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Abstract The onset in the last 15 years of behavioral epidemiology has opened
many new avenues for epidemiological modelers. In this manuscript we first review
two classes of behavioral epidemiology models for vaccine preventable diseases,
namely behaviour-implicit SIR models with prevalence-dependent vaccination (at
birth and among older individuals), and prevalence-dependent contact rate.

Subsequently, we briefly propose a general framework of behavior–dependent
nonlinear and linear Forces of Infection (FoI) valid for a vast family of infectious
diseases, and including delays and ‘epidemic memory’ effects.

Finally and mainly, we develop a new general behavioral SIR model. This
model combines the two aforementioned types of behavioral phenomena, previously
considered only separately, into a single unified model for behavioral responses. The
resulting model allows to develop a general phenomenological theory of the effects
of behavioral responses within SIR models for endemic infections. In particular,
the model allows to complete the picture about the complicate interplay between
different behavioral responses acting on different epidemiological parameters in
triggering sustained oscillations of vaccine coverage, risky behavior, and infection
prevalence.
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1 Introduction

The birth of mathematical and computational epidemiology dates back to a century
ago about, when a few mathematical pioneers developed the main cornerstone
ideas and models of the new discipline [21, 29]. Their ground-breaking idea
lied in the description of the key process namely, infection transmission from
an infected to a susceptible individual, by the law of mass action imported from
Statistical Mechanics. Accordingly, contagion is abstracted as a chemical reaction
that can or cannot occur (with a certain probability) upon the random encounter
of two individuals. Social contacts between individuals are in their turn abstracted:
individuals contact each other at random, as the particles of a perfect gas colliding
in a box [7].

In particular, still owing to the Statistical Mechanics paradigm, the two key
parameters, namely the contact rate per individual, and the transmission rate per
contact, are taken as natural constants of human behavior, possibly mirroring the
social characteristics of a given community or setting, at a certain time moment.

Building on extensions of this simple idea, more recent pioneering contributions
aiming to better integrate models with data [2, 19, 20], have allowed mathematical
models of infectious diseases to leave their traditional, abstract, bio-mathematical
environment, to become central supporting tools for public health decisions. Main
instances are for example the determination of the duration of school closure during
a pandemic outbreak, or the fraction of new-born children to be immunized for a
vaccine-preventable infection, as is the case of measles and pertussis. This critical
role has conferred to mathematical epidemiology a prominent role in policy making,
by allowing a substantial advance of public health as a scientific discipline.

Some of contemporary models are highly sophisticated in both their math-
ematical/computational structure, and in their data requirements [26]. In these
sophisticated models, the patterns of social contacts with which individuals contact
each other, classified according to a range of characteristics (e.g. age, level of
social/sexual activity, etc.) are the key determinants of the transmission of both
close-contact infections, as influenza or measles, and of sexually transmitted
infections (STIs), such as HIV/AIDS.

Nonetheless, as it was pointed out [17], even in such highly sophisticated models
there remained a key missing layer: the humans’ behavior. Indeed, even these
realistic models continue to treat contact and transmission rates as natural constants,
exactly in the same way as the simple SIR model. This means that individuals’ social
behavior is totally unaffected by the state of the disease. Briefly, this means for
example that during an epidemic outbreak individuals will continue to contact each
other at the same rate regardless of how low or high is the perceived risk of acquiring
infection or even of dying from it. As contact patterns are usually measured from
normal situations [27], the resulting models are therefore unlikely to apply under
the complicate and stressed social conditions that might result during a dangerous
epidemic or a during a period of panic raised by a pandemic threat [17].
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Similarly, the models used in the current public health practice to evaluate the
impact of childhood immunization programs most often treat vaccine uptake as
a constant [2]. This implies to postulate that the vaccination coverage prevailing
in the community is totally unaffected by individuals’ risk perceptions about the
disease and the vaccine. Such an hypothesis is at odd with the fact it is the degree
of adhesion of the public that will ultimately determine the success of the program,
especially when the program is voluntary or when laws for mandatory vaccines are
not carefully enforced.

Clearly, this static human behavior, which is the ultimate legacy of the Statistical
Mechanics paradigm, is an unrealistic abstraction, which at best can apply in
some particular situations (e.g. an epidemics of a non-threatening and non-costly
infection). Indeed, by their very nature, humans are neither static nor passive.
For example, they can decide to spontaneously change their social behavior in
response to a pandemic threat, can redirect their sexual activity towards partners
perceived as less-at-risk in response to news about a dangerous STI known to
circulate in the population, or can decide not to vaccinate their children after having
compared perceived costs and benefits of a vaccination program, thereby threatening
its success. A central role in these decisions is played by the way communication
technologies affect the shape and the speed of spread of the relevant information.

