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Abstract

Patients with type 2 diabetes mellitus (T2DM) have more than twice the risk of developing

heart failure (HF) compared to patients without diabetes. The present study is aimed to build

an artificial intelligence (AI) prognostic model that takes in account a large and heteroge-

neous set of clinical factors and investigates the risk of developing HF in diabetic patients.

We carried out an electronic health records- (EHR-) based retrospective cohort study that

included patients with cardiological clinical evaluation and no previous diagnosis of HF.

Information consists of features extracted from clinical and administrative data obtained as

part of routine medical care. The primary endpoint was diagnosis of HF (during out-of-hospi-

tal clinical examination or hospitalization). We developed two prognostic models using (1)

elastic net regularization for Cox proportional hazard model (COX) and (2) a deep neural

network survival method (PHNN), in which a neural network was used to represent a non-

linear hazard function and explainability strategies are applied to estimate the influence of

predictors on the risk function. Over a median follow-up of 65 months, 17.3% of the 10,614

patients developed HF. The PHNN model outperformed COX both in terms of discrimination

(c-index 0.768 vs 0.734) and calibration (2-year integrated calibration index 0.008 vs 0.018).

The AI approach led to the identification of 20 predictors of different domains (age, body

mass index, echocardiographic and electrocardiographic features, laboratory measure-

ments, comorbidities, therapies) whose relationship with the predicted risk correspond to

known trends in the clinical practice. Our results suggest that prognostic models for HF in

diabetic patients may improve using EHRs in combination with AI techniques for survival

analysis, which provide high flexibility and better performance with respect to standard

approaches.
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Introduction

In the last decades Type 2 diabetes mellitus (T2DM) has become a global epidemic which is

expected to affect over 592 million people worldwide by 2035 [1, 2]. Diabetes is associated with

a decrease in life expectancy, in large part attributable to cardiovascular diseases [3]. In partic-

ular, patients with T2DM have more than twice the risk of developing heart failure (HF) com-

pared to patients without diabetes mellitus [4, 5]. While 10% to 15% of the general population

have diabetes, 44% of patients hospitalized for HF have diabetes mellitus [6]. The increased

incidence of HF in diabetic patients persists even after adjusting for well-known risk factors

for HF in general populations such as age, hypertension, hypercholesterolemia, and coronary

artery disease. Therefore, in order to target high-risk individuals and reduce the risk of HF

development with pharmacological agents (like sodium-glucose contransporter 2 inhibitor [7,

8]), the identification of diabetes-specific characteristics involved in HF development remains

an important clinical question.

Several studies have developed clinical prognostic models for HF in diabetics patients, how-

ever they were not able to provide a comprehensive risk stratification and thus no score has yet

been included in guideline care. In a recent work [9], Razaghizad et al. carried out a systematic

evaluation on 15 models developed for hospitalization for HF in type 2 diabetes and showed

that RECODe risk equation (together with TRS-HF_DM, another well performing model,

although with a higher potential risk for bias) can be considered the most promising score for

clinical use. Developed using data from the Action to Control Cardiovascular Risk in Diabetes

study (ACCORD), the RECODe risk equations include age, sex, ethnicity, smoke, systolic

blood pressure, history of cardiovascular disease, blood pressure-lowering drugs, statins, anti-

coagulants, HbA1c, total cholesterol, HDL, serum creatinine and urine albumin:creatinine

ratio as predictors [10]. The model showed moderate-to-good discrimination and calibration

in internal (c-index = 0.75, calibration slope = 1.01, intercept = -0.0004) and external valida-

tion (c-index = 0.76, calibration slope = 1.13, intercept = -0.011).

We hypothesized that an innovative approach based on the use of features available in elec-

tronic health records (EHRs) and artificial intelligence methods may improve performance in

prognostic models in clinical settings. EHRs are the whole set of digital data originated at sin-

gle-patient level in health care institutions as part of the clinical routine. Even though EHRs

represent a valuable source of information (massive volumes, longitudinal nature, up-to-date,

multiple domains) [11, 12], such data have been rarely include in risk scores because of low-

quality issues, such as high heterogeneity and noise. Advances in artificial intelligence, in par-

ticular in neural networks architectures for deep learning, are offering computational tech-

niques able to leverage the richness of EHRs for personalized healthcare [13–15]. Although

deep learning approaches have been recently extended from prediction tasks to survival analy-

sis, in which modeling right censored data is required [16–18], their application on EHRs for

prognostic models has been limited.

