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Abstract: A wide range of applications based on sequential data, named time series, have become
increasingly popular in recent years, mainly those based on the Internet of Things (IoT). Several
different machine learning algorithms exploit the patterns extracted from sequential data to support
multiple tasks. However, this data can suffer from unreliable readings that can lead to low accuracy
models due to the low-quality training sets available. Detecting the change point between high
representative segments is an important ally to find and thread biased subsequences. By constructing
a framework based on the Augmented Dickey-Fuller (ADF) test for data stationarity, two proposals
to automatically segment subsequences in a time series were developed. The former proposal, called
Change Detector segmentation, relies on change detection methods of data stream mining. The latter,
called ADF-based segmentation, is constructed on a new change detector derived from the ADF test
only. Experiments over real-file IoT databases and benchmarks showed the improvement provided
by our proposals for prediction tasks with traditional Autoregressive integrated moving average
(ARIMA) and Deep Learning (Long short-term memory and Temporal Convolutional Networks)
methods. Results obtained by the Long short-term memory predictive model reduced the relative
prediction error from 1 to 0.67, compared to time series without segmentation.

Keywords: time series segmentation; stationarity analysis; time series prediction improvement; size
reduction in time series

1. Introduction

The growth of data generation increases daily due to the advancement of technology [1].
With the advent of sensors that are capable of capturing precious data, there is also the
need to transform this data into information. The most common data structure in the era of
automatic sensor data processing is time series. A time series can be defined as a set of se-
quential data ordered in time [2]. Traditionally, stochastic processes are used to model time
series behavior with great success [3,4]. In addition, machine learning-based approaches
are also employed to perform the identification of complex behaviors of nonlinear patterns,
optimization of unconventional functions, and even establishing connections with long
dependencies through recurrent neural networks [5,6]. These patterns can be verified in
different areas, such as climatic data [7], sales [8], medical diagnosis [9–11], security [1,12],
and even the change in share values on the stock exchange [13].

From time series analyses, it is possible to examine these patterns and create predictions
of future samples, as discussed in Mahalakshmi et al. [14]. Models based on machine learning,
e.g., Long short-term memory (LSTM) and Temporal Convolutional Network (TCN), have
shown promising results, [15,16], as an alternative to statistical models. Approaches that apply
machine learning concepts can adapt their settings to improve predictive ability [17]. This can
be done by adjusting their hyperparameters so that the time series modeling is better suited
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to the data patterns. However, in addition to being a time-consuming process, there are no
guarantees that these changes in the prediction model settings will be able to adjust to the
patterns found in the time series. This can occur due to external factors or even problems
in capturing this data, such as discussed in Breed et al. [18], which describes tracking tag
procedures to maximize the use of time series data and also by [19], which makes an extensive
study of time series data mining techniques. These discrepancies can be evidenced by time
series analysis and need to be addressed.

We developed a hypothesis for scenarios where the temporal samples show non-
stationary variability; that is, it does not manifest stability in the behavior of its samples
over time with a constant average. As far as we know, no study focused on time series
segmentation resorted to the use of stationary analysis. Usually, segmentation processes are
based on static thresholds [20], classical techniques such as sliding window assessments [3],
and even complex deep learning procedures [6]. Thus, we consider our hypothesis to
be the first proposal considering stationarity to perform time series segmentation, taking
advantage of this important feature when describing a time series. It is based on time series
preprocessing, which can lead to improvements in new samples prediction and even a
size reduction for further storage. This preprocessing consists of segmenting data from the
samples that present a non-stationary behavior over time. The advantage of this approach
lies in the simplicity of stationary analysis to accurately identify samples to be segmented
without relying on more sophisticated techniques, such as Deep Learning methods [6].

In this work, we introduce two proposals to perform time series segmentation based
on a stationary study. The first is a framework that uses the information obtained by
stationary analysis to properly adjust the change detector hyperparameters, which are
usually applied in Stream Mining. This change detector is responsible for determining
which samples should be segmented. In the second proposal, a new change detector was
developed. Only information from the stationary analysis of the time series is considered to
perform the segmentation. To make the stationary analysis, the Augmented Dickey-Fuller
(ADF) test [21] was adopted. The objective of these proposals is to improve the prediction
of new samples in the time series. The time series tend to have a better representation with
the removal of non-stationary samples. Consequently, it is easier to model and predict
future samples since the training set will be better adjusted. Some approaches (Carmona-
Poyato et al. [22]; Keogh et al. [3]) use time series segmentation to reduce the amount of
data to be processed and to represent the data in a more compact form, or even to extract
precious information for decision-making [23]. Our approach fulfills these conditions as a
result of the segmentation process and opens the door for several applications, whether for
classification, compaction, information extraction, or even prediction of new samples.

Different predictors were evaluated to validate the effectiveness of our approach.
The first one is considered as a baseline and is known as naive, which assumes that the
next sample to be predicted will have the same value as the previous sample. There is
also a statistic model known as ARIMA [24], and two recent approaches based on Deep
Learning (DL) techniques, LSTM [17], and TCN [25], respectively. Moreover, distinct time
series databases were used. They are composed of real-file IoT databases. Altogether, they
compose ten different time series datasets from three distinct origins. We have temporal
data from a photovoltaic plant, daily temperature measurements over a ten-year interval,
and a monthly count of the number of sunspots observed over more than 200 years.

According to the results obtained, our hypothesis can bring benefits for new sample
predictions. DL techniques obtained significantly smaller relative prediction errors, such
as 0.63 for the LSTM predictor, compared to the original error equal to one in the PV
plant database.

The main contributions of this paper are as follows:

• A new proposal for time series segmentation based on stationarity, named ADF-based
segmentation.

• A framework to perform segmentation of time series based on stationarity using
change detector algorithms (e.g., Page-Hinkley (PH) and ADWIN (ADW)), called
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Change Detector segmentation. Additionally, three techniques to tune the hyperpa-
rameters of the change detection algorithm, called Bigger in Smaller out, Bigger in,
and Smaller out.