The need to seriously account for human behavior has led in the last 10 years
to a deep rethinking of the mathematical modeling of infectious diseases. This has
in turn led to the birth of a new branch of mathematical epidemiology, which we
termed the behavioral epidemiology (BE) of infectious diseases [24]. As argued in
[4, 24], BE has an intrinsically multi-disciplinary core, aiming to combine classical
epidemiological modeling [2, 3, 7] and behavioral sciences, namely sociology,
psychology, economics, anthropology etc, to improve our understanding of the
complex interplay between infection dynamics and the related underlying human
behavior.

Behavioural epidemiology has now grown rapidly and a summary of its many
different facets can be found in a number of reviews appeared on the subject [18,
24, 32] to which the interested reader can refer.

This work has a twofold goal. First, we aim to introduce some of the basic ideas
of behavioural epidemiology and their mathematical and public health implications
for the dynamics and control of vaccine preventable infectious diseases such as e.g.,
measles and pertussis. In particular we do this by presenting (1) some basic SIR
models with voluntary vaccination where individuals change their propensity to
vaccinate their children depending on the perceived changes in the risks of infection
and disease, and (2) some basic SIR models where instead individuals change
their social contact patterns—modulating their behaviour at risk—still based on
their perceived risks of infection and disease. In relation to this we rely on work
from [9, 11, 24] where individuals’ responses are modulated from awareness of
the current and past trend of infection summarised by suitable phenomenological
information indexes. Second, we aim at combining the previous two issues—which
have typically been considered separately in the available behavioural epidemiology
literature—by proposing a general model where awareness of risks can affect both
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the propensity to vaccinate as well as the contact rate. This double feedback,
though not well documented for current vaccine preventable endemic infections,
is likely to occur in many circumstances. Surely a well documented example has
been represented by the alert arising from the doubling in the number of deaths
from invasive meningococcal disease observed in the Tuscany region of Italy
between 2015 and 2016 [8, 28, 31]. As meningitis is perceived as a very serious
disease, the scaring public news appearing at the time jointly with the offer of free
vaccination from the local public authorities, were able to dramatically increase
the vaccination coverage in all population age groups i.e., the newborn (those
typically targeted by the Italian public health system for free vaccination against
meningococci), the young, the adolescents as well as the adults [28]. On the other
hand it is known that the concurring—worried—public health communications
recommending avoidance of possible risky behavior especially among adolescents
(including e.g., avoidance of exchanges of cigarettes, glasses, etc.) were also taken
very seriously, resulting also in a reduction in the contact and transmission rates
relevant for meninogocci transmission. However, we expect such effects to arise in
many other circumstances. For example an ongoing measles epidemics might—at
least at the local level—stimulate an upward pressure on vaccine coverage as well as
protective behaviours such as e.g., not to send to schools non–vaccinated children.
Motivated by these considerations, we propose, as a first step, a general SIR
model for vaccine preventable endemic infections where individuals can respond
to changes in their perceptions of risks by modulating both their propensity to
vaccinate among newborn but also, and mainly, among older individuals, as well
as their contact rate.

This article is organised as follows. In Sect. 2 we review the behavior of SIR
models of endemic infections for mandatory vs voluntary—behaviour dependent—
vaccination. In Sect. 3 we discuss SIR models with behavior—dependent contact
rates. In Sect. 4 we present and investigate our general SIR model with behavior
responses in both vaccination propensity and contact patterns. Concluding remarks
follow.

2 The SIR Model: Mandatory vs. Voluntary Vaccination

2.1 The Case of Constant Vaccination Coverage

The basic SIR model for the control of endemic infections assumes vaccination at
birth at constant coverage p, which is reminiscent of a situation where a mandatory
immunization program exists. The resulting model is as follows:

S′ = μ (1 − p)− μS − β(t)SI (1)

I ′ = I (β (t) S − (μ+ ν)) (2)

R′ = μp + νI − μR (3)
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where we denoted by S, I, R (S + I + R = 1, allowing to omit the third equation)
the fractions of individuals who are, respectively, susceptible to acquiring infection,
infective, i.e. able to retransmit infection to others, and removed because of e.g.
immunity acquired after recovery. The infective fraction I is also called the infection
prevalence. The function β(t) denotes the transmission rate which is typically time-
dependent. The other demo-epidemiological parameters are: μ > 0 which denotes
both the birth and death rates, assumed identical to ensure that the population is
stationary over time, and ν > 0 which is the rate of recovery from infection.

