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A B S T R A C T 

Nowadays, Machine Learning techniques offer fast and efficient solutions for classification problems that would require intensive 
computational resources via traditional methods. We examine the use of a supervised Random Forest to classify stars in simulated 

galaxy clusters after subtracting the member galaxies. These dynamically different components are interpreted as the individual 
properties of the stars in the Brightest Cluster Galaxy (BCG) and IntraCluster Light (ICL). We employ matched stellar catalogues 
(built from the different dynamical properties of BCG and ICL) of 29 simulated clusters from the DIANOGA set to train and test 
the classifier. The input features are cluster mass, normalized particle cluster-centric distance, and rest-frame velocity. The model 
is found to correctly identify most of the stars, while the larger errors are exhibited at the BCG outskirts, where the differences 
between the physical properties of the two components are less obvious. We investigate the robustness of the classifier to 

numerical resolution, redshift dependence (up to z = 1), and included astrophysical models. We claim that our classifier provides 
consistent results in simulations for z < 1, at different resolution levels and with significantly different subgrid models. The 
phase-space structure is examined to assess whether the general properties of the stellar components are reco v ered: (i) the 
transition radius between BCG-dominated and ICL-dominated region is identified at 0.04 R 200 ; (ii) the BCG outskirts ( > 0.1 

R 200 ) is significantly affected by uncertainties in the classification process. In conclusion, this work suggests the importance of 
employing Machine Learning to speed up a computationally e xpensiv e classification in simulations. 

Key words: methods: data analysis – methods: statistical – galaxies: stellar content. 
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 I N T RO D U C T I O N  

n recent years, the diffuse stellar envelope observed in groups and
lusters of galaxies, called IntraCluster Light (ICL), has assumed a
rominent place in the study of structure formation. This visible
racer exhibits properties that are rather peculiar, distinct from
he other stars confined in their constituent member galaxies (e.g.
ontini 2021 ; Montes 2022 , and references therein). Both theoretical
nd observational pieces of evidence (Murante et al. 2004 , 2007 ;
uchwein et al. 2010 ; Mihos et al. 2016 ; Montes & Trujillo 2018 ,
019 ; Spa v one et al. 2020 ; Kluge et al. 2020 , just to quote a few) have
een gathered on the origin and evolution of this component. Recent
ndings have suggested that the ICL distribution follows the global
otential well of the host galaxy cluster (e.g. Montes & Trujillo 2019 ;
lonso Asensio et al. 2020 ; Ca ̃ nas et al. 2020 ) and thus, it can be
sed as a luminous tracer for dark matter, highlighting its importance
n the context of structure formation. 

Observationally constraining the properties of the ICL is trouble-
ome, as it requires both deep and wide observations of spatially
 E-mail: ilaria.marini@inaf.it 
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xtended low-surface brightness regions in the sky, other than a
op-level data processing pipeline to a v oid spurious contamination
rom other sources. To further complicate the scenario, the evolution
f the ICL is tightly connected to the build-up of the Brightest
luster Galaxy (BCG), i.e. the central galaxy in a cluster, which

its at the centre of the cluster gravitational potential. Both the
patial extent and luminosity curves of the two components smoothly
erge, leaving no trace of the transition (Bender et al. 2015 ; Kluge

t al. 2020 ). Therefore, the separation of the ICL from the BCG
s performed in several (often laborious) ways. Some studies (e.g.
luge et al. 2020 ; Spa v one et al. 2020 ) identify the ICL as the

xcess of light with respect to a de Vaucouleurs profile or a double
 ́ersic decomposition, while often it is preferred to perform a simple
ut in surface brightness (Mihos et al. 2016 ; Montes & Trujillo
018 ). In this re gard, sev eral studies (e.g. Contini, Chen & Gu 2022 ;
ontes 2022 , and references therein) have discussed the role of

he transition radius, i.e. the cluster-centric distance at which the
CL component starts dominating the stellar component. Due to the
ariety of methods employed to estimate the ICL contribution, the
alue of this transition radius may depend on the adopted method
f ICL identification. From the observational side, typical values
f the transition radius are around 60–80 kpc (Gonzalez et al.
© 2022 The Author(s) 
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021 ; Montes et al. 2021 ), thus in line with results from earlier
orks (Zibetti et al. 2005 ; Gonzalez, Zaritsky & Zabludoff 2007 ;
eigar, Graham & Jerjen 2007 ; Iodice et al. 2016 ). These values
lightly increase for other analyses, such as those presented by 
hang et al. ( 2019 ), who concluded that the transition from the
CG to the ICL is just outside 100 kpc, or by Chen et al. ( 2021 )
ho found values ranging in the interval 70–200 kpc. Results based 
n simulations (e.g. Contini 2021 ; Contini & Gu 2021 ; Contini
t al. 2022 ) agree with these observational results, and indicate that
he transition radius is independent of both BCG + ICL and halo

asses, with typical values of 60 ± 40 kpc, if similarly derived from
rofile fitting. Usually, this technique requires the assumption of a 
ouble/triple S ́ersic profile (S ́ersic 1963 ) or a composition of different
rofiles such as the Jaffe profile (Jaffe 1983 , describing the BCG
istribution) and NFW profile (Navarro, Frenk & White 1997 ) for
he ICL. 

To our advantage, in simulations, one can exploit the full 6D 

hase-space information available on star particles to investigate 
he properties of the ICL and BCG (Dolag, Murante & Borgani 
010 ; Remus, Dolag & Hoffmann 2017 ). It is in this direction
hat Dolag et al. ( 2010 ) have invested their effort in designing a
lassification algorithm applicable to the star particles in the main 
alo of simulated clusters and groups according to their properties 
n phase-space. The assumptions underlying this method derive 
rom the study of the velocity distribution of star particles which 
xhibit a bimodal distribution that can be associated with two 
istinct dynamical components. Combining this information with 
n unbinding procedure leads to separation into a central BCG 

more compact and dynamically cold) and a diffuse ICL. Although 
his method should not be regarded as a procedure with outputs 
mmediately comparable to observations, it provides us with the 
ynamical information associated with each component. In other 
ords, we expect this technique to conv e y information on the
hysical properties of both stellar components, to complement the 
bservational data. 
To our disadvantage, the large volume of data to classify in state-

f-the-art simulations requires intensive computational effort. To 
 v ercome this limitation, the analysis presented in this paper aims
t reproducing a similar classification method adopting Machine 
earning (ML) techniques that often pro v e to be less computationally
 xpensiv e and more efficient than traditional methods. An automated 
ethodology for efficiently classifying the stellar components can 

e an essential ingredient to facilitate the use of these tools in
owadays analyses. To this end, we build a Random Forest classifier
o recognize the label of a star particle solely basing the decision on
he specific features of each particle. This method is widely employed 
n ML problems for its versatility and its performance with high- 
imensional data. One essential benefit is that the computational 
ost of Random Forest models does not depend significantly on 
he size of the training set, given that it scales logarithmically. 
dditionally, the predictions are straightforward to interpret, while 

t is also extremely easy to measure the relative importance of each
eature in the predictions. 

