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Hesitancy and refusal of vaccines preventing childhood diseases are spreading due to ‘pseudo-rational’
behaviours: parents overweigh real and imaginary side effects of vaccines. Nonetheless, the ‘Public
Health System’ (PHS) may enact public campaigns to favour vaccine uptake. To determine the optimal
time profiles for such campaigns, we apply the optimal control theory to an extension of the susceptible-
infectious-removed (SIR)-based behavioural vaccination model by d’Onofrio et al. (2012, PLoS ONE,
7, e45653). The new model is of susceptible-exposed-infectious-removed (SEIR) type under seasonal
fluctuations of the transmission rate. Our objective is to minimize the total costs of the disease: the disease
burden, the vaccination costs and a less usual cost: the economic burden to enact the PHS campaigns.
We apply the Pontryagin minimum principle and numerically explore the impact of seasonality, human
behaviour and latency rate on the control and spread of the target disease. We focus on two noteworthy
case studies: the low (resp. intermediate) relative perceived risk of vaccine side effects and relatively
low (resp. very low) speed of imitation. One general result is that seasonality may produce a remarkable
impact on PHS campaigns aimed at controlling, via an increase of the vaccination uptake, the spread of
a target infectious disease. In particular, a higher amplitude of the seasonal variation produces a higher
effort and this, in turn, beneficially impacts the induced vaccine uptake since the larger is the strength of
seasonality, the longer the vaccine propensity remains large. However, such increased effort is not able to
fully compensate the action of seasonality on the prevalence.

Keywords: vaccination; behaviour; vaccine hesitancy; behavioural epidemiology; optimal control;
game theory; seasonality; latency; SEIR; imitation game; public health;.

1. Introduction

Childhood infectious diseases are one of the main threats to children health. In 2016 measles alone
caused 89,780 deaths, mainly among children under the age of 5, and many more serious sequelae
(World Health Organization, 2017). Vaccination is one of the most effective methods to reduce the
morbidity and mortality from vaccine-preventable infectious diseases (Andre et al., 2008; Centers for
Disease Control and Prevention, 2017). Although very effective in preventing the target diseases, due to
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298 B. BUONOMO ET AL.

a number of cultural, social and political factors, many vaccines are often no more mandatory but
voluntary and a trend towards the decrease of the adherence to vaccination campaigns for some vaccines
(e.g. seasonal flu and measles-mumps-rubella (MMR) vaccines) has been frequently observed in many
countries (Jansen et al., 2003; Casiday et al., 2006; Omer et al., 2009; Dubé et al., 2013).
This important wave of vaccine hesitancy and refusal caused the widespread resurgence of some
vaccine-preventable diseases that were previously close to elimination thanks to the introduction of
vaccinations (Jansen et al., 2003). Emblematic are the recent measures adopted by the Italian and
French governments to contrast vaccine hesitancy (Istituto Superiore di Sanità, 2017; Ministère des
Solidarités et de la Santé, 2017). The abovementioned reduction of vaccine uptake is due to the spread
of ‘pseudo-rational’ behaviours where parents overweigh the (real and imaginary) risk of vaccine side
effects (VSEs) and do not fully perceive the actual risks linked to the disease (d’Onofrio et al., 2008;
Manfredi & d’Onofrio, 2013). This is paradoxically due to the vaccine-induced rarity of the disease.
In fact, due to the rarity of the disease, many hesitant parents ask themselves the following question
(which may seem rational): ‘Since the disease X is eliminated/very rare in my country, why should
we expose our babies to the VSEs?’ Of course this reasoning does not take into account that the
disease is eliminated/rare because of the large levels of vaccine uptake! Moreover, other parents,
slightly more aware of the disease-related risks, adopt ‘vaccination free riding’: they avoid the perceived
VSEs for their children by relying on herd immunity effects (Metcalf et al., 2015; Sobo, 2016).
This second type of behaviour does not take into the account that herd immunity is not static and
permanent but it is dynamically evolving and, of course, it strongly depends on the widespread
adherence to vaccination campaigns. Mathematically, similar classes of behaviours have been inferred
by applying Mean Fields Games in Laguzet & Turinici (2015) and Salvarani & Turinici (2018) for time-
continuous and time-discrete models without vital dynamics and with adult voluntary vaccinations.

Nonetheless, the ‘Public Health System’ (PHS) may enact public campaigns to favour vaccine
uptake.

Given the increasing relevance of the abovementioned phenomena, classical models of mathematical
epidemiology cannot be universally applied and a new discipline has arisen in the past 10 years: the
‘behavioural epidemiology of infectious diseases’ (BEID) (Manfredi & d’Onofrio, 2013; Wang et al.,
2016). The BEID aims at integrating in models of the spread and control of infectious diseases the
role played by human behaviours and misbehaviours (Manfredi & d’Onofrio, 2013; Wang et al., 2016).
We shortly mention that behaviour has also a deep impact in modulating the transmission of infectious
diseases, as first modelled in the seminal 1978 paper by Capasso & Serio (1978).

Game-theoretic analysis has been widely used in BEID, especially to model vaccine decision-
making by examining individuals’ pay-offs based on the perceived benefits and risks of vaccination
(e.g. Bauch, 2005; Perisic & Bauch, 2009; Shim et al., 2009; d’Onofrio et al., 2011, Fu et al.,
2011; Reluga & Galvani, 2011; d’Onofrio et al., 2012; Mbah et al., 2012; Buonomo et al., 2018a,
n.d.). A classical game-theoretic model of personal choices is the ‘imitation game’ (Bauch, 2005;
d’Onofrio et al., 2011; Fu et al., 2011; d’Onofrio et al., 2012; Mbah et al., 2012; Buonomo et
al., 2018a, n.d.). The basic idea is that parents’ decision to vaccinate or to not vaccinate their
children is conducted by imitating others who appear to have adopted more successful strategies.
This occurs through the channels of the spontaneous ‘private’ communication. For example, such
approach was adopted in Bauch (2005) (coupled with a SIR model), under the assumption that the
perceived risk of suffering significant morbidity upon infection is a function of the prevalence of the
disease and that the perceived risk of vaccination is constant. The authors of d’Onofrio et al. (2011)
went a step beyond by adding the hypothesis that the exchange of group from ‘vaccinators’ to
‘nonvaccinators’ is not constant but depending on the available information and/or rumours on VSEs.
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OPTIMAL PUBLIC HEALTH INTERVENTION IN A BEHAVIOURAL VACCINATION MODEL 299

In d’Onofrio et al. (2012) the same authors of d’Onofrio et al. (2011) modified their imitation game
model, taking into account the abovementioned public campaigns (including information, education,
availability of vaccination infrastructures, etc.) of the PHS aimed at increasing vaccine uptake. Under
these assumptions, the model predicts that public health interventions (PHIs) have a stabilizing role
which may eliminate the disease and, in any case, reduce the strength of imitation-induced oscillations.
This is a rather realistic scenario, since it depicts the widely observed large (although most often
not enough) propensity to vaccinate children. For example, in England and Wales public campaigns
allowed to achieve a large MMR vaccine uptake (Public Health Wales Protection Division, 2013, 2017;
Screening, 2016), although under the elimination threshold.

In d’Onofrio et al. (2012) the efforts provided by PHS to increase the propensity to vaccinate
are represented by a constant term. This is an acceptable approximation provided that the economic
resources largely overcome the costs of enacting the awareness campaign. However, due to the presence
of limited resources, it is desirable for public systems to jointly minimize disease-related social and
economic costs.

