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Abstract: Rooftop solar photovoltaic (PV) systems could significantly contribute to renewable energy
production and reduce domestic energy costs. In Italy, as in other countries, the current incentives
generate a modest annual increase after the generous fiscal incentives that kick-started the PV market
in the 2008-2013 period. Several factors are, however, at play that can speed up the installation
process, such as the improvements in PV technology at declining prices, the increased availability of
battery-storage (BS) systems, the growing use of electric appliances, the uptake of electric cars, and
the increased environmental awareness. We integrate two research methodologies, discrete choice
modeling and agent-based modeling, to understand how these factors will influence households’
decisions regarding PV and BS installations and how agents interact in their socioeconomic environ-
ment. We predict that in Italy, given the preference structure of homeowners, the continuing decline
in costs, and the social interaction, 40-45% of homeowners will have PV or PV and BS installed by
2030, thanks to the existing investment tax credit policy.

Keywords: rooftop solar photovoltaic; battery-storage systems; electric cars; discrete choice modeling;
agent-based modeling

1. Introduction

According to a recent estimate [1], in Italy, solar photovoltaic (PV) systems installed
in buildings could reach a total nominal power of 46 GW with a yield of 50.4 TWh/year
(The total production of 50.4 TWh/year is subdivided as follows: buildings in residential
areas with continuous fabric (4.0 TWh/year); buildings in residential areas with discon-
tinuous and sparse fabric (18.5); buildings in industrial, commercial, infrastructural and
other artificial areas (5.6); buildings in a predominantly rural area (17.8); buildings in a
predominantly natural area (2.2); fagades (2.2)). This energy would satisfy 15.8% of the
Italian electricity consumption, which equaled 318.6 TWh in 2019. Compared with the
current installed capacity of 4 GW, deriving from the 800,000 rooftop installations (ranging
from 1 to 20 kWp), there is still a large unused potential. Our estimate is that solar PV
generators are installed in about 8% of the buildings, much less than in Australia, where
about 24% of suitable private dwellings are equipped with rooftop solar modules [2]. In
fact, in Italy, as in other European countries, after the generous fiscal incentives which
kick-started the market in the 2008-2012 period, the current incentives generated a modest
annual increase (more details in the next section). Several factors are, however, at play that
can speed up the installation process. First, the continuous improvements in PV technology
and efficiency and the declining PV prices make PV installations even more appealing.
As [3] pointed out, rooftop PV systems not only enable households to consume energy
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from the grid but also allow these households to generate it, thus becoming prosumers.
Second, the increased use of electric appliances (e.g., heat pumps, electric ovens, etc.) and
especially the uptake of electric cars increase the household consumption of electricity,
strengthening the economic rationale for self-generating electric power. Refs. [4,5] reported
that people who already have an electric vehicle (EV), or are interested in buying one, are
increasingly looking for green electricity solutions for charging their EV at home. At the
same time, [4] underlined that several companies (e.g., Tesla in the U.S. and Sonnen in
Germany) have recognized the increase in customer demand for combined offers of EVs
and renewable energy and have started offering bundles made up of an EV and solar-power
charging equipment. Third, the growing availability of battery-storage (BS) systems at
reasonable prices could allow households to store the electricity produced during the day
for more convenience for family needs in hours when the grid prices are higher. Such
a trend has also generated a commercial offer for a bundling acquisition of PV + BS or
even PV + BS + EV (e.g., EnelX in Italy (EnelX s.rl.,, belongs to the Enel S.p.a. group
and promotes renewable energy solutions including solar PV panels bundled with BS
(https:/ /www.enelxstore.com/it/it/prodotti/energia-solare, accessed on 28 May 2021)
and wall box charging solutions coupled with EV leasing (https:/ /www.enelxstore.com/
it/it/prodotti/mobilita-elettrica /noleggio-auto-e-moto/juice-motion, accessed on 28 May
2021)), [6]). Fourth, climate change has increased environmental awareness, so that growing
number of people are searching for means to reduce their carbon footprint [7]. Fifth, social
interaction, information from PV or BS owners derived from acquaintances and social
media, peer pressure, and advertisement and commercial promotion from producers and
installers could also contribute to the spread of PV and BS adoption.

Because of the above-described goals and technological developments, it is important
to understand and predict market development and energy system evolution. The crucial
actors for rooftop solar PV and BS system installations are households. Understanding
how households make decisions and interact in their socioeconomic environment is key
to predicting which role they could play in the transition toward renewable energy. In
turn, understanding and modeling PV and BS adoption would provide us with the frame-
work to estimate how policies could effectively speed up the energy transition. Given the
complexity and heterogeneity of households’ behavior in making energy-related decisions,
along the lines suggested by [8], we integrate two research methodologies: discrete choice
modeling (DCM) and agent-based modeling (ABM). The former is used to identify the
main determinants of individual choices, while the latter enables the researcher to predict
how individual decisions of interacting agents translate into overall system developments.
The results presented in this paper might support decision-makers (consumers, manu-
facturers, business developers, and policymakers) and illustrate the impact of alternative
incentivizing structures.

The main peculiarities of our study are the following.

e  The agents’ decision process is based on utility maximizing behavior derived from the
micro-economic theory and the random utility paradigm postulated by [9].

e  The agents’ utility functions are empirically grounded [10] since their parameters are
estimated using an ad hoc collected dataset on revealed and stated preference data.
The model allowed us to account for individuals” heterogeneity and identify potential
covariates such as socio-demographics (e.g., income, age, and education) and social
and informational factors. To our best knowledge, this is the second paper, after [8], to
combine ABM and DCM in energy innovation studies.

e Differently from [8], who studied PV adoption only, our study incorporates three
“green” innovations, PV, BS, and EVs, taking into account their synergic interaction.

e Itevaluates the impact of fiscal incentives on PV and BS uptake.

The paper is structured as follows. Section 2 illustrates government regulation and the
evolution of PV and BS adoption in Italy. Section 3 reviews the related literature on ABM
and DCM. Section 4 describes the survey and the sample characteristics. Section 5 presents
the discrete choice model and the econometric results. Section 6 illustrates the design of
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the ABM simulation model and how it has been parametrized, validated, and calibrated.
Section 7 presents the simulation results, describing a base case scenario and the role of
fiscal incentives, social interaction, and stochasticity. Section 8 concludes and draws some
policy implications. Part of the documentation is included in the Supplementary Material.

