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Abstract Charged black holes in a (2 + 1)-dimensional
anti-de Sitter space-time suffer from some limitations such
as the ambiguity in the definition of the mass and the bad
short distance behavior. In this paper we present a way to
resolve such issues. By extending the parameter space of the
BTZ geometry, we properly identify the integration constants
in order to remove the conical singularity sitting at the origin.
In such a way we obtain a well defined Minkowski limit and
horizons also in the case of de Sitter background space. On
the thermodynamic side, we obtain a proper internal energy,
by invoking the consistency with the Area Law, even if the
mass parameter does not appear in the metric coefficients.
As a further improvement, we show that it is sufficient to
assume a finite size of the electric charge to obtain a short
scale regular geometry. The resulting solution, generalizing
the charged BTZ metric, is dual to a van der Waals gas.

1 Introduction

Despite intense efforts in the last four decades, a full under-
standing of the physical origin of the variables associated
to black hole thermodynamics is still missing. Semiclassi-
cal analysis can, however, still offer a proper platform for
understanding different features of the physics of black holes,
provided one considers some amendments to the original
Hawking—Bekenstein formulation [1,2]. There have been,
indeed, two notable developments in the field, namely the
role played by noncommutative geometry effects [3,4] and
the gauge/gravity duality [5-7].
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Noncommutative geometry encodes the intrinsic property
of granularity of a quantum spacetime and is connected to the
non-local character of string theory [3,4]. Customarily non-
commutativity is implemented by using a non-local prod-
uct, called star product or Moyal product [8]. In the con-
text of black holes, noncommutative effects have mostly
been implemented by averaging noncommutative fluctua-
tions on suitable coherent states [9-11]. Equivalently the
sought effects can be obtained by employing another mul-
tiplication rule, known as Voros star-product [12], or by
considering a suitable non-local gravity action [13,14]. The
attractive feature of noncommutative effects is that they
replace the singular behavior of black hole solutions with
a regular deSitter region, emerging from the quantum fluc-
tuation of the manifold [15,16]. Noncommutative geometry
also offers intriguing insights in the destiny of a black hole in
the last stages of the thermal emission [17,18]. Rather than
a divergent temperature phase, the black hole undergoes a
cooling down phase towards an extremal configuration.

Interestingly, the above scenario for black holes is com-
mon to other paradigms for quantum mechanical black holes,
such as the ultraviolet self-completeness [14,19], the gener-
alized uncertainty principle [20], string T-duality effects [21]
and other pre-geometric quantum mechanical formulations
[22,23]. This would suggest that noncommutative geometry
can capture model independent characters.

On the other hand, the gauge/gravity duality is a paradigm
emerging from a line of reasoning started by Bekenstein
and Hawking [1,2] and corroborated by the ’t Hooft’s for-
mulation of the holographic principle [24]. Recent devel-
opments from the AdS/CFT correspondence have provided
valuable insights about the black hole informational content
[25]. Black hole evolution has to be unitary since they cor-
respond to quantum fields living on the boundary of anti-de
Sitter space. We further note that (2 + 1)-dimensional black
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holes [26] have also played an important role in such a con-
text. First, they naturally live in an anti-de Sitter background.
Second, their holographic description allows for the deriva-
tion of the entropy-area law from the counting of states in a
unitary conformal field theory [27].

Unfortunately, (2 + 1)-dimensional black holes are not
free of problems. It has been noted that the associated ther-
modynamics, in the presence of a U (1)-hair, is ill defined
for the arbitrariness of the definition of the black hole mass.
The latter can diverge and assume negative values [28,29].
The issue is connected to the presence of a logarithmic term
in the metric coefficient, as a result of the solution of the
Maxwell equations in (2 + 1)-dimensions. To this purpose
we recall that in previous studies [30,31], we have consid-
ered the effect of noncommutativity on static potentials for
axionic electrodynamics bothin (3+1) and (2+1) space-time
dimensions. Our analyses led to a well-defined noncommu-
tative interaction energy and in both cases we have obtained
a fully ultraviolet finite static potential. With these ideas in
mind, we propose the ultraviolet finiteness of the electrostatic
potential as a paradigm to solve the puzzling situation of the
(2 4+ 1)-dimensional black hole thermodynamics.