In the most well-known case of constant transmission rate β(t) = β, the previous
SIR model, which always admits a disease-free equilibrium point

DFE = (1 − p, 0, p),

has a simple threshold behavior depending on the interplay between the basic
reproduction number "0 = β/(μ + ν) and the vaccine uptake p. Assuming that
the basic reproduction number "0 exceeds one (ensuring a globally stable endemic
equilibrium in absence of immunization) then, if the vaccine-reduced reproduction
number "0(1 − p) > 1 then the DFE is unstable and the infection continues to
persist endemically about its endemic equilibrium, while if the vaccine coverage is
large enough to ensure

"0(1− p) ≤ 1

then the infection will be eliminated i.e., the DFE is globally attractive. The
condition "0(1 − p) < 1 can be rewritten as:

p > pc,

where

pc = 1 − 1

"0

is the so called critical immunization coverage, which we also term the May-
Anderson threshold [2].

Finally, if one also takes into account the presence of vaccination at ages older
than birth

S′ = μ (1 − p)− μS − μφS − β(t)SI,

where μφS is the vaccination rate of adults. the parameter φ is non–dimensionalised
and, given the average lifespan L = 1/μ the average age at adult vaccination is L/φ.
One can easily find the following disease elimination condition:

"0
1 − p

1+ φ
< 1,
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which also reads

p + φ

1 + φ
> pc.

2.2 Voluntary Vaccination: A Phenomenological Model

The hypothesis of constant p is clearly an approximation which roughly mirrored
mandatory immunization systems enacted by many countries in the past, but it is no
more valid under many recent scenarios. Consider for simplicity a voluntary vac-
cination system where parents take their decisions on whether to immunize or not
their children based primarily on perceived costs and benefits of that immunization.
These perceived costs and benefits in turn depend on the available information about
the state of the infection—and related serious disease—and about the risks that are
perceived to be connected with vaccination, i.e., suffering serious side effects from
immunization. In such circumstances available information might feedback on the
current vaccine uptake thereby affecting infection dynamics. For example, during
epoch of low infection incidence individuals might perceive a quite high relative cost
from vaccine side effects, therefore reducing their propensity to vaccinate, and the
opposite during epidemic phases. Our behavior-implicit framework for information
related immunization [10–13] considers the following SIR model for a non-fatal
childhood infectious disease in a stationary homogeneously mixing population (we
omit the R equation since R = 1 − S − I ):

S′ = μ (1 − p(M))− μS − φ(M)− β(t)SI (4)

I ′ = I (β (t) S − (μ+ ν)) (5)

where the transmission rate β(t) > 0 is taken either constant or periodically varying
with period θ equal to 1 year [2], while functions p(M) ≥ 0 and φ(M) ≥ 0 denote
the vaccination coverage at birth and the coverage at subsequent immunizations
respectively, both which are taken here to be increasing functions of a suitable
information index M [11]. The index M summarizes the information on benefits
and costs of immunization used by parents to take their vaccination decisions. Thus,
M might be any function of the current, or past, infection prevalence (or incidence),
taken as measures of the perceived cost of suffering infection or its serious sequelae,
or of the prevalence (or incidence) of vaccine adverse events (VAE), taken as
measures of the perceived cost of suffering VAEs. Here we focus on the perceived
risk of infection (and related disease) as the driving force of immunization decisions,
on the simplifying assumption that the perceived risk of vaccine adverse events is
coarsely constant over time.
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The forms actually adopted for the vaccine uptake functions p(M) and φ(M) are
such that, first of all

p0 = p(0) > 0

and

φ0 = φ(0) > 0

where the fixed components p0 and φ0 mirror the presence of a sub-population
vaccinating independently of the state of information on infection and disease.
Moreover, we assume that p1(M) = p(M)−p0 and φ1 = φ(M)−φ0 are increasing
functions mirroring, respectively, parents’ and adults’ reaction to increasing per-
ceived risk from the disease. For example, taking M to be the current infection
prevalence I , previous formulation amounts to state that when infection prevalence
increases, people in the group influenced by information react by increasing their
children and/or their own vaccine uptake, and vice-versa. Of course, for very large
levels of M we assume p1 to saturate to some level psat

1 ≤ 1 − p0. A saturating
level is not required for φ1(M), although it is reasonable. The functions p1 and φ1
are continuous and differentiable, except at a finite number of points.