2. Government Regulation and the Evolution of the PV and BS Adoption in Italy

There is a widespread consensus that in most countries, residential PV uptake is due
to government support (see Supplementary Material). From 2005, Italy incentivized solar
PV, including residential PV systems, under the name “Conto Energia” (Energy Account).
Conto Energia consisted of payment for electricity production from photovoltaic systems
permanently connected to the electricity grid. Instead of subsidizing the up-front cost (as
was previously the case), it remunerated energy production. The incentive, proportional to
the energy produced, lasted for 20 years and varied by size or type of PV plant, up to pre-set
maximum levels of energy generated or total incentive. From 2005 to 2013, there were five
different incentive versions of the Conto Energia, each updating or redefining the previ-
ous one. Initially, incentives were quite generous 0.445 € /kWh (1 kW < Power < 20 kW),
0.46 €/kWh (20 kW < Power < 50 kW), and 0.49 €/kWh (50 kW < Power < 1 MW), but
they were progressively reduced with the motivation that PV costs were declining and that
the grid parity was close to taking place. The total cost of the Conto Energia program is esti-
mated to be 7.6 billion euros. It was covered by a mandatory levy included in the electricity
bills of final energy consumers. The 5th Conto Energia ended on 6 July 2013. It was replaced
by an investment tax credit (ITC) to reduce up-front investment costs. Currently, the ITC
allows households to deduct 50 percent of the cost of installing an energy system (PV and
BS) from the stated taxes over 10 years. Under the new regulation, households can sell
excess self-produced energy. The remuneration of the energy produced at the residential
level is termed “scambio sul posto” (“exchange on the spot”). It consists of a reduction of
the energy bill (The exact formula to calculate the monthly energy bill reduction is Cs = min
(Oe; Cei) + CUsf x Es. Cs is the “exchange on the spot” contribution. Oe (in €) is the cost
of energy drawn from the grid, varying by time of the day and location. Cei (in €) is the
value of the energy fed to the grid, varying by time of the day and location. CUsf (in €)
is a fixed amount usually charged in the energy bill, accounting for administrative costs,
grid connection, and maintenance. Es (in kWh) is the total energy exchanged, equal to min
(kWh fed to the grid; kWh drawn from the grid)) or a direct payment when the total energy
produced is higher than that consumed. The reduction depends on the relative amount
of energy consumption and production, their timing, and the geographical location. The
energy produced is valued between 0.070-0.105 €/kWh [11], about 50-60% of the energy
price charged to the final consumer, consequently favoring self-consumption. In May
2020, the Italian government released the Decreto Rilancio n° 34/2020 (Revival Decree) to
counteract the economic crisis caused by COVID-19. The Decree introduced an ITC equal to
110% on investments generating energy savings. These also include PV and BS installations
as a part of a major intervention that significantly improves the economic efficiency of
the building. Eligible beneficiaries are individuals, condominiums, cooperatives, social
housing projects, and ONLUS associations. Furthermore, the housing regulation mandates
that all new buildings and the ones that undergo major restoration work should satisfy a
percentage of their energy needs for heating/cooling and hot water with renewable sources
(e.g., solar, wind, biomass, waste, a percentage of the electricity from the grid) (Art. 11 of
Legislative Decree 28/2011 mandates the following percentages of renewable sources: for
private and public buildings located outside the historical centers private buildings 50%
and 55%, respectively; for those located in historical centers 25% and 27.5%).

The impact of the Conto Energia is clearly visible in Figure 1, both in terms of the
number of PV installations and in terms of installed capacity. PV installations in the classes
1 to 3 kW and 3 to 20 kW increased enormously during the years of the Conto Energia,
more than doubling each year in the period 2008-2010. In the period 2011-2013, the annual
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growth rate was, on average, 36% in number and 35% in capacity. After 2014, the average
annual growth rate stabilized at 6-7% in number and in capacity.
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Figure 1. Number of PV systems and amount of PV capacity in Italy in the two smaller classes of power.

3. Related Literature

In this section, we review the literature on the use of agent-based modeling and DCM
to study PV and BS adoption.

3.1. Agent-Based Models

Agent-based models (ABMs) can capture the actions and interactions among autonomous
agents to understand a system's behavior, how it changes over time, and what governs
its outcomes. Instead of using a representative agent as a reference agent, ABMs allow
considering the complex heterogeneity among agents with their own characteristics and
behaviors [12]. In the next paragraphs, we review the literature related to energy systems in
general and PV and BS adoption more specifically. ABMs present a large variety of issues
and features that cannot be accounted for in this Section (for a detailed review, see [10]). Our
review mainly focuses on these topics: (a) how the agents” decision process is modeled; and
(b) how the parameters used to operationalize the decision process are estimated.

One of the first papers where ABM has been used for studying the diffusion of PV
systems is [13]. Agents make decisions comparing the “desire level”, resulting from a
weighted linear combination of four factors (payback period, household income, word-
of-mouth effect, and advertisement effect), with a threshold. The key challenge for the
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researchers is to identify the weights and threshold values that account for the heterogeneity
in human cognition, personality, or profile. The authors assume that each weight follows
a triangular distribution centered on the average score, which in turn is derived from
fuzzy set theory using data published in previous studies. As for the threshold, they tested
different threshold values and compared the estimated annual growth rate of PV capacity
with historical data.