The paper is structured as follows. In Section 2 , we present
he synthetic cluster set on which we train, cross-validate, and 
est the classifier. Furthermore, we include a description of the 
raditional method used to calibrate the ML model. Section 3 
escribes the model and its caveats; in Section 4 , we discuss
he achieved classification performance with distinct clusters and 
ssess the reliability of the model to reco v er the true label, as
dentified by the ICL-Subfind. Finally, we present our conclusions in 
ection 5 . 
 SI MULATI ONS  

he ML algorithm is trained, cross-validated, and tested on 29 clus-
ers from a set of cosmological hydrodynamical simulations called 
IANOGA. These simulations were carried out with the GADGET -3 

ode, a modified version of the GADGET -2 tree-PM smoothed particle
ydrodynamics (SPH) public code (Springel 2005 ). The major 
hanges include a higher order kernel function, a time-dependent 
rtificial viscosity model, and a time-dependent artificial conduction 
cheme. 

The 29 simulated clusters (for simplicity called D1, D2,..., D29) 
re the result of zoom-in simulations centred on the most massive
alaxy clusters evolved in a lower resolution N -body parent box of
 h −3 Gpc 3 volume with the inclusion of baryons. The cosmological
odel is a � cold dark matter with the following parameters �M 

=
.24, �b = 0.04, n s = 0.96, σ 8 = 0.8, and H 0 = 72 km s −1 

pc −1 . These clusters represent the 24 most massive clusters in
he parent box with masses M 200 ∈ [0.8–2.7] × 10 14 h −1 M � and
ve isolated groups with M 200 within [1–4] × 10 14 h −1 M �. In the
igh-resolution regions, the DM particle mass is m DM 

= 8.3 × 10 8 

 

−1 M � and the initial mass of the gas particle is m gas = 3.3 × 10 8 

 

−1 M �. The Plummer equi v alent gravitational softening for DM
articles is set to ε = 5.75 h −1 kpc. The gravitational softening
engths of gas, star, and black hole particles are 5.75, 3, and 3 h −1 

pc, respecti vely. Se veral subgrid models included in the simulations
reat the unresolved baryonic physics of the simulations. Details can 
e found in Ragone-Figueroa et al. ( 2018 ) and references therein. 

.1 Halo finder 

elf-bound structures (i.e. our ‘bonafide’ galaxies) are identified 
y running Subfind (Springel et al. 2001 ; Dolag et al. 2009 ) in
he catalogue of group particles compiled by Friends of Friends 
FoF) with link length b = 0.16 in units of the mean interparticle
istance. The algorithm selects out local density maxima, identified 
n a geometrical way. Particles not gravitationally bound to such 
axima are discarded. A substructure is considered resolved if it 

ontains at least 50 DM and/or star particles. 
In this work, rather than considering these newly found galaxies 

nd their properties, we employ the catalogue to discard all the
articles associated with the satellite substructures. We keep only 
he star particles in the main halo (defined as the central subhalo of
 given group), which contains, besides the BCG, all particles that
ere not associated with any other subhalo. 

.2 The ICL separation by Subfind 

o determine the dynamical distinction between ICL and BCG in 
he stellar envelope of the main halo of each group, we implement
 modified version of the halo finder Subfind, which for clarity we
ill call ‘ICL-Subfind’. This division is performed once all star 
articles of the central group are isolated, by first subtracting the
tars associated with the member galaxies of the group with the
tandard version of Subfind (presented in the previous section). The 
etails of this technique are presented in Dolag et al. ( 2010 ); here,
e will only provide a brief description. 
The algorithm identifies the single star particles in the main halo

f clusters as either bound to the BCG or ICL, solely applying
 dynamical criterion. The underlying assumption is that the two 
elocity distributions of stars belonging to the ICL and the BCG can
e each fitted by a Maxwellian shape so that the o v erall v elocity
istribution of stars is described by a double Maxwellian of the
MNRAS 514, 3082–3096 (2022) 
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Figure 1. Mass-weighted maps of the stellar components as identified by the ICL-Subfind for one of the clusters in our simulations. Left: BCG and ICL hosted 
in the main halo of the cluster. Centre: Stars associated with the ICL component. Right: Stars bound to the BCG. The stellar component is dominated by the 
ICL diffuse component. 
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as the radius encompassing a mean o v erdensity equal to 
� times the critical density of the uni verse ρc . Equi v alently, we define the 
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ollowing form: 

( v) = k 1 v 
2 exp 

(
− v 2 

2 σ 2 
1 

)
+ k 2 v 

2 exp 

(
− v 2 

2 σ 2 
2 

)
. (1) 

he diffuse ICL is associated with the Maxwellian yielding the
argest velocity dispersion; in contrast, the BCG, having colder
ynamics, populates the distribution at lower dispersion. 
To assign each star particle to either one of the two dynamical

omponents, the algorithm follows an unbinding procedure, by
teratively computing the gravitational potential given by all particles
ithin a sphere whose radius is initially equal to a fraction of the
irial radius. In this framework, we compare each particle’s kinetic
nergy with the potential energy (at the particle position) given
y this spherical mass distribution. If the particle’s kinetic energy
s higher, then the particle is defined as ‘unbound’ (and ‘bound’
therwise). Performing this operation on all star particles identifies
wo stellar populations which are then separately fitted with a single

axwellian. If the best-fitting parameters of the double Maxwellian
atch those obtained from the single initial Maxwellians, then the

rocedure is completed, otherwise, the radius of the sphere is changed
nd the computation is remade. Notice that the radius is usually
djusted to match the value of the BCG components, but provided
hat the algorithm does not converge, then a second attempt is made
ith the ICL component. The radius is varied so as to decrease

increase) the spherical mass distribution according to whether the
CG velocity dispersion is too high (low) compared to the expected

esult from the initial fit. The iterative procedure stops when the ratio
f the expected velocity dispersion over the fitted one differs from
ess than a given threshold value and thus, one obtains the label ‘ICL’
r ‘BCG’ for each star particle in the main halo. Nevertheless, the
lgorithm may not necessarily converge if the number of iterations
xceeds a threshold value provided by the user. We will see that this
s the case for some of our systems. 

