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Abstract: In recent years, the attention of many researchers in the field of pavement engineering
has focused on the search for alternative fillers that could replace Portland cement and traditional
limestone in the production of asphalt mixtures. In addition, from a Czech perspective, there was
the need to determine the quality of asphalt mixtures prepared with selected fillers provided by
different local quarries and suppliers. This paper discusses an experimental investigation and a
machine learning modeling carried out by a decision tree CatBoost approach, based on experimentally
determined volumetric and mechanical properties of fine-grained asphalt concretes prepared with
selected quarry fillers used as an alternative to traditional limestone and Portland cement. Air voids
content and stiffness modulus at 15 ◦C were predicted on the basis of seven input variables, including
bulk density, a categorical variable distinguishing the aggregates’ quarry of origin, and five main
filler-oxide contents determined by means of X-ray fluorescence spectrometry. All mixtures were
prepared by fixing the filler content at 10% by mass, with a bitumen content of 6% (PG 160/220), and with
roughly the same grading curve. Model predictive performance was evaluated in terms of six different
evaluation metrics with Pearson correlation and coefficient of determination always higher than 0.96 and
0.92, respectively. Based on the results obtained, this study could represent a forward feasibility study
on the mathematical prediction of the asphalt mixtures’ mechanical behavior on the basis of its filler
mineralogical composition.

Keywords: asphalt mixtures; alternative fillers; XRF analyses; artificial intelligence; machine learning;
decision tree; CatBoost

1. Introduction

A flexible road pavement is mainly made of aggregates, bituminous binder, and
mineral filler, and its mechanical behavior is deeply affected by the physical–chemical
characteristics of these three basic components and by their mutual interaction. During
their service life, pavements have to withstand traffic and climate loads and must be carefully
designed both in terms of mixture and layer thicknesses. Otherwise, common failure phe-
nomena such as permanent deformation, low-temperature cracking, fatigue, and stripping
could occur, reducing pavement service life and increasing rehabilitation costs [1,2].

Experimental methods are currently performed to characterize the mechanical be-
havior of construction materials [3–5], pavement asphalt mixtures included [6–10], even
though expensive laboratory equipment is usually required. Despite the experience of
researchers and technicians, any modification to the mixture’s composition always involves
additional laboratory tests leading to an increase in the cost and time required to fully
design the mixture.

A mathematical or numerical model would overcome this issue by allowing each pa-
rameter to be individually adjusted and by providing accurate predictions of the mixture’s
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mechanical response. For this reason, many researchers have developed and proposed
predictive equations and models that relied on the mechanics of materials and referred to
advanced constitutive modeling methods. The mechanical behavior of asphalt mixtures
has thus been described and elaborated by means of rational constitutive laws [11–13] that
were later implemented in finite element [14–16] and discrete element software [17–19].

Although such mathematical models provide an in-depth physical understanding
of asphalt mixtures’ mechanical response, statistical approaches and machine learning
methods are recently gaining wide approval in the scientific community. Unlike constitutive
equations, they are independent of the problems of physical nature but can successfully
achieve fast and reliable results [20–23]. However, in direct comparison, machine learning-
based methods such as artificial neural networks (ANNs) and decision trees (DTs) have been
proven to produce more accurate predictions than corresponding statistical approaches [24–30].
An ANN is a soft-computing technique inspired by the functioning principles of the human
nervous system that processes information by means of basic computational units (neurons)
and their interconnection. Although neural networks can successfully understand and
model even highly nonlinear phenomena producing very accurate predictions [31–37], the
difficulties related to the best hyperparameters’ identification and the lack of sufficient
interpretability [38] could make them not preferable. Conversely, decision tree-based
models solve regression and/or classification problems by means of simple and easily
interpretable decision rules [39], returning a performance that is competitive with that of
neural networks [40,41].

In recent years, many interesting decision tree-based predictive models were real-
ized, capable of analyzing and evaluating the behavior of asphalt mixtures. Benhood and
Daneshvar implemented the M5P model tree algorithm to successfully predict the dynamic
modulus |E∗| of asphalt concretes [42]. The same predictive task was also proficiently
accomplished by Ali et al. implementing an eXtreme Gradient Boosting-based methodol-
ogy [43]. Hosseini et al. were able to predict the viscoelastic behavior of modified bitumen
in terms of complex shear modulus (G∗) and phase angle (δ) by means of decision trees and
ensemble regression methods [44]. Recently, Liu et al. improved the mix design process by
predicting alligator cracking and longitudinal cracking from asphalt mixture properties by
means of Gradient Boosting, eXtreme Gradient Boosting, and extra-trees algorithms [45].