• An analysis on the improvement of the predictive capacity of time series using seg-
mentation through stationary analysis.

The work is presented with the following structure. Section 2 introduces the problem
definition and how we intend to solve the segmentation process based on the stationarity
analysis. Related work is discussed in Section 3, highlighting our contributions and
differences to existing segmentation techniques in the literature. Section 4 introduces the
methodology of the proposal of this work. Section 5 presents the experimental studies that
were conducted to assess the performance of our approach compared with the state of the
art. Finally, Section 6 summarizes the conclusion of this work.

2. Preliminaries

In this section, important theories to support the development of the work will be
considered. First, the purpose of employing segmentation in time series will be presented,
as well as the discussion about stationarity, which is a fundamental feature of this work.

2.1. Segmentation Process

The segmentation process consists of identifying heterogeneous information for a
certain group, database, etc. This process can highlight misbehaving samples in time series,
isolate them from the rest of the data, reduce its size, among other possible applications,
which facilitate its analysis. There are some approaches based on sliding windows and
specific thresholds that rely on statistic data analyses to perform the time series segmenta-
tion [3]. In this work, the segmentation process is motivated by the stationarity analysis of
the time series.

Definition 1 (Time Series). A time series can be defined as a set of sequential data, ordered
in time [2]. It can be collected at equally spaced time points and we use the notation yt with
(t = . . . ,−1, 0, 1, 2, . . . ) , i.e., the set of observations is indexed by t, representing the time at which
each observation was taken. If the data was not taken at equally spaced times, we denote it with
i = 1, 2, . . . , and so, (ti − ti−1) is not necessarily equal to one [26].

Definition 2 (Stationarity). According to the definition of random processes [27], a discrete-
time or continuous-time random process X(t) is stationary if the joint distribution of any set of
samples does not depend on the placement of the time origin. This means that the joint cumulative
distribution function of X(t1), X(t2), . . . , X(tk) is the same as that of X(t1 + τ), X(t2 + τ), . . . ,
X(tk + τ) for all time shifts τ, all k, and all choices of sample times t1, . . . , tk.

The stationarity of a time series can be explained according to its stability during a
time with a constant average. However, in some real cases, certain trends influence the time
series behavior, which ends up affecting its stationarity. A series can be stationary for short
or long periods, which implies a change in the inclination of the series. The Augmented
Dickey-fuller test was applied in this work to evaluate the time series stationarity.

2.2. Augmented Dickey–Fuller Test

The Augmented Dickey-Fuller test is a statistical analysis that verifies the null hy-
pothesis that a unit root is present in a time series sample [21]. The null hypothesis can
inform whether a given time series is stationary or not. It checks if the time series can
be represented by a unit root with a time-dependent structure [28]. If this hypothesis is
rejected, we can assume that the time series is stationary. In other words, the statistics
are not affected by time offsets. The unit root exists when the α assumes the value one,
according to Equation (1):

Yt = αYt−1 + βXe + ε (1)
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where t represents the time, Yt represents the value of the time series at time t, and Xe
is an exogenous variable, which is explanatory and belongs to the time series. ε is a
serially uncorrelated, zero-mean stochastic process with constant variance σ2. The ADF
test assumes the α value equal to one in the following equation:

Yt = c + βt + αYt−1 + φ∆Yt−1 + εt (2)

where c is a constant, β is the coefficient on a time trend, Yt−1 represents the lag order equals
one, ∆Yt−1 is the first difference of the series at time t− 1 and ε is the exogenous variable.

However, the confirmation or rejection of the hypothesis can be simply verified by
analyzing the p-value of the ADF test. A p-value below a threshold determines rejection
of the null hypothesis, otherwise suggesting the failure to reject the null hypothesis. This
representation can be verified according to the conditions given below.

δ =

{
1, if p-value < γ

0, otherwise
(3)

where δ represents a time series stationarity and γ represents a determined threshold. We
assume the stationarity of the series if the value generated by the conditional is one. A
non-stationary series is obtained otherwise.

In addition to the p-value analysis, it is possible to check the ADF Statistic. In this
work, we refer to the ADF statistic as an ADF value. Usually, when this value reaches a
positive representation it will describe a non-stationary time series. Otherwise, a negative
value represents stationarity in a time series. The more negative this value is, the greater
the confirmation that its statistic does not depend on the temporal offset.

2.3. Change Detection

Change detection is an algorithm that receives continuous data and maintains statisti-
cal information to be analyzed. It outputs an alarm if any change is detected.

Definition 3 (Change). Change detection is usually applied to a data stream, which is an infinite
sequence of data and can be represented by S, where S is given by: S = {(x1, y1), (x2, y2), . . . ,
(xt, yt), . . . }. Each instance is a pair (xt, yt) where xt is a d-dimensional vector arriving at the time
stamp t and yt is the class label of xt [29]. In the case of univariate time series, the change detection
algorithm will analyze each sample X of the time series at time t. It expects that at a given point Xt+n,
where n is a time shift, has a distribution similar to the point Xt, otherwise an alarm will be triggered.

Change detectors try to identify when a given change will occur by analyzing the
behavior of previous data. Usually, change detectors are applied to data streams to identify
concept drifts, which consist of changing data behavior over time [30]. This change is
recurrent when performing data stream analysis [31]. The calibration process of these
techniques depends on the choice of parameters that best fit the data behavior; techniques
to improve their choice are often used. In this work, we seek to improve this choice with
knowledge obtained from the time series stationarity. Considering that stationary series
tend to have less variation over time, intervals that present less stationarity are more likely
to present detection points for change detectors.

3. Related Work

Time series are explored in several types of applications and but not the subject of
study until today. Most of these applications are focused on forecasting [32,33] and feature
extraction [5] approaches, as can be seen in the following studies.