As a proof of concept, Fig. 1 illustrates the outcome of the labelling
n the total stellar population of the main halo (left-hand panel)
rom the stellar map weighted on the particle masses of one of the
lusters in our simulation. By applying the ICL-Subfind algorithm,
e can separately study the characteristics of the ICL (central panel)

nd BCG population (right-hand panel). Similarly, Fig. 2 shows the
esulting density profiles (left-hand panel) and velocity histograms
right-hand panel) of the same cluster. Radius and velocity are
NRAS 514, 3082–3096 (2022) 
ormalized by R 200 and V 200 . 1 The colour-coded legend is common
o both panels: stars in the main halo in black, ICL in red, and BCG
n blue. The density profiles show that the BCG mostly resides in
he central regions, while the ICL extends to larger distances, in
act dominating the stellar component in the outskirts. In the right-
and panel, we plot the histograms of the main halo star particles
elocity distribution (in black) and the single BCG (blue) and ICL
red). We observe that a single Maxwellian (best fit σ � = 867 km s −1 ),
epresented by the dotted black line, does not provide a good fit to the
article distribution. On the other hand, when the fitting procedure is
ttempted with a double Maxwellian (black dashed line), the agree-
ent is much more evident. The single Maxwellian associated with

oth the BCG and ICL are also reported with the dashed lines. The
iffuse ICL is associated with the Maxwellian with the larger velocity
ispersion ( σ � 

ICL = 1002 km s −1 ); in contrast, the BCG, having colder
ynamics, populates the distribution at lower dispersion ( σ � 

BCG = 484
m s −1 ). Furthermore, in Dolag et al. ( 2010 ) it was tested that a triple
axwellian does not impro v e the results in most cases. 

 R A N D O M  FOREST  

iven the nature of the ICL-Subfind algorithm, based on well-defined
roperties of the stellar components, its action may be also replicated
y an ML model in a faster and more efficient way. Our goal is to
rovide an alternative classification method for identifying stars in
he main halo according to several features that are crucial in the
se of the former method. To achieve this, we design a supervised
lassification method, based on the Random Forest classifier (based
n Pedregosa et al. 2011 ), to which we feed a feature vector
epresentative of the classes we are predicting (i.e. BCG and ICL).
xamples of input features we tested are the potential and total energy
f each particle, the particle age, mass, 3D position, and 3D velocity.
The Random Forest algorithm (Breiman 2001 ) is a tree-based

lassification method that learns how to classify objects into
ifferent classes. Its founding components are the decision trees
Quinlan 1993 ) that singly operate to make predictions on the single
article based on the associated input features � θ . A Random Forest
s thus a simple extension of the single operating decision tree,

art/stac1558_f1.eps
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Figure 2. Observed properties in the stellar populations identified by the ICL-Subfind for the same cluster in Fig. 1 . Left: Main halo (black), ICL (red), and 
BCG (blue) stellar density profiles. Right: Velocity histograms of the main halo (black), ICL (red), and BCG (blue). We also report the single (dashed black) and 
double Maxwellian (dotted black) best-fitting curves for the entire data set. The red and blue dashed lines are showing the individual Maxwellian distributions 
which are associated with the unbound ICL ( σ� 

ICL = 1002 km s −1 ) and bound BCG ( σ� 
BCG = 484 km s −1 ). 
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ut it generally impro v es the performance of the classifier. Indeed,
he advantage to constructing an ensemble of classifiers, where 

ultiple trees fit random subsamples of the data, is that o v erfitting
nd instabilities in the data distributions may be mitigated by the 
veraged results of several trees. Therefore, we aim to design an 
dequate architecture of the Random Forest (e.g. number of trees, 
umber of features to consider when looking for the best splits) to
ake the most accurate predictions. 

.1 Data set and training phase 

e collected the data for the training set (later divided to perform
ross-validation) and test set from the star particles in the simulated 
lusters and the output of the ICL-Subfind. The original set of
imulated galaxy clusters is composed of 29 objects. We analyse 
he properties of these galaxy clusters to gather a fair sample of the
luster set. Besides all properties listed by Subfind (such as mass
nd radius), we determine the dynamical state of the host cluster (i.e.
elaxed, disturbed, or intermediate), which is a good metric to derive 
he ‘thermalization’ level of the particle phase-space distributions 
n a cluster. Particularly disturbed objects (e.g. after halo merging 
vents) may not have a well-defined Maxwellian shape in the particle 
elocity distribution, thus complicating the fitting procedure used 
n splitting the stellar components. Thus, estimates of dynamical 
tates are performed following the prescription described in Neto 
t al. ( 2007 ) based on two properties: the centre shift (identified
s the distance between the minimum position of the gravitational 
otential x min and the centre of mass x cm 

) and the fraction of mass in
ubstructures f sub . We use the same threshold parameters as in Biffi
t al. ( 2016 ). A halo is classified as relaxed if both the following
onditions are satisfied: ⎧ ⎨ 

⎩ 

δr = || x min − x cm 

|| /R 200 < 0 . 07 

f sub = 

M tot, sub 

M tot 
< 0 . 1 

, (2) 

here M tot is the total mass and M tot, sub is the total mass in
ubstructures within R 200 . If neither is satisfied, then the cluster is
lassified as disturbed, while it is tagged as partially disturbed if
nly one of the abo v e two criteria is not satisfied. After applying this
lassification to the 29 clusters at redshift z = 0, we find six relaxed,
ight disturbed, and 15 intermediate cases. The physical properties 
aken into account for this selection (cluster mass, stellar mass of the
entral galaxy, and dynamical state) are listed in Table 1 . 

Furthermore, we excluded a priori from our choice three clusters 
that is, D7, D11, and D13) that did not reach convergence in the
CL-Subfind output while still retained as part of the test set to pro v e
hat our ML model can o v ercome challenging classifications for the
raditional algorithm. 

Out of the 26 remaining clusters, we draw 10 000 star particles
ach randomly selected from five clusters (i.e. D3, D9, D10, D18,
nd D22) for a total of 50 000 particles. ICL and BCG are represented
n this sample with proportions 65:35. We divide the training and test
ets assigning 2/3 to the former and 1/3 to the second. 

.2 Input features 

he predicting power of an ML model heavily depends on to
hat extent the input features of the data set are representative of

he classes one hopes to reco v er. Before ultimately e v aluating our
lassifier’s performance, we infer the combination of features that 
est match the two classes at hand. Starting from a large parameter
pace, we find that the particle cluster-centric distance and the module 
f the rest-frame particle velocity (with respect to the stellar centre of
ass within R 200 ) offer most of the dynamical information needed to

isentangle the two components, given that they closely relate to the
article energies employed in the ICL-Subfind unbinding procedure. 
ig. 3 shows the probability density distributions of these two features 
rawn from one of the clusters in our simulations. To clarify the
eparation in the phase-space, we plot the histograms of the BCG
blue) and ICL (red) separately. 

