

 

 
Figure 4: Predicted frequency vs observed frequency. 
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Figure 5: Residuals distribution. 

 

4. Conclusions 

The methodology developed in the current study allows the accident rate of a main rural 
road with specific geometric features to be estimated. The analysis has been characterized 
by the identification of each road segment main properties, focusing on accident 
frequency and accident rate. This allowed different sites to be classified according to their 
hazard level. CURE plots and correlation coefficients obtained confirm that the model 
correctly describes the available dataset up to AADT values of 12500 vehicles/day. This 
model has been applied to real values coming from FVG road network and provides a 
useful tool to perform safety assessments. It allows critical sites, i.e., those with a high 
accident frequency with respect to traffic volumes, to be identified. The model can also 
be used for new sites preliminary assessment, as well as a decision-making tool among 
multiple realization possibilities. A limitation of this approach is represented by the 
randomness of the accident data. Considering the same factors such as traffic flow, 
geometric characteristics and type of users, different accidents values can potentially be 
found. Finally, the model does not account for the human factor represented by driver 
behavior; however, this feature can be analyzed for further investigations. 
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