Due to the growth of generated data volume, there is a need for its treatment. Size
reduction is an important procedure before carrying out analyses. The OSTS method was
proposed by Carmona-Poyato et al. [22] and consists of the segmentation of points in a
time series to reduce its size. This process is based on the A* algorithm and performs inter-
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polations using optimal polygonal approximations. This method was used for comparison
in this work with different segmentation techniques to assess its impact on the predictive
capacity of new samples in a time series.

Time series segmentation from human specified breakpoint detection was introduced in
Lee et al. [6]. The process is conducted by exploiting deep learning techniques for automatically
extracting features. However, this technique was not used as a preprocessing step to predict
new samples in a time series. Despite it being very interesting, it requires much data processing
before applying breakpoint detection. For our approach, we explored an automatic way of
detecting these breakpoints simply from the analysis of time series stationarity.

Temporal segmentation is also an alternative as discussed by Bessec et al. [23] and
Jamali et al. [20]. The former performs predictions at a day-ahead with combinations of
linear regression techniques, Markov-switching models, and thresholds. The latter requires
user knowledge to define the ideal parameters for the proposed segmentation method,
based on the time series characteristics. Both works rely on prior knowledge and since they
are applied in specific environments, it is difficult to generalize. The work addressed by
Hooi et al. [34] also performs time series segmentation, but not in a temporal approach,
it is based on patterns to create a vocabulary capable of identifying possible regions to
perform segmentation. It is dependent on user intervention and knowledge.

Other proposals are derived from classical methods, such as the survey by Keogh et al. [3],
which describes traditional representativeness techniques from the perspective of data
mining. Different segmentation methods and the evaluation of their impact on representa-
tiveness in the time series are discussed; most of them are based on linear approximations.
Among the methods used for comparison, there are sliding windows, bottom-up, and
top-down approaches. There is also a proposal by the authors called SWAB, which consists
of the union of the sliding windows and Bottom-up methods. This study shows a classic
approach to segmentation in time series, where the samples to be evaluated do not depend
on static information inherent in their behavior. In this work, techniques placed on sta-
tionarity are proposed to perform segmentation, as an alternative method to improve the
predictive capacity of new samples.

Table 1 presents a summary of some relevant works in the literature that address the
topic of time series segmentation. To our knowledge, our segmentation proposal differs
from the others in Table 1 because it is the first to deal with segmentation to improve new
sample predictions through an approach based on time series stationarity.

Table 1. Comparison of time series segmentation techniques in the literature.

Reference Segmentation Technique Purpose of Segmentation

Carmona-Poyato et al. (2020) [22] Based on A* algorithm with
optimal polygonal approximations

Data representation reducing
the dimensionality with minimum
information loss

Lee et al. (2018) [6] Unsupervised approach,
based on deep learning Automatic knowledge extraction

Hooi et al. (2017) [34] BeatLex, based on patterns to
match segments of the time series

Vocabulary-based approach to
match segments of the time series in
an intuitive and intepretable way

Bessec et al. (2015) [23] Temporal segmentation based on
hourly and seasonal segmentation

Forecast spot prices in France with
double temporal segmentation

Jamali et al. (2015) [20] Temporal segmentation based on
thresholds of the time series features

Segments the changes in the vegetation
time series to identify the
change type and its characteristics

Keogh et al. (2004) [3] Sliding windows, Bottom-up,
Top-Down, and SWAB

Empirical comparison of time series
segmentation algorithms form a
data mining perspective
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4. Proposed Approach

The proposed approach to perform the time series segmentation can be examined in
Figures 1 and 2. They demonstrate the steps followed to identify potential samples that
do not contribute to the time series stationarity. A framework and technique to perform
the segmentation of a time series are proposed. In both cases, the process begins with the
stationarity analysis of a given time series, defined as the ADF test. Each segmentation
proposal has its peculiarities, but both depend on change detector processes to define the
samples that should be segmented. The main objective of sample removal is to obtain
a better-behaved time series model, which can improve various applications, such as
prediction, data compression, and feature extraction. The framework, called Change
Detector segmentation, seeks to verify the impact of stationary analysis in aiding change
detector techniques. Intervals with less stationarity serve as an extra alert for the change
detector techniques to perform their detection. The ADF-based segmentation consists of a
stationary analysis of the time series. The framework was created because as far as we know,
there are no stationarity-based time series segmenters in the literature. Another reason is that
choosing hyperparameters for these techniques is not a trivial task. The difference between the
framework and ADF-based segmentation is that the latter does not rely on the windowing
process to perform segmentation. The process is carried out continuously.

4.1. Change Detector Segmentation Framework

The Change Detector Segmentation is a framework to perform segmentation in time
series. Segmentation is based on the analysis of critical intervals in the time series alongside
change detectors and stationarity analyses. Algorithm 1 describes how the segmentation
points are obtained.

Algorithm 1: Change Detector Segmentation code
Input: TS: The Time Series (TS).
Output: SP: A list with the Segmentation Points (SP).

1 Pseudo-code
2 Calculates the Global ADF test λglobal over the TS.
3 Calculates the Windowing (W), obtaining the intervals from TS.
4 SP = []
5 i = 0
6 while i ≤ length(W) do
7 Calculates the local ADF from the interval λi
8 if λglobal < λi then
9 SP append point (i) as a critical interval.

10 i = i + 1

11 Performs the Change Detector.
12 Performs the tuning.
13 SP append the points obtained from the tuning.

Figure 1 demonstrates the entire process for performing the segmentation, each step
will be defined below:

4.1.1. Global ADF Test

The Global ADF test obtains the stationarity value of all time series samples, and it is
applied according to the definition in Section 2.2. It is denoted by λglobal. This step is done to
obtain information about the general behavior of the time series. The ADF value is obtained as
the output, which serves as a threshold for evaluating each point in the time series. This process
can be replaced by another one that is also able to describe the behavior of the time series.
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Figure 1. Methodology framework of Change Detector Segmentation.
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Figure 2. Methodology proposal of ADF-based Segmentation.