The paper is organized as follows: in Sect. 2 we review the
(2 + 1)-dimensional black hole geometry and we propose a
solution to the issue of its thermodynamic variables; in Sect.
3 we derive a ultraviolet finite (24 1)-dimensional black hole
solution; in Sect. 4 we draw the conclusions.

2 The standard (charged) BTZ solution: a (critical)
appraisal

The standard Bafiados—Teitelboim—Zanelli (BTZ) solution is
usually presented as a vacuum solution of the field equations
in (2 4+ 1) dimensions [26]. According to such a derivation,
the identification of the integration constants is a mere for-
mal analogy with the (3 4 1) dimensional case. Some of the
shortcomings of the charged BTZ solution have already been
scrutinized in the literature. For instance the mass parame-
ter can diverge and assume negative values; for fixed mass
parameter, there is no upper bound on the charge [28]. Such
inconsistencies of the charged BTZ geometry are associated
to the logarithmic profile of the electrostatic potential term.
Accordingly, the large distance behavior of the solution can
be controlled by introducing a “large box” radius [28], as a
length scale entering the logarithmic term. Such a radius can
also be identified with the radius of the AdS background or
the radius of the event horizon [29]. The large box is essen-
tially a regulator that enable the definition of a finite mass
and thermodynamic variables.

Conversely, we are going to propose an alternative solu-
tion of the above problems, by solving the Einstein—Maxwell
equations with proper source terms. Thus, a length scale for
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the electrostatic potential shows up in a transparent way. The
proposed method of this section aims to pave the way to the
derivation of a ultraviolet finite geometry, whose innovative
features are discussed in Sect. 3.

We start by the line element

ds®> = =N?(r)dt> + N2 (r)dr* + r’d¢? (1)

describing a (2 + 1) dimensional space-time, which is solu-
tion of the Einstein equations

1
Ry — E(R_ZA)glw =8rnGTy 2)

where the gravitational constant in natural units has the
dimension of a length, i.e., [G] = length. The stress ten-
sor is given in terms of the energy density p, the radial
pressure p, and the angular pressure p, namely TH, =
diag(—p , pr , p1 ). Therefore the Einstein equations read

1 dN?
;WZ—A—gﬂ'G,O, (3)
1 dN?
; dr :—A+87TGpr, (4)
1d4*N?

Atthis point, we need to carefully discuss the source term. We
consider a charged, massive particle, i.e., M > 0 and g # 0
sitting at the origin. It is often neglected that, in addition to
the charged particle, the BTZ solution contains a topological
defect that resembles the Barriola—Vilenkin global monopole
[32], a gravitational object emerging also in nonlocal gravity
[33,34]. To see this, one can write the energy density as the
sum of the mass term and the electrostatic energy:

M
oM = —38(r), (6)

P=pMT Qe
2r

where pe is given by the T5™ O component of the energy
momentum tensor of the electromagnetic field. Maxwell
equations in (2 4 1) dimensions read

%au (rFM) =J". 7

where in natural units, [A,L ] = L~'2 = [4]. By consider-
ing a point-like charge as a source of the electric field

q
J'=—3$§ 8¢- 8
w7 (r) &y (@)
one gets, for a purely electrostatic solutions, F'0 = E (r),

the following equation

! q
=0 (rE)= 5—=46(r). ©)
r 2nr
Thus, the electric field and the corresponding potential read
q q r
E=—, =——lIn| — 10
2 ¢ 2 " ( o > (19)
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where rq is an arbitrary integration constant ry. We notice
that the electric potential is logarithmic divergent both at
large and small length scales, a feature that has important
consequences in the presence of gravity. The electrostatic
energy density is then given by

p :_TemO:lEZZ qz (11)
¢ 0 2 872r2
When trying to integrate the Einstein equations,
r r
N2(r) = —ZA/ dr'r’ — 16nG/ dr'r'p, (12)

one encounters a problem: the second term gives again a log-
arithmic divergent contribution both for r — 0 and r — oo.
Thus, one must cut-off the integration range at some length
scale r¢g. The resulting metric is
2 2 2 2