A classical tool to predict the impact of optimal prevention and treatment efforts on infectious
diseases is optimal control theory (OCT) (Fleming & Rishel, 1975; Arnautu et al., 1989; Lenhart &
Workman, 2007; Grass et al., 2008; Anita et al., 2011; Ledzewicz & Schättler, 2011; Ndeffo Mbah &
Gilligan, 2013; Mwanga et al., 2015; Ledzewicz et al., 2016; Gromov et al., 2017; Sharomi &
Malik, 2017).

In Buonomo et al. (n.d.) OCT has been applied to the model introduced in d’Onofrio et al. (2012) to
determine a suitable PHS effort that minimizes economic costs under given constraints in a given time
horizon.

A strong limitation to the applicability of the behavioural model in study is that it is built on top
of the well-known classical SIR compartmental epidemic model. However, SIR models do not consider
the latency time occurring between the contagion and the onset of infectivity, i.e. needed for the viral
population to pass from a relatively small population size to a size sufficiently large to potentially cause
the contagion of a susceptible subject. On the contrary, this time interval in some childhood infectious
diseases may be significant (NSW Ministry of Health, 2014). Its inclusion leads to the well-known SEIR
epidemic model (Capasso, 1993; Earn et al., 2000; d’Onofrio, 2002; Sun & Hsieh, 2010; De la Sen et al.,
2012; Buonomo et al., 2013).

Moreover, the time series of diseases such as measles, chickenpox and mumps (all characterized
by appreciable latency time) can exhibit both periodical and more complex patterns that are apparently
fully erratic. This variety of patterns has been successfully explained by means of SEIR models with
periodic contact rates undergoing non-linear resonances phenomena (including chaos) (Altizer et al.,
2006; Grassly & Fraser, 2006; Buonomo et al., 2018b). The key idea is that the transmission strongly
depends on school calendar with its yearly alternation of school terms, characterized by a large
number of contacts at risk, and holidays, with a smaller number of contacts at risk. Moreover, such
alternation can also impact on the stability of disease-free states. As far as the behavioural issues are
concerned, in Buonomo et al. (2018a) it has been shown that the fluctuating contact rate has important
effects also on PHS intervention-induced disease elimination, provided that the disease has a latency
time.

These results of classical and behavioural epidemiology suggest that a periodically varying
transmission rate could impact on the disease spread under optimal control of the vaccine awareness
campaigns and on the time profile of the control. The investigation of this problem, which is the aim of
our work, has to take into account the multiple interlinked factors determining the system’s dynamics:
i) the optimal temporal efforts of PHS in affecting perceptions about the disease and vaccines with
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300 B. BUONOMO ET AL.

minimum costs; ii) the yearly periodic fluctuations of the transmission rate, which act as a periodic
forcing on a system that is both non-linear and under optimal control; iii) the possible effect of the
latency time that is the most specific biological parameter of the SEIR model; and finally iv) populations
with identical demographic and biological features can exhibit different behavioural responses.

Namely, we will consider two behavioural scenarios. In the first scenario, we assume that the
population perceives a relatively low relative risk of VSEs, and that its imitation speed is relatively
low. In the second scenario the perceived relative risk of VSEs is larger, and the imitation speed is very
low.

The paper is organized as follows. In Section 2 the model is introduced. In Section 3 the optimal
control (OC) problem is formulated and parametrized. In Section 4 the demographic and epidemi-
ological parameter values are discussed. Then, in the next two sections, the numerical simulations
are presented for the two above-illustrated behavioural scenarios. The impact of the latency rate on
the dynamics and the control of the model is discussed in Section 7. Concluding remarks follow in
Section 8. This work ends with a short appendix on the possible impact of demographic trends.

2. The model

2.1 Model formulation

We consider an infectious childhood disease controlled by a 100% effective vaccine ensuring lifelong
immunity. Its time evolution is ruled by the following information-dependent SEIR model:

Ṡ = μ(1 − p) − μS − β(t)SI

Ė = β(t)SI − (μ + ρ) E (2.1)

İ = ρE − (μ + ν) I

Ṙ = νI − μR,

where S, E, I and R are functions of time denoting the fractions of susceptible, latent, infectious
and removed individuals at time t, respectively. The upper dot denotes the time derivative. A fifth
compartment, the fraction of vaccinated individuals, V , can be derived as

V = 1 − S − E − I − R.

Vaccination is administered at birth alone and the uptake level is time-dependent; hence, p represents the
‘propensity to vaccinate’ among parents at time t (Bauch, 2005; d’Onofrio et al., 2011, 2012; Buonomo
et al., 2018a, n.d.). The parameters are positive constants: μ is the natural death rate, which is assumed
to be identical to the birth rate; ρ is the inverse of the latency period and ν is the inverse of the average
length of the infectious period. In order to account the effects of seasonal variations on the disease
transmission, the transmission rate β(t) is modelled as a sinusoidal function

β(t) = βavg [1 + σ cos (ωt + χ)] , (2.2)

where βavg is the average transmission rate, σ is the amplitude of the seasonal variation, with 0 � σ < 1,
ω is the pulsation and χ is the phase.

As far as p is concerned, we assume that the population of parents is proportional to the total
(constant) population N and is divided into two subgroups. The first subgroup is given by parents who
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OPTIMAL PUBLIC HEALTH INTERVENTION IN A BEHAVIOURAL VACCINATION MODEL 301

are pro-vaccine and vaccinate their children (p); the second one is given by parents who are hesitant or
overtly against vaccination and, as a consequence, do not vaccinate their children (A = 1 − p).

The ‘imitation’ game is a ‘mutual contagion of ideas’ process (Wang et al., 2016)

ṗ = −FA(A, p)p + FP(A, p)A

Ȧ = FA(A, p)p − FP(A, p)A,

where FA(A, p) and FP(A, p) are the ‘forces of infection’ of the opinions of the anti-vaccination and
pro-vaccination group, respectively. We assume the following:

FA(A, p) = α∗A, FP(A, p) = θ∗p,

where α∗ and θ∗ are the transmission rates of the group p and A, respectively. Following Buonomo et al.
(2018a), Buonomo et al. (n.d.) and d’Onofrio et al. (2012), we further assume that α∗ depends on the cur-
rent information on VSEs, i.e. α∗ = α(p), and θ∗ depends on the perceived risk of being infected and/or
suffering serious consequences from the disease, i.e. θ∗ = θ(I). In general both functions α(p) and θ(I)
are assumed to be increasing and positive, although we limit ourselves to consider the linear case

α(p) = k0αp, θ(I) = k0θ I,

where α, θ and the scale factor k0 are positive constants.

The PHIs in favour of vaccination propensity can be modelled as an additional transfer rate from A
to p yielding

ṗ = −k0αAp2 + k0θ IpA + γ (t)A (2.3)

Ȧ = k0αAp2 − k0θ IpA − γ (t)A,

where γ (t) is a positive function, which represents the effectiveness of a public campaign (information,
education, availability of vaccination infrastructures, etc.) in affecting individuals’ perceptions about
both the infection and VSEs. We assume that the induced flux is linearly proportional to the fraction of
parents that are opposed to vaccination.