In this study we investigate two research questions: (1) whether EHRs can improve risk

stratification for HF in patients with type 2 diabetes; (2) the advantages of deep learning sur-

vival models over more standard approaches to account for non-linear effects and interactions

between variables.

Materials and methods

Data

The present study is a cohort observational, retrospective study on patients enrolled in the Car-

diovascular Observatory of Trieste (Italy) [19] affected by diabetes mellitus that had a
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cardiological evaluation from November 1, 2009 until December 31, 2018. All information on

patients was extracted from clinical records and administrative data obtained as part of routine

medical care. Data include medical information collected by cardiologists during routine clini-

cal practice, diagnostic codes, laboratory tests, procedures, and cardiovascular drugs prescrip-

tions sorted out using electronic indexes, comorbidities. Diagnosis of diabetes was based on

multiple criteria: recorded diagnosis of diabetes, evidence of exemption for healthcare

expenses, evidence of glycated hemoglobin levels>6.5%, purchase of at least two antidiabetic

medications within one year. The first cardiological examination was considered the index

visit, from which the absence of HF was ascertained (patients already diagnosed with HF when

entering the Cardiovascular Observatory were excluded from the study).

Endpoints

The primary endpoint was the onset of HF identified as the first between the following events:

diagnosis of HF during hospitalization (ICD-9 codes: 39891, 40201, 40211, 40291, 40401,

40403, 40411, 40413, 40491, 40493, 4280–4284, 4289) and diagnosis of HF based at out-of-hos-

pital clinical examination. Diagnosis of HF was performed according to ESC criteria: typical

symptoms (breathlessness, ankle swelling and fatigue) and/or signs (elevated jugular venous

pressure, pulmonary crackles and peripheral oedema) in presence of a structural and/or func-

tional cardiac abnormality. Follow-up period for HF onset started at the index visit and ended

on the administrative censoring date December 31, 2019. Death as a competing risk was not

taken into account after an analysis of the Kaplan-Meier curve that showed a negligible bias

within the first 60 months (S1 Fig). Baseline characteristics were compared between HF and

HF-free individuals using chi-square test for categorical variables and t-test for continuous

variables (or Mann-Whitney test, when appropriate).

Derivation of the models

The cohort was randomly divided in training, validation and test set (70%, 15% and 15%

respectively) maintaining approximately the same ratio of patients that experienced HF and

censored patients. The test set was fixed beforehand and has been held out from the training of

the different models tested and has been solely used to evaluate the models. We developed two

models: first, a linear proportional hazards regression model (COX); second, a non-linear pro-

portional hazards deep neural network model (PHNN).

Using elastic net regularization, a machine learning approach, we developed a Cox propor-

tional hazard model that kept, among all possible covariates, only those identified as relevant

predictors. According to the Cox hypothesis, the hazard function is assumed to be the product

of two components h(t|X) = h0(t)r(X), where h0(t) is the baseline hazard function and r(X) is

the risk function and approximated by the exponential of a linear function r(X) = exp(β�X).

Elastic net regularization algorithm implements a Cox model via penalized maximum likeli-

hood and it is able to select among candidate predictors the best model in the context of collin-

earity [20]. In our study L2 regularization parameter was set to 1 and 10-fold cross validation

was performed to select the L1 regularization parameter λ following the “one-standard-error

rule” [21] (given the context of application of the model and the need for a parsimonious

model, we selected the largest value λ for which the CV error is within 1 standard error of the

minimizing rule). Missing values were imputed using MICE, a multiple imputation technique

based on chained equations [22].

In line with the work of Katzman et al. [16], we developed a second model that lifts the lin-

ear hazard hypothesis and model the risk function as r(X) = exp(f(X)), with f(X) a very generic

function of the covariates. In particular, f(X) = fϑ(X) has been approximated with a fully
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connected deep neural network (four layers with hidden size 128, 64, 32, 15 hidden units, recti-

fier non linearity, activation dropout 0.5 in all layers) parametrized by the weights ϑ. The stan-

dard package of auto-differentiation PyTorch was then used to minimize the partial likelihood

over the train set to fit the network weights ϑ. Training was performed under early stopping

using the validation set. To understand the dependence between variables and predicted risk,

we reported the partial dependence plots (PDPs) [23] representing the marginal effect of