The main purpose of this study was to develop and implement an innovative decision
tree-based methodology to accurately predict the volumetric and stiffness properties of
asphalt concrete mixtures from the mineralogical composition of the fillers used. To
achieve this goal, 126 specimens prepared with different alternative quarry fillers were
analyzed, keeping the filler content at 10%, fixing bitumen type (paving grade bitumen
160/220) according to EN 1744-4, Annex A, and binder content (6%) and with roughly
the same grading curve. For all the experimentally designed and assessed mix variants,
the bulk density, voids content, stiffness at 15 ◦C according to EN 12697-26, annex C and
Marshall test at 60 ◦C according to EN 12697-34 were determined. X-ray fluorescence (XRF)
spectrometry analyses were also performed to determine the five main filler-oxide contents.

A categorical boosting (CatBoost) approach was implemented to identify a reliable
correlation between two predicted outputs, namely the air voids’ content (AV) and the
stiffness modulus at 15 ◦C (IT-CY), and seven input variables including the bulk density,
five oxide contents, and a categorical variable distinguishing the aggregates’ quarry of origin.

2. Materials and Methods

For the assessment of the effect of different fillers, derived mainly from quarry dust,
on the characteristics of an asphalt mix (deformation behavior, durability, and adhesion of
bitumen to aggregate), representatives of aggregates from the Zbečno, Brant, and Chlum
quarries were selected as they represent the different types of rocks available in the Czech
Republic and are regularly used for the production of asphalt mixes. This selection includes
aggregates showing a different adhesion to bituminous binders.
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With respect to Zbečno quarry, the parent rock is igneous. Petrographically, it is a
spilite with plagioclase strips (andesite) and pyroxene isometric grains. Quartz, calcite,
chlorite, or pumpellyite are abundantly contained in secondary veins. Up to 3 mm of
feldspar outgrowths (spilite porphyrites) can be found in some spilites. Zbečno aggregates
usually show a good adhesion with bitumen.

Granite porphyry can be considered the key mineral of the Brant quarry rock. Al-
though its surface is porous due to weathering, it is also hydrophilic and consequently
more susceptible to loss of adhesion with the asphalt binder.

The aggregate from the Chlum quarry in the northern region of the country can be
classified as an acid rock type (phonolite). Feldspars are not detectable macroscopically;
biotite can be found in small quantities. This rock-produced aggregate is typically more
hydrophilic, showing poor adhesion of asphalt to the aggregate. Therefore, in the case of
this aggregate, the mix design usually requires proper adhesion promoters. The alternative
solution—if possible—is to try to avoid this type of aggregate in asphalt mix design.

In addition, this study used a soft paving-grade bitumen 160/220 with 187 dmm
of penetration, and 38 ◦C of softening point. This binder-type is requested by the test
procedure described in Annex A of EN 1744-4, which was chosen as an alternative method
to assess the suitability of the filler in the asphalt mix (the procedure is generally not
well-known in Central European latitudes, but its use has a very long history according
to the literature). The exact grading-curve composition is defined in Annex A, where
25% 5/8 mm, 25% 2/5 mm, 40% 0.125/2 mm, and 10% of the filler must be represented.
This atypically defined grading curve requires, in particular for the standard 0/2 mm
fraction, the removal of particles <0.125 mm, which are completely replaced by filler. The
closest type of an asphalt mix according to EN 13108-1 would be an ACsurf 8, eventually,
according to EN 13108-2, some of the BBTM 8 mix types. The asphalt content is optimized
to achieve for the reference mix a voids’ content uniformity of 5.5 ± 0.5% vol. This has to
be defined for each type of aggregate and the base asphalt mix with the reference limestone
filler (in this study, the Velké Hydčice quarry) was used. The bitumen content determined
for the reference mix was used for all alternatives considered where a different type of
filler was used to replace the limestone meal. As alternative fillers used to replace the
traditional limestone filler, several variants of quarry dust or backhouse fillers from asphalt
mix production representing different quarries or in two cases asphalt mixing plants were
chosen. Quarry dust (QD) came from the quarries of Plešovice, Litice, Chrtníky, and
Chornice. The backhouse filler (BF) was collected from the Brant (Froněk) and Kladno
(PKB) asphalt plants. More detailed data on the fillers used and their typical properties
important for use in asphalt mixtures can be found in a recently published paper [46].

