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Abstract

Isopods are terrestrial invertebrates that accumulate trace elements in large quantities, thus providing information on levels of soil
contamination. However, the accumulation pattern seems to be species dependent. For this study, specimens of Philoscia affinis
(Isopoda, Oniscidea) and soil samples were collected from both a protected area (site 1) and urban roadside (site 2) in the low
plain of Friuli-Venezia Giulia (northeast Italy) to determine whether P. affinis could serve as a potential candidate for monitoring
soil contamination. To do this, the following objectives were achieved: a) the level of trace elements (Al, Cd, Cu, Fe, Hg, Mn, Pb,
Zn) were detected in soils and isopods; 2) the difference in trace elements accumulation was compared in the two sampling sites;
3) the bioaccumulation factor (BAF) was calculated for each element. With some exceptions, trace element concentrations were
higher in both isopods and soil samples from the urban roadside compared to the protected area. Furthermore, except for Cd, Cu,
and Zn, trace element levels were higher in the soil than in the isopod samples. The higher mean BAF values were recorded for
Cd (6.169 and 6.974 for site 1 and 2, respectively), Cu (10.324 and 11.452 for site 1 and 2, respectively), and Zn (1.836 and 2:
1.943 for site 1 and 2, respectively), whereas BAF values <1 were recorded for the other elements. Philoscia affinis was found to
be a potential candidate to monitor soil contamination as a macro-concentrator of Cu and Cd and a micro-concentrator of Zn.
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Introduction

Although most trace elements occur naturally in the Earth’s
crust, rapid industrialization has accelerated their flux into the
environment through a variety of human activities [1]. The
main sources of trace element contamination are industrial
(e.g., mining, tanning, combustion, and smelting), civil (e.g.,
vehicular traffic), agricultural (e.g., fertilizers, fungicides, in-
secticides), and wastewater activities [2]. Trace elements can
occur in municipal waste landfill sites in considerable concen-
trations, causing soil contamination via the dispersion of par-
ticulate matter by wind and leachate release [3]. Also, waste
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incineration processes are often the causes of concern due to
trace element release from combustion ash [3]. Thus, trace
element contamination in soil and the potential risk of con-
tamination in the food chain are attracting interest [1].

Macroinvertebrates are often used as bioindicators of con-
taminants and to assess the effects of trace elements in terres-
trial [4—6] and aquatic ecosystems [7, 8]. Diverse soil inverte-
brate taxa can serve as bioindicators: oligochaetes [9], nema-
todes [10, 11], insects [12], and terrestrial isopods [13, 14].

Arthropods make up the majority of soil fauna. They oc-
cupy a wide variety of microhabitats and niches where they
have a central ecological role [15]. For instance, oniscidean
isopods play a key part in soil ecology by helping decompose
organic matter and recycle nutrients [16]. An estimated 10%
of annual litter undergoes fragmentation by isopods [17],
which are highly sensitive to changes in their habitats [18].
Furthermore, they are known to accumulate significant quan-
tities of heavy metals and to survive even in areas of high
concentrations of trace elements [19].

In oniscidean isopods, the main organ where heavy metals
accumulate is the hepatopancreas; although it accounts for
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only 5% of body weight, it can contain 75-95% of absorbed
heavy metals [20]. Studies on Porcellio scaber (Isopoda,
Oniscidea) showed that ultrastructural modifications of the
hepatopancreatic epithelium induced by heavy metals accu-
mulation can be used as biomarkers to evaluate soil concen-
tration and biotoxicity [5, 21]. In their study, van Straalen et al.
[22] found that terrestrial isopods are among the macroinver-
tebrates most efficient at bioaccumulating heavy metals owing
to physiological mechanisms that regulate heavy metal con-
tent that allow the isopods to survive despite high concentra-
tions in both the litter and the soil. The ability of oniscidean
isopods to accumulate metals is species dependent [23]; the
selection of species for use in monitoring programs relies on
their ability to accumulate a given element and their biological
responses to it. Furthermore, some isopod species can discrim-
inate food containing certain concentrations of heavy metals,
while avoiding the most contaminated materials and not accu-
mulate harmful elements [24, 25]. By virtue of these charac-
teristics, the body burden of metals in isopods can yield infor-
mation about the degree of soil contamination [19].