4.1.2. Windowing

The windowing step consists of checking cyclical behaviors in a given time series to
define its size. It can be given for days, weeks, years, or even longer intervals depending
on the time series. The windowing allows comparing the Local ADF test of each interval
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with λglobal , described in the Thresholding box in Figure 1. This process is conducted to
identify critical intervals, which consists of λi greater than λglobal and makes the series
less stationary. The critical intervals will be evaluated by the change detectors to examine
samples individually, as they have more variability in the time series.

4.1.3. Local ADF Test

The Local ADF test obtains the stationarity value of a given interval of the time series
and is denoted by λi, where i represents an interval at a given time. This interval is obtained
by the windowing step and will be inputted into the thresholding step.

4.1.4. Thresholding

The Thresholding step compares the stationarity value of a given interval λi with
λglobal for decision making. This interval is considered critical when λi presents a value
greater than λglobal . This configuration implies that this critical interval does not present a
stationary behavior like the remaining samples in the time series. A possible problem at
this stage is to consider every sample inside the critical interval to be segmented. However,
it is mitigated by the tuning step.

4.1.5. Tuning

A tuning process was designed to make the change detectors individually examine
each sample with greater emphasis on critical intervals. In addition to the use of standard
hyperparameter values for the change detectors, an attempt to improve their choice was
also made. The standard values were varied to fit the best configuration for each scenario.
Three different approaches were considered for tuning to optimize the choice of the best
hyperparameters, The Bigger in Smaller out, Bigger in, and Smaller out approaches. These
approaches allow obtaining three different hyperparameter variation results according to
the available critical intervals.

• Bigger in Smaller out: this strategy chooses the hyperparameter configuration that
keeps the largest amount of data within the critical intervals and the least amount of
data outside these intervals. This approach balances the selection of samples present
in the critical interval with the least number of samples outside it.

• Bigger in: this strategy chooses the hyperparameter configuration that keeps the
largest amount of data that is within the critical interval. This approach places the
greatest emphasis on removing samples at critical intervals.

• Smaller out: this strategy chooses the hyperparameter configuration that keeps the
least amount of data outside the critical interval. This approach minimizes the selec-
tion of samples outside the critical intervals.

4.1.6. Change Detectors

Change detectors are usually applied to data streams; however, it is also possible to
extend them to identify changes in time series [35]. As its name suggests, it seeks to identify
changes in behavior in a data stream. This step is applied to identify the points of the time
series that do not present stationary behavior. As the output, it generates a set of points to
perform the removal.

4.1.7. Removing Samples

This step consists of removing the samples from the time series according to the
points provided by the change detectors. This is the last step of the proposed framework.
Neighbor points that were not removed from the time series are interpolated.

4.2. ADF-Based Segmentation

The ADF detector is also a proposal for this work. It performs the segmentation of
samples in the time series based on their stationarity. Its process starts with the Grace
Period, which consists of calibrating the ADF test with a predetermined interval of the
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time series, according to Figure 2. It consists of separating a small number of time series
samples to calibrate the ADF test, e.g., 10% of the initial time series samples. After this
calibration, the Local ADF test is obtained. From this point on, the remaining samples will
be evaluated to verify their stationarity continuously. For each new sample, a new ADF test
value is acquired. If this value is less than the current Local ADF test value, we understand
that this sample must be kept in the time series by maintaining stationary, and the Local
ADF test value is updated. However, if the sample has a greater value of ADF test than the
Local ADF, it is assumed that this sample should be removed. This comparison between
these two values depends on an α factor, where an acceptable error rate is applied. In this
work, the values 0.05, 0.1, and 0.15 were used for α. This process seeks to ensure that the
stationarity of the time series is not affected by samples that are out of normal behavior.
Moreover, it can reduce the time series size. Algorithm 2 describes how the segmentation
points are obtained.

Algorithm 2: ADF-based Segmentation code
Input: TS: The Time Series (TS).
Input: α: Alpha factor, to adjust the error rate.
Output: SP: A list with the Segmentation Points (SP).

1 Pseudo-code
2 Starts the Grace Period (GP) with 10% of TS length.
3 Calculates the ADF test λgp over the GP.
4 λglobal = λgp

5 i = length(GP)
6 while i ≤ length(TS) do
7 Calculates the ADF value of the new sample (λi) with the accumulated λglobal
8 if λglobal - λi ≥ λglobal*α then
9 λglobal = λi

10 else
11 SP append a point (i) to be segmented

12 i = i + 1

5. Experimental Study

The experimental study aims to compare the results obtained with works in the state of
the art based on time series segmentation to answer the following Research Questions (RQ).

• RQ1: Can time series segmentation based on stationarity analysis assist in the predic-
tive process of new samples?

• RQ2: Is stationarity-based segmentation capable of providing improvements in the
aspect of prediction and reduction in time series sizes in different databases?

• RQ3: Were the segmentation techniques proposed in this work compared with similar
techniques?

• RQ4: How correlated are stationarity and segmentation techniques?

5.1. Experimental Setup
5.1.1. Databases

The databases containing the time series used in this work are divided into three groups.
The first group consists of a real database obtained by a Photovoltaic Plant (PV) installed at
the State University of Londrina, Brazil. This database presents samples of power generation
that started to operate in November 2019. The plant has 1020 solar panels. The samples are
collected every 15 min. Thus, 96 samples are collected each day. To obtain better efficiency
in capturing solar energy, the plant usually operates from 6 a.m. to 7 p.m. The sensors of
the photovoltaic plant are capable of capturing 18 different features provided by solar energy.
Among them, the generated power is used for analysis in this work.
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The second group consists of the Minimum Daily Temperatures (MDT) database,
which has the minimum daily temperatures over 10 years (1981–1990) in the city of Mel-
bourne, Australia [36].