Since A = 1 − p, from (2.3) one gets the following extension of an imitation game equation:

ṗ = (1 − p)
[(

k0θ I − k0αp
)

p + γ (t)
]

. (2.4)

Coupling (2.4) to the epidemic model (2.1) and (2.2) we obtain a non-linear, non-autonomous ordinary
differential equation (ODE) system (say, SEIRp model)

Ṡ = μ(1 − p) − μS − βavg [1 + σ cos (ωt + χ)] SI

Ė = βavg [1 + σ cos (ωt + χ)] SI − (μ + ρ) E

İ = ρE − (μ + ν) I (2.5)

Ṙ = νI − μR

ṗ = (1 − p)
[(

k0θ I − k0αp
)

p + γ (t)
]

.
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302 B. BUONOMO ET AL.

The following initial conditions are assumed to be non-negative:

S(0) = S0 � 0, E(0) = E0 � 0, I(0) = I0 � 0, R(0) = R0 � 0, p(0) = p0 � 0. (2.6)

2.2 Basic properties

It is easy to check that the set

D =
{
(S, E, I, R, p) ∈ R

5+ : S + E + I + R � 1, p � 1
}

is positively invariant, i.e. solutions of (2.5) with initial conditions in D remain in D for all t � 0.
Therefore, the investigation may be limited to this region.

For reference purposes, let us consider model (2.5) in the case of constant control, i.e. γ (t) =
γ̃ (const.). In this case the model admits two disease-free equilibria: the pure vaccinator equilibrium
(PVE) given by

E1 = (0, 0, 0, 0, 1),

and the mixed-state equilibrium (MSE) given by

E2 =
(

1 −
√

γ̃

k0α
, 0, 0, 0,

√
γ̃

k0α

)
,

which exists (i.e. it is positive) only if γ̃ < k0α.
It can be proved that the following theorem holds (see Buonomo et al., 2018a for the proof):

Theorem 2.1 If γ̃ � k0α, then the PVE is the only equilibrium of model (2.5) and is globally
asymptotically stable (GAS) in D; if γ̃ < k0α, then the PVE is unstable and there exists also the
MSE equilibrium. Furthermore, there exist two threshold values, γ̃cr and γ̃∗, where γ̃cr < γ̃∗ and γ̃cr
depends on the amplitude σ , such that

• if γ̃∗ < γ̃ < k0α, then the MSE is GAS, independent from the oscillations of the transmission
rate;

• if γ̃cr(σ ) < γ̃ < γ̃∗, then the MSE is GAS, and in this case the stability depends on σ ;

• if γ̃ < γ̃cr(σ ), then the MSE is unstable and the disease is persistent.

3. The optimal control problem

In this section, we investigate the optimal time profile of PHIs aimed at increasing the propensity to
vaccinate in a non-mandatory immunization regime. Our goal is to jointly minimize disease-related
costs, vaccination (and VSEs) costs and enactment cost of the strategy. To this aim, the objective
functional to be minimized includes the following three components (where a discount rate r is taken
into account):

• ‘Costs due to the disease burden.’ The first cost component is the total direct and indirect (loss
of productivity, social alarm, etc.) costs caused by all new infectious subjects during the time
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OPTIMAL PUBLIC HEALTH INTERVENTION IN A BEHAVIOURAL VACCINATION MODEL 303

horizon [0, tf ] which reads

Jin = Kin

∫ tf

0
e−rtNρE dt,

where Kin is the average cost for a new infectious case, and N denotes the total (constant)
population. By setting the costs dependent on the incidence of the disease, we want to minimize
the ‘flux’ of the new infectious, indirectly reducing the global burden. It is interesting to note
that if r = 0 then from the second equation of system (2.1) it follows

Jin = KinNρ

μ + ρ

[
E0 − E(tf ) +

∫ tf

0
β(t)SI dt

]
,

where the last addendum in parenthesis is the number of people that were infected in [0, tf ].

• ‘Costs of vaccination and VSEs.’ Denoting with Kv the average cost of vaccine administration
per person and potential costs deriving from VSEs, it follows that the global cost of vaccinations
and VSEs is

Jv = Kv

∫ tf

0
e−rtNμp dt.

• ‘Public campaign costs’. In the lack of real data, we assume that Public Health (PH) efforts
are increasingly costly, and that nonlinearity might mainly arise at high intervention levels.
Therefore, we assume that the integrand function is quadratic with respect to the control variable
γ (t). This approach is widely employed in applications of OCT to mathematical epidemiology
(Blayneh et al., 2010; Lee et al., 2010; Prosper et al., 2014; Rodrigues et al., 2014). Therefore,
we have

Jγ = Cγ

∫ tf

0
e−rtγ 2(t) dt,

where Cγ is a positive constant. In the present case, the quadratic cost can be qualitatively
justified as follows (Buonomo et al., n.d.): i) the cost per time unit is very likely an increasing
function of the number of people that switch from the no-vaccine to the vaccine strategy, which
is equal to Nγ (t)(1 − p); ii) the cost per time unit is also an increasing function of the induced
speed of strategy change γ (t); iii) the cost per time unit ought to be a decreasing function of
the hesitant/hostile population (fraction: (1 − p)); iv) if very few anti-vaccinators remain, the
cost to convince them is very large, say, it tends to plus infinity. Thus, in the easiest case, by
assuming that the cost per time unit is proportional to both γ (t)(1 − p) and γ (t) and inversely
proportional to 1 − p one gets a quadratic cost.

By setting Cϕ = KinNρ and Cv = KvNμ, our goal can be formalized as follows: ‘find an optimal
control function γ ∗(t) that minimizes the objective functional

J (γ (t)) = Jin + Jv + Jγ =
∫ tf

0
e−rt

[
CϕE + Cvp + Cγ γ 2(t)

]
dt (3.1)
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304 B. BUONOMO ET AL.

on the admissible set

Ω =
{
γ (t) ∈ L1

(
0, tf

)
, 0 � γ (t) � γmax

}
,

subject to (2.5) and initial conditions (2.6).’
The assumption of upper boundedness for γ (t) reflects the realistic scenario of practical limitations

on the maximum rate at which public information may spread during a given time interval.
The existence of the optimal control solution γ ∗(t) for this problem is guaranteed because the
requirements of classical existence theorems (i.e. Theorem III.4.1 and its corresponding corollary in
Fleming & Rishel, 1975) are satisfied.
Regarding its characterization, according to Pontryagin’s minimum principle (Pontryagin et al., 1962),
the problem of finding the time-dependent control variable γ ∗(t) that minimizes the objective functional
(3.1) is equivalent to the problem of minimizing the ‘current value’ Hamiltonian:

H = CϕE + Cvp + Cγ γ 2(t) + λ · f.

Here f denotes the right-hand side of (2.5) and λ ∈ R
5 the ‘adjoint’ variables vector at time t. The latter

is the solution of the adjoint system

λ̇ = rλ − ∂H

∂x
,

with the ‘transversality condition’

λ
(

tf

)
= 0,

where x denotes the state variables vector.
In our case, the adjoint system is the following:

λ̇1 = rλ1 + (
λ1 − λ2

)
βavg

[
1 + σ cos (ωt + χ)

]
I + μλ1

λ̇2 = rλ2 − Cϕ + ρ
(
λ2 − λ3

) + μλ2

λ̇3 = rλ3 + (
λ1 − λ2

)
βavg

[
1 + σ cos (ωt + χ)

]
S + λ3 (μ + ν) − νλ4 − k0θλ5

(
p − p2)

λ̇4 = rλ4 + μλ4

λ̇5 = rλ5 − Cv + μλ1 + λ5

[
k0

( − 3αp2 + 2αp + 2θ Ip − θ I
) + γ (t)

]
.