5 5 r ro Gg r
where A = —1/12.

The above solution depends on two constants, namely, rq
and N2(rg). To obtain the BTZ geometry one has to introduce
a mass term! by assuming

r2
8GM = g—g — N2(ro). (14)

The above relation can also be thought as a setting of the
parameter rp in terms of an implicit function of M and
NZ%(rp), namely ro = rg (M , N 2(ro)). From this viewpoint,
gravity provides a sort of dynamical regulator of the loga-
rithmic divergence of the electrostatic potential. As a result
one can display the standard BTZ geometry:

2 2 2
G
N =2 —som-ZLm 5 (15)
l T ry

On the geometrical side, the mass term corresponds to a
conical singularity in r = 0 for ¢ = 0. In the charged
case, the electrostatic term worsens the situation by intro-
ducing an additional genuine curvature singularity at the ori-
gin. Another feature, which has largely been ignored in the
literature, apart from few exceptions (see e.g. [28,29]), is
that the parameter M can always be re-scaled out due to the
arbitrariness of the integration constant rg, by setting

8t M
r&—)r&@(p( n2 > (16)
q

From a physical viewpoint this is the consequence of the
degree of divergence of the electromagnetic energy in (2+1)-
dimensions. The above change of the integration constant is
a gauge freedom of the electromagnetic field and does not

! Note that, despite having the same symbol, the mass term in (14) has
a different origin from that in (6). In (14) the mass corresponds to an
integration constant.

x2 Log[xz]

Fig. 1 Zeros of the function N2 (x) in (19) for Ng = —2 can be
obtained from the plot of the functions x2 — 2 and x2 In x2. In the above
label log stands for In. By increasing Ng the parabola x% + Ng is lifted
along the direction of the arrow and one or two intersections on the
positive real axis can develop

change its contribution to the matter action. Equation (16),
however, opens the question of the proper interpretation of
the solution, e.g., the existence of horizons and their ther-
modynamics, in case the metric does not explicitly present a
mass term among its parameters.

We notice that, irrespective of the value of rp and N 2(r0),
the function N2(r) in (13) is the sum of a monotonically
increasing and a monotonically decreasing function, result-
ing in a convex function with a single, local, minimum given
by

dN* » _ Gq*l?

7 = Fmin = (17)

Every choice of rg and N?(r() actually corresponds to setting
the height of such a minimum. One can see that, in such a
local minimum, the metric function takes the value

2 g2 2.
N? (rmin) = N*(r0) = 73 + 3" (1 —1In :g“). (18)
0
The minimum can be negative, vanishing or positive, cor-
responding to the presence of two horizons, r4, a Cauchy
horizon, r_, and an event horizon, r ; one (degenerate) hori-
zon or no horizons. The degenerate case corresponds to an
extremal black hole, occurring for the coalescence of the two
horizons, namely rexqr = r— = r4 = rmin. This can be seen
by writing N 2 (min ) as

2
Nz(x)z%(Ng+x2—x21nx2>, (19)
with x = rmin/r0 and N3 = (12/r3)N?(ro) — 1 (see Fig. 1).
For Ng < —1, the minimum is always negative,

N2 (x) < 0, corresponding to two horizons, 7+, irrespective
of the value of gq.