covariates on predicted log-hazard. For a covariate of interest Xk, and for any value xk assumed

by Xk, we estimate the partial dependence function as the average log ĥk xkð Þ ¼
1

n

Pn
i¼1

ĥðxk; fxjigj6¼kÞ where n is the number of observations and xji is the value of covariate Xj

for the i-th individual. Before training the model, a forward selection procedure was applied

on the large number of variables included in the dataset. In the first step, a model was esti-

mated using only one covariate at a time and the relative c-index was computed. The covariate

with the highest c-index turned out to be “age”. In the second step, another round was per-

formed using”age” and other variables one at a time. The feature corresponding to the model

with highest c-index was then retained as the second feature. The process was repeated adding

one feature at a time until adding new features did not bring a substantial improvement in the

c-index. Notice that, to perform this feature selection, a validation set has been extracted from

the training set, with the same size of the test set. This set was used to evaluate the many mod-

els considered, and not to train them. For the development of PHDL, missing values were

imputed with the sample mean and a flag column was added to retain the information on val-

ues originally missing. Numerical columns were normalized to a normal distribution with a

quantile transformer. In order to retain as much as possible information and to let the model

learning from any hidden trend within the data, no additional feature engineering was applied.

Validity of the proportional hazards assumption was checked using graphical diagnostics

based on the scaled Schoenfeld residuals for all predictors selected by the models.

Validation of the models

The discrimination of the models was evaluated by c-index (Harrell’s estimator) which is a gen-

eralization of the area under the receiver operating characteristic curve for time-to-event data

and can be interpreted as the ability of a model to rank patients from high to low risk. Mean

and standard error for the index was obtained through 10-fold cross-validation. In addition,

time-dependent ROC curve was generated at 2- and 5-year of follow-up and the relative area

under the curves (AUCs) were compared between models using inferential techniques [24]. We

carried out graphical assessment of calibration by dividing subjects into 10 groups using deciles

of the predicted probabilities and comparing predicted/observed risk across strata. Moreover,

for each model we reported the Integrated Calibration Index (ICI) [25], which is the weighted

average of the absolute difference between observed and predicted risks, in which the absolute

differences are weighted by the empirical density function of the predicted risks.

We also compared predictions from our model with those from the RECODe study. In the

calculation of RECODe equation, information on urine albumin:creatinine ratio was absent

(as stated by the authors, individuals without a known covariate can have the relative term

omitted from the equations). Moreover, instead of using the RECODe baseline HF-free sur-

vival reported in the article (0.96) to recalibrate the model we calculated an updated baseline

HF-free survival by calculating the 2- and 5-year HF-free survival in the test set (0.927 and

0.856 respectively).

Analyses were done using R (version 4.2.1; R Foundation for Statistical Computing,

Vienna) and Python 3.8.10 and PyTorch 1.10.2. The study involved the use of clinical records
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and administrative data produced as part of routine medical care, in compliance with the local

regulatory and privacy policies. Data were collected in an anonymous form. A written

informed consent was obtained under the institutional review board policies of hospitals

administration. The current study was approved by Comitato Etico Unico Regionale FVG

(Protocol ID: 114_2020T). All information was linked and anonymized before the analysis.

Results

The cohort included 10,614 patients: 4,447 (42%) were females and mean age was 72

(SD = 11). Baseline characteristics according to heart failure diagnosis are presented in

Table 1. During a median of 65 months, 1840 patients (17.3%) developed HF. Probability of

HF-free survival at 2- and 5-year was 92.7% (95% CI [94.8,95.6]) and 85.6% (95% CI

[84.9,86.3]) respectively.

Based on elastic net regularization, most relevant variables for predicting HF were age,

diuretics, Charlson score, left atrium area, atrial fibrillation, organ damage, hypertension, adol-

sterone antagonist, glomerular filtration rate (protective factor) (Fig 1).

Using the penalized Cox model we obtained a c-index of 0.734 (Table 2). Considering time

points 2 years and 5 years, the area under the time-dependent ROC was 0.716 (95% CI

[0.664,0.767]) and 0.770 (95% CI [0.732,0.807]) respectively. As depicted in Fig 2, calibration

of prediction was acceptable at 2 years (ICI = 0.018) but considerably decreased for predictions

at 5 years (ICI = 0.034).