Among the oniscidean isopods, Philoscia affinis, amember
of the Philosciidae family, is widely distributed in Europe
(Spain, France, Italy, Austria, Germany, Croatia) [26],
Northern Africa (northern Algeria) [27], Slovenia [28], and
Hungary [29], where it can be found in forests, forested river
banks, and wooded terrains [30]. Its body size makes it easy to
collect and use for detecting trace elements.

With this study, we detected for the first time eight trace
elements (Al, Cd, Cu, Fe, Hg, Mn, Pb, Zn) in the whole body
of P. affinis and in soil samples from a protected area and an
urbanized roadside located in the low plain of Friuli-Venezia
Giulia (northeast Italy) to determine whether it could be a
potential candidate for monitoring soil contamination. The
objectives were to (1) measure the trace element level in soils
and isopods; (2) compare the difference in trace element levels
at the two sampling sites; (3) define the ratio of trace element
concentration in the isopods and in the soil (bioaccumulation
factor, BAF) and categorize the species as macro-concentra-
tor, micro-concentrator, or deconcentrator for each trace ele-
ment [19].

Material and Methods
Study Area

The sampling sites (Fig. 1) were a protected area and an ur-
banized area in the lowland plain of Friuli-Venezia Giulia
(northeast Italy). The plain has a complex water network
(main rivers: Livenza, Noncello, Meduna, Sile, Fiume,
Lemene, Tagliamento, Stella, Torsa, Turgnano, Corno,
Ausa, Natissa, Torre, Isonzo, Timavo). The entire area is im-
portant for the fertility of the soils with the presence of several

farmlands. Also, it hosts several protected areas including the
“Riserva naturale della Foce dell’Isonzo,” “Riserva naturale
Foci dello Stella,” and “Boschi di Muzzana.”

Site 1 (45°47'20.03" N; 13°07' 01.42" E) is located inside
the Special Area of Conservation “Boschi di Muzzana” (SAC
IT3320034), in the municipality of Muzzana del Turgnano
(Udine Province). The site is not affected by direct human
pressure, being a lowland residual forest composed mainly
of white hornbeam (Carpinus betulus), ash (Fraxinus spp.),
hazel (Corylus avellana), and lesser quantities of English oak
(Quercus pedunculata). The herbaceous component includes
wild garlic (Allium ursinum). The soil texture is mainly com-
posed of sand and silt and in smaller amounts by clay and fine
gravel (soil skeleton: 12%) [31]. Site 2 (45° 50" 01.557" N;
13° 12’ 50.277" E) is inside the inter-municipal park of the
Corno River, just outside the town of San Giorgio di Nogaro
(Udine Province), where there are also residues of plain wood-
lands. The sampling site is located alongside the main route
with heavy traffic connecting the towns in the plain. The soil
texture is mainly composed of sand and silt and in smaller
amounts by clay and fine gravel (soil skeleton: 7%) [31].

Soil Sampling and Processing

Sampling was performed in April 2018. Soil samples were
collected according to the protocol proposed by Nannoni
et al. [32]. Briefly, the first 10 cm of the soil profile was
collected. At each site, four subsamples were collected a few
meters apart and mixed to create a single representative sam-
ple. The samples were then transported to the laboratory in
glass containers, dried in a ventilated oven at 30 °C, and
sieved (2 mm mesh). Only the fraction < 2 mm was used for
trace element analysis [33]. Samples from both sites were
subdivided into four subsamples for trace element detection.

Isopod Sampling

Mature individuals of Philoscia affinis (n = 80 from each site)
around the soil sampling sites were captured by hand either
from under stones or by digging with plastic forceps. The
specimens were then put in plastic bags and transported to
the laboratory where they were sexed and divided into four
subsamples (n = 20 individuals each; 50:50 sex ratio) per
sampling site and euthanized at — 80 °C for 24 h. Each sub-
sample was then oven-dried at 105 °C overnight until they
reached a constant dry weight (dw) to obtain an aliquot of
1.2-1.5 g and then homogenized for trace element detection
[14].