To obtain this result, we first examined the classifier’s performance 
sing a larger set of possible particle properties (e.g. distance from the
luster centre and velocity relative to it, cluster mass, age, metallicity,
inetic energy, and potential energy) and recording the metric scores. 
ince the kinetic and potential energies directly correlate with 
elocity and distance, we only keep the latter two. Later, we selected
ifferent subsets of these properties to assess which combinations 
f them provide results which are consistent with the all-features 
ase and its metric scores. Having established that once we include
istance and velocity in the features space the performance would not
urther significantly impro v e by adding other features, we decided to
MNRAS 514, 3082–3096 (2022) 
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Table 1. A summary of the main characteristics of the simulated clusters used in the training and testing 
phases at z = 0. We report the given cluster name, cluster mass M 200 , the cluster radius R 200 , the cluster 
orbital velocity V 200 , the stellar mass in the main halo M � , gal , and the dynamical state. We add an asterisk 
to the clusters which are part of the training set. 

Cluster name M 200 R 200 V 200 M � , gal Dynamical state 
� = Training set [10 15 M � h −1 ] [Mpc h −1 ] [km s −1 ] [10 10 M � h −1 ] 

D1 1.26 1.76 1758 1402 Intermediate 
D2 0.39 1.19 1188 399 Intermediate 
D3 ∗ 0.49 1.28 1282 599 Intermediate 
D4 0.38 1.18 1176 348 Disturbed 
D5 0.14 0.84 840 177 Relaxed 
D6 1.12 1.69 1687 1077 Intermediate 
D7 1.10 1.68 1680 1220 Intermediate 
D8 1.24 1.74 1746 843 Disturbed 
D9 ∗ 0.10 0.76 756 125 Relaxed 
D10 ∗ 1.04 1.64 1647 1342 Disturbed 
D11 0.86 1.55 1547 1114 Intermediate 
D12 1.58 1.89 1895 1185 Relaxed 
D13 1.06 1.66 1658 1008 Disturbed 
D14 1.43 1.83 1832 1372 Intermediate 
D15 1.36 1.80 1803 1290 Intermediate 
D16 2.74 2.28 2276 2013 Disturbed 
D17 1.43 1.84 1834 972 Intermediate 
D18 ∗ 0.85 1.54 1542 1056 Intermediate 
D19 1.14 1.70 1703 1200 Intermediate 
D20 1.43 1.83 1833 1298 Intermediate 
D21 1.18 1.72 1722 1174 Relaxed 
D22 ∗ 1.56 1.89 1887 1919 Relaxed 
D23 1.06 1.66 1657 1030 Disturbed 
D24 1.09 1.67 1675 1433 Intermediate 
D25 0.79 1.51 1507 719 Disturbed 
D26 1.26 1.76 1757 1255 Intermediate 
D27 1.33 1.79 1789 1410 Relaxed 
D28 1.55 1.88 1881 1457 Intermediate 
D29 1.24 1.75 1749 1049 Disturbed 

Note. ∗Training set 

Figure 3. Probability density functions of the input features associated with the ICL (red) and BCG (blue) in one of the clusters. Left: Distribution of the 
logarithmic cluster distance o v er R 200 . Right: Stellar rest-frame velocities scaled by the virial circular velocity V 200 . 
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eep a basic parameter space and excluded such additional features.
urthermore, since our training set is composed of subsamples from
ifferent haloes, we perform a scaling of each of these quantities
ccording to the cluster virial values. We normalize cluster-centric
istances by R 200 and we take its logarithm to increase the separation
etween the two stellar components in the parameter space. Instead,
NRAS 514, 3082–3096 (2022) 

V

he rest-frame velocity is scaled by the circular virial velocity V 200 ,
hich reads 

 200 = 

√ 

GM 200 

R 200 
. (3) 
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Figure 4. Importance of the input features including all tried input features 
to predict ICL and BCG components. From top to bottom: the logarithm of 
the cluster mass M 200 , the stellar metallicity and age, the logarithmic cluster- 
distance o v er R 200 , and the rest-frame v elocities scaled by the virial circular 
velocity V 200 . The black bars encode the standard deviation when sampling 
the importances from the trees in the forest. 
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ssuming that the particle distributions of distance and velocity 
n a cluster may not be fully generalized by only scaling for the
orresponding virial quantities in our final set, we provide the cluster 
ass M 200 as an additional input parameter to the reference model. 
his supplementary information may help the classifier in choosing 
 label o v er another in case of the de generac y of the other two
arameters if the label is somewhat still dependent on the cluster 
ize. 

Fig. 4 reports in increasing order the importance of all the features
nitially included in the trained ML model and the associated standard 
eviations with the black bars. Feature importances (Pedregosa et al. 
011 ) can be computed as the mean and standard deviation of the
ecrease in impurities summed for each tree in the forest. In the case
f a classification problem, impurity is often defined as Gini impurity, 
hich is a measurement of the likelihood of incorrect classification 
f a new instance if it were randomly classified according to the
istribution of class labels in the data set. In other terms, this
mportance figure provides an understanding of how the ML classifier 
 v aluates the input parameters relatively to each other. Although 
ur choices were not driven by the feature importance analysis, 
e provide the results for our final set to point out an important

spect in the inclusion of the cluster mass as additional feature to
he parameter space. The plot shows that distance and velocity are 
f similar importance, whereas the other parameters have seemingly 
o wer v alues. This is not surprising since these two features are also
hose that ICL-Subfind uses to perform the classification. On the 
ther hand, the mass of the cluster M 200 yields the lowest value
mong all features, provided that the training set is composed of
nly five clusters [and thus only five different input cluster masses
namely M 200 = (0.49, 0.10, 1.04, 0.85, 1.56) × 10 15 M �], whereas
he other features vary from particle to particle. However, we expect 
hat this feature could play a more important role in larger cluster
ets, which is the reason why we do not exclude it from our analysis.