2.3 Modeling the Information Index M(t)

The index M can be taken to represent a measure of the perceived risk following
infection (including serious sequelae), which summarizes the way information on
infection and its serious sequelae, and ensuing perceptions on benefits and costs
(of measures to be adopted to reduce risks), affect perceptions about risks. We can
assume that M is given by a continuous function ω(S, I) with ∂Iω(S, I) > 0.

In particular, M might be any function of the current, or past, infection preva-
lence or incidence, e.g. of the form M = h(β(t)S(t)I (t)) (e.g. M = k∗β(t)S(t)I (t)
with k∗ > 0), or M = g(I) (e.g. M = kI with k > 0). For example, if M = kI

might define the perceived risk of serious disease as the product of the perceived
risk of infection, given by some linear function of prevalence I , times the perceived
risk of serious disease given infection. For the sake of simplicity since now on we
shall deal with functions M = g(I). Following the review in [18], this hypothesis
amounts to build a prevalence-based model, as opposite to belief-based, where the
use of information is global, i.e. homogeneously available to everyone, as opposite
to local, as is the case for spatially structured models.

More realistically M also depends on past values of state variables, as for many
infections information typically becomes available only with a delay, due to a
number of procedures (such as laboratory confirmations, reporting to public health
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authorities, and diffusion by the available channels), and moreover awareness in the
population requires time. In this case M will take the more general form:

M(t) =
t∫

−∞
g(I (τ ))K(t − τ )dτ (6)

where K is a probability density function called the delaying kernel [23].
As for function g(I), we assume that g(0) = 0 and g′(I) > 0.
Here, besides the trivial kernel K(t) = δ(t), where δ is the Dirac function,

yielding the unlagged case

M(t) = g(I (t)),

we consider two main types of delaying kernels, i.e. the well-known exponentially
fading memory kernel K(t) = a exp(−at), with expectation < t > given by the
fading time scale T = 1/a [23], and the kernel:

K(t) = 1

T1 − T2

(
e−t/T1 − e−t/T2

)
. (7)

The latter kernel, introduced in [16], represents a parsimonious way to model the
effects of information handling by individuals, as it accounts for two sub-processes
possibly occurring independently and at different time-scales: (1) formation and
acquisition of information, with time-scale T1, and (2) memory fading of acquired
information, with time-scale T2. Often the first process is much faster than the
second. Note that if T1 ≈ 0 then K(t) ≈ (1/T2)e

−t/T2 , i.e. K(t) collapses into
an exponentially fading memory with time scale T2. This kernel has expectation
< t >= T1 + T2 and V ar(t) = T 2

1 + T 2
2 . Compared to the exponentially

fading memory, which assigns maximum weight to current information—usually
unavailable—this kernel satisfies K(0) = 0, mirroring negligible use of current
information, as in the commonly used Erlang kernels of higher order [23]. However,
unlike the latter kernels, which consider sub-processes having the same time scale,
the kernel (7) is much more flexible. Note indeed that the first order Erlang kernel
K(t) = a2t exp(−at), corresponds to (7) in the case where T1 = T2. We term (7)
the acquisition-fading kernel. As for Erlang kernels, also (7) is reducible to ordinary
differential equations (ODEs).

Under the exponentially fading memory the Eq. (6) reduces to the single ODE:

M ′ = a(g(I)−M) (8)

Finally, under the acquisition-fading kernel (7) Eq. (6) reduces to the following pair
of ODEs:

M ′
1 = a1 (g(I) −M1) (9)

M ′
2 = a2 (M1 −M2) , (10)

where a1 = 1/T1, a2 = 1/T2, M(t) = M2(t).
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The Erlang first order kernel i.e., the exponentially fading memory, corresponds
to the particular case a1 = a2.

3 Behavior–Modulated Contact Rate

In epidemic model, a key concept is the infection incidence, which represents the
absolute number of new infection cases per unit of time. Although intuitive from
the epidemiological point of view, the infection incidence constitutes a modelling
challenge [5, 25]. For a generalized family of SIR model with one class of
susceptible and one of infectious, denoting as X the total number of susceptible,
Y the total number of infectious and N the total population size, and with J the
incidence, generalizing Begon and coworkers [5] one has:

J = X × C × π1 × π2 (11)

where: C is the average number of general contacts per time unit, π1 the probability
that a contact is with an infectious subject and π2 is the probability that a contact
with an infectious subject induces the infection of the susceptible subject.