Trace Element Analysis

For trace element analysis of soil, the samples (n = 4 subsam-
ples per site) were further divided into two subgroups: one for
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Fig. 1 Sampling sites (site 1:45°47'20.03" N, 13°07' 01.42" E; site 2: 45° 50" 01.557" N, 13° 12 50.277" E), Friuli-Venezia Giulia, northeast Italy. The
red rectangle denotes the inset of the study area

the quantification of mercury and the other for the detection of
the other trace elements. To measure the mercury content,
quantities 0of 0.1-0.2 g of sample were processed and analyzed
without pre-treatment using a DMA-80 (Direct Mercury
Analyzer, Milestone, Shelton, CT, USA) as reported by
Maggi et al. [34]. Determination of the other elements (Al,
Mn, Fe, Cu, Zn, Cd, Pb) was performed after wet digestion.
A mixture of 2 mL of HNOj3, 1 mL of HF, 2 mL of HCI, and 1
mL of HCIO4 was added to 200 mg of soil. Digestion was
performed in a microwave oven (ETHOS 900, Milestone).
The solution was filtered, and ultrapure water was added to
a final volume of 100 mL [32].

The isopod samples (four subsamples per site; each sub-
sample: 20 specimens) were divided into two subgroups: one
for total mercury was directly analyzed by DMA-80 and the
other for detection of the other elements. Quantities between
1.0 and 1.5 g of dried isopods underwent digestion in a mi-
crowave oven (ETHOS 1, Milestone) with 7 mL of HNO; and
1.5 mL of H,0,. Ultrapure water was added to a final weight
of 50 mL.

Trace element detection was performed using inductively
coupled plasma-mass spectrometry (ICP-MS Xseries I,
Thermo Scientific, Bremen, Germany). Analytical perfor-
mance was verified by processing certified reference
materials-CRM (1566b and NIST 2710 from the National
Institute of Standard and Technology) along with blank

reagents in each analytical session. Recovery rates of elements
did not differ by more than 10% from the CRM. Limit of
detection (LOD), limit of quantification (LOQ), and precision
were calculated according to Commission Regulation (EU)
No. 2016/582 amending Regulation (EC) No. 333/2007.
The LOQ was set at 0.010 mg kg ' for all elements to facilitate
data interpretation. Concentrations are expressed as milli-
grams per kilogram dry weight.

Statistical Analysis

The assumption of normality distribution was verified with the
Kolmogorov—Smirnov test. Differences in trace element con-
centration between the isopods, soil, and BAF from the two
sites were checked using the Mann—Whitney U test since the
null hypothesis for normal distribution could not be rejected.
Spearman’s rank correlation coefficient (ps) was calculated to
determine the relationship between trace element concentra-
tion in the isopods and in the soils. Principal component anal-
ysis (PCA) was performed to check for trends in trace element
concentrations in isopods and soils. To evaluate the patterns of
trace element accumulation, the BAF was calculated as fol-
lows [32]:
Ci

BAF = —
Cs



where Ci is the trace element concentration in the tissue of
isopods and Cs is the trace element concentration in the soil.
As proposed by Dallinger [19], based on the value obtained,
Philoscia affinis was divided into macro-concentrator (BAF >
2), micro-concentrator (1 < BAF < 2), and deconcentrator
(BAF < 1) according to the level of each element detected.

Trace elements concentration measured in soil samples
were compared with the contamination threshold values de-
fined by the Italian Legislative Decree no. 152/2006 [35].

Results were considered statistically significant at a p value
< 0.05. Statistical analysis was performed using open-source
data analysis software RStudio® version 1.1.463 (RStudio,
Inc.).

Results
Trace Elements in Soil

A downward trend in the average trace element concentration
was noted for both sites: Al>Fe>Mn>Zn>Cu>Pb>Hg>
Cd (Table 1). Generally, the mean concentration was higher at
site 2 for Mn, Fe, Cd, Cu, Pb, and Hg, whereas the mean
concentration of Al and Zn was slightly higher at site 1. A
statistically significant difference in concentration between
the soil samples was recorded for all elements (Mann—
Whitney U test; p < 0.03), except for Al and Zn (Mann—
Whitney U test; p > 0.05) (Fig. 2). Trace elements concentra-
tion in all soil samples were always below the respective con-
tamination threshold (Table 1).

Trace Elements in Isopods

The average trace element concentration showed a downward
trend for samples from both sites: Al > Fe > Cu>Zn > Mn >
Cd > Pb > Hg (Table 1). Generally, the mean trace element
level was higher in the samples from site 2 (urban area), ex-
cept for the slightly higher Zn concentration at site 1
(protected area). Statistically significant differences in trace

Table 1

element levels between isopod samples from the two sites
were recorded for Al, Mn, Fe, Cu, Cd, Pb, and Hg (Mann—
Whitney U test; p < 0.03), whereas no difference in Zn was
found between the isopod samples from the two sites (Mann—
Whitney U test; p > 0.05) (Fig. 3).