The third group consists of the database known as the Monthly Sunspot (MS) database [37].
This database describes a monthly count of the number of observed sunspots over 230 years
(1749–1983).

The experiments were separated at different intervals to verify different variations
in the time series. For the first group, represented by the PV database, we have intervals
starting from November, since it is the initial month of data collection and is subject to
greater variation.

The experiments were separated into different training and testing intervals to verify
unusual variations in the time series. For the first group, represented by the PV database,
we have intervals starting from November, since it is the initial month of data collection and
is subject to greater variation. For the second group, three intervals were selected. The first
two intervals consist of a division of the third interval. Finally, the third group is comped
by an interval of 150 years for training and 83 years for testing. The selection of these
intervals was made without specific criteria. The objective is to verify the improvement in
predictive capacity through the segmentation process proposed in this work.

Table 2 presents information from the databases used for experimentation with some
additional information. Each database was identified by a letter from A to J for better
identification in the results section. The ADF value column represents the stationarity of
each training interval. These values demonstrate that the PV base presents well-behaved
samples compared to other databases, since it has a smaller ADF value. Furthermore, it is
possible to verify the relationship of these values with the results obtained in the reduction
of dataset size and predictive capacity. The exact intervals used for experimentation for
each database and further information can be verified in Table 2.

Table 2. Intervals used for experimentation from PV, MDT, and MS databases.

Identifier Database Train Interval ADF Value Test Interval

A PV November to December −16.57 4 weeks January
B PV November to January −19.24 March
C PV November to February −21.81 March
D PV January to February −16.36 4 weeks March
E PV February −11.57 4 weeks March
F PV February −11.57 days in March
G MDT 1981 to 1984 −3.14 1985
H MDT 1986 to 1989 −2.59 1990
I MDT 1981 to 1989 −4.34 1990
J MS 1749 to 1899 −7.04 1900 to 1983

After determining each experiment interval, the time series were submitted to seg-
mentation techniques according to the ones proposed in this work, and their original
versions were subjected to prediction techniques. This step consists of verifying whether
the segmentation process improves the predictive performance of a time series, besides
decreasing its size.

5.1.2. Change Detectors

The change detectors used in this work were ADW [38] and PH [39], present in the
scikit-multiflow package [40]. They were used as detectors in the change detector step of
the framework to compare the efficiency and interference of a particular detector algorithm.
The choices for these detectors were due to their adaptability to time series. ADW is an
adaptive sliding window algorithm for detecting changes and has a delta parameter to
perform its detection. The PH detector works by computing the observed values and their
mean up to the current moment [39]. It is composed of four parameters to perform its
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detection: the minimum number of instances before detecting change, the delta factor
for the PH test, a threshold called lambda factor, and the forgetting factor, to weight the
observed value and the mean.

The hyperparameters of both detectors were varied with values in percentage to values
below and above the standard ones to obtain a configuration that best fits the proposed
segmentation of the time series samples. For experimentation in this work, increments of
25% were used, starting at half of the standard value until double its standard value.

5.1.3. Metrics

The metric adopted for predictive gain assessment was the Root Mean Squared Error
(RMSE), which is given by the following equation:

RMSE =

√
1
n

Σn
i=1

( ŷi − yi
n

)2
(4)

where ŷi represents the predicted sample and yi represents the actual value of the sample
at time i.

5.1.4. Prediction Techniques

Four predictive techniques are used in this work. The Naive, ARIMA, LSTM, and
TCN methods. All of these predictors are used over the segmented and original time series.

The first predictive technique consists of a benchmark approach for time series, due to
its simplicity and considerable acceptance of its results. Its operation considers that the
next value to be obtained will be equal to the last observed value. Equation (5) shows how
these values are obtained:

x̂t+1 = xt (5)

where x̂t+1 represents the next value to be predicted and xt represents the last observed value.
ARIMA is essentially exploratory and seeks to fit a model to adapt to the data struc-

ture [24]. With the aid of the autocorrelation and partial autocorrelation functions, it is
possible to obtain the essence of the time series so that it can be modeled. Then, information
such as trends, variations, cyclical components, and even patterns present in the time series
can also be obtained [41]. This allows the description of its current pattern and prediction
of future series values [42]. Autoregressive models have been used for a long time in time
series analysis and are therefore considered popular and simple. However, some studies
(Akhter et al. [43]; Cerqueira et al. [44]) demonstrate that when dealing with a very large
amount of data, models based on DL tend to have better results.

As a comparison, the LSTM and TCN techniques, which are based on DL, are evaluated in
this work as a comparison to the classical ARIMA and Naive models. LSTM is a type of RNN
(Recurrent Neural Network). Unlike some traditional neural networks, LSTM can remember
the most useful information. This is possible thanks to its architecture. The networks that
comprise the LSTM are connected in the form of loops. This process allows information to
persist on the network. It also has a gating mechanism for learning long-term dependencies
without losing short-term capability [17]. This mechanism allows for what we call a neural
network that has memory. This feature is essential when dealing with time series, as some
moments tend to be repeated over an interval of time. Another important feature is the
stationary approach of this work, which allows the neural network model to adapt faster to
the behavior of the time series. However, these approaches based on deep models are only
interesting for problems that have a large amount of data, due to their complexity. For simpler
scenarios, statistical models such as ARIMA tend to fill the need.

TCN is a special type of Convolutional Neural Network capable of handling a large
amount of information [25]. This processing is done through causal convolution, which
ensures the model cannot violate the order in which the data is processed. TCN uses a
one-dimensional fully convolutional network architecture, where each hidden layer has
the same length as the input layer, and zero padding of length [45]. As highlighted for
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LSTM, this approach tends to perform better for more complex problems where a statistical
model is not able to determine long correspondences between the data.

Table 3 presents the hyperparameters used for experimentation. The Naive technique
does not have an extra configuration as it is based only on the value of the previous
sample. For the ARIMA modeling technique auto-arima from pmdarima( https://pypi.
org/project/pmdarima/ assessed on 2 August 2021) library was used. As for the LSTM
and TCN, the values in Table 3 were used to obtain the best possible configuration for each
of them.