2.1. Spectrometry Test

This analysis was based on the generally established classification whereby a sample
containing more than 65% SiO2 is considered to be an acidic origin rock and it is usually
hydrophilic. Conversely, a higher content of CaO indicates that the material can be consid-
ered hydrophobic. An ARL QUANT’X EDXRF spectrometer (Thermo Scientific, Waltham,
MA, USA) equipped with an Rh X-ray tube and a Si(Li) detector crystal was used. XRF
spectrometry data were collected and analyzed using UniQuant ED 6.32 software (Thermo
Scientific, USA). Using this equipment, the relative accuracy varies between 0.5% and 5.0%
depending on the amount and concentration of the analytes.

2.2. CatBoost Model

To understand whether it was feasible to predict the mechanical and volumetric
properties of an asphalt mixture on the basis of its compositional variables and filler oxide
contents, a decision tree-based machine learning technique called Categorical Boosting
(CatBoost) was implemented. It improves the well-known gradient-boosting decision
tree by significantly enhancing its data-fitting capabilities [47]. By combining the use of
balanced decision trees and an algorithm known as ordered boosting [48], CatBoost has
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proven to outperform other modern gradient-boosting decision tree-based techniques [49]
such as LightGBM [50] and XGBoost [51]. Finally, a unique processing flow is performed
for categorical features [52]. The formal analytical functioning of CatBoost is accurately
described by Prokhorenkova et al. [48].

Multiple combinations of the model’s hyperparameters were investigated to identify
the one that would optimize its performance. A short summary of the comprehensive grid
search has been provided in Table 1. Fine-tuned hyperparameters are represented by the
number of iterations, the maximum depth of the trees, and the learning rate.

Table 1. Grid search summary.

Hyperparameter Grid Selected Value

Number of iterations 250, 500, 1000, 5000 500
Max depth 3, 4, 5, 6 6

Learning rate 0.1, 0.05, 0.01 0.05
k-fold Cross-validation - 5

Overfitting detector - 20
Loss function - MultiRMSE

The k-fold cross-validation technique was also introduced to properly assess the
model’s generalization capabilities according to Equation (1), and an overfitting detector
was implemented to prevent the occurrence of overfitting phenomena. k and overfit-
ting detector-values were set equal to 5 and 20, respectively, in accordance with relevant
literature [53,54].

Loss function (k)=
1
k ∑k

i=1 Loss function i (1)

The identification of the best model was based on the lowest loss function-value. Mul-
tiRMSE was chosen as loss function since two parameters were simultaneously predicted,
and its value was analytically determined as:

MultiRMSE=

√
1
N ∑N

i=1 ∑D
d=1

(
yTi,d
− yPi,d

)2
(2)

where yTi was the i-th true value; yPi was the i-th CatBoost prediction; D was the number
of output variables, and N was the number of observations included in the test vector.

Before the dataset was processed by the model, laboratory results were normalized in
accordance with Equation (3). For each variable, all observations are mapped to the range
[0, +1] so that the lower and the upper limits are representative of the minimum and the
maximum values, respectively. This is a common practice in machine learning since models
have proven to be more effective when different data are scaled to the same range [55].

xnorm=
x − xmin

xmax − xmin
(3)

To fully characterize the performance of the CatBoost model, six different evaluation
metrics were implemented and evaluated:

The mean absolute error (MAE):

MAE =
1
N ∑N

i=1

∣∣yTi − yPi

∣∣ (4)

The mean absolute percentage error (MAPE):

MAPE =
1
N ∑N

i=1

∣∣∣∣yTi − yPi

yTi

∣∣∣∣× 100 (5)
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The mean squared error (MSE):

MSE =
1
N ∑N

i=1

(
yTi − yPi

)2 (6)

The root mean squared error (RMSE):

RMSE =

√
1
N ∑N

i=1

(
yTi − yPi

)2 (7)

The Pearson correlation coefficient (R):

R =
1

N − 1 ∑N
i=1

(
yTi − µyTi

σyTi

)(
yPi − µyPi

σyPi

)
(8)

The coefficient of determination (R2):

R2 = 1− ∑N
i=1
(
yTi − yPi

)2

∑N
i=1

(
yTi − µyTi

)2 (9)

For each predicted variable, the terms µ and σ represent the mean value and standard
deviation, respectively. The outlined methodology was implemented in Python 3.8.5.