Bioaccumulation Factors

Table 2 presents the BAF. A higher mean BAF was recorded
for Cd, Cu, and Zn from both sites, whereas a BAF < 1 was
recorded for the other elements (Table 2). BAF values at site 2
were significantly higher for all elements (Mann—Whitney U
test; p < 0.05), except for Hg, which did not differ significantly
between the two sites (Mann—Whitney U test; p > 0.05).

Correlation Between Trace Element in Soils and
Isopods and PCA Analysis

Spearman’s correlation matrix revealed only significant neg-
ative correlations (p < 0.05) between Pb in soils and Pb in
isopods (ps — 0.818); Al in soils and Al in isopods (ps —
0.745); and Fe in soils and Fe in isopods (ps — 0.823). PCA
(Fig. 4) showed that the first (PC1) and the second (PC2)
components accounted for meaningful amounts of the total
variance (97.5%): PC1 explained 92.4% of the total variance
and was positively correlated with Al, Mn, Fe, Pb, and Hg and
negatively correlated with Cu, Zn, and Cd. PC2 explained
6.6% of the total variance and was positively correlated with
Mn, Fe, Cu, Cd, Pb, and Hg and negatively correlated with Al
and Zn. When the environmental matrices (soil and isopod)
were compared by trace element concentration, a clear sepa-
ration between soil and isopod samples could be seen: the
isopod samples from site 2 (green triangle) are located in the
upper left quadrant of the plot in relation to the higher con-
centration of Cd and Cu concentration; the soil samples from
site 2 (purple plus sign) are located in the upper right quadrant
in relation to the higher concentration of Fe, Hg, Mn, and Pb,
while the soil (light blue square) and the isopod (red circle)
samples from site 1 are located in the lower quadrant of the

Trace element concentration (mean + standard deviation; mg kg ™' dw) in isopod and soil samples from the protected (site 1) and the urban (site

2) sampling area. The contamination threshold (mg kg ™' dw) defined by Italian Legislative Decree no. 152/2006 is also reported

Site Matrix Al Mn Fe Cu Zn Cd Pb Hg
1 Soil 19005 +7.66 208.33 £1.52 15995.67+586 17.52+0.93 5483+126 024+0.05 16098 043+0.15
Isopod 32487+230 38.16+1.66 226.04+0.81 180.89+2.19 100.02+1.64 1.47+0.08 0.75+0.02 0.04+0.008
2 Soil 19000 +£2.01 308.17 £0.76 20000.50 £3.80 22.04+0.95 50.02+1.03 048+0.08 19.83+1.26 0.93+0.25
Isopod 599.84+£243 4822+1.60 44483390 24050+2.19 96.67+248 346+041 1.52+0.59 0.07+0.005

Contamination threshold in soil (Italian Legislative Decree no. 152/2006)

Commercial/industrial - - -
use
Residential use - - -

600 1500 15 1000 5

120 150 2 100 1
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plot based on the lower element concentrations, except for Al
and Zn, which were slightly higher in the soil and isopod
samples, respectively.

Discussion

The European Union has long recognized the importance of
environmental monitoring and biomonitoring for recording
the combined exposure of the environment and humans to
contaminants, and the unique role these instruments play in
identifying exposure to substances problematic for human
health and the environment [36]. The widespread environ-
mental problem of trace element contamination could be ad-
dressed by the monitoring of organisms that accumulate trace
elements and as such reflect the rate and degree of environ-
mental pollution [37].
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In this study, trace element concentration in the soil sam-
ples was compared with the relative threshold values provided
by Italian Legislative Decree no. 152/2006 [35] for residential
use and for commercial and industrial use. The levels of the
elements mentioned in the legislation (Cu, Zn, Cd, Pb, Hg)
were below the expected limits. Nonetheless, the levels in the
soil samples were generally higher in site 2 (urban) compared
to site 1 (protected area), as clearly highlighted by the biplot
obtained from the principal component analysis. Indeed, soil
samples from site 2 are located in the order of increasing
values of trace elements. This difference stems from the con-
tamination due to the presence of the main route with heavy
traffic near the sampling site. The Cd values were < 1 mg
kg ', in line with the range reported by Alloway [38] and
shared by other authors [32, 39]. Cd is a highly toxic metal,
and the main sources were derived from anthropogenic activ-
ities (industrial, agricultural, vehicular traffic, fossil fuel com-
bustion) [40]. Alloway [38] reported an average Cu level of
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about 30 mg kg ', with lower levels measured in sandy soils
and higher levels in clayey soils, which are higher compared
to those we found. As regards Cu, the primary sources are
agricultural and industrial activities [41]: levels > 100 mg
kg ! are considered alarming [42].