Clearly, π1 is a function of the state variables [5]:

π1 = π1(X, Y,N)

whereas, in the classical epidemiology view C and π2 were considered constant.
The product

FoI = Cπ2π1(X, Y,N) (12)

is the force of infection (FoI), and represents the per capita rate at which susceptible
individuals acquire infection per unit of time.

As far as the function π1(X, Y,N) is concerned, for the SIR model the two
most popular choices are: (1) the classical mass action law π1 = qY leading to
the following force of infection;

FoI = βY

(2) the frequency dependent mass action law π1 = hY/N . leading to the following
force of infection

FoI = β
Y

N
= βI

In both cases the term β, called the transmission rate, is taken as a natural constant
of human behavior.

9
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In the mathematical epidemiology literature, the first step beyond the Statistical
mechanics paradigm yielding the first epidemiological model with behavioral
change was the behavior-implicit, prevalence-dependent SIR epidemic model
proposed by Capasso and Serio in the seventies [6]. In [6] the contact rate β, until
then taken as constant, is allowed to be a decreasing function of infection prevalence
I . This implies that the Force of Infection (FoI), in the case of ‘frequency dependent
mass action law’ takes the following non-linear form [6]:

FoI (I) = β(I)I (13)

with: β ′(I) < 0. The authors pointed out that, unlike standard mass action
formulations, this could make the FoI to become a non-monotone function of the
prevalence (e.g. if β(I) = β0(1 + hI 2)-1).

The authors motivated their formulation with the possibility of behavioral
changes in response to the changing epidemiological conditions that appear as
the epidemic out in the population. For example, during epochs in which disease
prevalence is perceived to be high, also the risk of infection might be perceived
as high, thereby inducing changes in individuals’ contact behavior to reduce
risks, thereby ultimately affecting also the actual risk of getting infected. Today
Capasso and Serio’s formulation would be classified as a behavior-implicit [4]
formulation, to mirror the fact that behavior is embodied into the mathematical
model in an implicit manner, i.e. via a nonlinear specification of the FoI possibly
mirroring individuals responses to changing epidemiological conditions, rather than
incorporating rules explicitly describing the agents’ behavior. Since [6], several
other works have investigated epidemic models with a non-linear FoI [1, 22, 30].
With reference to the expression of the incidence rate (11) and of the generalized
force of infection (12), we propose here the following form of FoI:

FoI = C(M)π2(M)π1(X, Y,N) = β̂(M)π1(X, Y,N) (14)

where C′(M) < 0, π ′2(M) < 0, β̂(M) = C(M)π2(M) and, as a consequence,
β̂ ′(M) < 0. In defining the generalized behaviour-dependent FoI of (14) we have
taken into the account that: (1) behaviour can modify (with different patterns and
intensity, of course) both the average number of contacts per time unit and the
probability of getting the infection when in contact with an infectious; (2) behaviour
is not only based on the knowledge of current stage of spread of the disease but also
on the memory of past epidemic history.

Finally, note that (11) and (14) can be easily extended to more complex models
where multiple epidemic state variables and more complex patterns of transmission
are considered.

3.1 Extending the Capasso–Serio Behavioral Model

By noting that behavior changes in turn require changes in the individuals’
information endowment, in [9] we also attempted to generalise previous behavior-

10
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implicit models of endemic infections (such as e.g., measles), by representing
the contact rate β along the same notion of information-dependent behavior we
developed in [11] for the vaccination coverage.

This led us to consider simple SIR dynamic models of recurrent endemic
infections where the contact rate is a phenomenological function of an information
index M sharing the above described characteristics, yielding the following FoI:

FoI (M) = β(M)I, (15)

where β ′(M) < 0. This assumption yields the following SIR model with behaviour-
dependent contact rate [9]:

S′ = μ(1 − S)− β(M)IS (16)

I ′ = β(M)IS − (μ+ ν)I (17)

completed by Eq. (6), governing the dynamics of M , and by the balance equation of
the removed fraction R(t): R(t) = 1 − S(t)− I (t).