3. Results and Discussion
3.1. Laboratory Results

The used and tested alternative filler samples were in terms of XRF spectroscopy
automatically evaluated in a helium atmosphere at 25 ◦C over the entire spectral range
measurable by the spectrometer. Figure 1 shows the XRF results summarizing the most
significant oxides found in the fracture dust or reversible filler samples, later used for
machine learning and modeling tasks. The results are divided into three series of asphalt
mixes. Each series represents one type of used aggregate (mineral type) with 7 variations
of fillers. As stated earlier, the asphalt mixtures of each series were produced under the
same laboratory conditions using same compaction energy.

From the results presented in Table 2a, alternative fillers can have a significant effect
on the air voids content of the asphalt mix. With respect to the reference mixture prepared
with limestone filler, an air voids content equal to 5.33% vol. was shown (highest among
the three reference mixtures), with the bitumen content in this case equal to 6.3% hm.
Only in the case of replacing the traditional filler with an alternative material in the form
of Plešovice quarry dust similar voids content value was reached. The Brant and PKB
backhouse fillers exhibited significantly higher voids, which would likely have resulted
in a requirement for a slight increase in the bitumen content to achieve the same voids
as the asphalt mix with limestone filler option. On the other hand, the quarry dust from
Litice and Chornice resulted in a lower voids content. These results demonstrate very well
that it is not only the content of the dosed filler that is crucial, but also its physical and
geometrical characteristics that will affect the volumetric properties of the asphalt mixture.

From the results shown in Table 2b, the alternative fillers influence the voids content
and densities in this series of asphalt mixtures. The reference mix containing limestone
filler had a voids content of 5.01% vol. (lower than e.g., in the case of Zbečno aggregate).
The dosed bitumen content was slightly higher and reached 6.4% hm. In this case, the
claim of a possible influence of the tested fillers on the volumetric properties is, according
to the results, valid for the quarry dusts from Plešovice, Litice and Chornice, with the most
significant influence found for the first three of these alternative fillers.
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Figure 1. Quarry fillers’ oxide contents determined by means of XRF spectrometry (m/m%).

From the results presented in Table 2c, the selected alternative fillers can affect voids
content value. This may be related to the shape of the particles, their size, as well as the
surface of the filler particles, which is described e.g., in the study presented by Antunes
et al. [56]. In this research work, it was shown that there is an influence of the geometrical
and physical properties of the fillers on the bitumen-filler interaction and the peeling
resistance of the bituminous binder. The reference mix containing limestone filler had a
voids content of 5.18% vol. According to the results obtained, the claim about the potential
influence of the tested fillers on the asphalt mix volumetric properties is especially true for
the variant with PKB backhouse filler and Chornice quarry dust.
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Table 2. (a) Mechanical and volumetric characterization of AMs prepared with different fillers; aggre-
gate type phonolite (Chlum quarry). (b) Mechanical and volumetric characterization of AMs prepared
with different fillers; aggregate type granite porphyry (Brant quarry). (c) Mechanical and volumetric
characterization of AMs prepared with different fillers; aggregate type spilite (Zbečno quarry).

(a)

Q
ua

rr
y

Fi
ll

er Bulk
Density
[g/cm3]

Mean SD
Air

Voids
[%]

Mean SD
Marshall
Stability

[kN]
Mean SD

Marshall
Flow

[dmm]
Mean SD

IT-CY
@15 ◦C
[MPa]

Mean SD

C
hl

um
BF

Br
an

t

2.185

2.197 0.007

6.75

6.26 0.30

6.20

5.97 0.50

2.10

2.50 0.42

2624

2961 222

2.205 5.92 6.80 1.90 3248
2.193 6.42 6.10 2.50 2803
2.197 6.25 5.50 2.90 3067
2.200 6.11 5.70 2.90 2944
2.201 6.09 5.50 2.70 3082