Kabata-Pendias and Pendias [43] reported an average
zinc concentration from 17 to 125 mg kg " in soils, which
matches the level we detected. Also, Zn levels > 150 mg
kg ! are often caused by anthropogenic factors [38], and
the sources can be linked to mining, agriculture, and live-
stock [44].
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The Hg concentration in soils varies widely and depends on
the distance from emission sources and local geology [45]. In
addition to local sources of pollution, the Hg levels in soil
depend on the type of rocks, the pH, the cation exchange
capacity, the presence of water and how it moves in the soil,
and biological and erosion processes [46]. Most of the Hg
present in uncontaminated soils and sediments is bound to soil
organic matter (especially organic, humic, and fulvic acids)
[47]. Our results suggest low contamination at the two sites (<
1 mg kg™"). Also, Pb concentration was fairly below the legal
limit [35]. The main sources of Pb are manure, atmospheric

Table 2 Bioaccumulation factor (BAF) (mean + standard deviation) of Philoscia affinis. Lowercase letters (a, b) denote differences according to the
Mann—Whitney U test
Site Al Mn Fe Cu Zn Cd Pb Hg
1 0.017+0.01* 0.183 £0.01% 0.014 +0.01* 10.324 + 0.90% 1.836 + 0.06" 6.169 +1.09% 0.047 £0.01% 0.093 +0.18*
2 0.031£001°  0.157£001"  0.022+0.01°  11.452+051° 1943009 6.974+1.49°  0.063+0.01°  0.083 +0.03
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deposition, and sludge [48]. Among the other elements not
mentioned in Italian legislation, the Al levels were notewor-
thy. Aluminum is extensively found in the earth’s crust and
ranked the third most prevalent element in the environment
[49]. Generally, agricultural soils can contain high Al levels
[50], but the average concentration we recorded was much
higher than those found in soil samples collected from sites
in Markazi (Iran) (13839.169 + 348.409 mg kgfl) [51]. High
Allevels can lead to acidification of soils, posing a serious risk
to overall plant productivity [52]. Also, Fe is another relatively
abundant element in many cultivated soils (average range,
20.000 to 40.000 mg kg™") [53]. The levels we measured fell
within this range. Finally, the Mn levels from the two sites
were within the mean background concentration of 330 mg
kg ! reported by Barceloux and Barceloux [54].

The trace element levels were sometimes lower in the
isopods than in the soil, except for Cd, Cu, and Zn. This
consideration is highlighted by the PCA analysis, in
which the projected observations (isopods samples) from
site 2 are located in relation to a higher concentration of
Cd, Cu, and Zn. Cu and Zn are essential elements for life,
which explains their higher concentration in the isopods
[14]. The great affinity of isopods for Cu results from its

requirement for hemocyanin synthesis [14, 55], whereas
Cd is a non-essential element and its regulation is proba-
bly more difficult [19, 55].

Bioaccumulation in terrestrial organisms is usually
based on a sum of the amount of metal adsorbed into
the body wall and absorbed into the body [56].
However, the isopod exoskeleton has a low binding affin-
ity for metals [56]. The isopod Porcellio scaber takes up
metals mainly via the alimentary tract [56]. The main
organ for the storage of Cd, Cu, Zn, and Pb is the hepa-
topancreas (midgut gland) packed with different types of
granules consisting of blind-ending tubes protruding from
the intestine at the border between the foregut and the
stomach [57]. According to Witzel [58], Cd accumulates
because terrestrial isopods are unable to expel it from the
body; studies have shown that Cd bioaccumulation may
also depend on the presence of other metals (i.e., Zn) and
their concentration in the soil/litter [14, 58, 59]. Studies
on Porcellio scaber and Porcellio laevis (Isopoda,
Oniscidea) showed how the excretion rate of Cd can be
influenced by the Zn concentration in the environment
and/or in the food they ingest [58, 60]. It follows then
that the presence of Zn and Cd in food affects the



assimilation potential of both metals in P. scaber [61].
Also, Godet et al. [59] suggested that high Zn concentra-
tions in litter allow P. scaber to excrete Cd or to limit its
uptake, whereas lower Zn concentrations in food do not
allow isopods to eliminate Cd or to limit its uptake from
food. The BAF we calculated identifies P. affinis as a
micro-concentrator for Zn and as a macro-concentrator
for Cu and Cd. Our data are the first to report on the
bioaccumulation capacity of P. affinis.