The optimal control γ ∗(t) that solves the control problem is the time-dependent function that minimizes
H. In other words, it must satisfy the following:

∂H

∂γ
= 0, and

∂2H

∂γ 2 > 0.
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OPTIMAL PUBLIC HEALTH INTERVENTION IN A BEHAVIOURAL VACCINATION MODEL 305

More explicitly, we have

H = CϕE + Cvp + Cγ γ 2(t)

+ λ1

[
μ(1 − p) − μS − βavg

[
1 + σ cos (ωt + χ)

]
SI

]
+ λ2

[
βavg

[
1 + σ cos (ωt + χ)

]
SI − (μ + ρ) E

]
+ λ3

[
ρE − (μ + ν) I

]
+ λ4 (νI − μR)

+ λ5

[
k0

(
αp3 − αp2 − θ Ip2 + θ Ip

)
+ γ (t) − pγ (t)

]
.

(3.2)

Note that we have rewritten (2.4) as follows:

ṗ = k0

(
αp3 − αp2 − θ Ip2 + θ Ip

) + γ (t) − pγ (t).

Differentiating H with respect to the control and solving for γ (t), we obtain the following:

γ ∗(t) = min

(
max

(
0,

( p∗ − 1) λ5

2Cγ

)
, γmax

)
(3.3)

and

∂2H

∂γ 2 = 2Cγ > 0.

The notation with superscript * is used to denote the solution to the state system (2.5) corresponding to
the optimal control γ ∗(t).

4. Demographic and epidemiological parameter values

4.1 Human behaviour and seasonality parameters

We want to explore the impact of seasonality and human behaviour on the control of the spread of
the target disease. First of all, for convenience, we introduce the quantities α = α/θ , and k = k0θ ,
which can be interpreted, respectively, as the normalized measure of the relative perceived risk of VSEs
compared to the perceived risk of infection and the normalized index of imitation or ‘internal’ influence
(d’Onofrio et al., 2012).

One of the main features of a behavioural epidemic model is constituted by the part modelling the
dynamics of the time-changing vaccine propensity p, namely, in our case, the imitation game equation.
As a consequence, in order to investigate the impact of the human behaviour on the optimal control and
the disease spread, we consider the following two case studies:

• CASE I: (α, k) = (1/2000, 200), corresponding to a low perceived relative risk of VSEs and
relatively slow imitation;

• CASE II: (α, k) = (1/450, 5), corresponding to an intermediate perceived relative risk of VSEs
and very slow imitation.
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Table 1 Many demographic and epidemiological parameters and baseline
values for model (2.5).

Parameter Description Baseline value

μ Birth/death rate (per day) 1/(78 × 365)
βavg Average transmission rate (per day) 1.4294
ε Immigration/emigration flux (per day) 2.2 × 10−6

ρ Latency rate (per day) 1/10
ν Recovery rate (per day) 1/7
σ Amplitude of the transmission rate [0,1)
ω Pulsation of the transmission rate (per day) 2π/365
χ Phase of the transmission rate -0.8
N Total population 5 × 106

S0 Initial fraction of susceptible individuals 0.055
E0 Initial fraction of latent individuals 9 × 10−6

I0 Initial fraction of infectious individuals 8 × 10−6

p0 Initial vaccinated proportion among newborns 0.95

The large disproportion between α and θ is a consequence of the assumption that the perceived
risk of infection is prevalence-dependent. Indeed, in d’Onofrio et al. (2011) it was shown that this is a
necessary condition in order to achieve high coverages.

All the parameter values are described in Table 1. Data are based on previous studies
(Buonomo et al., 2018a, n.d.). In particular, choosing 1 day as time unit, it follows that the pulsation
ω of the transmission rate (2.2) is ω = 2π/365. The phase is assumed to be χ = −0.8, in order to
represent a maximum value in correspondence to school terms (February) and a minimum value for
summer holidays (August). The amplitude range is [0, 1) to preserve the positivity of the transmission
rate.

As mentioned above, we are also interested in assessing the impact of seasonality on the control. At
this aim, we explore three cases:

(a) low seasonality, represented by the case σ = 0.2;

(b) moderate seasonality, σ = 0.5;

(c) large seasonality, σ = 0.9,

complemented by the ‘baseline case’ of absence of seasonality: σ = 0.

4.2 Numerical algorithms and parametrization of the optimal control problem

We use the gradient descent or steepest descent method (Anita et al., 2011) to investigate numerically
the optimal control problem. The fourth-order Runge–Kutta method is used to perform all the numerical
integrations.

As in Bauch (2005), we include a small immigration/emigration constant flux ε to take into the
account of immigration of infected individuals during inter-epidemic periods. Precisely, in model (2.5)
a positive influx +ε is added to the second equation, balanced by a negative term −ε in the first equation.
Clearly, this constant influx term must be taken into account also in (3.2).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article-abstract/36/3/297/5057753 by U
niversity of Strathclyde user on 18 M

ay 2020



OPTIMAL PUBLIC HEALTH INTERVENTION IN A BEHAVIOURAL VACCINATION MODEL 307

The temporal horizon is set tf = 11 years, i.e. we focus on the medium term impact of the PHS
efforts. Under the assumption of low inflation rate, we can safely disregard the discount rate (i.e. r = 0).

In order to emphasize the difficulties to increase the propensity to vaccinate, we set γmax at a level
below the threshold k0α = kα that would ensure global stability of the PVE in model (2.5) with constant
γ (t) and ε = 0. In particular, in our simulations we will use γmax = 0.9kα.

As far as costs are concerned, following Carabin et al. (2002), we set Kin = 307, which corresponds
to the average cost per measles case in UK. The unit cost of vaccination, Kv, is computed as the sum of
two components: the cost of a single vaccine dose, 19 USD (for an MMR dose), and the average direct
cost of an episode of VSEs, 2.08 USD.

As for Cγ , given the lack of real data, we roughly infer its order of magnitude by the following

considerations. Let us consider the case of constant control γ (t) = γ̃ (const.), with 0 < γ̃ < kα, and
ε = 0. Evaluating the total cost for unit time at the MSE, we have

J(γ̃ ) = KvNμ

√
γ̃

kα
+ Cγ γ̃ 2.

In order to estimate Cγ , we may assume that, given a suitable value of γ̃ , the cost of enacting a public
campaign has the same order of magnitude of the total costs arising from vaccination, i.e.

Cγ γ̃ 2 ≈ KvNμ

√
γ̃

kα
,

or equivalently

Cγ ≈ 1

γ̃ 2 KvNμ

√
γ̃

kα
= KvNμ

γ̃

√
kαγ̃

,

which provides a baseline approximation for Cγ . In our simulations we assume that γ̃ = γmax.
Parameter values of the optimal control problem are collected in Table 2.
As far as initial conditions are concerned, they revealed to be critical for the chosen algorithms.

Indeed, we initially intended to employ for both Cases I and II the respective endemic equilibrium
(say, EE) in the case of constant contact rate (β(t) = βavg). However, we used two different methods,
the gradient descent method (Anita et al., 2011) and the forward–backward sweep method (Lenhart &
Workman, 2007) but both of them failed to converge for numerical experiments we had designed. Thus,

Table 2 Parameters and baseline values of the optimal control problem defined
in Section 3.