Ref. [14] analyzed the impact of different policies on solar systems adoption by house-
holds in Emilia-Romagna, Italy. Households consider installing PV based on a number of
attributes derived from a survey, but unfortunately, no details are provided on how the
attributes are evaluated. Ref. [15] simulated how changes to the Italian support scheme
might affect the diffusion of PV systems among single- or two-family homes. In line
with [13], they assumed that the adoption decision is influenced by the payback period of
the investment, its environmental benefit, the household’s income, and communication
with other agents. PV adoption takes place when the utility surpasses a certain threshold
level. The weights assigned are based on the agent’s Sinus-Milieu® model and are deter-
mined in the model’s calibration. The threshold is chosen by comparing the simulation
results with the actual diffusion of the PV system. Ref. [16] adopted the partial utility
approach proposed by [15]. They used a systematic calibration method based on mini-
mizing the mean-squared error between predicted and actual adoption instead of the less
sophisticated visual qualitative trial-and-error method used by [15]. Ref. [17] modeled the
probability of adopting PV as a function of only the perceived payback period and a logistic
curve that reflects consumer choice behaviors. The analysis is carried out at an aggregate
level, without surveying for individual preference heterogeneity. Ref. [18] used lasso least
angle regression to identify which features impact purchase decisions the most. They
found that the significant variables are the payback period, the maximum budget stated
by the respondent, the greenness, and the social effect. Ref. [19] extended the study [18]
by comparing Germany and, Ontario, Canada. Ref. [20] took a different approach: the
agents in the ABM are buildings placed in a geographically accurate information system.
Ref. [21] stressed the importance of social interaction and exposure to social media without
detailing how these variables affect decisions. Ref. [22] merged methodologies belonging
to ABM and automated parameter tuning. The former relies on self-reported behavior,
derived from surveys and enables the identification of drivers and barriers. The latter
uses historical data on observed behavior to tune these drivers/barriers in a model and
make more reliable predictions. They acknowledged that the process of extracting drivers
and barriers from self-reported behaviors and embedding them in an agent-based model
is not straightforward. They used data derived from an online questionnaire concentrat-
ing on the general attitudes towards photovoltaic and semi-structured interviews with
apartment block caretakers and photovoltaic installation companies. However, the authors
admitted that even “when drivers and barriers have been identified, it is not clear how
these parameters are weighted and which is their relative importance in understanding the
decision making strategy of different house owners.” To solve this issue, they developed
an empirical tuning technique using observed data on the historical PV installation rate.
Finally, [23] presented an integrated framework to capture the interplay between financial
and the often overlooked attitudinal aspects. They combined an integer programming
model and an agent-based model to factor in the role of human behavior.

3.2. Discrete Choice Modelling

Discrete choice models (DCMs) have been widely applied since the 1970s in numerous
research fields (e.g., transportation, marketing, environmental evaluation, and economics).
The main assumption is that decision-makers have preferences and choose among discrete
alternatives the one that maximizes their utility [9]. DCMs are estimated via revealed and
stated choice data. Only a limited number of studies concerning residential energy equip-
ment applied DCMs. Ref. [24] used stated choice data to measure households’ preferences
for battery attributes and functionality in Queensland, Australia. Ref. [25] performed a
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choice experiment in six Mediterranean countries to study the public acceptance of PV and
to build integrated photovoltaic technologies, considering both the private and the public
dimensions. Ref. [26] used stated preferences in the context of building retrofits. Ref. [27]
investigated individuals” choice behavior regarding home renewable energy equipment
in the city of Weiz, Austria. Refs. [2,28] investigated intentions and barriers to adopting
rooftop solar panels in the city of Darwin, Australia. None of these studies has integrated
DCM into an ABM study. To the best of our knowledge, the only study that proposed to
integrate DCM and ABM is [8]. They discussed the benefits of the methodology to study
PV adoption in the Netherlands, providing only a brief and sketchy presentation of its
implementation in the case study.

4. Survey and Sample Characteristics

Our survey, conducted between December 2020 and March 2021, aimed to collect the
data needed to parametrize the ABM model with a special focus on how homeowners
make decisions and how they collect and spread information. A special focus was on actual
and stated choices under hypothetical scenarios. An example of a scenario presented to
respondents is illustrated in Figure 2.

PV PV+BS NO CHOICE
PV Price/kW €1600 €1700
(Inverter included)
PV Warranty 15 years 25 years
Pri Wh
BS Price/k €2090 None of the two.
| prefer to rely on

BS Warranty 10 years the grid
BS Brand Other than Tesla

Powerwall
Tax rell'ef on the total 75% 110%
expenditure (over 10 years)
Your choice O ] O

Figure 2. Example of a stated-choice scenario.

We asked respondents to imagine owning a single-family detached or semi-detached
house without a photovoltaic or an energy storage system and to choose between the three
alternatives presented in the scenarios: (A) purchase of a PV; (B) purchase of both the PV
and the BS; (C) continue to rely only on the grid. A critical aspect of the success of a stated
preference study is the use of relevant and realistic attributes and levels. We based our
selection on an extensive literature review, web research, conversations with EV, PV, and
BS retailers, and experts in the field. With respect to the studies based on semi-structured
interviews using the rating and ranking technique (e.g., [29]) or the Likert-scale method
(e.g., [30]), the main advantage of choice experiment studies is that forcing respondents to
compare and choose among alternatives, it allows researchers to estimate the trade-offs
among the attributes. An important disadvantage is that only a limited number of attributes
could be compared at the same time not to overburden the respondents [31]. For a review of
how this dilemma has been solved in previous studies, check the Supplementary Material.
In our case, after carrying out a pre-test with 50 respondents, we opted for characterizing
our choice alternatives with the following attributes: PV price, inclusive of the inverter
(€/kW), PV guarantee (in years), BS price (€/kWh), BS guarantee (in years), BS brand
(Tesla Powerwall or other brands) and percentage of ITC on the total investment costs.
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The attribute levels are reported in the Supplementary Material. The rationale for our
choice of attributes is that we wanted to provide respondents with the information needed
to evaluate the economic advantage of their choice (purchase price and ITC) since many
studies documented the primary importance of this dimension ([29,32]). As reported in
Section 2, the ITC, in particular, represents the main policy instrument used in Italy to spur
PV and BS adoption. The length of the guarantee was introduced since it is commonly
provided in commercial ads and websites and was deemed important by the promoters
and potential customers we interviewed during the pre-test phase. Finally, we wanted
to test the importance of the brand, but only in the case of the Tesla Powerwall, given its
popularity and its crucial role in starting the BS market. Note that we did not provide
explicit information on the payback period. We left it to the respondents to make their
own evaluation since the payback period depends on several site-specific (solar radiation,
roof size, etc.) and household specific conditions (appliances, EV ownership, habits, etc.).
Furthermore, we did not mention the current Italian feed-in-tariff (FiT), which is updated
annually by the energy authorities and represents a less predictable revenue component,
similar to the electricity price charged by the energy providers. Using the Ngene Software,
we developed a D-efficient design of the choice tasks [33] with the a-priori coefficients
based on pre-test interviews.