Site 1 is located within a natural area in a special area
of conservation; it is surrounded by extensive farmlands
where elements such as Zn and Cu are heavily used in
pesticides and fertilizers [38], while high Cd concentra-
tions may result from the use of mineral fertilizers [62].
Site 2 is located alongside a busy route. This and the wear
of mechanical parts of road vehicles are the main anthro-
pogenic sources of Cu, Cd, and Zn [63, 64]. In their study
in uncontaminated subtropical locations (Assiut, Egypt),
Hussein et al. [55] reported a BAF for Zn and Cu in
Porcellio laevis (Isopoda, Oniscidea) higher than ours,
while their BAF for Cd was in line with ours.
Furthermore, the BAF we calculated for Zn and Cd was
higher than the range reported by Udovic et al. [65] in
P. scaber collected in two non-polluted managed gardens
in Slovenia. Ghemari et al. [14] measured Cd, Pb, Zn, and
Cu concentration in P. laevis from Tunisian industrialized
areas and found a BAF of almost > 1 for Cd, Cu, and Zn,
suggesting a role of bioaccumulator for the genus
Porcellio. Also, Porcellionides pruinosus (Isopoda,
Oniscidea) could be defined as a macro-concentrator of
Cd, Zn, and Cu (BAF > 2).

On the other hand, Armadillidium vulgare (Isopoda,
Oniscidea) has the ability to accumulate Cu and Zn, but not
Cd [5].

Mazzei et al. [5] reported a BAF of 0.03 in P. laevis ex-
posed to various Pb concentrations for 21 days. Also, Ghemari
et al. [66] found a BAF for Pb < 1, indicating P. laevis as a
deconcentrator for Pb, an observation shared by the present
study. This was confirmed by the significant negative corre-
lation between Pb concentrations in the isopod and the soil
samples. Heikens et al. [4] also found a negative correlation
between Pb concentration in Isopoda and soil concentration,
suggesting regulation of Pb by this taxonomic group. There is
scarce literature about the BAF for other trace elements.
Isopods sampled from the industrialized areas of Sfax (south-
eastern Tunisia) resulted in deconcentrators of Fe [67], as we
also noted. Unfortunately, no data for Al, Mn, and Hg are
available for comparison. However, the BAF here calculated
indicates a role for P. affinis as a deconcentrator also for Al,
Fe, Hg, and Mn. These new findings suggest that P. affinis can
excrete and/or regulate certain elements (e.g., Al, Fe, Pb) with
the lowest BAF. Moreover, trace element levels may exceed
an organism’s physiological tolerance; in response, terrestrial

isopods have developed not only mechanisms for uptake and
storage of essential elements but also the mechanisms for han-
dling excess uptake of metals, especially those not essential
for life [57].

Conclusion

In this study, trace elements were measured in both soils
and isopods from two sites that differed in the degree of
anthropization. As discussed above, the majority of bio-
accumulation studies on oniscidean isopods has been con-
ducted on Porcellio laevis, P. scaber, and Porcellionides
pruinosus, which are the most common and widespread
species of the temperate zone [27]. These organisms can
accumulate Cd, Cu, and Zn in large amounts. The trace
element levels detected in the isopods analyzed in the
present study suggests that Philoscia affinis can also cope
with high accumulation levels of Cd, Cu, and Zn. In par-
ticular, it was found how Philoscia affinis can be consid-
ered as a macro-concentrator of Cu and Cd and a micro-
concentrator of Zn, representing a potential candidate for
monitoring soil contamination being widely distributed.
Trace element accumulation kinetics and the factors that
influence their uptake and loss have a key role in ecotox-
icology. Thus, future studies are needed to predict the
physiological fate of trace elements in this species.
Furthermore, the role of trace elements in the ecology of
this species and in other terrestrial invertebrates should be
investigated in the near future.
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