5.2. OSTS Method

To answer RQ3, we compare our proposed techniques to the OSTS. The OSTS tech-
nique was proposed by Carmona-Poyato et al. [22] and consists of an approach to reduce
dimensionality in a time series. In essence, it can locate the maximum and minimum points
in a time series. This process is done through numerical approximation considering a point
Pj and analysis of neighboring points. When the sample Pj is removed, its neighboring
points are joined in a straight line. Even though its segmentation approach has no motiva-
tion for predictive improvement, it was used for comparison with the proposed techniques
in this work. Its choice is also due to the extensive comparison of the OSTS approach with
other segmenters. It also differs from classical approaches based on sliding windows and
thresholds of statistical moments [3].

Table 3. Hyperparameters experimented with for tuning.

Parameters Experimented Hyperparameters

LSTM
Number of stacked layers 1, 2, 3
Units 32, 64, 128
Dropout 0

TCN

Number of filters 32, 64
Kernel 2, 3

Dilations

[1, 4, 12, 48], [1, 2, 4, 8, 12, 24, 48], [1, 4,
16, 32], [1, 2, 4, 8, 16, 32], [1, 3, 6, 12, 24],
[1, 2, 6, 12, 24], [1, 2, 4, 8, 16], [1, 4, 16],
[1, 2, 4, 8], [1, 4, 8]

Blocks 1, 2
Dropout 0

5.3. Experimental Results

In this subsection, the results obtained by the experiments will be presented. Tables 4 and 5
present the prediction results in terms of RMSE, demonstrating the predictive gain through
time series segmentation. These results are established on the test interval defined in
Table 2 using the four prediction techniques defined in the Section 5.1.4. The ADW and PH
segmenters present the results of the Change Detector Segmentation Framework. These
results are based on the best variation of the tuning process, defined in the Section 4.1.5.
The ADF-based segmentation is represented by ADF. Only the choice of the α factor that
obtained the best result was considered.

5.3.1. Predictions Results

To answer RQ1, we have the predictive results applied to the datasets defined in this
work with the proposed segmentation techniques. Table 4 presents the global error results
of the new sample prediction from all databases, A to J, while Table 5 shows the relative
error between them. In Table 4, we have highlighted in the last line the accumulated
predictive error of all original databases, without the segmentation process. The OSTS
segmenter was not able to improve the predictive capacity of the predictors in any case,

https://pypi.org/project/pmdarima/
https://pypi.org/project/pmdarima/


Sensors 2021, 21, 7333 13 of 22

except for the Naive predictor. It had the highest RMSE among the other segmentation
techniques. For the PH segmenter, it obtained the second highest RMSE and did not
show predictive improvement, except for the Naive predictor. As for the ADW and
ADF segmenters, there were predictive improvements. In the case of ADW, only the
TCN predictor was not able to present a predictive improvement; however, it obtained
the smallest RMSE for the ARIMA and LSTM predictors. For the ADF segmenter, only
ARIMA had no improvement; however, the smallest RMSE was obtained for the Naive
and TCN predictors.

For Table 5, we have the relative RMSE between the predictive performance of the
original database with the proposed segmentation techniques. Each database, A to J,
is made up of four different prediction techniques. The segmentation techniques are
presented in a decreasing ranking from the best result to the worst. In summary, the
results that obtained a relative RMSE above one do not present a significant predictive
performance. It is also possible to analyze why the original distribution did not obtain
better predictive performance in any of the bases for the ARIMA and TCN predictors.
Validating the results obtained by Table 4, it is verified once again that the most significant
predictive results are between the LSTM and TCN predictors, promoted by the ADF and
ADW segmenters.

Table 4. Global RMSE results from predictive techniques.

Naive ARIMA LSTM TCN

ADF 18,923.65 13,559.87 3193.70 3242.92
ADW 18,923.66 13,532.41 3177.46 3294.75

PH 18,923.65 13,727.95 3408.02 3844.67
OSTS 18,923.65 14,239.36 3482.60 3952.74

Original 20,006.11 13,537.78 3229.33 3276.01

Table 5. Relative RMSE of each segmentation technique referring to the original base across four
different predictive techniques using the ADF-based method, ADW, and PH (i.e., instances of our
segmentation framework), and OSTS segmentation method. Lower errors are in bold and worst
average cases are underlined.

Database Identifier Segmentation Techniques
Predictive Techniques

Average
Naive ARIMA LSTM TCN

A

ADF 0.99 0.99 0.97 0.99 0.98
ADW 0.99 0.99 1.00 0.99 0.99

PH 0.99 0.99 1.03 0.99 1.00
OSTS 1.00 1.06 1.01 0.99 1.01

B

ADF 0.99 1.00 0.97 0.99 0.98
ADW 1.00 0.99 0.99 0.98 0.99

PH 0.99 0.99 0.98 0.99 0.98
OSTS 1.08 1.12 1.00 1.02 1.05

C

ADF 1.00 0.98 0.94 0.83 0.93
ADW 1.00 1.02 0.96 0.85 0.95

PH 1.00 1.02 0.96 0.81 0.94
OSTS 0.98 1.03 0.99 1.10 1.02

D

ADF 1.00 0.95 1.02 0.99 0.99
ADW 1.00 0.98 1.03 0.97 0.99

PH 0.99 0.98 1.01 0.90 0.97
OSTS 1.00 1.00 1.34 1.30 1.16
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Table 5. Cont.