.3 Classification performance 

o tune the (hyper)parameters of the classifier, we use a K-fold 
rossing validation, with K = 5. This involves randomly splitting the 
raining set into K complementary subsets and repeatedly training 
he model on K-1 subsets while validating the resultant estimator 
hen applied to the remaining subset. Each time, the classifier is

rained on different combinations of the (hyper)parameters to obtain 
nbiased estimates of the classifier’s average performance metrics 
nd their uncertainty. The main parameters undergoing this search 
re the number of features to consider when splitting a tree, the depth
f the trees, and the number of trees in the Random Forest ensemble.
Results from each of these cross-validated runs are analysed with 

erformance metrics. Notice that the estimated ICL labels are (in 
ost of the clusters) much larger than the BCG component. For our

inary classification problem, we use recall (R), precision (P), and 
-Score (FS) which are independent of the imbalance nature of the
lassification problem. These are defined as 

 = 

TP 

TP + FN 

; P = 

TP 

TP + FP 

; FS = 2 
P × R 

P + R 

. (4) 

n the abo v e e xpressions, TP , FP , and FN are the numbers drawn
rom the predicted labels of true positi ves, false positi ves, and false
e gativ es, respectiv ely. In other words, recall expresses the rate at
hich the model correctly predicts the class of an object; precision
easures the fraction of correctly classified objects o v er the total

umber of objects labelled with that class; finally, F-Score can be
nterpreted as the weighted average of the precision and recall, where
t reaches its best value at 1 and worst at 0. We point out that in the
ext we will refer to ‘true’ as the labels provided by ICL-Subfind.
learly, they are not necessarily ‘true’ in absolute terms, but they

epresent our reference answer to this classification problem. In fact, 
here might be cases where the metric score is lowered due to a
ifference in the labels between the two methods, rather than due to
 poor recognition of the ML classifier in the dynamical properties
f stars. 

 RESULTS  

ased on the cross-validated parameter search, we find the algorithm 

o have a consistently good performance. Each class holds on this
icture: the ICL shows P = 95 per cent, R = 92 per cent, and FS
 93 per cent, while the BCG class presents P = 78 per cent, R =

5 per cent, and FS = 81 per cent. We remind that these scores
re valid for the specific subhalo finder used, Subfind, and larger
ifferences could be found when employing other algorithms. 
Besides its high accuracy, one of the benefits of employing the ML

lgorithm to classify star particles is its efficiency and speed up with
espect to ICL-Subfind. Provided that the latter not only performs 
he star particle classification but also identifies the substructures 
n the FoF catalogue, in cases where one already has the subhalo
dentification for a given cluster (a standard procedure in state-of-the- 
rt simulations of galaxy clusters with the aim of analysing galaxy
opulations), it is possible to bypass this step and directly obtain
he labels for the stars in the main halo. Skipping this unnecessary
peration can be crucial in saving run-time for large simulations 
hereby the subhalo identification can take several hours on different 

ores. For this reason, it is not straightforward to fully quantify the
omputational advantage of employing one technique o v er the other,
nless one only needs the star particle classification having done the
ubhalo identification in previous steps. Taking this into account, 
 rough estimate of the run time of ICL-Subfind restricted to the
ole stellar classification for a cluster at our reference resolution 
considering the operational time spent by the traditional Subfind to 
etect subhalos) gives a speed-up by a factor of about 100. On the
ther hand, considering both procedures, the savings in time add up
o an order of 10 5 . Furthermore, increasing the numerical resolution
and therefore the number of particles in a simulation) might entail
 severe increase in the run-time, whereas no significant difference 
nvolves the ML classifier. In conclusion, we recommend the use of
MNRAS 514, 3082–3096 (2022) 
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Figure 5. Top: Distribution of the input features drawn from the simulated cluster. In each panel, we plot the predicted (bars) and true (line) number counts of 
both ICL (red) and BCG (blue) associated with the star particles. More in detail we have (from left to right) the distributions of the logarithmic cluster-centric 
distance normalized for R 200 and the stellar rest-frame velocities normalized for V 200 . Bottom: Percentage residuals measured between the true and predicted 
counts in each bin. 
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he ML model in cases where simulations have already undergone a
ubhalo identification procedure. Ho we v er, further e xaminations are
equired to assess possible differences when other halo finders are
sed, since we only examined the results by Subfind. 
In the next section, we would like to quantitatively assess the

esolving power of the model compared to the traditional ICL-
ubfind. With this in mind, we select a random cluster in our
imulation (its properties are summarized in Table 1 under the name
5), and examine the differences between ML and ICL-Subfind in the

eature distributions, phase-space profiles, and mass-weighted maps.
he last part of this section will provide a more general o v erview of

he results for the entire cluster data set. 

.1 Testing on a single simulated cluster 

he first comparison is between the input features of the star particles.
ig. 5 illustrates the comparison between the number counts of

he particles’ logarithmic cluster-centric distance (left-hand panel)
nd their velocity distribution (right-hand panel), both normalized
y their virial value. True and predicted labels are marked with a
ontouring line and area, respectively, for both ICL (red) and BCG
blue) stars. In the bottom panels, we show the percentage residuals
etween the true and predicted labels o v er the total number of star
articles in each bin to estimate where the results are most different.
his definition of residuals (in absolute value) is the same whether we
onsider ICL or BCG stars, given that it simply represents the excess
f one class o v er the other, normalized by the number of particles in
ach bin. For this reason, we consistently choose throughout the paper
o represent the BCG excess (or deficiency, depending on the sign)
f the ML prediction with respect to the model. The ICL percentage
esiduals will then simply correspond to the opposite number. 

In both cases, we observe a generally good agreement within each
redicted subgroup and its true distribution. The left-hand panel
onfirms the presence of a bulk structure in the inner region, which
orresponds to the BCG and the ICL, a more diffuse component that
 xtends be yond R 200 . The largest differences are found in the inner
NRAS 514, 3082–3096 (2022) 
ore of the BCG (up to 40 per cent), but they are mostly due to the
ow number of star particles in these bins. As we mo v e towards the
utskirts of the BCG, the distribution residuals span values around
0 per cent, which represents a more consistent estimate of the errors
n the classification process at these distances. We usually find this
ransition region to be carrying most of the uncertainty in the labelling
f stars in all clusters, as it will be illustrated in the next section. In this
e gard, we e xpect both algorithms to carry uncertainties, which will
um up at the expense of the ML metric scores. In other words, the
ow metric scores for the ML algorithm are due to a different labelling
ith respect to ICL-Subfind, which in turn is not necessarily al w ays

orrect. The classification process suffers from finding dynamically
imilar particles in the ICL and BCG components that populate
egions far from the centre, thus decreasing the precision of the
lgorithm at these distances. 

As for the velocity distribution, we confirm the presence of the
wo peaks which can be fit by the double Maxwellian. On this point,
e highlight the closeness of the velocity distributions among the

wo methods, which is already a good index of the accuracy of the
L algorithm, given that this result is obtained without the need of

n explicit fit. Fig. 6 shows the mass-weighted maps of the distinct
tellar components in the cluster under study. ICL in the top panels
nd BCG in the bottom. The panels on the left are the results from
he traditional method, while on the right we illustrate the maps
hen employing the labels from the ML algorithm. The results are

emarkably similar and the differences are mainly explained on the
CG outskirts. This can be better appreciated comparing the 3D
ensity profiles of both ICL (red) and BCG (blue) as computed with
he true labelled stars (solid line) or with the predicted labels (dashed
ine) in Fig. 7 . 