@ Springer
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For Ng = —1, the minimum vanishes only for ryj, =
Fexe = Fo, namely for |¢| = (ro/1)+/7/G, corresponding
to an extremal configuration. For |g| # (ro/)/7/G the
minimum is negative, corresponding to two horizons, 7.

For —1 < Ng < 0, the minimum vanishes for two values
of the minimum radius rp;,, leading to extremal configura-
tions at rexyr = 11 < 1o and rexqe = 12 > 1, corresponding
to two distinct values of the charge parameter, g1 and g. The
minimum is negative for ¢ < ¢ or for g > ¢», correspond-
ing to two horizons, r+. For 1 < ¢ < ¢q2, the minimum is
positive and no horizons form. In Fig. 1 the absence of hori-
zons corresponds to the portion of the curve x> Inx? lying
below the parabola, when the latter is lifted in the direction
of the arrow.

For Ng = 0, one finds a borderline situation of the pre-
vious case, with g; — 0 corresponding to r; = 0, and
q> — q*. As aresult, there exists only a nonvanishing value
of ¢* such that the extremal configuration is realized. For
larger charge, ¢ > ¢*, the minimum is negative correspond-
ing to two horizons, r+. For ¢ < ¢* horizons do not form.

Finally for Ng > 0, there is only a nonvanishing value of
g such that the extremal configuration is realized. For larger
¢, the minimum is negative corresponding to two horizons,
r+. For smaller charge, horizons do not form.

We note that, by studying the metric for a generic Ng,
we have extended the parameter space governing the hori-
zon structure. Since Ng has no actual physical meaning, it
can assume any value. On the other hand the parametriza-
tion proposed by BTZ in (14) limits the analysis to the case
N& < 0, being the mass parameter positive defined. To this
purpose we recall that an extension of the parameter space
have already been obtained in [29] within the proposal of
interpreting the BTZ black hole entropy in terms of a Cardy
formula for the two dimensional dual conformal field theory.

In the case the metric admits an event horizon, r, we can
define a temperature. According to Hawking this is given by

2
r+ Textr
Tu=—-=1\|1-— . 20
H anz( r2 ) 20)

+

Not surprisingly, the temperature vanishes at the extremal
configuration, 7 = rexir.

Conventionally the mass term coincides with the internal
energy, namely the quantity U = M (74, g) one obtains by
solving the horizon equation, N2(r) = 0. Then, one can
insert (20) in the First Law, dU = TyudS + ¢dgq, to obtain
the entropy S. This is, however, the case only if a mass term
is explicitly present in the metric coefficient, thing that does
not, in general, occur for a (2+ 1)-dimensional charged black
hole geometry. Due to the freedom of the parameter ro, there
is no mass parameter that can be the candidate for the role of
internal energy U. The situation might appear similar to the
case of the Rindler geometry that represents the spacetime
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in the presence of an inertial field. For Rindler geometries,
however, it is the acceleration that determines the existence
of the horizon and there is no actual mass term irrespective
of the parametrization.

As aresult one has to figure out an alternative way to define
the internal energy without relying on the parametrization in
(14). As a solution of the issue, one can invoke the Area Law,
namely the fact that the entropy of gravitational systems have
aholographic nature. Accordingly, we propose the following
form for U

U (] rew  Tew . I3

that is compatible with the Area law, i.e.,

b4 T 1
ds = ﬁdm_ - S= E/rextrhrd’"jr =G (At — Aextr)
(22)

where AL = 2ry and Aexy = 27 Fexer- In other words, it
is possible to consistently define the internal energy of the
event horizon for any Ng, despite no mass term enters the
metric coefficient. This feat is in agreement with what found
in [29], even if with important differences. First, the proposed
method of derivation is original and alternative to the usual
regularization of the mass with a large box along the lines of
[28]. Second, the above thermodynamic variables vanish at
the extremal configuration, namely for 7 = 0 one has U =
S = 0 corresponding to a frozen system without statistical
ignorance. Such an important property is not captured in [29],
whose entropy never vanishes due to a specific choice of
integration constants. Residual entropies at zero temperature
can exist as the effect of state degeneration in some condensed
matter systems such as carbon monoxide and spin ice. A
similar interpretation for black holes is not known and there
is no comment in [29] about such a potential issue.