BF
PK

B

2.215

2.208 0.011

6.59

6.90 0.44

6.50

5.95 0.55

2.00

2.47 0.35

2543

2483 117

2.197 7.36 6.40 2.30 2394
2.195 7.43 6.40 2.20 2286
2.206 6.99 5.30 2.70 2552
2.222 6.30 5.70 2.70 2587
2.211 6.75 5.40 2.90 2534

Q
D

Pl
eš

ov
ic

e 2.296

2.306 0.016

5.95

5.54 0.66

9.90

9.40 1.71

2.30

2.57 0.26

5068

4772 924

2.337 4.24 12.50 2.80 5104
2.306 5.51 7.80 2.20 2943
2.299 5.83 8.40 2.70 5496
2.295 5.98 8.30 2.60 4805
2.301 5.74 9.50 2.80 5216

Q
D

Li
ti

ce

2.346

2.345 0.003

3.74

3.80 0.12

7.90

7.75 0.48

2.50

2.75 0.29

2699

2605 193

2.348 3.68 8.40 2.70 2852
2.344 3.85 8.10 2.40 2388
2.348 3.69 7.70 3.20 2456
2.344 3.87 7.20 2.80 2771
2.341 3.97 7.20 2.90 2464

R
ef

C
aC

O
3

2.364

2.362 0.001

4.79

4.84 0.04

7.70

8.08 0.51

3.40

3.45 0.12

2527

2495 117

2.361 4.89 8.30 3.40 2629
2.361 4.89 9.00 3.60 2625
2.362 4.86 7.60 3.30 2366
2.363 4.83 7.90 3.40 2383
2.363 4.81 8.00 3.60 2440

Q
D

C
hr
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ík

y 2.365

2.361 0.003

4.72

4.88 0.13

8.70

8.42 0.28

2.90

3.10 0.18

2927

2667 205

2.356 5.10 8.20 3.20 2299
2.360 4.94 8.60 3.00 2664
2.361 4.90 8.10 3.10 2672
2.364 4.77 8.70 3.40 2706
2.362 4.87 8.20 3.00 2734

Q
D

C
ho

rn
ic

e 2.368

2.374 0.013

4.62

4.38 0.51

7.20

5.97 1.29

2.30

2.48 0.30

2636

2813 173

2.390 3.71 7.30 2.30 2704
2.362 4.86 6.90 2.10 2803
2.385 3.92 4.70 2.70 2974
2.379 4.19 4.90 2.60 3069
2.359 4.97 4.80 2.90 2696
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Table 2. Cont.

(b)

Q
ua

rr
y

Fi
ll

er Bulk
Density
[g/cm3]

Mean SD
Air

Voids
[%]

Mean SD
Marshall
Stability

[kN]
Mean SD

Marshall
Flow

[dmm]
Mean SD

IT-CY
@15 ◦C
[MPa]

Mean SD

Br
an

t
BF

Br
an

t

2.315

2.308 0.013

4.97

5.27 0.55

10.00

8.53 1.08

2.10

2.40 0.32

4581

4284 333

2.282 6.33 9.00 2.20 3646
2.317 4.90 9.40 2.10 4265
2.313 5.04 7.50 2.90 4315
2.314 5.01 7.90 2.60 4415
2.305 5.38 7.40 2.50 4486

BF
PK

B

2.299

2.301 0.004

5.19

5.12 0.16

7.90

6.83 1.03

1.90

2.22 0.43

3366

3193 171

2.305 4.96 7.70 1.80 3447
2.300 5.14 7.70 1.90 3115
2.294 5.39 5.80 2.40 3125
2.302 5.06 6.10 2.90 3083
2.304 4.97 5.80 2.40 3022

Q
D

Pl
eš

ov
ic

e 2.327

2.334 0.011

5.87

5.58 0.44

8.20

9.47 0.88

2.30

2.17 0.20

4462

4571 383

2.330 5.74 9.80 1.90 4386
2.331 5.73 10.30 2.00 5300
2.356 4.69 10.40 2.30 4462
2.330 5.75 8.70 2.10 4194
2.331 5.70 9.40 2.40 4624

Q
D

Li
ti

ce

2.348

2.350 0.005

4.69

4.61 0.21

8.90

8.42 0.31

2.20

2.08 0.12

3430

3242 212

2.349 4.65 8.50 2.10 3105
2.359 4.27 8.60 2.20 3565
2.346 4.77 8.20 2.10 3095
2.354 4.48 8.10 1.90 3033
2.345 4.82 8.20 2.00 3226