Another aspect to consider in e v aluating the performance of the
lgorithm is to study the ICL fraction predicted by the ICL-Subfind
nd that from the ML scheme. We define the ICL fraction f ICL as
he number of ICL particles o v er the total number of stars in the

ain halo. The ML model yields values that are also consistent with
hose predicted by the traditional algorithm: in this particular cluster,
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Figure 6. Mass-weighted maps of the stellar components (ICL in the top 
panels, BCG in the bottom ones) in the same cluster as in Fig. 5 . The left-hand 
panels report the results from the stellar division provided by the traditional 
method with the ICL-Subfind. The right-hand panels show the mass-weighted 
maps for the stellar components identified with the predicted labels. 

Figure 7. Top: Density profiles of the BCG (blue) and ICL (red) in the 
selected cluster. The dashed lines are the profiles computed with the predicted 
labels, while the solid lines report the profiles computed with the true labels. 
Bottom: Residuals (in per cent) between the histograms of the labels from the 
ICL-Subfind and the ML classifier. 
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e measure 0.63 using the ML method as opposed to 0.62 for the
raditional case when considering the ICL fraction o v er the stars of
he main halo. We recall that this value shall not be directly compared
o the observational results. 

.2 Testing on a simulated cluster population 

n the previous section, we showed that our ML-based algorithm to 
eparate stellar ICL and BCG populations is a robust classifier in the
ase of a single test cluster. We can take a step further and apply the
rained classifier o v er all clusters not part of the training set (24 in
ur simulations) to present a few results which are worth discussing.
Fig. 8 shows the comparison between the velocity dispersions 

erived from the fit of the double Maxwellian in equation ( 1 ) to the
tellar velocity distribution as labelled by the ICL-Subfind and ML 

lassifications in all our clusters. In the left-hand panel, we plot the
CL velocity dispersions; in the right-hand panel, we present the BCG 

elocity dispersion. Each point marks a single cluster colour-coded 
or the ICL fraction as given by the ICL-Subfind sample. We report
ll 29 clusters, including those not converged in the ICL-Subfind 
the three isolated points with low ICL fractions), while we mark
he training clusters with a cross for clarity. The dashed grey line

arks to reference the 1:1 relation. Quite remarkably the relationship 
etween ICL velocity dispersion from ICL-Subfind and from the ML 

lassifier (left-hand panel of Fig. 8 ) shows a small scatter around this
elation, with the latter being on average 4 per cent higher. This
ifference increases slightly (10–20 per cent) in correspondence of 
he three groups with the lowest ICL fractions. On the contrary, for the
CG velocity dispersions (right-hand panel of Fig. 8 ), we observe
 significant colour gradient, perpendicular to the reference line. 
lusters hosting a larger BCG stellar fraction and a correspondingly 

ower ICL fraction, assigned by ICL-Subfind, have a higher BCG 

elocity dispersion, and vice versa. This large difference between 
he two methods can be traced back to the extreme values of the ICL
raction in the ICL-Subfind predictions, which do not occur in the

L case (specifically stretching for all clusters only within the range
.60–0.80). Understandably, the larger/smaller the virialized system 

BCG, in this case), the higher/lower the velocity dispersion. 
Table 2 summarizes several of these results for all clusters: we

ompare the fits of the double Maxwellian, the ICL fractions for
oth the ICL-Subfind and ML algorithms, and the performance 
cores. The latter are reported for both the single classes and
he means weighted with the number of the two components. As
reviously mentioned, the scores employed to assess the quality of 
he predictions by the ML classifier with respect to ICL-Subfind are
recision P, recall R, and F-Score FS. We find that BCGs usually have
igh P and lower R scores, which expresses the capability of the ML
lgorithm to be generally correct when labelling BCG stars, although 
ot returning the entire set of BCG particles compared to the true set.
n the contrary, ICL has usually most of the particles assigned, thus
ielding the opposite situation. Ho we ver, FS is high in most cases
a few pathological cases will be discussed in the next paragraph).
 more explicit report of the classification score is provided by the

orresponding weighted means in the last columns. Relaxed clusters, 
hich typically have a well-defined double Maxwellian velocity 
istribution, reach a mean FS score of 80–90 per cent. This is the
ase for 15 clusters in the test set. On the other hand, we observe
 few clusters receiving consistently low scores in the classifier’s 
etrics (i.e. FS is below 40 per cent) while their physical features are

enerally inconsistent with the results obtained by ICL-Subfind. This 
s the case for D7, D11, and D13 for which, as mentioned before,
CL-Subfind did not reach conv ergence. F or these clusters, the ICL
raction is a few per cent and, indeed, there is no separation of the
omponents. On the contrary, we believe that our ML-based method 
 v ercomes these situations by correctly identifying two dynamically 
istinct components, with the BCG component having a markedly 
maller velocity dispersion than the ICL one. Quite interestingly, 
e notice that a few central galaxies in our sample show tidal shell

eatures (see Ebrov ́a 2013 , for a re vie w) once we separate the BCG
nd ICL. This is the case for five of our clusters, two of which are part
f the clusters that have not converged in the ICL-Subfind procedure.
hese shell-like features in the stellar distribution could be linked to
ast tidal shocks, associated with recent merger events. We briefly 
iscuss this observed feature from Fig. A1 in Appendix A . 
A common trait in the testing set is the discrepancy between

redicted and true classes on the outskirts of the BCGs, where
he distinct dynamical behaviours of the star particles are generally 
arder to discern. Fig. 9 investigates this flaw in the performance by
MNRAS 514, 3082–3096 (2022) 
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Figure 8. Comparison of the velocity dispersions derived from the fit of the double Maxwellian in equation ( 1 ) in the stellar velocity distribution labelled by 
the ML classifier and the ICL-Subfind. Each point represents the result from the component of a single cluster, coloured according to the ICL fraction estimated 
in each cluster by the ICL-Subfind. Furthermore, we mark the clusters from the training set with a cross. The dashed grey line is the reference line to a 1:1 
relation. Left: The velocity dispersions in the ICL component. Right: The velocity dispersions in the BCG component. 
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howing the BCG metric scores as a function of the radial distance
rom the centre of the subhalo. We stacked the metric score profiles
or the BCG labels (P in red, R in blue, and FS in brown) of the
ntire cluster set to tentatively describe the expected accuracy. The
haded bands display the standard deviation given by the intrinsic
istribution, while the dashed grey line marks the value 0.5 on the
 -axis, below which the rate of incorrect labelling is more than one
n two in the (predicted or true) BCG set. We notice that the metric
core in the centre is high ( > 0.7), while from ∼0.1 R 200 ( ∼250 kpc)
t declines very rapidly. Here, far from the central region, we expect
ifferences between the ICL and BCG properties to become less
harp, since BCG particles will have larger entropies compared to
he centre, spanning a phase space very similar to that occupied by
he ICL. 