As for the DL approach, the feature selection process identified 20 relevant variables (S2 Fig,

S1 Table): age, BMI, four echocardiographic parameters (left ventricular wall motion score

index, continuous wave aortic velocity, tissue doppler E wave velocity, tricuspid regurgitation),

three ECG parameters (P axis absent, P axis, T axis), five comorbidities (renal disease, hyperten-

sion, lung disease, pericardium disease, peripheral artery disease), three laboratory measure-

ments (hemoglobin, glycemia, triglyceride levels) and three categories of medication (diuretics,

anticoagulants, RASi). In Fig 3 and S3 Fig it is possible to observe for each predictor the partial

dependence plot, representing the relationship between the variable and the log-hazard.

Using the DL model we obtained a better discrimination, with a c-index of 0.768. In the

time-dependent ROC analysis we observed better accuracy as well: AUC was 0.771 (95% CI

[0.723,0.818]) at 2-year of follow-up and 0.780 (95% CI [0.743,0.817]) at 5-year of follow up,

although differences were not statistically significant (2-year p-value = 0.059, 5-year p-

value = 0.772). Moreover, the ICI for 2- and 5-year risk (0.008 and 0.015, respectively) indi-

cated good calibration (Fig 4). Additional information on models performance is reported in

S2 Table.

Compared with our models, RECODe risk score had worse discrimination (c-index of

0.670, see Table 2). In particular, predicted survival was less accurate compared to the penal-

ized Cox model both at 2-year follow-up (AUC = 0.651, 95% CI [0.601,0.701], p-value = 0.042)

and 5-year follow-up (AUC = 0.668, 95% CI [0.621,0.709], p-value<0.001). Significant

decrease in discrimination was observed also with respect to the DL model (2-year p-

value<0.001, 5-year p-value<0.001).

Discussion

We developed two prognostic models for HF in diabetic patients using EHRs (one assuming

linear hazard and the other assuming a non-linear hazard) and showed the benefit of imple-

menting deep learning algorithms in terms of performance.

Among previous studies that developed prognostic models for HF risk in patients with dia-

betes, RECODe risk equations are considered the most promising for clinical use. However,
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Table 1. Characteristics of the cohort separately for individuals free from HF and individuals that have developed HF. GFR was estimated using the EPI-CKD for-

mula. History of cardiovascular disease includes stroke and myocardial infarction. SD = standard deviation; IQR = interquantile range; RASi = Renin–angiotensin system

inhibitors; MRA = Aldosterone receptor antagonists.

Clinical characteristics HF free (n = 8774) HF (n = 1840) p-value

Age, years 72 (64, 79) 77 (71, 82) <0.001

Median (IQR)

Male gender 3,700 (42%) 747 (41%) <0.001

N (%)

BMI, kg/m2 28.7 (23.6, 33.8) 28.7 (23.4, 34.0) 0.8

Mean (±SD)

Systolic blood pressure, mmHg 140 (120, 160) 141 (120, 162) 0.005

Mean (±SD)

Diastolic blood pressure, mmHg 80 (70, 90) 80 (70, 90) 0.2

Mean (±SD)

Heart rate, b.p.m. 72 (64, 82) 72 (63, 82) 0.7

Median (IQR)

GFR, mL/min 78 (62, 90) 67 (52, 83) <0.001

Sodium, mEq/L 139.2 (136.1, 142.3) 139.4 (136.4, 142.4) 0.013

Mean (±SD)

Hemoglobin, g/DL 13.49 (11.64, 15.34) 13.12(11.23 15.01) <0.001

Mean (±SD)

Glycated hemoglobin, % 6.70 (6.24, 7.50) 6.78 (6.20, 7.50) 0.8

Cholesterol, mg/dL 184 (136, 232) 180 (133, 227) 0.004

Mean (±SD)

HDL, mg/dL 48 (33, 63) 47 (31, 63) 0.7

Mean (±SD)

Triglycerides, mg/dL 127 (85, 186) 123 (81, 179) 0.018

Median (IQR)

Creatinine, mg/dL 0.89 (0.74, 1.10) 0.98 (0.79, 1.23) <0.001

Median (IQR)

Smoking status 1,098 (13%) 183 (9.9%) 0.002

N (%)

History of cardiovascular disease 1,572 (18%) 416 (23%) <0.001

N (%)

Atrial fibrillation 1,155 (13%) 443 (24%) <0.001

N (%)

Hypertension 6,582 (75%) 1,646 (89%) <0.001

N (%)