Parameter Description Baseline value

r Discount rate (per day) 0
γmax Maximum rate of PHS efforts (per day) 0.9kα
Kin Average unit cost per infectious case (USD) 307
Kv Average unit cost of vaccination (USD) 21.08

Cγ Cost of strategy implementation (USD) KvNμ/

(
γmax

√
kαγmax

)
tf Length of the planning horizon (in days) 11 × 365
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308 B. BUONOMO ET AL.

Fig. 1. Case I (low perceived relative risk of VSEs and relatively slow imitation): impact of the seasonality amplitude σ on the
dynamics of model (2.5). The dash-dotted (resp. solid) lines represent the time profiles in absence of control (γ (t) ≡ 0) (resp.
with the optimal control given by (3.3)). Left panels: fraction of infectious individuals. Right panels: vaccinated proportion among
newborns. First row: σ = 0.2, second row: σ = 0.5 and third row: σ = 0.9. The other parameter values are reported in Tables 1
and 2.

the use of the above important initial conditions severely limited the full exploration of the effects of
contact rate oscillations of human behaviour and of the latency time. As a consequence, we had to use
a slightly different initial conditions adopted in Buonomo et al. (2018a), which are slight perturbations
of EE. Furthermore, we assumed p0 = 0.95. As far as the possible reasons of the lack of convergence
are concerned, we stress that even in absence of the control the system is particularly stiff. To mitigate
its stiffness we adopted some variable transformations that help and accelerate the simulations of the
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OPTIMAL PUBLIC HEALTH INTERVENTION IN A BEHAVIOURAL VACCINATION MODEL 309

uncontrolled model. Unfortunately, the changes of variables did not affect the convergence of the two
algorithms.

5. Numerical simulations for Case I: low perceived relative risk of VSEs and relatively slow
imitation

5.1 General settings

As mentioned in the previous section, we describe the case of low perceived relative risk of VSEs
and relatively slow imitation by setting α = 1/2000 and k = 200. Moreover, three positive values of
seasonal amplitude are considered: σ = 0.2 (low seasonality), σ = 0.5 (moderate seasonality) and
σ = 0.9 (large seasonality). The baseline case σ = 0 is also considered for the controlled case. The
parameter values and initial data are reported in Tables 1 and 2.

5.2 Case I: dynamics in absence of control

When no control is implemented, the model predicts annual oscillations of both the disease burden
and vaccine uptake (dash-dotted lines in Fig. 1). The fraction of vaccinated newborns, p, experiences
immediate decline due to the onset of VSEs: from an initial value of 95% it falls below 10% in less than
1 year and then it starts to oscillate. In any case, the amplitude of oscillations grows gradually over the
years until it reaches approximately a constant value. The time needed to ‘converge’ ranges between
4 years (when σ = 0.9) and 7 years (when σ = 0.2).

The prevalence peaks occur every year in April, after 2 months from the moment of maximum
transmission rate. Instead, peaks of vaccine uptake occur only at the end of May, i.e. after about one
season (3 months) from the moment of maximum transmission rate.

In Table 3 the extremal values of prevalence are reported, corresponding to different values of
seasonal amplitude σ . As it can be seen, higher amplitudes of transmission rate are associated, not
surprisingly, with higher peaks of disease prevalence. In particular, the maximum fraction of infective
individual could increase about 90% as seasonality increases. Indeed, it increases from about 2.52×10−4

for σ = 0.2, up to 4.78 × 10−4 for σ = 0.9. Moreover, larger oscillations are associated with the larger
value of seasonality (see again Table 3).

Since the perceived risk of infection is prevalence-dependent, also the maximum vaccination
coverage increases from about 45% for σ = 0.2 up to 75% for σ = 0.9, respectively (right panels
of Fig. 1).

Table 3 Case I (low perceived relative risk of VSEs and relatively slow imitation):
minimum and maximum values of prevalence in absence of control (Im and IM, resp.)
and in presence of control (I∗

m and I∗
M, resp.) corresponding to different values of

seasonal amplitude σ .

σ Im IM I∗
m I∗

M

0.2 2.989 × 10−5 2.519 × 10−4 2.610 × 10−5 5.651 × 10−5

0.5 2.248 × 10−5 3.787 × 10−4 2.049 × 10−5 7.388 × 10−5

0.9 1.668 × 10−5 4.782 × 10−4 1.625 × 10−5 1.011 × 10−4
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310 B. BUONOMO ET AL.

Fig. 2. Case I (low perceived relative risk of VSEs and relatively slow imitation): impact of the seasonality amplitude σ on the
optimal fraction of infected individuals (left panel) and optimal control time profile (right panel) as predicted by model (2.5) with
γ (t) given by (3.3). Four values of seasonal amplitude are considered: σ = 0, σ = 0.2, σ = 0.5 and σ = 0.9. The other parameter
values are reported in Tables 1 and 2.

5.3 Case I: dynamics in presence of control

If the PHS enacts public campaigns to favour vaccine uptake, higher efforts in supplying information
are required as seasonality increases (see Fig. 2, right panel). In particular, when seasonality is large, the
PHS efforts must be provided at their maximum level, γ ∗(t) = γmax(= 0.09) for almost 3 years. This
period of maximum effort is reduced by 1 year when seasonality is moderate. Whereas, if seasonality
is low, the optimal effort time profile γ ∗(t) begins at a value slightly below the maximum and slowly
decreases towards the lower bound. In any case, optimal control is zero in the past 1–1.5 years of
planning.

If PHIs are enacted according to the optimal time profile, the corresponding dynamics of p is initially
larger than its uncontrolled time profile (see the solid lines in the right panels of Fig. 1). Moreover, the
optimal vaccination coverage is characterized by small oscillations patterns. Once close to the time
horizon, the vaccine coverage declines to such an extent that it becomes lower than it would have been
in the uncontrolled case.

Note that a higher seasonality has beneficial effects on the vaccine uptake, as a consequence of
the abovementioned fact that the PHS efforts increase with σ . Indeed, indicating with tx(σ ) � 0
the amplitude of the time interval (0, tx) during which p remains larger than a proportion x, given
an amplitude σ , we have the following: i) t0.8(0.2) = 5.3 years, whereas t0.8(0.9) ≈ 7.3 years; ii)
t0.4(0.2) ≈ 9.4 years, whereas t0.4(0.9) ≈ 9.9 years (see Table 4).

The optimal intervention impacts the dynamics of infectious prevalence in two distinct ways (see
Fig. 1, left panels): i) the annual average value of the prevalence is reduced w.r.t. the uncontrolled case;
ii) the amplitude of the oscillations of the prevalence is strongly reduced w.r.t. the uncontrolled case.
Note that although the seasonality strength positively impacts on the optimal vaccine uptake, we note
that the prevalence increases with σ .
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Table 4 Case I (low perceived relative risk of VSEs and rela-
tively slow imitation): time needed to reach the vaccination coverage
p∗ = 0.8 and p∗ = 0.4 and total costs (given by (3.1)) corresponding to
different values of seasonal amplitude σ .

σ t0.8(σ ) (years) t0.4(σ ) (years) Total costs (USD)

0 5.06 9.53 4.552 × 107

0.2 5.30 9.44 4.584 × 107

0.5 6.22 9.56 4.795 × 107

0.9 7.26 9.88 5.251 × 107

The total costs, i.e. the values of the objective functional (3.1) corresponding to the optimal time
profile are reported in Table 4. The numerical simulations predict that costs will increase as seasonal
amplitude increases and the difference can reach up to 15% approximately. Given the weights Kin, Kv
and Cγ as in Table 2, the predicted cost of the whole PHIs campaign is approximately ∼ 5 × 107 USD.