Furthermore, we e v aluated the ML model metric scores for the
airly resolved sample of clusters (that is, excluding D7, D11, and
13) as a function of the mass of the cluster (left-hand panels)

nd the dynamical state (right-hand panels) in Fig. 10 . Dolag et al.
 2010 ) refer to potential uncertainties in the classification process
or low-mass clusters owing to the difficulty in disentangling BCG
nd ICL in the velocity distributions of low-mass haloes, where the
wo Maxwellians cannot be easily discerned. On the other hand, the
ynamical state and recent merger history can strongly impact the
hysical conditions of the stellar components in the inner regions.
n the analysed simulated clusters, these merging events of massive
rbiting haloes with the BCG produce strangely shaped haloes with
on-thermalized velocity distributions, or strongly non-spherical
ymmetry in the star particle distribution, which can be due either to a
eculiar halo formation history or to an incorrect group identification
y Subfind in the main halo. In this case, both ICL-Subfind and the
L algorithm may encounter difficulties in properly separating the

wo components: size estimates of the BCG are extremely sensitive to
hese non-thermalized distributions of star particles. Ho we ver, Fig. 10
hows no significant correlation with either of the cluster properties.
e plot from top to bottom the P, R, and FS for the clusters in both

raining (empty squares) and testing set (filled dots). The latter are
olour-coded according to the ICL fraction computed with the labels
rom ICL-Subfind. There seems to be a mild correlation between P
NRAS 514, 3082–3096 (2022) 

z  
nd f ICL , and thus in the FS, ho we ver this shall be verified with a
arger sample of clusters. 

.3 Testing the robustness of the classifier 

o far, both training and testing have been described for a given
et of simulated galaxy clusters that, despite their specific history of
ormation, share many similarities: the same subresolution model
or star formation and feedback, the same numerical resolution,
nd the same redshift. In the effort to understand the real range of
ossible applications of our classifier – compared to what is originally
btained with ICL-Subfind – we apply our model to other simulated
lusters which differ from the original cluster set in different ways.
e decided to re-simulate two out of the 29 clusters (i.e. D1 and D2)

n different conditions and we discuss the outcomes of these analyses
n the following sections. Despite the limited statistics, we expect to
btain useful insights into the predictive power of our method from
hese tests. 

.3.1 Changing redshifts 

e analyse here the behaviour of the ML classifier in the same
imulation at redshifts different from that of z = 0, at which the
ethod has been trained. We point out that both traditional and
L methods rely on the underlying physical assumption that the

wo stellar components can be described by a double Maxwellian
arly enough to label the stars consistently as for z = 0. This is not
ecessarily true if the stellar populations are still forming or evolving
ignificantly. For this reason, we analyse our simulated clusters at
wo different redshifts ( z � 0.5 and z � 1) at which most of the
CG stellar mass is already in place (Ragone-Figueroa et al. 2018 ).
ig. 11 illustrates the evolution of the stellar density profiles of D2
from left- to right-hand panel: the redshifts are z � 1, z � 0.5, and
 = 0). The legend is as before colour-coded for the stellar type (ICL
n red and BCG in blue); ML results are described by a dashed line,
hile solid marks the ICL-Subfind output. Results and performance

cores are largely consistent with what we found in the case of
 = 0: no significant systematics can be detected between the ML

art/stac1558_f8.eps


Machine learning to identify ICL and BCG 3091 

MNRAS 514, 3082–3096 (2022) 

Ta
bl

e 
2.
 

R
es

ul
ts
 
fr

om
 
th

e 
be

st
-fi

tti
ng

 
pr

oc
ed

ur
e 

ap
pl

ie
d 

to
 
th

e 
do

ub
le
 
M

ax
w

el
lia

n 
in
 
bo

th
 
th

e 
IC

L
-S

ub
fin

d 
an

d 
M

L
 
al

go
ri

th
m
 
ca

se
. W

e 
lis

t t
he

 
co

nv
er

ge
nc

e 
re

po
rt
 
of
 
IC

L
-S

ub
fin

d 
in
 
th

e 
se

co
nd

 
co

lu
m

n.
 
T

he
n,
 
w

e 
pr

es
en

t t
he

 
IC

L
 
an

d 
B

C
G
 
ve

lo
ci

ty
 
di

sp
er

si
on

s,
 
th

e 
fr

ac
tio

n 
of
 
IC

L
, a

nd
 
in
 
th

e 
la

st
 
co

lu
m

ns
 
th

e 
al

go
ri

th
m
 
pe

rf
or

m
an

ce
 
sc

or
es
 
(o

f 
th

e 
tw

o 
cl

as
se

s 
an

d 
th

ei
r 

w
ei

gh
te

d 
m

ed
ia

n)
, n

am
el

y,
 
th

e 
pr

ec
is

io
n 

P,
 
re

ca
ll 

R
, a

nd
 

F-
Sc

or
e 

FS
. 

N
am

e 
C

on
ve

rg
ed

 
σ

B
C

G
 

(I
C

L
-S

) 
σ

IC
L
 

(I
C

L
-S

) 
σ

B
C

G
 

(M
L

) 
σ

IC
L
 

(M
L

) 
f 

(I
C

L
-S

) 
IC

L
 

f 
(M

L
) 

IC
L
 

B
C

G
 

IC
L
 

W
M

ea
n 

[k
m
 
s −

1 
] 

[k
m
 
s −

1 
] 

[k
m
 
s −

1 
] 

[k
m
 
s −

1 
] 

P 
R
 

FS
 

P 
R
 

FS
 

P 
R
 

FS
 

D
1 

Y
es
 

48
5 

10
08

 
46

1 
99

7 
0.

62
 

0.
77

 
0.

99
 

0.
61

 
0.

75
 

0.
81

 
1.

00
 

0.
89

 
0.

88
 

0.
85

 
0.

84
 

D
2 

Y
es
 

34
6 

65
8 

36
7 

69
7 

0.
63

 
0.

74
 

0.
93

 
0.

66
 

0.
77

 
0.

83
 

0.
97

 
0.

90
 

0.
87

 
0.

86
 

0.
85

 

D
3 ∗

Y
es
 

36
2 

72
1 

36
3 

74
8 

0.
62

 
0.

78
 

0.
98

 
0.

56
 

0.
71

 
0.

78
 

0.
99

 
0.

88
 

0.
86

 
0.