We also collected data on the self-assessed and objective knowledge of the PV and BS
systems to test whether and how it influences adoption decisions. For the same purpose,
we asked respondents about the knowledge and purchase intention of an EV. Next, we
questioned respondents about their source of information (peers, web, and promoters)
regarding energy-related issues and about the number and intensity of their social interac-
tions. Finally, we asked about their socioeconomic characteristics (gender, age, education,
and income), type of dwelling, and current ownership of PV, BS, or EV.

For obvious reasons, administering a hypothetical choice experiment on PV and BS
adoption is much more difficult than in the case of conventional shopping goods such
as a food product (oil, coffee, wine), an electronic device (cell phone, tablet), or even a
car ([34,35]) or another vehicle ([36,37]). The decision on whether to install rooftop solar
PV systems or a BS system requires a high degree of technical and financial knowledge.
Hence, people rely on experts’ advice or adopters’ experience, especially from relatives,
friends, and neighbors. Such a difficulty is clearly reflected in the number and type of
interviews that we have been able to collect. We administered interviews via web platforms
(e.g., Teams, Skype) because of pandemic restrictions. The questionnaire was set up with
online software (Google Forms), and the respondents could answer anonymously. In order
to introduce the topic and to explain the terminology, however, most interviews were
introduced by an interviewer. Notwithstanding such an effort, several people felt that they
were unable to make an informed choice and refuse to provide answers to the questionnaire.
As a result, we were able to collect only 155 valid interviews. Our sample is consequently
not representative of the Italian population.

The issue of weak sample representativeness is common in choice experiment studies.
The above-quoted surveys on PV adoption report similar difficulties (see Supplementary
Material for details). A detailed illustration of our sample and of the information collected
during the interviews is contained in the Supplementary Material. In summary, most
respondents were men (77%), under 30 years of age (88%), and more than 60% living in
the Friuli Venezia Giulia, where the University of Trieste is located. Overall, about 80%
of the respondents were students, and 17% were employed. The main reason is that we
opted for interviewing engineering students mainly due to their familiarity with energy
issues. Half of the respondents live in apartments, and half in single-family houses. About
30% of the respondents own a PV (a large percentage compared to the overall diffusion in
the population, estimated to be about 8%), but only 3% have a BS, and 5% own an EV. The
statistics about PV and BS knowledge, source of information, and source of interaction are
reported in Section 6.2.
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Notwithstanding the limited representativeness of the sample, we believe that our
sample has some merits. It can indicate how homeowners make their decisions regarding
PV and BS adoption and how they react to cost decreases and incentivizing policies for
two reasons. The first is that households tend to rely on experts who have a technical
background similar to the one owned by most of our respondents (engineering students).
Hence, the opinions expressed by our sample are likely to be influential over larger sections
of the population. The second is that the biased composition of the sample is offset
when parametrizing the ABM model. In fact, having identified the preference structure
of the different socio-demographic segments of the sample, the overall model results are
obtained by weighting each segment according to its representativeness in the Italian
population. Overall, however, the results of our study should be interpreted as exploratory,
as mentioned in the subtitle.

5. Discrete Choice Model and Econometric Results

Revealed preference (RP) and stated preference (SP) data have been widely used to
understand user preferences and choices. RP surveys collect actual choices from the respon-
dents and can help identify market shares and the main determinants of people’s choices.
They are, however, limited to existing alternatives. SP surveys, instead, expose respondents
to hypothetical scenarios and record their choices under different circumstances. They
can be useful for testing consumer responses to new alternatives that have not yet been
implemented. However, the responses may be misleading or less reliable if the scenarios
and alternatives are not carefully designed. SP data can avoid multicollinearity issues and
extend the attributes’ range, but they suffer from hypothetical bias. The advantages of
RP and SP data can be thus enhanced and the limitations reduced by combining the two
sources of data. Joint estimation of RP and SP datasets is technically possible by ‘scaling’
the utility function, as described in [38].

We analyzed consumers’ preferences using the multinomial logit (MNL) model. Firstly,
we estimated an MNL separately for each data type k (RP or SP). The individual # is
assumed to consider the full set of | proposed alternatives in each choice situation t € T
and to choose the alternative with the highest utility [9]. The utility Upjt s/he receives
from choosing alternative j € | in the choice task t is defined as:

e = ASCS + B} Xaje 7 2+ €hy = Vi + €l 0
where ASC is the alternative-specific constant, X is the vector of the attributes presented in
the stated choice experiments, Z is a vector of socioeconomic characteristics, p and -y are
the respective vectors of fixed but unknown coefficients. The random part of the utility
is unknown to the analyst (¢,,;) is independent and identically distributed (IID) extreme
value type 1. Defining V,;; the systematic part of the utility function (the sum of the known
explanatory variables) for each data type k (RP or SP), the probability of an individual n
choosing alternative j can be calculated as:

k
eV"/

%3
Ej e

k _
Pnj_

After testing the two databases separately, we merged and jointly used them to
analyze the underlying variance heterogeneity since the variance of the error term may

differ according to the dataset type (We defined the scale parameter as Ay = 67%’ where o7
k