4 A General SIR Model Embedding Behavioral Feedbacks
on Both Vaccination Propensity and the Contact Rate

As discussed in the Introduction, in the available behavioural epidemiology liter-
ature dealing with endemic, vaccine preventable, infectious diseases, the feedback
that the awareness of changes in trends of infection prevalence—as modulated by
information—might yield on behavior towards the disease, has been investigated
separately i.e., either for its effects on vaccination coverage or for those on the
contact rate. However, it is reasonable to expect that in many circumstances
behavioral changes might involve both the propensity to vaccinate as well as the
contact rate. Consistently, in this section we propose a new general SIR model to
investigate the synergy between these two feedbacks, on the assumption that the
information background on which decisions to switch to a different behaviour are
taken is summarised by the same information index M . In particular we include
in the model both prevalence-dependent vaccination of newborn as well of older
individuals to allow the possibility, for older individuals who avoided vaccination
at birth, to consider later vaccination during epochs of increasing perceived risks.
The dependence of the behaviours on the prevalence is mediated by the information
index M . This yields to the following model

S′ = μ(1 − p(M)− S)− μφ(M)S − β(M; t)IS (18)

I ′ = β(M)IS − (μ+ ν)I (19)

11
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to be complemented by a model linking the information index to the spread of the
diseases and by R = 1−S−I . We assume there that β is both a decreasing function
of M and a constant or periodic function of the time. In the general case, thus,
the integro-differential system (18)–(19)–(6) forms a family of models. By specific
choices of the delay kernel K(τ), a range of models can be derived from the general
family of models (18)–(19)–(6).

The results we previously obtained in [11] and [9] will thus become particular
subcases of the more general results we now derive for model (18)–(19)–(6).

In relation to the proposed new model there are two main substantive questions,
i.e. (1) how perceptions of risks related to the disease might affect behavior-
dependent vaccination as well as contact behaviour, and how this in turn affects
infection control, and (2) how behavior might affect the dynamical pattern of
infection, e.g. by triggering oscillations.

4.1 Modelling Human Behavior and Its Implications for
Infection Control

We recall here the first question: ‘How perceptions of risks related to the disease
might affect behavior-dependent vaccination as well as contact behaviour? And
how this in turn affects infection control?’ We start noticing that the family of
models (18)–(19)–(6) always admits the disease-free equilibrium (DFE):

DFE =
(

1 − p0

1 + φ(0)
, 0, 0

)
(20)

The stability properties of the DFE are provided by the following theorem which
holds regardless the actual form of the information index M

Theorem 1 Under θ -periodic β(0, t), the DFE (20) of (18)–(19)–(6) is globally
asymptotically stable (GAS) if:

Q = 1 − p0

1 + φ(0)

1

μ+ ν

1

θ

θ∫

0

β(0, u)du < 1. (21)

If instead Q > 1, then the DFE is unstable.

The proof of Theorem 1 is based on the fact that the differential inequality

S′ ≤ μ(1− p(0)− (1 + φ(0))S)

implies that asymptotically

S(t) ≤ S∞ = 1 − p0

1 + φ(0)
.

12
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Thus, asymptotically

I ′ ≤ I (β(0, t)S∞ − (μ+ ν)).

As a consequence if Q < 1 then I (t) → 0+. Moreover, the linearization equation
for I (t) by setting I = 0 + i +O(i2) is

i ′ = i(β(0, t)S∞ − (μν))

As a consequence: (1) Q < 1 guarantees both the local and global stability of the
DFE; (2) Q > 1 implies the unstability of the DFE.

Note that if β(0, t) is constant then condition (21) becomes the well-known one
reported in Sect. 2 i.e.,

"0
1 − p0

1 + φ(0)
≤ 1

where "0 = β(0)/(μ + ν) is the basic reproduction number of the SIR model for
endemic infections [2, 7].

The interpretation of condition (21) follows from the proper understanding of
Q. Quantity Q represents indeed the appropriate vaccine reproduction number
computed in the correspondence of the baseline vaccine coverage for newborn
(p0) and older individuals (φ(0)) respectively, and in presence of the normal social
contact rate (β(0, t)) which are associated to situations of minimal perceived risk
(M = 0). In particular, the previous result recall us that elimination turns out to be
feasible only if the baseline risks conditions that are perceived under circumstances
of minimal infection circulation (M = 0) are capable to stimulate an overall
vaccination coverage (of both newborn and older individuals) already in excess of
the critical threshold pc. Otherwise, elimination can never be achieved even if the
overall uptake p(t) = p(M(t)) could temporarily reach values as high as 100%
during epochs of high prevalence and therefore high perceived risks.