6. Numerical simulations for Case II: intermediate perceived relative risk of VSEs and very
slow imitation

6.1 General settings

We consider now the case of intermediate perceived relative risk of VSEs (represented by α = 1/450)
and very slow imitation rate (represented by k = 5). As in the previous case, we assume that three levels
of seasonal amplitude (low, moderate and large) may be represented by σ = 0.2, σ = 0.5 and σ = 0.9,
respectively. The baseline case σ = 0 is also considered for the controlled case. The parameter values
and initial data are reported in Tables 1 and 2.

6.2 Case II: dynamics in absence of control

In the uncontrolled case (γ (t) ≡ 0), model (2.5) for Case II predicts an oscillating pattern of infectious
individuals where amplitude increases along time and seems to approach a steady-state value (see
dash-dotted lines in Fig. 3, left panels). Compared to Case I, the duration of the transient period to
reach constant amplitudes is longer (from 7 to 8 years according to the strength of seasonality). The
prevalence peaks (namely, IM) are much higher than those observed in Case I (see Table 5 and compare
with Table 3).

In Case II, the reduced imitation rate deeply impacts the pattern of vaccinated proportion. Indeed,
in this case p decreases until it reaches a value close to 8–10% of the total population of parents after
the first 3–4 years and then it exhibits minimal oscillations, whose amplitude is about 1% of the total
population of parents (see dash-dotted lines in Fig. 3, right panels).

6.3 Case II: dynamics in presence of control

As illustrated in Fig. 4, right panel, a higher amplitude of seasonality requires greater efforts in enacting
persuasive actions also for Case II. When the seasonality is large, σ = 0.9; the optimal public campaign
effort γ ∗(t) is at its upper bound, γmax = 0.01, for about 2.5 years and then declines. When seasonality
is moderate, σ = 0.5; the control starts at its upper bound and then rapidly decreases, while in the
presence of low seasonality, σ = 0.2, the PHS effort must be initially provided at a value slightly less
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312 B. BUONOMO ET AL.

Fig. 3. Case II (intermediate perceived relative risk of VSEs and very slow imitation): impact of the seasonality amplitude σ on
the dynamics of model (2.5). The dash-dotted (resp. solid) lines represent the time profiles in absence of control (γ (t) ≡ 0) (resp.
with the optimal control given by (3.3)). Left panels: fraction of infectious individuals. Right panels: vaccinated proportion among
newborns. First row: σ = 0.2, second row: σ = 0.5 and third row: σ = 0.9. The other parameter values are reported in Tables 1
and 2.

than γmax before it starts to decline to zero. In each of these cases, no control strategies are enacted in
the past 1.5–2 years of the planning horizon.

When optimal control is enacted the vaccine uptake is greatly affected. Indeed, p∗ remains large for
the vast majority of the time span (see the solid lines in the right panels of Fig. 3). Moreover, a higher
seasonality has beneficial effects on the vaccine uptake. Indeed, we have the following: i) t0.8(0.2) ≈ 5.0
whereas t0.8(0.9) ≈ 7.2; and ii) t0.4(0.2) ≈ 9.2 whereas t0.4(0.9) = 9.6 (see Table 6).
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Table 5 Case II (intermediate perceived relative risk of VSEs and very slow
imitation): minimum and maximum values of prevalence in absence of control (Im
and IM, resp.) and in presence of control (I∗

m and I∗
M, resp.) corresponding to different

values of seasonal amplitude σ .

σ Im IM I∗
m I∗

M

0.2 2.790 × 10−5 3.535 × 10−4 2.622 × 10−5 5.850 × 10−5

0.5 2.169 × 10−5 5.317 × 10−4 2.059 × 10−5 7.808 × 10−5

0.9 1.656 × 10−5 6.699 × 10−4 1.628 × 10−5 1.036 × 10−4

Fig. 4. Case II (intermediate perceived relative risk of VSEs and very slow imitation): impact of seasonality amplitude σ on the
optimal fraction of infected individuals (left panel) and optimal control time profile (right panel) as predicted by model (2.5) (with
γ (t) given by (3.3)). Four values of seasonal amplitude are considered: σ = 0, σ = 0.2, σ = 0.5 and σ = 0.9. The other parameter
values are reported in Tables 1 and 2.

Table 6 Case II (intermediate perceived relative risk of VSEs
and very slow imitation): time needed to reach the vaccination
coverage p∗ = 0.8 and p∗ = 0.4 and total costs (given by (3.1))
corresponding to different values of seasonal amplitude σ .

σ t0.8(σ ) (years) t0.4(σ ) (years) Total costs (USD)

0 4.82 9.24 4.528 × 107

0.2 5.04 9.19 4.563 × 107

0.5 6.02 9.34 4.793 × 107

0.9 7.21 9.60 5.300 × 107

Although the vaccine uptake increases with σ , also here the reverse effect is observed on the
prevalence: the higher is σ the larger are the oscillations of I∗. Of course, due to the low vaccine uptake
in absence of control, the prevalence exhibits in all cases smaller oscillations and smaller annual average
value than in the non-controlled case (left panels of Fig. 3).
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314 B. BUONOMO ET AL.

In order to evaluate the interplay between seasonality and total expenditure by the PHS, the values
assumed by the objective functional (3.1) are computed and reported in Table 6. As expected, higher
amplitudes of seasonality are associated with higher costs. One can note that, although the order of
magnitude of costs is the same with the corresponding values of Case I (compare Table 6 with Table 4),
Case II results in about 5 × 105 USD saving compared to Case I for the same seasonality amplitude.

7. Impact of the latency rate on the model dynamics and the optimal control

The most characteristic parameter of a SEIR model is, of course, the latency rate (the parameter ρ in
(2.5)). This rate is the inverse of the average latency period. When ρ is very large, the latency period is
very small and the SEIR model behaves in practice as a SIR model. In this case an approximation can
be obtained by means of the quasi steady state assumption

E ≈ β(t)SI

μ + ρ
,

leading to a slightly corrected contagion rate

CR = ρ

μ + ρ
β(t)SI.

Thus, it is of interest to assess the impact of the parameter ρ on the dynamics of the disease spread and
the optimal control.
To this aim, we consider two values of latency rate, namely

ρ1 = 0.2; ρ2 = 5ρ.

These values are sufficiently large and sufficiently small, without however being extremely low/large.

The most interesting effect is observed when the latency rate is ρ1 (i.e. one-fifth of the baseline
rate). Indeed, in such a case the presence of seasonality has a very small impact on the optimal control
(Figs 5 and 6, third row) and on the corresponding vaccine propensity (Figs 5 and 6, second row as well
as the left columns of Tables 7 and 8). If the latency rate is ρ1 it can be also observed a reduction of
the amplitude of the oscillations of the prevalence (Figs 5 and 6, first row). This was expected based on
the following heuristic argument: the equation ruling the dynamics of E is equivalent to the model of
a first-order linear low-pass filter (Chua et al., 1987; Chen, 2009; Dimopoulos, 2011), whose input is
the oscillating signal β(t)SI. Thus, by increasing the characteristic time of the filter (i.e. decreasing the
latency rate) its filtering power increases due to the decrease of the cut-off frequency of the filter.

8. Conclusions

In this work we introduce a SEIR-like behaviour-dependent vaccination model, including seasonal
fluctuations of the transmission rate and an awareness campaign by the PHS aimed at favouring the
vaccine uptake by the target population.