Database Identifier Segmentation Techniques
Predictive Techniques

Average
Naive ARIMA LSTM TCN

E

ADF 0.99 0.99 1.00 0.98 0.99
ADW 1.00 0.99 1.01 0.99 0.99

PH 0.99 0.99 1.02 0.96 0.99
OSTS 1.00 1.01 1.26 1.34 1.15

F

ADF 1.00 1.00 0.87 0.73 0.90
ADW 0.99 0.99 0.67 0.86 0.88

PH 0.99 1.00 0.74 1.20 0.98
OSTS 0.99 1.03 0.93 1.45 1.10

G

ADF 1.00 1.00 0.99 0.96 0.98
ADW 1.00 0.99 0.99 0.92 0.97

PH 1.00 1.00 0.99 0.95 0.98
OSTS 1.00 1.22 1.05 1.17 1.11

H

ADF 1.00 0.87 0.95 0.99 0.95
ADW 1.00 0.99 0.95 0.99 0.98

PH 1.00 0.93 0.96 0.96 0.96
OSTS 1.00 1.24 1.00 1.12 1.11

I

ADF 1.00 1.00 0.99 0.98 0.99
ADW 1.00 0.99 1.00 1.00 0.99

PH 1.00 0.99 0.99 0.99 0.99
OSTS 1.00 0.99 1.00 1.04 1.00

J

ADF 0.99 0.98 1.00 0.98 0.98
ADW 0.99 0.98 1.00 0.97 0.98

PH 0.99 1.00 1.00 1.00 0.99
OSTS 0.99 0.99 1.22 1.13 1.08

In general, it can be said that the proposed segmentation techniques performed well
in all experienced databases. Only in 6 cases out of 40 did the segmentation techniques not
provide a better predictive capacity. Of these six, three are located in the Naive predictor,
which has the worst predictive power among the other predictors. Moreover, even though
it did not obtain a better predictive performance, its result was the same as the original
distribution, but with the advantage of decreasing the time series size.

5.3.2. Time Series Size Reduction

In this subsection, the effect of the segmentation process in reducing the time series
size is discussed. RQ2 is answered with the analysis presented in Tables 4 and 5, in the
previous subsection, and the results in Figure 3, since it presents a comparison of the size
reduction of the segmentation techniques for each database. These reductions are based on
the LSTM predictor since it achieved the best predictive performance.

We can affirm through the analysis of Figure 3 that the size reduction of the time series
is not directly related to the predictive gain. The OSTS segmentation technique was the
one that obtained the biggest size reduction, but the worst result of the predictive gain,
according to Tables 4 and 5. We can also affirm that the size reduction is not so considerable
when comparing the other segmentation techniques, but it is still able to improve the
performance gain. The ADF, ADW, and PH detectors achieved similar reductions in the
PV databases, while the PH detector showed greater variability in the other databases.
In addition, considering that these results were obtained using the LSTM predictor, it is
possible to conclude that the ADF and ADW detectors can improve the predictive gain of
new samples, while reducing the time series size.

An interesting link that can be made is that the databases that had the biggest re-
ductions were the ones with the highest ADF values in Table 2. The same is not verified
in the predictive improvement (Table 5), since the cases that obtained better results are
concentrated in the more stationary databases, e.g., database C.
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5.3.3. Sample Segmentation

Figures 4 and 5 present sample segmentation intervals in two distinct databases, A
and C, respectively. In Figure 4, it is possible to observe in the sample interval 500 to
515, none of the techniques presented a region to be segmented, it being considered an
essential region to describe a stationary behavior. Near sample 545 a peak is seen, which
was highlighted by most detectors as segmentable. The OSTS and ADW detectors acted
at the moment and just before the appearance of this point, while the ADF acted at the
moment of descent from this peak. The PH detector did not act to identify this region.
However, the excess of points identified by the OSTS detector and the absence of others in
the evaluated interval demonstrates great disparity, as the other detectors pointed out this
highlighted interval with a high level of stationarity, requiring few segmentations.

Figure 5 exhibits a behavior similar to the database analyzed above, but with emphasis
on the samples verified from point 562, where there were many segmentation points by
ADF. This demonstrates that the ADF detector operates differently from ADW and PH.
This interval highlighted by ADF demonstrates an important characteristic when these
samples were detected and proved to be more sensitive for stationarity analysis.
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Figure 3. Time series size reduction according to segmentation methods ADF, ADW, PH, and
OSTS. (a) Database A; (b) database B; (c) database C; (d) database D; (e) database E; (f) database F;
(g) database G; (h) database H; (i) database I; (j) database J.
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Figure 4. Segmented samples of dataset A (chunk from 500 to 560 samples). ADF removed 2 samples,
PH and ADW removed a single sample, and OSTS removed 17. The stationarity-based segmenters
considered the range from 515 to 543 as stable and without the need for segmentation, while the
OSTS segmenter performed quite a lot of segmentation at these points.
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Figure 5. Segmented samples of dataset C (chunk from 520 to 580 samples). ADF removed 19 samples,
PH removed 2 samples, ADW removed a single sample and OSTS removed 18. Unlike the case of
dataset A, the ADF segmenter performed many segmentations like the OSTS, but in different regions,
while the other segmenters considered the region as stable.

5.4. Statistical Analysis

Friedman’s statistical test and the post-hoc test of Nemenyi were used to verify the
statistically significant difference between the performance of the segmentation techniques
proposed in this work. This test was performed for each predictor described in this work
and can be evaluated by Figures 6–9. The critical difference (CD) allows checking when
there were statistical differences between the segmenters, each diagram and algorithms’
average ranks are placed in the horizontal axis, with the best ranked to the right. For
ADW segmenter, it is possible to observe that there were static differences compared to the
original time series in all scenarios. A black line connects algorithms for which there is no
significant performance difference.
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Figure 6 demonstrates no statistical difference between the ADF and OSTS techniques
compared to the original time series. There was also no statistical difference between OSTS
and ADW. For the Naive predictor, only the ADW and PH techniques showed statistical
differences from the normal distribution.