Moreover, if ∂tβ(M, t) = 0 and it holds:

1 − p0

1 + φ(0)
"0 > 1 (22)

the system has a unique endemic equilibrium EE = (Se, Ie,Me), where Me =
g(Ie),

Se = 1

"0
K(Me)

and Ie is the unique solution of the equation

μ

μ+ ν

(
1 − p(g(I)) − 1

"0
(1 + φ(g(I)))K(g(I))

)
= I

13
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4.2 Behavioural Responses and Infection Dynamics

We recall here the second main question namely, How behavior might affect the
dynamical pattern of infection (e.g. by triggering oscillations)?

As we showed in the previous section, the existence and stability of the DFE, as
well as the existence and location of the endemic equilibrium hold for the general
family of models, independently of the form of the delaying kernel. On the contrary,
the stability properties of the endemic state critically depend on #(τ). Thus, to
answer the second substantive question it is necessary to consider specific models
of the memory kernel.

For the unlagged case M = g(I (t)), and under the assumption that ∂tβ(M, t) =
0 is constant (meaning that, besides behavioural effects, we rule out other time
effects, such as periodicities, on the contact rate) and p(M) and φ(M) are
differentiable, it holds that:

Theorem 2 Let condition (22)holds. Then the unique endemic state EE of sys-
tem (18)–(19) in absence of delays is GAS in the positively invariant set:

Ω∗∗ =
{
(S, I) | S ≥ 0, I > 0, S + I ≤ 1, S ≤ 1 − p0

1 + φ(0)

}
. (23)

The proof follows by applying the Poincare-Bendixon theorem with weight function
1/I .

The previous result indicates that inclusion of current information only is not
sufficient to trigger oscillations. It is therefore interesting to look at whether the EE

can be destabilised when agents base their decisions on past information as well.
In the case of the exponentially fading kernel, we obtain the following three-

dimensional family of models:

S′ = μ(1− p(M)− S − φ(M))− β(M)IS (24)

I ′ = β(M)IS − (μ+ ν)I (25)

M ′ = a (g(I)−M) (26)

Computing the Jacobian matrix at the unique endemic equilibrium, and defining the
following quantities:

−b11 = ∂SS
′ = −μ(1+ φ(M))− β(M)I < 0

−b12 = ∂I S
′ = −β(M)S < 0

σ = ∂MS′ = −μp′(M)− μφ′(M)S − β ′(M)IS

14
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b21 = ∂SI
′ = β(M)I > 0

∂I I
′ = 0

−b23 = ∂MI ′ = β ′(M)IS < 0

∂SM
′ = 0

∂IM
′ = ag′(I) > 0

∂MM ′ = −a < 0

one gets a characteristic equation of the form c0 +∑3
1 ciλ

i = 0 where c3 = 1 and:

c2 = a + b11 > 0

c1 = a(b11 + g′(I)b23)+ b12b21 > 0

c0 = a
(
b11g

′(I)b23 + (b12g
′(I)− σ)b21

)

All the bhk are positive, and σ has no pre-defined sign in the general case. Thus if

σ > σ ∗ = b12g
′(I)+ b11g

′(I)b23

b21
> 0

it can be c0 < 0 and the equilibrium point is unstable. If instead it is σ ∗ < 0 then
from the Ruth-Hurwitz condition c1c2−c0 > 0 we have the following second-order
inequality in a

q2a
2 + q1a + q0 > 0

where:

q2 = b11 + g′(I)b23 > 0

q1 = b21(σ + b12(1 − g′(I)))+ b2
11

q0 = b11b12b21 > 0

Thus, if

Δ = q2
1 − 4q2q0 ≤ 0

15
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then the endemic equilibrium is locally asymptotically stable, whereas if q1 < 0
and Δ > 0, i.e. if

−q1 > 2
√
q2q0

i.e.

b21(−σ − b12(1− g′(I)))− b2
11 > 2

√
(b11 + g′(I)b23) b11b12b21 (27)

then there exist an interval (a1, a2) such that if a ∈ (a1, a2) EE is unstable and
Yakubovitch oscillations arise through two Hopf bifurcations at a = a1 and at a =
a2; if a < a1 and a > a2 then EE is locally stable.