R
ef

C
aC

O
3

2.360

2.369 0.008

4.90

4.53 0.34

10.00

10.02 0.81

2.50

2.70 0.28

3950

3808 172

2.368 4.57 10.30 2.80 3763
2.375 4.30 9.50 2.40 3981
2.368 4.55 9.90 2.70 3931
2.361 4.87 9.00 2.60 3644
2.382 4.00 11.40 3.20 3578

Q
D

C
hr

tn
ík

y 2.286

2.283 0.004

5.24

5.35 0.18

9.30

7.68 1.55

1.80

2.18 0.33

4624

4503 266

2.276 5.63 8.50 1.80 4532
2.281 5.42 9.40 2.10 4726
2.289 5.10 6.20 2.40 4343
2.284 5.30 6.20 2.50 4050
2.281 5.42 6.50 2.50 4742

Q
D

C
ho

rn
ic

e 2.354

2.328 0.014

5.14

6.01 0.52

15.80

12.60 2.58

2.60

2.92 0.42

8326

8255 440

2.325 6.31 14.80 2.60 8204
2.319 6.55 14.10 2.60 7709
2.332 5.70 10.20 2.80 8270
2.323 6.05 10.40 3.40 7996
2.316 6.33 10.30 3.50 9025
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Table 2. Cont.
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• With respect to literature studies which have considered asphalt mixtures with compo-
sition roughly similar to those of the current research, Tušar et al. [57] have discussed
the low temperatures resistance of asphalt mixtures AC 8, which presented bulk den-
sities, air voids, Marshall flow values within the range 2.404–2.484 g/cm3, 1.8–8.0%,
4.1–6.0 mm, respectively, depending on the specific composition. Hribar et al. [58]
have also investigated the low temperatures properties of asphalt mixtures AC 8 surf,
characterized by bulk densities and air voids values within the range 2.411–2.483 g/cm3

and 2.3–8.4%, respectively, depending on the bitumen content. Therefore, both the cited
literature papers have outlined experimental results pretty similar to those of the
current study.

• According to the observed mechanical and deformation characteristics presented in
Table 2a, the asphalt mixture with the QD Plešovice filler showed the highest stiffness
modulus, while the PKB backhouse filler and the reference mixture with limestone
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filler demonstrated the lowest stiffness. The remaining variants had similar stiffness
values, which were close to the stiffness exhibited by the mix with PKB backhouse
filler or limestone. The stiffness results for the QD Plešovice variant and the variant
with PKB backhouse filler corresponded well with the Marshall stability results, where
values of 10.1 kN and 6.4 kN were achieved, respectively.

• Following Table 2b asphalt mixture containing the Chornice QD filler showed the
highest stiffness values, while the PKB backhouse filler and the Litice quarry dust had
the lowest ones. For the QD Chornice filler and PKB backhouse filler, this finding
correlates well with the Marshall stability results, where values of 14.9 kN and 7.8 kN
were measured, respectively.

• In case of Table 2c the reference asphalt mix and the mix variant containing the QD
Plešovice filler achieved the highest stiffness values, while the QD Litice filler had the
lowest stiffness values. The remaining two variants with quarry dust as an alternative
filler had stiffness values similar to the QD Litice variant. Unlike the test series with
Chlum aggregate, these results are not supported by Marshall stability values, where
the highest values were achieved by the QD Litice filler mix variant. Only the reference
mix and the variant with the PKB backhouse filler seem to correlate reasonably well
with each other.

• The stiffness values do not have a good correlation with the indirect tensile strength
values either (see more in [59]). In this case, the PKB backhouse filler and the Brant
backhouse filler gave the best results, followed by the QD Plešovice and QD Litice
fillers. It can be concluded that the asphalt mix variants with both backhouse fillers
correlate well with IT-CY stiffness and, in the case of the PKB backhouse filler, with
Marshall stability as well. On the other hand, for the QD Plešovice and QD Litice
fillers, the results are more consistent with the Marshall stability value.

• The IT-CY stiffness values correlate well with the Marshall stiffness results in case of
asphalt mix series presented in Table 2a,b.

• Data about water resistance and the influence of the used alternative fillers on asphalt
mix durability can be found e.g., in Valentin et al. [59].