denotes the variance of the error term of each dataset and Ay has an extreme value type I
distribution over the alternatives j of each dataset. The RP scale is normalized to one for
identification, and the SP scale is estimated. We specified the scale parameter for the SP
database as Ayt = [(1 — Ot rp) Al + Ont Rp, Wwhere 0,4 rp is a dummy variable that takes the
value 1 if the tth choice situation of individual # refers to an RP choice and zero otherwise).
We analyzed the sample by differentiating between those who already had solar panels
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and those who did not. Since the observed differences could be the result of scale factor
differences (i.e., variance differences) in addition to those attributable to actual parameters,
we applied the procedure proposed by [39] to test whether the scales of the two datasets
are equal and, if not, whether parameters differ after accounting for differences in scale.
We tested several specifications and reported in Table 1 the results of 4 different joint
RP-SP MNL models, estimated using the Apollo package in R [40]. Model (1) is based on the
choices of the respondents living in an apartment, Model (2) on those of respondents living
in a single house, while Model (3) is based on the entire sample. Although the sign and the
statistical significance of the main variables are similar, their magnitude is different. We
tested whether or not the null hypothesis that the preference structure of two subsamples
is similar can be rejected. It resulted that it can be rejected with a high degree of confidence,
implying that the two samples have a different preference structures. Note that such a
result has been obtained even if we presented the choice scenarios asking respondents
to imagine living in a single house, irrespective of the type of dwelling they actually live
in. Consequently, we dropped the data referring to the respondents living in apartments
and further investigated the preference structure of the homeowners. Across all model
specifications, attributes’ coefficients are statistically significant and have the expected
sign. The purchase price negatively affects the utility of purchasing a PV, separately or
jointly, with a BS. A longer warranty period encourages the choice of PV or BS. The Tesla
Powerwall brand enjoys higher utility relative to other brands. A higher ITC encourages
PV and BS adoption, indicating that governmental policies foster PV and BS adoption.

Table 1. Joint RP-SP MNL estimates.

3
Apartment +
Homeowners

1 (2)

Apartment Owners Homeowners

@

Homeowners

Estimate (Std. Err.) Estimate (Std. Err.)  Estimate (Std. Err.) Estimate (Std. Err.)

ASCpy (relative to grid) —1.293 (3.087) —1.863 (1.268) —1.815 (1.183) —5.557 *** (1.503)
ASCpy,ps (relative to grid) 5.805 (5.153) —1.141 (2.006) —0.236 (1.909) —3.247 ** (1.626)
Purchase price (€) —12.937 *** (2.757) —4.421 ** (0.917) —6.126 *** (0.885) —3.339 ***(0.907)
Warranty PV (years) 0.602 *** (0.145) 0.26 *** (0.059) 0.327 *** (0.053) 0.175 *** (0.046)
Warranty BS (years) 0.798 *** (0.252) 0.423 *** (0.116) 0.554 *** (0.109) 0.268 *** (0.08)
BS Brand 2.193 ** (1.071) 0.839 ** (0.414) 0.78 ** (0.391) 0.614 ** (0.307)
Investment Tax Credit 0.257 *** (0.056) 0.109 *** (0.023) 0.138 *** (0.02) 0.075 *** (0.019)
Age 1.326 ** (0.54)
Education 1.206 ** (0.487)
Income 0.249 (0.166)
PV knowledge 0.236 *** (0.081)
EV ownership 2.546 *** (0.69)
SP-to-RP scale @ 0.128 *** (0.029) 0.34 *** (0.077) 0.246 *** (0.037) 0.554 *** (0.148)
Apartment vs. Homeowners scale 1.015 (0.074)

PV vs. non-PV owners scale 0.939 (0.117)
Model diagnostics

N. of individuals 76 79 155 79

N. of observations 988 1027 2015 1027
LL(0) —1085.429 —1128.275 —2213.704 —1128.275
LL(final, whole model) —804.8048 —830.0592 —1654.801 —812.6706
LL(RP) —19.23311 —63.69376 —98.47501 —68.87179
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Table 1. Cont.

@ @ ®) @

Apartment +
Apartment Owners Homeowners P Homeowners
Homeowners

Estimate (Std. Err.) Estimate (Std. Err.)  Estimate (Std. Err.) Estimate (Std. Err.)

LL(SP) —785.5717 —766.3654 —1556.326 —743.7989
Adj. Rho-square (0) 0.2512 0.2572 0.2484 0.2673
AlC 1625.61 1676.12 3327.6 1653.34
BIC 1664.78 1715.59 3378.08 1722.42

Legend: age (coded 1: younger than 30 years old; 0: over 30); household annual income (coded 1: Up to €30,000;
2: €30,000—€70,000; 3: €70,000-€100,000; 4: over €100,000); education level (coded 1: with a University degree or a
Ph.D.; 0: otherwise); PV self-declared level of knowledge (coded 1: low to 10: high); EV ownership (coded 1 for
EV owners; 0 otherwise). @ The t-statistic corresponding to the RP-SP scale factor is computed with respect to a
value of 1; a value of 1 indicates no scale difference in the RP and SP choice contexts. ***, **, * indicate significance
at 1%, 5% and 10% respectively.

In Model (4), we tested the impact of the socio-demographic characteristics, interacting
them with the ASCs of the PV and PV + BS alternatives. In line with other studies (e.g., [41])
but differently from [42], we find that age influences the utility associated with both PV
and PV + BS: younger respondents (under 30 years old) are more likely to adopt a PV or
PV + BS, relative to the older respondents. Confirming the previous literature (e.g., [43]),
we find that education is a significant driver for PV adoption. Consistently, respondents
who self-declare to have high knowledge of PV systems have a higher propensity towards
PV adoption. On the contrary, we estimated that household income is not a statistically
significant determinant, in line with [43,44]. Finally, our data confirmed that EV owners
have a higher propensity to buy a PV combined with a BS.

As explained above, these results capture the combined information derived from
actual and stated choices. A test on the scale parameter against the null hypothesis of
taste invariance indicates that the null hypothesis can be rejected with a high degree of
confidence. Such a result signals that there is a significant difference between the actual
choices and the stated ones under hypothetical scenarios.

6. ABM Simulation Model
6.1. Agent-Based Model Design

The ABM model design is relatively simple. Homeowners who live in detached
houses are modeled as agents. In line with [45], a second agent active in the model is the
PV and BS promoters, including both manufacturers and installers. Their role is to contact
homeowners and explain the technical and financial characteristics of their products. As
discussed above, one of the most relevant aspects of an ABM is what decision agents make
and what criteria they use to make such decisions. In our model, homeowners choose
between (a) drawing electricity from the grid, (b) installing a PV, and (c) installing both PV
and BS (Figure 3).