Obesity 2,152 (25%) 545 (30%) <0.001

N (%)

Peripheral artery disease 860 (9.8%) 306 (17%) 0.2

N (%)

Chronic kidney disease 2,042 (23%) 703 (38%) <0.001

N (%)

Chronic obstructive pulmonary disease 432 (4.9%) 167 (9.1%) <0.001

N (%)

Anaemia 638 (7.3%) 205 (11%) <0.001

N (%)

History of cerebrovascular accident 929 (11%) 269 (15%) <0.001

N (%)

(Continued)
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such model performed poorly in our cohort. A possible explanation can be found in the char-

acteristics of our cohort: we applied the model in a clinical setting that included patients with a

wide range of comorbidities, unlike individuals part of the research cohorts in which the

model was derived.

Both our models were superior to RECODe risk equations. COX model obtained with elas-

tic net regularization identified eight clinical predictors already associated with HF risk. As

reported in [9], diabetes duration, diuretics, atrial fibrillation, arterial hypertension, are risk

factors commonly included in prediction models for HF, along with GFR as protective factor.

Charlson comorbity index [26] was found to be a risk factor for heart failure readmission in

another large-scale study [27]. One of the most relevant predictors was loop diuretics

(HR = 1.25), which are commonly used in the treatment of HF, thus possibly a sign of presence

of masked HF cases not detectable from EHRs [28]. Model’s discrimination ability was accept-

able but calibration showed poor results (in particular for 5-year risk). This could be due to the

low flexibility in the model’s specification.

On the other side, the implementation of a deep neural network in the PHNN model made

possible to reach moderate performance in terms of discrimination and well-calibrated predic-

tions. As for variable selection, eight of the PHNN covariates were either predictors of RECODe

equations (age, systolic blood pressure, blood pressure-lowering drugs, anticoagulants) or com-

mon risk predictors reported in [9] (BMI, hemoglobin, chronic kidney disease, peripheral artery

disease). It is interesting to notice that one of the COX predictors was diagnosis of atrial fibrilla-

tion: such variable was not included in the PHNN model, however in the list of predictors we

Table 1. (Continued)

Clinical characteristics HF free (n = 8774) HF (n = 1840) p-value

Metformin 3,047 (35%) 711 (39%) 0.001

N (%)

Antihypertensives 5,529 (63%) 1,401 (76%) <0.001

N (%)

RASi 4,536 (52%) 1,135 (62%) <0.001

N (%)

Digitalis 152 (1.7%) 110 (6.0%) <0.001

N (%)

Beta-blocker 2,936 (33%) 807 (44%) <0.001

N (%)

MRA 293 (3.3%) 175 (9.5%) <0.001

N (%)

Statines 3,757 (43%) 840 (46%) 0.026

N (%)

Anticoagulants 632 (7.2%) 269 (15%) <0.001

N (%)

Diuretics (loop) 567 (6.5%) 433 (24%) <0.001

N (%)

Diuretics (other) 2,338 (27%) 815 (44%) <0.001

N (%)

Duration of diabetes, months 69 (16, 129) 91 (23, 131) <0.001

N (%)

Organ damage 1,904 (22%) 687 (37%) <0.001

N (%)

https://doi.org/10.1371/journal.pone.0281878.t001
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observe “absence of P axis” and “P axis” that is an ECG feature closely related with atrial fibrilla-

tion. Moreover, one of the predictors was continuous wave aortic velocity which high values

could indicate aortic stenosis, a condition that often coexists with atrial fibrillation and predis-

pose to HF [29]. Others relevant echocardiographic parameters were: 1) tissue doppler E wave

velocity, for which we estimated an inverse proportional relationship with HF risk; 2) tricuspid

valve regurgitation, showing an increase in HF risk in case of moderate-to-severe regurgitation;

and 3) wall motion score index, proportionally related with HF risk. Regarding laboratory mea-

surements, hemoglobin and glycemia showed a well-known U-shape effect; whereas triglycer-

ides exhibit an unexpected trend, for which HF risk decreases for higher values. Concerning

comorbidities, the model included chronic kidney disease, hypertension, pulmonary disease

and peripheral artery disease as risk factors, while pericardium disease as protective factor.

Moreover, three categories of therapies influenced the HF risk: use of diuretics (other than loop

diuretics) and anticoagulants as risk factors, RASi use as protective factor. The T axis, an ECG

feature also included in the model, has no straightforward interpretation.