3.2. CatBoost Modeling Results

The decision tree-based model was developed to simultaneously predict mixtures’
mechanical and volumetric properties on the basis of a few compositional variables. In
particular, the inputs are represented by the main oxide contents investigated in the labo-
ratory (SiO2, Al2O3, Fe2O3, CaO, and MgO), the bulk density, and a categorical variable
distinguishing the three aggregate’s quarry of origin (for a total of 7 input variables).
The simultaneously predicted outputs are represented by air voids content, and stiffness
modulus at 15 ◦C.

The implemented dataset refers to the experimental investigation carried out on
asphalt concretes made with 3 different aggregate types, 7 alternative fillers, and providing
6 replicates for each specimen for a total of 126 observations. The statistical description of
CatBoost model variables has been provided in Table 3.

Table 3. Statistical description of CatBoost model variables.

Variable Description U.M. Count Mean Std Dev

CV Categorical variable–mixture type - 126 - -
SiO2 Silicon dioxide content [%] 126 45.17 21.10

Al2O3 Aluminum oxide content [%] 126 16.46 5.19
Fe2O3 Ferric oxide content [%] 126 7.43 4.83
CaO Calcium oxide content [%] 126 16.39 21.24
MgO Magnesium oxide content [%] 126 8.53 7.98

Bd Bulk density [g/cm3] 126 2.36 0.08
AV Air Voids content [%] 126 5.29 0.88

IT-CY Stiffness Modulus @15 ◦C [MPa] 126 3849.19 1279.28
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To qualitatively identify which variables are more or less correlated, the Pearson
correlation matrix was realized [60]. Each element of this matrix (Figure 2) represents
the strength of the correlation between variables in a pair by means of an absolute value
ranging between 0 (no correlation) and 1 (perfect correlation), and a plus (direct correlation)
or minus sign (inverse correlation).
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By way of example, a medium positive correlation between SiO2 and AV [r = + 0.38,
n = 126, p < 0.0005] and a medium negative correlation between MgO and AV [r = - 0.37,
n = 126, p < 0.0005] can be observed.

CatBoost model training process was represented in Figure 3. During the first 200 iterations,
a significant decrease in both training and validation loss function values can be observed.
During the subsequent iterations there is a continuous and gradual decrease until the best
point is found and a validation MultiRMSE value of about 0.1427 is recorded. After 348th
iteration, a significant decrease in the validation MultiRMSE can no longer be appreciated.
Therefore, according to the overfitting detector setting, the training phase is stopped after
20 additional iterations. Best model configuration hyperparameters are then fixed so that
the testing phase can begin.
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To make model predictive performance more understandable, variables were denor-
malized and the testing results were summarized in Table 4 in terms of the six-evaluation
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metrics. With respect to air voids content, MAE, RMSE and R-values of about 0.20%, 0.25%
and 0.97 were obtained, respectively. With respect to IT-CY, the same evaluation metrics
were approximately equal to 208.50 MPa, 258.82 MPa and 0.98.

Table 4. CatBoost model testing evaluation metrics.

Evaluation Metric AV IT-CY

MAE 0.2017 208.4975
MAPE 3.6190 5.4857
MSE 0.0645 66,987.1404

RMSE 0.2540 258.8187
R 0.9674 0.9835
R2 0.9229 0.9668

In a previous research [61], a similar database was analyzed using a model based on
shallow neural networks. The neural model, on the basis of the ratios between the main
oxides (always related to SiO2) and a categorical variable associated to the quarry/filler
pair, was able to predict the average mechanical behavior of the mixtures in terms of
average stiffness modulus with a coefficient of determination (R2) at most equal to 0.9473.
In this paper, instead, the R2-coefficient related to the stiffness modulus was higher (equal
to 0.9668) and the air voids content was predicted simultaneously with an equally high
coefficient of determination (equal to 0.9229). Therefore, it could be stated that the CatBoost
is roughly better than the SNN-based approach.

The comparison between the test vectors and the predictions of the CatBoost model in
terms of air voids content and stiffness modulus is shown in Figure 4. The black histograms
stand for the experimental observations, whereas the grey ones stand for the corresponding
predicted values. The ID of each AV-IT-CY test pair is represented on the horizontal axis.