Consistent with the DCM approach, we assume that the criteria used to make deci-
sions is utility maximization based on their preference structure. With reference to the
categorization proposed by [10], our model is an economic model empirically grounded in
a statistical DCM. An alternative to the utility-maximizing agent could have been to model
agents’ decisions based on the current and future total cost of ownership. For instance, [17]
assumed that homeowners adopt rooftop PV systems depending on the perceived payback
period for their investments, given rooftop PV costs and utility electricity prices. The advan-
tage of the utility-based approach is that it encompasses both monetary and non-monetary
variables and allows differentiating decision makers based on their socioeconomic (e.g., age,
income, education) and psychological attitudes.
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Figure 3. Homeowners’ choice.
Based on the econometric results, the homeowners’ utility functions are the following;:

ugrid = ASCgrid

Upy = ASCpy + B1Pricepy + ﬁgVWarmntypV + B4ITCpy + y1Age + ya2Income + y3Education + 4 PVknowledge

Upy+gs = ASCpy + B1(Pricepy + Pricegs) + B5Y Warrantypy + BESWarrantyps+
B4ITCpy4ps + ,BgsBrandBS + 11Age + yoIncome 4 y3Education + y4EVowner

We were also able to differentiate between the utility function of the current PV owners
and non-PV owners, estimating similarities and differences in the scale parameter and
coefficients (see Supplementary Material).

The model assumes that homeowners assess and reassess their decisions based on
their preferences, socioeconomic status, information level, and prevailing (changing) prices.
We assume that:

e thechoice depicted as (1) in Figure 3 is made by comparing U,z and Upy, parametrized
with the Non-PV homeowner's coefficients;

e  the choice depicted as (2) is made by comparing U,y and Upy, parametrized with
the PV homeowners coefficients;

e the choice depicted as (3) is made by comparing Upy, parametrized with the PV
homeowners coefficients, and Upy . gs.

As reported in the literature, EV ownership and increasing electricity demand lead car
drivers to reassess their choices on installing PV and BS [4]. Such an occurrence is depicted
as (4) in Figure 3.

Finally, the model recognizes that adopters and promoters influence technology adop-
tion via web or face-to-face advertising. In our model, such interactions are operationalized
via two channels. The first one consists of a word-of-mouth channel, depicted as (5) in
Figure 3: PV and PV+BS owners “send a message” in the Java code suggesting grid-only
homeowners adopt the PV or PV+BS technology. The impact of social interaction depends
on the number of social contacts and on their persuasiveness. The second channel (6)
consists of promoters periodically contacting and advising homeowners on the technical
and financial properties of PV and PV+BS, evaluated and eventually accepted to a certain
degree by homeowners.

6.2. Parametrization, Validation, Calibration

We implemented the model for the year 2016-2030 using AnyLogic 7.0.3, a widely
used Java-based software for ABMs.

An important step is to parametrize the model making use of the best available
data sources regarding past and future trends. In the econometric analysis, we found
that age, education, self-assessed PV knowledge, and BEV ownership play a statistically
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significant role in shaping installation decisions. Hence, we searched for information
on how such variables are distributed in the Italian population. With regard to social
interaction, we derived the assumptions from our sample. Most of the respondents (79%)
obtained information on PV and PV+BS via the promoters’ channel, either visiting websites
(67%) or direct contact with a promoter (12%). The word-of-mouth channel (the interaction
with PV and PV+BS adopters) accounts for the remaining 21% of the social interaction.
The frequency of social interaction is twice a year for 50% of the sample, once a month
for 26% of the sample, and once a week for 8% of the sample, while 17% of the sample
declares no interaction on the topic. The average number of people per month with
whom the respondents talk about energy issues is 3.4, with a distribution reported in the
Supplementary Material. The assumptions about the evolution of the PV and BS costs are
of crucial importance. Our best assumptions are based on several formal and informal
sources, as illustrated in the Supplementary Material. PV prices have rapidly declined
after 2010. We assume that they will continue to decline but at a much less rapid pace. On
the contrary, we assume still relevant reductions for BS costs due to rapid technological
progress and still unexhausted economies of scale. Given the large uncertainty connected
with the future evolution of PV and, especially, BS costs, we will test the impact of our
assumption on PV and BS uptake in the sensitivity analysis section.

The validation has been performed as follows. Conceptual validity and micro-face
and macro-face validation are guaranteed by the fact that individuals make decisions based
on preferences, information, and attitudes, in line with the random utility model. Empirical
input validation is provided by the RP-SP dataset and by the recent empirical evidence on
technology trends. Cross-model validation is achieved by comparing the ABM results with
those obtained in the DCM framework.

The calibration phase guarantees history-friendly results. As suggested by [22], it
would be useful to validate the model by splitting the historical data into two temporally
separated parts, using the earlier data for calibration and the later data to validate the
model's predictive accuracy. We could not perform such a task due to insufficient data
on BS uptake in Italy. In our case, it has been possible to calibrate the model only from
2016 onwards because, although rooftop PV was a well-established product, the Tesla
Powerwall was announced in 2015, and the Powerwall 2 was unveiled in October 2016 (see
Supplementary Material for details).

Figure 4 compares our model’s estimates of PV installations and the actual ones,
available either as the number of installations belonging to the 1-3 kWp group or that
belonging to the 1-20 kWp group. The former represents the most likely estimate of the
number of rooftop PV installations, while the latter includes some installations larger than
those usually installed on building roofs. Since our model’s estimates fall between the two
groups, they can be considered a satisfactory approximation of the real-world installations
in the period 20162019 (more details in the Supplementary Material).

10%
8%

6%

X
4% X
b4
2% X
0%
2016 2017 2018 2019
X Our Estimate Actual (1-3 kW) Actual (1-20 kW)

Figure 4. Estimated vs. actual PV installation.
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7. Simulation Results

We start by simulating the pace of adoption of PV and BS in the base case scenario,
characterized by the current ITC equal to 50%, the existence of social interaction, the
assumptions on the evolution of PV and BS prices, and BV penetration. Then we vary the
percentage of ITC to 0%, 25%, and 75%. Next, we compare the base case with and without
social interaction. Finally, we perform a sensitivity analysis on our assumptions regarding
the evolution of PV and BS prices, allowing for stochasticity in the model.