In order to determine if the above metric describes a sys-
tem that is “dual” to some kind of fluid, we consider the
cosmological constant as a dynamical variable playing the
role of a pressure [35-38]. Along this line of reasoning we
write the AdS vacuum equation of state as

1

—_— 23
81 GI? 23)

P = —pads =
where pads = A /(87 G). This equation says that the vacuum
compresses the black hole by exerting a positive pressure.
We recall that in (2 + 1)-dimensions, the “volume” of the
black hole is simply given by the area of the “black disk”:

V=nri. 24

We can, therefore, write the equation of state for the fluid
which is dual to the black hole. By expressing 1/1? in Ty in
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terms of P defined in Eq. (23), we find
TH=4GT+P—2——. (25)
Now, if we define the specific volume of the fluid as

1%
v=— =4Grg, 26
N + ( )
where N accounts for the fluid degrees of freedom, we obtain
the following equation of state
Tu  2G%*¢*
L 27)
v T
Equation (27) describes a perfect gas with a short distance
correction due to the electrostatic repulsion. A first interest-
ing result is that the specific volume cannot be arbitrary small
since r4 > rexr- Accordingly we can define minimum value
of v as Vpin = 4Grexr- We notice that, for any Ty, the func-
tion P = P(v) is monotonically decreasing and admits a
global maximum value

Ty q°
P = P Vmi = —|—
max ( mln) 4Grextr Snzrezxn-
(1 + 2Ty ) (28)
= —PAdS —_—
gv G

The conclusion is that there are no phase transitions.

We stress here that the above analysis in AdS vacuum
coincides with the results presented in [39]. This is an addi-
tional piece of evidence that the proposed method leads to
consistent results.

3 Ultraviolet improved solution

From the previous section it has emerged that the solution
(13) presents some pathology. The presence of a gravitational
monopole at the origin introduces a conical singularity. We
also learned that the mass term is an irrelevant parameter in
the solution. We recall here that noncommutative geometry
has already been considered in lower dimensional black hole
geometries [40—45]. In all such cases the noncommutative
smearing has been applied to the mass term much in the same
way of what done in the higher dimensional cases [15,16,46—
50]. Against this background, the results of the previous sec-
tion show that it is possible to obtain a well defined ther-
modynamics without the mass term. In the present section
we aim to show that the smearing of the mass term is not
even necessary to obtain a short scale regular solution. The
only genuine short scale singularity is due to the electrostatic
term. To this purpose we recall that the derivation of a reg-
ular charged BTZ metric has already been addressed in the
literature by introducing a topological Chern—Simon term to

the gauge field action [51]. The net result has been an hori-
zonless geometry. Our proposal, however, departs from such
a result. In what follows we aim improve the charged BTZ
geometry without preventing it from admitting horizons and
without any modification of the gauge field action.

We start by addressing the issue of the conical singularity,
that is present also in the absence of the charge, ¢ = 0. Up
to now we considered Ng as a free parameter emerging from
the integration of Einstein equations. It is, however, possible
to set the value of Ng by following a procedure analogue
to higher dimensional black hole solutions. In the absence
of mass and charge, the spacetime has to match a regular
geometry with constant curvature. This means thatin (2+41)-
dimensions, one can and has to eliminate the deficit angle in
order to have a physically consistent solution. In other words
one has to require that

2
N2(ro) — ;—g —1. (29)

After this is done, one canset 1 /1 2 — 0 to find the Minkowski
limit. We note that the removal of the monopole term by
means of (29) is possible only because we extended the
parameter space of the solution. Within the BTZ parametriza-
tion (14) there is no way to fulfill the condition (29) for
M = 0. In other words the Minkoswki limit is never attain-

able within the BTZ proposal.
As a result the metric (13) can be written as

2 2 2

Ny =145 ST,

. 30
F e (30)

We note that monopole has been removed but 7y can still
change within the set of values determined by the condition
(29). It is therefore convenient to introduce again a dimen-
sionless variable u = r/rg to get:

N2w) =1 —ru® — G*Inu?, (1)

where A = —rg/l2 and §°> = G ¢?/n are dimensionless
constants.