Our aim is to find, via OCT, the optimal profile of the abovementioned PHS action to minimize the
total costs of the disease. Two of the considered costs are customary in epidemiology: the vaccinations
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OPTIMAL PUBLIC HEALTH INTERVENTION IN A BEHAVIOURAL VACCINATION MODEL 315

Fig. 5. Case I (low perceived relative risk of VSEs and relatively slow imitation): impact of the latency rate and of the seasonality
amplitude on the dynamics of model (2.5) with γ (t) given by (3.3). Left panels, latency rate: ρ1 = 0.2ρ. Right panels, latency
rate: ρ2 = 5ρ. First row: dynamics of optimal fraction of infectious individuals, second row: optimal vaccinated proportion and
third row: PHS efforts. Four values of seasonal amplitude σ are considered, as reported in the legend. Other parameter values are
given in Tables 1 and 2.

costs (including the economic burden of vaccine-related side effects) and the costs related to the
infections. However, here we also consider a third less usual category of costs (recently introduced
in Buonomo et al., n.d.), i.e. the economic burden to enact the PHS campaigns.

We apply the Pontryagin minimum principle to obtain the optimality conditions and numerically
explore how three key epidemiologic ‘dimensions’ co-present in our control model impact on the control
and spread of the target disease. These ‘dimensions’ are the seasonality, the human behaviour and the
latency time/rate.
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316 B. BUONOMO ET AL.

Fig. 6. Case II (intermediate perceived relative risk of VSEs and very slow imitation): impact of the latency rate and of the
seasonality amplitude on the dynamics of model (2.5) with γ (t) given by (3.3). Left panels, latency rate: ρ1 = 0.2ρ. Right panels,
latency rate: ρ2 = 5ρ. First row: dynamics of optimal fraction of infectious individuals, second row: optimal vaccinated proportion
and third row: PHS efforts. Four values of seasonal amplitude σ are considered, as reported in the legend. Other parameter values
are given in Tables 1 and 2.

Due to its well-known impressive impact on disease time series and models (Altizer et al., 2006;
Grassly & Fraser, 2006; Buonomo et al., 2018b), the seasonality degree is somewhat central in our
analysis.

The human behaviour is summarized by the two parameters of the imitation game: the imitation
speed and the perceived risk of VSEs compared to the perceived risk of infection. Namely, we considered
two noteworthy case studies. In Case I (resp. Case II), the relative perceived risk of VSEs is low (resp.
intermediate) and the speed of imitation is relatively low (resp. very low).
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Table 7 Case I (low perceived relative risk of VSEs and relatively slow
imitation): impact of the latency rate and amplitude σ on the time needed
to reach the vaccination coverage p∗ = 0.8 and p∗ = 0.4.

ρ1 = 0.2ρ ρ2 = 5ρ
σ t0.8(σ )(years) t0.4(σ )(years) t0.8(σ )(years) t0.4(σ )(years)

0 4.87 9.21 5.10 9.59
0.2 4.86 9.17 5.38 9.52
0.5 4.99 9.16 6.38 9.82
0.9 5.51 9.19 7.39 9.98

Table 8 Case II (intermediate perceived relative risk of VSEs and very
slow imitation): impact of the latency rate and amplitude σ on the time
needed to reach the vaccination coverage p∗ = 0.8 and p∗ = 0.4.

ρ1 = 0.2ρ ρ2 = 5ρ
σ t0.8(σ )(years) t0.4(σ )(years) t0.8(σ )(years) t0.4(σ )(years)

0 4.61 8.88 4.86 9.32
0.2 4.63 8.86 5.19 9.28
0.5 4.80 8.87 6.40 9.50
0.9 5.21 8.94 7.61 9.79

In the first set of simulations we choose a baseline value for the latency rate and investigate the
interplay between seasonality and behaviour. Then, based on these results, we assess how they could
change in case of small or large latency time.

The ensuing analysis points out the following results:

• The degree of seasonality of the transmission rate produces a remarkable impact on the efforts
needed by the PHS to enact an optimal control of the disease. Generally speaking, a higher
amplitude of the seasonal variation produces a higher effort and, not surprisingly, higher costs.
This increased level of efforts, in turn, beneficially impacts on the induced vaccine uptake since
the larger is the strength of seasonality σ , the longer the vaccine propensity remains large.
On the other hand, the increase in vaccine propensity is not mirrored by a decrease of the
disease prevalence, which, on the contrary, increases with σ . Thus, we may say that although the
seasonality-dependent increase of efforts produces an increase of vaccine uptake, such increase
is not able (at least for the parametric set we explored in our simulations) to fully compensate
the direct action of seasonality on the prevalence.

• Not surprisingly, we found that in all the analysed cases the prevalence induced by the optimal
control is smaller and exhibits smaller oscillations compared to the uncontrolled dynamics.

• As far as the global effect of optimal control on the oscillations of both vaccine uptake and of
disease prevalence is concerned, the optimal control seems to totally (for p) or partially (for I)
suppress the observed oscillations.

• As far as the role of the parameters that tune the human behavioural response is concerned,
comparing the Case I (low relative perceived risk of VSEs and relatively low imitation speed)
with Case II (intermediate relative perceived risk of VSEs and very low imitation speed), we

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article-abstract/36/3/297/5057753 by U
niversity of Strathclyde user on 18 M

ay 2020



318 B. BUONOMO ET AL.

found the following: i) in Case II the control is practically unaffected by the oscillations of β(t)
at variance with Case I where small oscillations are present especially in the second part of the
control horizon; and ii) the control-induced dynamics of p are quite similar and in both cases
are unaffected by oscillations.

• Finally, the impact of the latency time, which is the most characteristic parameter of the SEIR
model, is particularly important when it is large (i.e. when the latency rate is low). Indeed, in
such a case the effect of seasonality on the optimal control time profile and on the vaccine
propensity p is negligible. Moreover, the amplitudes of the oscillations are reduced; this can be
heuristically explained as a low-pass filtering effect of the buffer compartment E. Indeed, the
differential equation for E is equivalent to the mathematical model of the classical first-order
low-pass filter (Chua et al., 1987; Chen, 2009; Dimopoulos, 2011).

• As far as the interplay between latency and behaviour is concerned, in the case of smaller
latency time it is observed for Case II a reduced amount of oscillations w.r.t. the Case I,
as we had observed for simulations corresponding to the baseline value of the latency time.

Although our results are preliminary and not yet supported by field data, the analysis proposed here
represents a further step in using ‘simple’ mathematical models to identify the role of private and public
communication in determining the observed vaccination coverage. In particular, the first of the above
points can provide some suggestions of interest to PHSs planning vaccine awareness campaigns for
diseases strongly impacted by seasonalities. Indeed, it shows that although the campaigns can deeply
influence the vaccine uptake by the target population, the response in term of reduction of prevalence
may appear not so amazing. This is simply an appearance caused by the strong nonlinearity of the
disease dynamics, since the prevalence in absence of any awareness campaigns would be much larger.
Another message is that the presence of seasonal oscillations in the transmission rate is not mirrored
by wild oscillations of the control. The OC analysis showed that the efforts must be increased and do
not follow the seasonal pattern. This is an interesting point, since one could naively think that the effort
should be in phase and also in quantitative agreement with the changes of the contact rate (i.e. much
more effort during the high contacts period, much less effort during the low contacts periods). On the
contrary, we observed that, grossly, the control has small oscillations and they are—roughly speaking—
in phase opposition to the contact rate.