7.1. Base Case Scenario

Under the base case scenario, our model predicts that a large percentage of homeown-
ers will continue relying on the grid only for their electricity supply during the coming
decade, notwithstanding the incentives (Figure 5). However, PV installations will grow at
an annual average rate of 23.7%, thanks to the declining PV and BS costs, the increase in
EV ownership levels, and the word-of-mouth effect. By May 2028, 50% of houses equipped
with PV are estimated to add BS. By 2030, the model predicts that 56% of homeowners will
rely on the grid, and 44% will have PV (either with BS or without BS (PV only)), 75% of

which with BS.
100
90
80
70
60 ——
50
40
30
20
10 =
0
8N SN EE39a383883 5900083335998 8855558989233
RN E R RN FE RN FEE LN FEREEDFER RS FEFEES
e Grid s P\/ ONly PV+BS % of PV owners with BS ~ e====Total PV (with and without BS)

Figure 5. Simulation results in the base case scenario with the current 50% fiscal incentives.

7.2. Varying Fiscal Incentives

We simulate what would have been the PV and BS uptake under three hypothetical
scenarios: S1—without fiscal incentives (no ITC); S2—with ITC equal to 25%; S3—with ITC
equal to 75% (Figure 6).

In the absence of fiscal incentives (no ITC), there would have been very few PV
installations almost up to the end of the third decade (max 4.9%), notwithstanding the
cost decreases. With ITC equal to 25%, PV installations would have gained adoption
in the third decade, but they would have reached a 9% acceptance only in 2030, which
is almost equivalent to the current rooftop solar PV uptake. The implication is that the
current generous 50% ITC has been crucial in convincing homeowners to install PV. If the
fiscal incentive had been 75% starting from 2016, our model predicts that the PV uptake
would have been much faster, reaching 40% in 2021 and 94% in 2030. This indicates that

homeowners are quite sensitive to the economic aspects and that the fiscal incentives are
the driving force for PV uptake in Italy.
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S1 - without fiscal incentives (no ITC)

S2 — with ITC equal to 25%
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Figure 6. Simulation results.

7.3. The Importance of Social Interaction

%BS on PV owners e pV

An interesting exercise that can be performed with ABMs is to estimate the impact of
social interaction on PV and PV+BS uptake. In the base case scenario, we have muted the
communication among agents (neither the promoters nor the adopters send messages to
the potential adopters) so that homeowners make decisions based only on their preferences
and the cost evolution of PV and BS. The results are illustrated in Figure 6. Compared to

the base case scenario, the final PV uptake in 2030 would be 4.5% lower, 2.3% due to fewer
PV-only installations, and 2.2% due to lower uptake of PV + BS.

7.4. Sensitivity Analysis

Our model's major source of uncertainty is the future evolution of PV and BS prices.
Consequently, we performed a sensitivity analysis to test how the distribution between
grid-only, PV, and PV + BS would change if our assumed PV and BS trends are 10% and 5%
lower or 5% and 10% higher than the one we have assumed (Figure 7). We accounted for

these changes by multiplying our assumed value by a price adjustment factor equal to 0.9,
0.95,1.05, and 1.11, respectively.

Sensitivity analysis of the PV+BS uptake with varying BS price trends
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~
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Figure 7. Cont.

nov-28

lug-29

Sensitivity analysis of the PV uptake with varying PV price trends

50
45
40
35
&
@ 30
c
£ 25
<4
5 20
a
15
10
5
0
W O™ 0 W M O @ NNM g g NO WS 0 ®
oy e W PN R ER N e N BN e NN e N
¢'>uL>naL>uL>u'E>nuL>m-'.>
gefgeigeigeigeigege
s PV factor price = 0.9 = PV factor price = 0.95 === PV factor price= 1
PV factor price = 1.05 e PV factor price= 1.1

lug-29



Energies 2023, 16, 557

15 of 20

35%
30%
25%
20%
15%
10%

5%

0%

Sensitivity analysis of the grid-only houses with varying PV and BS price trends
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Figure 7. Sensitivity analysis.

The various adjustment factors lead to quite different trends, with differences ranging
from 5 to 10% for BS, 10 to 15% for PV adoption, and 15 to 20% for grid-only houses.
Interestingly, the main differences are in the central years of the decade, but the end result
is much less spread out. Our model predicts that PV + BS adoption will occur in 29-34% of
the households, 7-10% of the households will have PV only and 56-62% will draw their
electricity from the grid only.

Finally, we tested the impact of simultaneous variation of PV and BS prices. We report in
Figure 8 only the variations in the 2030 percentages. The ABM predicts that PV installations
might vary from 3.3 to 9.1, with an average of 5.5%. PV + BS installations vary from 21.4 to
58.6, with an average of 37.9%. Grid-only households range from 34.5% to 72.3%.

PV (mean = 5.5, min = 3.3, max =9.1) PV4BS (mean = 37.9, min = 21.4, max = 58.6) GRID-ONLY (mean = 54.5, min = 34.5, max = 72.3)

-

3.1-4141-51 51-6

6-7

I_ 5%
0%

25% 30%
20% 25%
20%
15%

15%

10%
10%

0%

7-7.9 7.9-898.9-9.8 164217 27323 375428 48.153.4 342414 414486 486558 55863 63-70.2 70.2-774

Figure 8. The impact of simultaneous variation of PV and BS prices on 2030 percentages.

7.5. Stochasticity

The results so far reported are estimated using a fixed seed; that is, the model random
number generator is initialized with the same value for each model run, thus making the
model runs reproducible. Alternatively, the AnyLogic software allows us to account for
stochasticity by using a random seed value for the pseudorandom number generator. The
model we developed contains some inherent stochasticity associated with three components of
the model: (a) the random choice framework of the utility function, (b) the random association
of the socioeconomic characteristics in the population, and (c) the random contact rate between
the agents when sending the message to buy PV and BS. Running the model with a random
seed and 10 replications, in the base case scenario, with the current fiscal incentives equal to
50% of the installation costs, leads to the results illustrated in Figure 9.

While accounting for stochasticity, the 2030 value for PV installations is estimated to
vary between 4.3 and 6.5%, with a mean value of 5.2%. PV + BS installations are estimated
to vary between 34.3 and 38.1%, with a mean value of 35.8%. The houses relying only on
the grid are estimated to range from 54.5% to 58.5%, with a mean value equal to 56.9%. The
distributions within the estimated intervals are reported in Figure 9.
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Figure 9. Results of the stochastic model in the base case scenario.