At this point we note that for ¢ = 0, there are horizons
only if the cosmological term is positive. In other words, the
necessity of having an anti-de Sitter background to fulfill
the horizon equation holds only for the BTZ parametrization
(14). For the rest of the paper we keep, however, the stan-
dard anti-de Sitter background, A < 0, for the ease of the
presentation.

Asasecond step of the discussion, one needs to address the
issue of the electrostatic term. We recall here that a point like
charge is just an ideal mathematical model. From a physical
viewpoint, one actually expects the charge to be distributed
with a certain profile of width a. The latter parameter can be
thought as a ultraviolet cut off of a given theory or simply
as the characteristic length scale of the system under con-
sideration. For instance, in the case of a proton the width

@ Springer
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is of the order of the nuclear radius, a ~ 1 fermi. For the
present problem, we have already an array of length scales,
such as rg, [, G and q_z, but we assume a as an additional
independent parameter to keep the discussion general.

At large distances, r > a, the charge distribution appears
like a peaked distribution. At scales of the order of a, how-
ever, the profile of the charge distribution is visible. Since
the main purpose of this section is to show how a finite width
charge distribution can remove the curvature singularity in
r = 0, we consider the case of a Gaussian distribution, even if
other distributions may be equally motivated and physically
consistent. As a result we start from

700) = —L_r*/4a*, (32)

dma?
By solving the Maxwell equations, the radial component of

the electric field E (r) reads
_ 4 )
E(r) =5 y(l,r/4a). (33)

ar

Here the lower incomplete Gamma function is defined as

X
y(a;x):/ dt t* e | (34)
0

that can be written, for « = 1, in terms of elementary func-
tions as:

y(l;x)=1—e". (35)

Equations (33) and (35) say that, for r — 0, the electric
field is linearly vanishing and the electrostatic energy density,
Pe, 1s quadratically vanishing. By inserting the total energy
density in (3) and integrating the field equations as before ,
we find

2 2

2G ¢?
N2(r) = N2 "_Th
() = N20) + 5 = = =

where the function F is defined as

" dt
F(r,rp,a)= / - (1 _ 26—;2/4a2 i e_t2/2a2). 37)
I

0

F(r,rp,a), (36)

The upper bound of the above integral provides the depen-
dence on the radial coordinate . The lower bound provides
only a constant depending on rg. Up to such a constant, one
finds that the asymptotic behaviors of the function F are:

F(r,ro,a)~1In(/rg) forr > a (38)
and

4
F(r,ro,a)~64a4f0rr<<a. (39)

As expected, the curvature singularity in » = 0 has been
improved in favor of a harmless conical one, that can be
removed by a suitable choice of the integration constants.
The logarithmic divergence appears only at large distance
r > a, where the actual width of the charge distribution
cannot be resolved.

@ Springer

The integral in (37) can be solved analytically and reads
1 2 2
F(r.r.a)=n(/ro) =5 F(O;r J2a )
+ 1 (05r2/4a? ) =1 (031 /40 )
1
+—F(0;r§/2a2), (40)
2
where
© dt
F(O;x):/ &t 1)
P

is the upper incomplete gamma function. One can calculate
the value of F atr = 0 and find a finite constant F, namely

y 4a 2, 2
Fo=—=4+In(——=)-T1(0;ry/4
0 2+n<r0ﬁ) ( ro/a>

+% r (0 : r§/2a2) (42)

with y the Euler—Mascheroni constant. The function F (r ,rg , a)

describes a short scale regularized electrostatic potential. The
presence of an effective size a resembles the charge screen-
ing effect observed in the context of (2+ 1)-noncommutative
electrodynamics [31].