Of course, more complex metapopulation models might provide more useful indications coming
from emerging properties that are absent in simple models as the SEIR one.

As far as the numerical simulations are concerned, our priority will be finding a simulation tool that
could allow us to fully explore a range of realistic initial conditions.

Finally, it is important to stress an important limitation of many works, including ours, applying OCT
to infectious diseases. Namely, although our time horizon is usually relatively small with respect to large
demographic changes, nevertheless, the assumption of constant death and birth rates is an idealization, as
shown in (d’Onofrio et al., 2008). In Appendix A, we investigated the effect of an exponential increase
of the population, which yielded small deviations from the case of static population. However, in order to
have a sufficiently realistic idea of the impact of human demography on the problem in study one should
take into account not only deterministic ‘internal’ demographic trends (d’Onofrio et al., 2008) but also
their stochastic fluctuations that sometimes can induce relevant unexpected effects (Alonso et al., 2007;
Black & McKane, 2010). We are investigating the impact of these changes, which imply further layers
of modelling complexity, among which are as follows: i) the inclusion of systematic and punctual
immigration and emigration fluxes: ii) the correct modelling of the stochastic perturbation affecting the
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system, e.g. by means of bounded stochastic processes (d’Onofrio, 2013): iii) the interplay between
seasonality and demographic stochasticity (Black & McKane, 2010); and last but not least iv) the
determination of the optimal control in the stochastic setting (Fleming & Rishel, 1975), since it would
be of interest to assess the robustness of the optimal control with respect to the abovementioned
heterogeneities.
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Appendix A. Effects of idealized demographic changes

Our analysis was done under the hypothesis of constant population. However, many countries
experience an appreciable demographic dynamics with a trend of population increase (Livi-Bacci, 2017;
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Institut National de la Statistique et des Études Économiques, 2018). Modelling such increase, often
characterized by an interplay of deterministic trends and stochastic fluctuations, is beyond the aim of
this work and will be analysed in the future. However, given a simple demographic deterministic model,
it can be of interest to assess which is its implication on the results we illustrated in the previous sections.

As a consequence, let us assume that the population size is exponentially increasing as result of the
unbalance between a constant death rate μ and a larger constant birth rate b > μ. Denoting as Z the
population size at time t and continuing to denote as N its initial value (i.e. at t = 0), it yields

Z = eatN,

where a = b − μ.
Since the time horizon we have adopted is relatively short with respect to demographic characteristic
times, this can be considered a satisfactory approximation, under the further hypothesis of lack of
substantial unbalance between migratory inflow and outflow. We stress that the latter is another strong
idealization of the current worldwide scenarios, but it is very good when examining past scenarios.

In such a case let us denote by X, U, Y , W the total number of susceptible, latent, infectious and
removed individuals at time t, respectively. Assuming as in d’Onofrio et al. (2008) a realistic contagion
rate of the type β(t)(Y/Z)X (see in Wang et al., 2016 a stochastic justification of why this contagion
rate is preferable to the pure mass action version) yields the following:

Ẋ = bZ − bZp − μX − β(t)
Y

Z
X

U̇ = β(t)
Y

Z
X − (μ + ρ) U

Ẏ = ρU − (μ + ν) Y

Ẇ = νY − μW.

Passing to the epidemic fractions

(S, E, I, R) = 1

Z
(X, U, Y , W)

and taking into account that Ż = (b − μ)Z one easily gets

Ṡ = b(1 − p) − bS − β(t)SI

Ė = β(t)SI − (b + ρ) E

İ = ρE − (b + ν) I

Ṙ = νI − bR.

(A.1)

As far as the imitation game is concerned, it can be shown that the equation for p is unchanged. Indeed,
indicating with P the total number of pro-vaccine subjects at time t, its dynamics is ruled by

Ṗ = −k0α
P

Z

Z − P

Z
P + k0θ I

P

Z
(Z − P) + γ (t)(Z − P) + aP
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and from p = P/Z one gets again (2.4).
As far as the costs are concerned, since the population is no more constant it follows that

Jin =
∫ tf

0
e−rtKinNeatρE dt,

Jv =
∫ tf

0
e−rtKvNeatbp dt,

Jγ =
∫ tf

0
e−rtCγ eatγ 2(t) dt.

As a consequence the full objective functional now reads as follows:

J (γ (t)) = Jin + Jv + Jγ =
∫ tf

0
e−rnewt

[
CϕE + Cvp + Cγ γ 2(t)

]
dt, (A.2)

where

rnew = r − a

and Cϕ = KinNρ, Cv = KvNb.
The adjoint system is the following:

λ̇1 = rnewλ1 + (
λ1 − λ2

)
βavg

[
1 + σ cos (ωt + χ)

]
I + bλ1

λ̇2 = rnewλ2 − Cϕ + ρ
(
λ2 − λ3

) + bλ2

λ̇3 = rnewλ3 + (
λ1 − λ2

)
βavg

[
1 + σ cos (ωt + χ)

]
S + λ3 (b + ν) − νλ4 − k0θλ5

(
p − p2)

λ̇4 = rnewλ4 + bλ4

λ̇5 = rnewλ5 − Cv + bλ1 + λ5

[
k0(−3αp2 + 2αp + 2θ Ip − θ I) + γ (t)

]
.

As far as the numerical values of μ, ν, β(t) and of the initial conditions are concerned, we used the same
values used in the main text. As far as b is concerned, we made the choice to adopt a birth rate such
that the ratio b/μ was sufficiently realistic. Thus, we adopted as reference data those published by the
National Statistical Institute of France (Institut National de la Statistique et des Études Économiques,
2018), a nation that in the past four decades is experiencing a steady births–deaths unbalance (Institut
National de la Statistique et des Études Économiques, 2018). Under the exponential growth hypothesis,
the ratio between the yearly number of births B over the yearly number of deaths D reads as follows:

B

D
=

∫ t+1 year
t bZ dτ∫ t+1 year
t μZ dτ

= b

μ
.

For France, the mean of B/D between 1999 and 2014 is about 1.46, so we set b = 1.46μ, implying
a = 0.46μ.
Our simulations for both Cases I (see Fig. A1) and II (not shown) show that the impact of the considered
deterministic demographic trends is small. For σ ∈ {0.5, 0.8} (see the two lower panels of Fig. A1), the
impact, initially null, is increasing towards the end, where due to the smallness of the control it can
become relatively important. In the cases σ ∈ {0, 0.2} (see the two upper panels of Fig. A1), instead,
we observed since the start of the time horizon a small but systematic increase of the values of the
control function with respect to the control obtained in the case of constant population. For σ = 0, this
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is mirrored by a systematic increase of the prevalence, which is about 20% higher at tf w.r.t. the case of
constant population.

Fig. A1. Impact of an exponential growth of the population versus the case of constant population. The population size Z is
Z = Neat , where a = b − μ and b = 1.46μ (exponential growth) or b = μ (constant population). Case I (low perceived relative
risk of VSEs and relatively slow imitation): optimal fraction of infected individuals (left panels) and optimal control time profile
(right panels). The dash-dotted (resp. solid) lines refer to the case b = 1.46μ (resp. b = μ). Four values of seasonal amplitude are
considered: σ = 0 (first row), σ = 0.2 (second row), σ = 0.5 (third row) and σ = 0.9 (fourth row). The other parameter values
are reported in Table 1 and Table 2 or indicated in the text.
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