Specific subcases where only of the three rates p(M), φ(M) and β(M) was non-
null have been investigated in [9–14]. When only vaccination is present, the EE can
be destabilized in the presence of an exponentially fading information memory. On
the contrary, as shown in [9] for the scenario where human behavior only affects
the contact rate β, the EE is locally stable for all a > 0 i.e., independently of
the magnitude of the average information delay. Thus it is of interest to investigate
the role of β ′(M) in possibly stabilizing the EE. Although inequality (27) is quite
complicate, taking into the account that the derivative of the contact rate appears in
b23 = −β ′(M)SI > 0 and in σ and by rewriting the latter as follows

σ = −ω0 − β ′(M)SI

it yields

b21(ω0 + β ′(M)SI − b12(1 − g′(I )))− b2
11 > 2

√
(b11 − β ′(M)SIg′(I )) b11b12b21

(28)

In other words, the presence of the negative term β ′(M)SI decreases the l.h.s. of
inequality (27) and the presence of the positive term −β ′(M)SIg′(I) increases
its r.h.s. Overall, roughly speaking, this makes less likely the fulfillment of the
inequality (27), i.e. less likely the onset of oscillations. In other words the reduction
of risky behaviour as a response to perceptions of increasing risk from the disease
has beneficial effects, at least as far as the onset of recurrent epidemics is concerned.
Note that, focusing instead on the role of p(M) and of φ(M), one can read in the
reversed direction the inequality (27) and conclude that the initiation of voluntary
vaccination in a scenario of behavior-dependent contact rate will, on the one hand,
contribute to reduce the average infection prevalence Ie (as it is easy to verify) but,
on the other hand, may induce recurrent epidemics. As indeed noted in [11, 15]
the recurrent oscillations induced by prevalence-dependent vaccination behaviour
can be very complicate—even when purely periodical—as they have the potential
to generate huge amplitude oscillations with extremely long periodicities, possibly
very difficult to predict and handle in a real public health context.
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Finally, under the acquisition-decay kernel, one yields the following system:

S′ = μ(1− p(M)− S − φ(M)S)− β(M)IS (29)

I ′ = β(M)IS − (μ+ ν)I (30)

M ′
1 = a1 (g(I)−M1) (31)

M ′ = a2 (M1 −M) . (32)

Though in principle it is possible to analytically characterise the local stability of
the endemic state for the above four-dimensional system, the problem becomes
analytically cumbersome also for simple choices of p(M), φ(M), g(I) and β(M).
This is also true for the case a1 = a2.

5 Concluding Remarks

In the first part of this manuscript we have reviewed two main classes of behavioral
epidemiology models. The first one is that of SIR models for vaccine preventable
endemic infectious diseases with prevalence-dependent, behaviour-implicit, vac-
cine coverage at birth and among older individuals in a regime of voluntary
vaccination. The second one is that of SIR models for endemic infections with
prevalence-dependent contact rate. These classes of models [9, 11] replace critical
epidemiological parameters typically taken as constant in basic models namely, the
vaccine coverage and the contact rate, by general functions of available current and
past information on the infection and related serious disease. The underlying idea
is that human agents actively respond to changes observed in the (current or past)
infection prevalence by adapting their immunization decisions and contact patterns.
These models bring a number of relevant novelties compared to classic models
[9, 11].

In the second part of the manuscript we developed a new general SIR model
combining the two aforemention types of behavioral phenomena, previously con-
sidered only separately in the literature, into a single unified model. In this new
model individuals respond to changes in the information indexes by continuously
adapting (1) the propensity at which they immunize their children at birth, (2) the
propensity at which they choose immunization at later ages, and (3) their contact
rate, which summarises their behaviour at risk. This combination of behavioral
responses, though rarely documented for vaccine preventable infectious diseases
of childhood, has certainly occurred for example during the recent alert occurred
in Tuscany during 2015–2016, when rates of invasive meningococcal disease and
deaths dramatically increased [8, 28, 31]. The alert pushed the Regional public
health system towards offering supplementary immunization in a wide range of age
groups which was largely accepted by the population, while at the same a number of
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possibly risky behaviour surely declined, especially among adolescents and young
adults [8, 28].

The resulting model was not designed to specifically describe the meningococcal
disease alert in Tuscany, which would have required a more complicate model,
but rather to develop a general phenomenological theory of the effects of behav-
ioral responses within SIR models for endemic infections. The model allows to
complete the picture offered in previous separate works, in particular suggesting
the complicate interplay between different behavioral responses acting on different
epidemiological parameters in triggering sustained oscillations of vaccine coverage,
risky behavior, and infection prevalence.
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