We have already noticed that the electrostatic energy van-
ishes at r = 0. The cosmological term dies off too, being
proportional to r2. As a result in the vicinity of the origin
there is no mass-energy content able to curve the spacetime
that results locally flat. Accordingly, one can require that
N?(0) = 1 to get rid of the monopole term. This implies the
following new condition for the integration constants and the
parameters of the solution:

2

2
T 2G
N (o) = % = 1+ =" Fy(ro.a). (43)
The above equation is the extension of (29) to the charged
case. At this point one can write the short scale regular
charged black hole metric as
2 2Gq?

Nz(r)=1+l—2 T(F(r,ro,a)—Fo). (44)

Once (43) is fulfilled the form of the above metric coefficient
cannot be modified by changing the value of ry. Again it is
useful to introduce a dimensionless variable u = r/ry and
display the metric as

N2u) = 1 —Auz—chz(F(u ) —Fo(d)>. (45)

where a = a/ry.

To study the horizon equation we start by noticing that
leading correction to Minkowski space in a neighborhood
of the origin is dominated by the monotonically increasing
cosmological term, N(r ~ 0) ~ 1 + r2/[? being the elec-
trostatic term quartically dependent on the radial coordinate
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N[
1.0
0.5
. . . —r
2 U 8 10
-0.5
-1.0

Fig. 2 The metric function N2(r) from (45). Curves are displayed by
increasing the charge parameter from the upper curve to the lower curve.
We assumed g = 0, 1.20, 1.45, 1.66, 1.70, 1.95 and 2.20, A = —0.09
and a = 0.91. The case ¢ = 0 corresponds to the parabola in the left
upper part

~ r*/a* as far as r < a. At large scales the cosmolog-
ical term is again dominant since it diverges quadratically
versus the logarithmic divergence of the electrostatic term
—q%1n(r/ro). As a result one has N>(r — oo0) ~ r2/I>.
Between the two regimes there is room for negative contri-
butions coming from the electrostatic term. As a result the
function N 2(r) has a local maximum at short scale, and a
minimum, at intermediate scales. One can easily see this by
calculating the second derivative of the metric coefficient at
short and large scales:

d*(N*) 2 3Gq¢*r?
T TETRa a < (40
2 2Gq?
2—2-1——q2f0rr>>a 47
l r

Equation (46) indicates that the unique stationary point at
short scales coming from the equation dN?/dr = 0 is a
local maximum, being d>(N?)/dr? = —4/1*> < 0 there.
The function N2(r) can have a root for r < a only for large
charge, namely only if g> > 64(;r/ GI*)a®. This means that
a Cauchy horizon forms. Otherwise for smaller charge, the
function N2 crosses the r-axis from above at r > a or does
not cross the r-axis at all. Equation (47) says that for r > a
the function N2(r) admits a minimum. When the additional
condition N 2(rmin) = 0 is fulfilled, such a minimum occurs
at the black hole extremal radius, rextr = rmin > a. The
horizon structure is therefore similar to what seen in Sect. 2,
namely, two horizons r4, one degenerate horizon 7exy Or no
horizon — see Fig. 2. The latter case corresponds to a regular
horizonless geometry and not to a naked singularity.

On the thermodynamic side, the black hole temperature
reads:

Tu

r+ |:l— Fexte F'(ry) j| (48)

- 2712 ry F'(rexur)

Given the relation

Gq212 _ Textr
T F'(Fexa) '

(49)

one finds

'+
Ty = 1
U= oqe [

_ qulz iz (1 _ 26—ri/4a2 + e—ri/Za2 )i| )
b r+

(50)

Beinga < rexyr < r4,the corrections due to size of the source
a are small. The leading term of the temperature coincides
with what found in (20).