For the ARIMA predictor in Figure 7, the OSTS technique showed the worst perfor-
mance. The PH and ADF techniques did not present statistical differences with the original
distribution, only the ADW reached differences in this case. Finally, for the LSTSM and
TCN predictors shown in Figures 8 and 9, respectively, there were no statistical differences
for the OSTS and PH techniques compared to the original distribution. In both cases, the
ADF and ADW techniques showed better performance, with statistical similarity.

Figure 6. Comparison of the RMSE values obtained by segmentation techniques for Naive predictor
according to the Nemenyi test. Groups that are not significantly different (α = 0.05 and CD = 1.04)
are connected.

Figure 7. Comparison of the RMSE values obtained by segmentation techniques for ARIMA predictor
according to the Nemenyi test. Groups that are not significantly different (α = 0.05 and CD = 1.03)
are connected.

Figure 8. Comparison of the RMSE values obtained by segmentation techniques for LSTM predictor
according to the Nemenyi test. Groups that are not significantly different (α = 0.05 and CD = 1.04)
are connected.

Figure 9. Comparison of the RMSE values obtained by segmentation techniques for TCN predictor
according to the Nemenyi test. Groups that are not significantly different (α = 0.05 and CD = 1.03)
are connected.
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It is worth mentioning that segmentation techniques based on the analysis of sta-
tionarity of a time series are a viable technique. The advantages of this approach are the
simplicity in how each sample is evaluated and the independence of information and
feature extraction to perform the segmentation. In addition, we consider this as a novel
approach since the segmentation of time series to improve the predictive capacity of new
samples is not a task found in the literature.

Another consideration is that the segmentation process must be able to maintain the
representativeness of the time series and our approach guarantees this. A large reduction
in the time series size does not guarantee better performance, as seen in the results of the
OSTS detector.

5.5. Stationarity Impact on Segmentation

One of the pillars of our hypothesis for creating a framework proposal and segmenta-
tion method is stationarity analysis. Thus, RQ4 is answered in this subsection. Extracting
two stationarity descriptors based on the ADF test, in particular, the standard deviation of
stationarity (Std Stationarity) and the mean value of stationarity (Mean Stationarity), we
computed their correlation using the Pearson Correlation test. This test is related to the
errors (RMSE) obtained from the segmentation techniques proposed in this work and the
OSTS method. Figure 10 represents, as a heatmap, the correlation between stationarity and
RMSE of all segmenters.
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Figure 10. Correlation between the stationarity (based on ADF Test) and performance (rRMSE)
obtained by segmentation methods.

As observed in Figure 10, OSTS RMSE does not correlate with the stationarity of the
time series, reaching 0.01 and−0.02 of correlation, standard deviation, and mean. This is an
expected phenomenon, since the strategy of OSTS is driven by the neighborhood of maximum
and minimum local values. On the other hand, ADF, ADW, and PH presented an important
correlation with the standard deviation of stationarity. More precisely, they obtained a positive
correlation, which reveals that the increase in stationarity variation in the time series leads to a
less effective segmentation. However, high mean stationarity leads to boosted results from
segmentation, with PH obtaining the highest correlation.

Considering the perspective of dimension reduction, we evaluated the correlation
between reduction rate and stationarity, as previously, for performance. OSTS reduction
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capacity is inversely correlated with the stationarity mean, −0.98. Regarding the change-
based approaches, PH reduction capacity was the best correlated with an inverse correlation
of−0.86, as shown in Figure 11. For ADF and ADW, we have the lowest correlation between
reduction rate and stationarity, −0.29 and −0.38, respectively.
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Figure 11. Correlation between the stationarity (based on ADF Test) and dimension reduction
delivered by segmentation methods.

Overall, these results indicate that the stationarity of time series is correlated with
the dimension reduction capacity provided by the methods. It is worth mentioning that
ADW and PH followed the same framework and tuning strategy, but the way stationarity
correlates to their reduction capacity and predictive performance diverges. This fact
emphasizes the need for caution when selecting the change detector according to each time
series pattern.

It is also worth noting that our stationary strategy to perform segmentation maintains
the original time series behavior and removes only disposable samples, which makes it a
less invasive method.

Finally, the standard deviation of stationarity exposed how tricky the segmentation
might be when reducing the predictive error of high-variated stationarity patterns.

5.6. Limitations

A limitation identified in our proposal is the need to have prior knowledge about the
time series cyclical behaviors. This information ensures better performance in identifying
less stationary samples.

Another possible limitation is the grace period phase that performs the ADF-based
segmentation calibration process. It is another prior information that guarantees better
performance in identifying less stationary samples.

6. Conclusions

The stationary approach for segmenting samples in time series has a positive impact
on the issue of prediction of new samples and size reduction. According to the results,
it is possible to affirm that the segmentation techniques had a better performance for
the prediction algorithms based on DL. The ADW and ADF segmentation had the best
performance in the DL approaches, with ADW for LSTM and ADF for TCN. However, an
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advantage over the functioning of the ADF over the ADW is the independence of a priori
knowledge about the time series. The ADF segmentation analysis demands only a small
number of samples to perform its grace period and start the segmentation process and has
only one hyperparameter.

The largest cases of time series size reduction came from the OSTS technique, achiev-
ing 0.40 reduction compared to the original distribution, but this result does not follow
the predictive performance of the new samples. A balance between the reduction and
prediction approach is best seen by the ADF and ADW segmenters.

Stationary analysis proved to be a great ally in the study of time series behavior and more
studies can be directed in this respect beyond sample segmentation. For future work, we seek
to improve segmentation techniques aimed at the data stream, where the segmentation would
be given in real-time, as the data is obtained. Furthermore, improving the extraction of a priori
information from the time series, makes these methods more autonomous.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
ADF Augmented Dickey-Fuller
DL Deep Learning
LSTM Long short-term memory
TCN Temporal Convolutional Network
PH Page-Hinkley
ADW ADWIN
RQ Research Questions
PV Photovoltaic Plant
MDT Minimum Daily Temperatures
MS Monthly Sunspot
RMSE Root Mean Squared Error
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