Overall, although there is a large level of uncertainty connected with our model
predictions due to the various sources we have identified (i.e., PV and BS price trends,
social interaction, and stochastic factors), the results presented suggest two conclusions.
First, the prospects for PV and BS uptake in Italy within the coming decade are quite good,
provided the current ITC policy is financially sustainable for the State budget. Second, ITC
is an important determinant of PV and BS adoption and largely determines the overall
uptake. An interesting analysis to carry out based on our predictions for future research
would be to evaluate the current ITC policy's social efficiency and its optimal level.

8. Conclusions and Policy Implications

In this paper, we integrated two research methodologies, DCM and ABM, to simulate
PV and BS uptake in Italy. We estimate that, given the preference structure of homeowners,
the continuing decline in costs, and the social interaction, PV and BS uptake is likely to
increase progressively to up to 40-45% in 2030 with the existing ITC policy. Increasing
the ITC to 75% would further accelerate the pace of uptake but with a relevant financial
burden for the State budget, mostly likely politically unacceptable since its cost would
result in higher energy prices for the consumers. The recently enacted 110% ITC (termed
Superbonus) might not make a large difference because it applied only in case of major
energy efficiency improvements. On the other hand, we have estimated that a reduction
of the ITC would slow down considerably the uptake. Consequently, assuring financial
policy stability is likely the best choice for the Italian regulator.

Important policy improvements are, however, possible in many regards. Firstly, PV
and BS installations should make progress not only among homeowners but also for
other types of dwellings (condos). The establishment of energy communities is one of
the tools that the Italian legislator is trying to facilitate from a legal, administrative, and
financial perspective. It is estimated that tenants occupy about 2 million buildings in Italy.
Incentivizing rooftop solar PV installments in these buildings could hence greatly help
increase the share of renewable energy. Our survey has provided empirical evidence that
the people living in shared dwellings share a similar interest in PV and BS adoption if
the financial propositions are favorable. Moreover, since PV marginal costs decrease with
size [46], it is quite likely that energy communities could be an interesting proposition.

Secondly, a number of non-financial measures can facilitate PV and BS uptake. Al-
though our survey has not considered environmental motivation, several papers have
shown that environmental awareness is one of the drivers for becoming a prosumer [47].
Enhancing climate change awareness could then contribute to PV and BS diffusion. Another
well-documented barrier is the uncertainty and mistrust that these new energy systems
work without too many complications and inconveniences [47]. Spreading trustworthy
information, providing technical support, clarifying the financial aspects, and supporting
credit opportunities are crucial. As argued by [29] on these aspects, there is a role both for
the business and public sectors (municipal energy advisers or the Italian Energy Agency
ARERA). Another important non-financial barrier is the complex administrative system. In
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Italy, promoters are responsible for carrying out all the necessary paperwork. However,
this adds complexity and costs to the process. A relevant issue is also the installation of PV
panels in the historical centers and the need to balance conflicting goals: preserve aesthetics
and cultural heritage and promote energy innovation and efficiency.

Thirdly, it is quite likely that the uptake of EVs will enhance the interest in self-energy
production. The increase in household energy consumption decreases the PV payback
period ([2,11]) and makes EVs definitely more sustainable than conventional ICE cars.
Recent data show that in Germany, 24% of EV drivers self-produce their electricity (DIHK,
2020). As EV uptake in Italy makes progress, so will PV and BS demand.

Obviously, our model has several limitations. A first shortcoming is an admittedly
small size and weak representativeness of our sample. As discussed above, there is a trade-
off between survey complexity and the number of interviews that we could collect with
available research funds at our disposal. Nonetheless, we believe that our sample has some
merits and could provide the basis for understanding future trends in PV and BS adoption.
Because of this limitation, the results of this paper should be interpreted as exploratory,
while a full-scale randomized survey at the national level is planned for future research.
Moreover, it should be recognized that the decision to install a PV and a BS is very complex.
Several factors play a role, including technical, economic, attitudinal, informational, and
aesthetical ones. No study can claim that all these factors have been fully considered, and
our study is no exception. Although we tried to ground our model on empirical data
and model how agents make decisions, we took into account only a limited number of
determinants. As explained above, our model is based on actual and stated choices, and
it is left to the respondents to value whether, in the different scenarios, the investment is
financially sound or not. Hence, in contrast with previous studies ([11,28,48]), we made
no explicit use of financial metrics such as FiT, interest on a loan, payback period, or net
present value as attributes of the scenarios. The advantage of our approach is that it mimics
real-world choices characterized by uncertainty about the future financial performance of
the investment and that it incorporates non-monetary factors in a theoretically coherent
manner. The disadvantage is that we do not model how these financial metrics play out in
the adoption decision. However, based on previous studies concerning Italy ([11,49]), it
appears that the economic and environmental perspectives of adopting solar energy are, in
most instances, quite promising, in particular when coupled with driving an EV ([6,50]).
Moreover, our model does not account for roof characteristics, geographical location, and
solar radiation, nor does it consider household composition and energy consumption. The
need to keep the interview as brief as possible to prevent respondents’ fatigue induced us
to not investigate these aspects, which might play a relevant role in homeowner decisions.
Our model does not consider the energy options available for multi-household buildings
because they are still in the initial phase in the Italian context. As discussed by [4], energy
communities permit all electricity customers, whether homeowners with a roof or tenants
without a roof, to participate financially in an energy agreement, sharing its costs and
benefits. A further limitation of our study is that we did not explore how the decision
process to install PV and BS takes place within the household [51] and who are the main
decision-makers. The difficulty, however, is not simply exploring the family dynamics but
incorporating them coherently in the ABM.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/en16010557/s1. Figure S1: Evolution of residential PV price in
Italy; Figure S2: Percentage of BEVs in the Italian car fleet in the period 2016-2030; Figure S3: Evolution
of residential BS price in Italy; Table S1: Descriptive statistics of the sample; Table S2: Attributes'
levels; Table S3: Assumptions on socio-economic characteristics of the Italian population; Table S4:
Assumptions on social interaction; Table S5: Utility coefficients of PV and non-PV homeowners.
References [52-65] are cited in the supplementary material.
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