It is interesting to note that, in both cases, the differences between black and gray
histograms are very small. Although there are significant fluctuations in variable values,
CatBoost model can follow them without ever differing too much from the corresponding
true value.

To fully appreciate prediction accuracy from a different point of view, regression
plots are also shown (Figure 5). The x-axis represents true values, whereas the y-axis
represents predicted ones. The line-of-equality (i.e., equivalent to 100% correspondence
between observations and predictions) is represented by the blue solid line and stands for a
correlation coefficient equal to 1. CatBoost predictions are represented as light blue circles
and never differ too much from the line-of-equality.

Pearson correlation coefficients for air voids content and stiffness modulus resulted
equal to 0.9674 and 0.9835, respectively, highlighting the remarkable performance of the model.

A sensitivity analysis was performed (Figure 6) to identify the influence each variable
has on the model and its predictions. The algorithm for calculating the feature importance
was implemented in Python 3.8.5, and the importance of each feature was normalized so
that the sum of all the importance values was 100%. The higher the importance value,
the greater the average change in the predictions if that respective feature changes. It
can be observed that the bulk density has the greatest importance (27.21%), followed by
the categorical variable (24.71%) and the contents of the different oxides (Fe2O3—11.47%,
Al2O3—10.99%, SiO2—10.67%, CaO—7.84%, and MgO—7.11%).
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4. Conclusions

The research carried out in this study fits within the context of pavement engineering
and provides a useful tool for mixtures’ design that can predict their mechanical behavior
on the basis of the main mineralogical composition of the filler used. A decision tree-
based machine learning methodology was presented for the simultaneous prediction
of mechanical and volumetric properties of asphalt concretes. An extensive laboratory
investigation was carried out on 126 specimens prepared with three different quarry
aggregates and with seven different quarry fillers alternative to traditional limestone and
Portland cement. All the remaining compositional properties, namely aggregate grading
curve, bitumen type and content, and filler content, remained essentially unchanged. X-ray
fluorescence analyses were performed to determine the percentage content of five main
oxides detected in the quarry fillers (SiO2, Al2O3, Fe2O3, CaO, and MgO). The mineralogical
composition thus determined was then used as input in a CatBoost model (along with bulk
density, and a categorical variable distinguishing the aggregate’s quarry of origin) in order
to predict air voids content and stiffness modulus at 15 ◦C. The reliability of predictions
was evaluated in terms of six different evaluation metrics, namely MAE, MAPE, MSE, RMSE,
R, and R2. In particular, R2 values equal to 0.9229 and to 0.9668 have been obtained for air
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voids and stiffness modulus, thus demonstrating a good quality of predictions carried out by
CatBoost algorithm. Based on the obtained results, the following conclusions can be drawn:

• The most promising results in terms of material characteristics and Marshall stability
were achieved in most cases by the Chrtníky quarry dust and partially also by both
tested variants of the backhouse filler. However, these fine-grained fillers did not
always lead to an improvement in the stiffening effect of the mastic compared to the
reference consisting of limestone filler;

• The backhouse fillers used were classified as intermediate rocks with a higher SiO2
content. In contrast to quarry dust, in this case, the backhouse fillers can be expected
to have a finer particle size distribution, resulting in a larger specific surface area,
which seems to be an important aspect, especially for achieving good resistance of the
asphalt mix to the effects of water;

• The greatest stiffening effect was found for the QD Plešovice, which is considered to be
an acid rock type with a high SiO2 content, indicating a harder parent rock compared
to, for example, the Chrtníky site;

• The outlined CatBoost model allows air voids content and stiffness modulus to be
accurately and simultaneously predicted;

• An XRF analysis together with simple bulk density determination could avoid the
need for additional laboratory tests to experimentally determine air voids and stiffness
modulus at 15 ◦C;

Rather than standard parameters related to the mixtures’ characterization, the main
mineralogical composition was used as input of the developed model, thus representing
one of the innovative aspects of this study. Furthermore, mixtures’ mechanical behavior
was predicted based on an up-to-date machine learning technique, thus adding further
innovation to the research.

The predictive model was developed on the basis of the experimental campaign
described in this paper in which many parameters of the mixtures’ composition were kept
fixed for modeling purposes. For future developments, it would be interesting to increase
the size of the dataset (for example by varying filler and bitumen contents) and to include
further mixture’s performance, namely fatigue life and rutting resistance.
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