As from the discussion in Sect. 2, there is the problem of
defining the internal energy of the system in the absence of
an explicit mass term. To solve the puzzle, we again invoke

the compatibility with Area law, dU = Tyd S + ¢dgq, to find

1 r-%— rgxtr 2extr [
=—1 >t -="—-———|F - F ] .
8G { 12 12 le/(rex[r) (r+) (rextr)
(51)
where the electric potential is now ¢ = —(g/27) [F (r) —

F ():I .

We note that temperature in (48) and (50) correctly repro-
duces the classical result, i.e. (20), in the large distance limit,
r > a, while it vanishes as 74 — rexr. Such two asymptotic
behaviors are also common to the internal energy (51), i.e., it
approaches the classical result at large distance and vanishes
at the extremal configuration.

Asin the previous section we can study the fluid dual to the
black hole. By introducing the vacuum pressure P = — pags.
we obtain the following equation of state

T | 2G%q* F'(v)

P
v w2 v

(52)

We notice that the function F'(v) can provide a different phase
structure. By using (44), we can write

2(1. 22
Tu | 2G% 7 (1’ m—m)

pP=
v 72 v2

(53)

whose plot is given in Fig. 3. The equation of state turns
out to be of the van der Waals type. At high temperatures,
i.e., large horizon radii, the system approaches a perfect gas
behavior. By lowering the temperature, however, the typical
S type profile indicated a mixture of phases during the tran-
sition from a low compressibility configuration (small black
hole) to a progressively higher compressibility configuration
(bigger black hole). Such a behavior is in agreement with
the findings about phase transitions of regular black holes in
(3 4+ 1)-dimensions [18,52].

@ Springer
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Fig. 3 Pressure from (53). Here v = 4Gry, x = ri/a, a® = 0.8,
Gg?>=288and G =rg=1

4 Conclusions

In this paper we faced the problem of the three dimensional
charged static black hole solution. After presenting the stan-
dard BTZ geometry we highlighted three main features: the
presence of a conical singularity, the arbitrariness of the mass
parameter and the difficulty in defining the internal energy.
We also showed that such characteristics are connected to the
presence of a logarithm as a solution of the 2+ 1 dimensional
Poisson equation.

Given this background we proposed to exploit the arbi-
trariness of the length scale entering the argument of the
logarithm as well as the integration constant of the Einstein
equations to extend the parameter space conventional BTZ
solution. We showed that, despite the mass term has disap-
peared from the metric coefficient, it is still possible to define
an internal energy consistent with the Area Law. Our method
differs from what already presented in the literature about the
introduction of a large box radius to control the logarithmic
term [28,29]. We showed that such methods describe the
physics equivalently. As a piece of evidence, we established
a formal duality black-hole/fluid of the same kind of what
found in the literature for black holes in AdS vacuum [39].
Interestingly, the BTZ solution behaves like a perfect gas with
a short scale correction due to the electrostatic interaction.

In the second part of the paper, we set the parameters of
the solution to eliminate the monopole term and the related
conical singularity. We showed that such a procedure can
occur owing to the extension of the parameter space previ-
ously derived. The BTZ geometry on the other hand cannot
reproduce the Minkowski limit since it permanently affected
by a conical singularity. We also show that the necessity of
a negative cosmological constant for horizon formation is a
characteristic of the BTZ parametrization. In general 2 4 1-
dimensional black hole exists also in a de Sitter background
space.

@ Springer

As a further improvement, we introduced a ultraviolet cut-
off to amend the short scale behavior of the electrostatic
potential. In such a way, we derived a short scale singularity
free solution, that admits horizons and does not required any
modification of the action, as previously claimed [51]. The
related thermodynamics discloses a new phase structure that
resembles that of a real gas. Physically this means that the
short scale cut off behaves like the parameter controlling the
excluded volume in a Van der Waals gas.
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