Fig 1. Predictors included in the penalized Cox model ordered by magnitude of effect. GFR is the only variable

associated with hazard ratio<1, meaning that higher values of GFR are associated with lower risk of HF.

https://doi.org/10.1371/journal.pone.0281878.g001

Table 2. Performance of the three models. SE = standard error; AUC = Area under the ROC curve; ICI = integrated calibration index; CI = confidence interval.

C-index 2-year AUC 2-year ICI 5-year AUC 5-year ICI

±SE [95% CI] [95% CI]

COX 0.734 0.716 0.018 0.770 0.030

±0.004 [0.664,0.767] [0.732,0.807]

PHNN 0.768 0.771 0.008 0.780 0.015

±0.007 [0.723,0.818] [0.743,0.817]

RECODe 0.670 0.651 0.715 0.668 0.533

[0.601,0.701] [0.621,0.709]

https://doi.org/10.1371/journal.pone.0281878.t002
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Although our neural network model showed a limited gain in the identification of diabetic

patients that are going to develop HF, an improvement in the performance that can not be con-

sidered clinically significant, we demonstrated the feasibility of using EHRs and AI to approach

the prognostic problem and obtained consistent results with respect to the clinical knowledge in

the field. Moreover, our deep learning model showed adequate calibration, an important aspect

of a predictive model that not always couples with discriminative ability. In particular, recent

advances in deep learning methods have demonstrated incredible gains in prediction accuracy,

but producing well-calibrated probabilities remains a challenge for AI tools [13, 30, 31]. In fact,

this is one of the major obstacles for the use of AI tools in clinical practice for personalized med-

icine, since using uncalibrated predictions to determine a patient’s individual risk could led to

incorrect medical decisions [32]. Our results could be relevant for future developments of prog-

nostic risks, with a view to integrated cardiovascular prediction tools. The utility of AI applied

to massive raw datasets, like ECG and echocardiograms, is being demonstrated as a powerful

tool for phenotyping of cardiac conditions that can be employed at the point of care [33, 34]. In

the case of ECGs, recent studies have introduced tools combining deep representations of data

obtained from convolutional neural networks (in substitution to manual feature engineering)

with EHRs variables [35, 36]. In the same way, for survival analysis, employing deep learning

models represents the most promising and feasible way to operate in ultrahigh dimensional set-

tings (eg. signals and images), a task that standard modeling strategies (including regularization

methods) simply can not undertake. A key concern with DL approaches is the lack of transpar-

ency, since the inner-workings of such models is intrinsically a “black-box”. However, we

believe that the development and application of advanced explainability techniques can provide

relevant information on models’ behavior and could contribute to build the trustworthiness

required for their usage in the clinical practice, as we expressed in a recent work [15].

The present study has some limitations. First, the cohort in examination is formed by indi-

viduals that underwent a cardiological evaluation. Even if cardiological assessment is highly

recommended for diabetic patients, in our cohort we can not exclude the presence of selection

Fig 2. Calibration for COX model. Deviations from the diagonal line denote lack of calibration.

https://doi.org/10.1371/journal.pone.0281878.g002
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bias towards individuals with higher cardiovascular risk with respect to the general diabetic

population. In addition to this, the PHNN model include ECG and echocardiographic param-

eters as predictors, that can be obtained during a cardiological evaluation and this limit the

applicability of the model to patients that were visited by a cardiologist. Second, our model

was not validated in independent external cohorts. Future studies should be directed to mea-

sure the performance in one or more independent cohorts. Third, using explainability tech-

niques, we are able to study and describe the marginal effect of single predictors, however we

have no information on the interaction effects that could have an important role in the deter-

mination of predicted risk. Forth, in the current setting of the study possible changes in predic-

tors variables during follow-up are not taken in account. The proposed model should be

intended only as a prognostic tool at the basal evaluation.

Conclusion

In this study we create a prognostic tool for the management of diabetic patients at risk of

developing incident HF using an AI approach that leverages the potential of EHRs. This

Fig 3. Partial dependence plots for PHNN model. The blue line (or bar for categorical values) represents the value of the log hazard for various values of the

covariate (x axis). Higher values correspond to higher hazard.

https://doi.org/10.1371/journal.pone.0281878.g003
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approach may also be extended to other sources of data, like signals (ECGs) and images (echo-

cardiography, magnetic resonance imaging).
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