83
 

0.
82

 

D
4 

Y
es
 

27
5 

64
3 

35
1 

73
0 

0.
82

 
0.

97
 

0.
86

 
0.

15
 

0.
26

 
0.

85
 

0.
99

 
0.

92
 

0.
85

 
0.

85
 

0.
80

 

D
5 

Y
es
 

24
0 

44
8 

27
0 

49
3 

0.
63

 
0.

62
 

0.
76

 
0.

80
 

0.
78

 
0.

88
 

0.
86

 
0.

87
 

0.
84

 
0.

84
 

0.
84

 

D
6 

Y
es
 

42
3 

94
9 

43
6 

96
4 

0.
73

 
0.

80
 

0.
94

 
0.

70
 

0.
80

 
0.

90
 

0.
98

 
0.

94
 

0.
91

 
0.

91
 

0.
91

 

D
7 

N
o 

85
2 

77
9 

48
2 

98
3 

0.
02

 
0.

77
 

1.
00

 
0.

24
 

0.
38

 
0.

02
 

0.
99

 
0.

04
 

0.
98

 
0.

24
 

0.
37

 

D
8 

Y
es
 

58
0 

12
09

 
70

3 
12

81
 

0.
94

 
0.

83
 

0.
26

 
0.

78
 

0.
39

 
0.

98
 

0.
87

 
0.

92
 

0.
94

 
0.

86
 

0.
89

 

D
9 ∗

Y
es
 

22
8 

42
8 

22
8 

44
5 

0.
54

 
0.

64
 

0.
97

 
0.

76
 

0.
85

 
0.

83
 

0.
98

 
0.

90
 

0.
89

 
0.

88
 

0.
88

 

D
10

 ∗
Y

es
 

48
4 

10
02

 
47

7 
10

15
 

0.
67

 
0.

83
 

0.
94

 
0.

49
 

0.
64

 
0.

80
 

0.
98

 
0.

88
 

0.
84

 
0.

82
 

0.
80

 

D
11

 
N

o 
81

0 
73

4 
41

0 
90

5 
0.

01
 

0.
79

 
1.

00
 

0.
19

 
0.

32
 

0.
02

 
0.

97
 

0.
83

 
0.

98
 

0.
22

 
0.

34
 

D
12

 
Y

es
 

44
7 

10
12

 
51

9 
10

91
 

0.
73

 
0.

77
 

0.
84

 
0.

75
 

0.
79

 
0.

91
 

0.
95

 
0.

93
 

0.
89

 
0.

89
 

0.
89

 

D
13

 
N

o 
11

90
 

11
45

 
65

1 
12

83
 

0.
02

 
0.

92
 

1.
00

 
0.

08
 

0.
15

 
0.

02
 

0.
99

 
0.

04
 

0.
98

 
0.

10
 

0.
14

 

D
14

 
Y

es
 

57
5 

11
01

 
55

9 
11

09
 

0.
56

 
0.

82
 

0.
99

 
0.

41
 

0.
58

 
0.

69
 

0.
99

 
0.

81
 

0.
82

 
0.

74
 

0.
71

 

D
15

 
Y

es
 

38
1 

10
44

 
52

9 
11

76
 

0.
84

 
0.

79
 

0.
61

 
0.

78
 

0.
69

 
0.

96
 

0.
90

 
0.

93
 

0.
90

 
0.

89
 

0.
89

 

D
16

 
Y

es
 

84
8 

14
95

 
87

8 
15

43
 

0.
73

 
0.

92
 

0.
95

 
0.

27
 

0.
42

 
0.

79
 

0.
99

 
0.

88
 

0.
83

 
0.

80
 

0.
76

 

D
17

 
Y

es
 

53
5 

90
2 

56
2 

94
0 

0.
67

 
0.

81
 

0.
91

 
0.

69
 

0.
78

 
0.

81
 

0.
97

 
0.

89
 

0.
85

 
0.

83
 

0.
82

 

D
18

 ∗
Y

es
 

47
2 

83
7 

47
5 

84
5 

0.
79

4 
0.

73
7 

0.
91

 
0.

69
 

0.
79

 
0.

86
 

0.
96

 
0.

91
 

0.
87

 
0.

87
 

0.
86

 

D
19

 
Y

es
 

45
3 

96
7 

43
5 

95
4 

0.
76

5 
0.

76
7 

0.
99

 
0.

61
 

0.
75

 
0.

80
 

1.
00

 
0.

77
 

0.
87

 
0.

85
 

0.
84

 

D
20

 
Y

es
 

57
0 

10
71

 
59

6 
11

13
 

0.
77

9 
0.

79
1 

0.
99

 
0.

54
 

0.
70

 
0.

80
 

1.
00

 
0.

89
 

0.
87

 
0.

84
 

0.
82

 

D
21

 
Y

es
 

76
0 

13
33

 
68

9 
12

61
 

0.
73

8 
0.

81
7 

1.
00

 
0.

39
 

0.
57

 
0.

70
 

1.
00

 
0.

83
 

0.
81

 
0.

73
 

0.
68

 

D
22

 ∗
Y

es
 

55
0 

11
47

 
55

2 
11

73
 

0.
62

 
0.

87
 

0.
99

 
0.

34
 

0.
50

 
0.

71
 

0.
99

 
0.

83
 

0.
82

 
0.

75
 

0.
71

 

D
23

 
Y

es
 

63
0 

12
66

 
64

7 
12

85
 

0.
82

 
0.

91
 

0.
86

 
0.

73
 

0.
79

 
0.

95
 

0.
98

 
0.

96
 

0.
88

 
0.

88
 

0.
87

 

D
24

 
Y

es
 

55
2 

10
38

 
46

6 
97

7 
0.

52
 

0.
80

 
1.

00
 

0.
42

 
0.

59
 

0.
65

 
1.

00
 

0.
79

 
0.

82
 

0.
73

 
0.

70
 

D
25

 
Y

es
 

51
0 

87
0 

48
5 

83
3 

0.
63

 
0.

73
 

0.
96

 
0.

71
 

0.
81

 
0.

85
 

0.
99

 
0.

91
 

0.
89

 
0.

88
 

0.
88

 

D
26

 
Y

es
 

44
7 

98
6 

48
9 

10
32

 
0.

74
 

0.
76

 
0.

82
 

0.
76

 
0.

79
 

0.
92

 
0.

94
 

0.
93

 
0.

89
 

0.
89

 
0.

89
 

D
27

 
Y

es
 

48
9 

93
7 

49
5 

95
2 

0.
57

 
0.

84
 

0.
98

 
0.

40
 

0.
57

 
0.

70
 

0.
99

 
0.

82
 

0.
82

 
0.

74
 

0.
71

 

D
28

 
Y

es
 

18
2 

13
48

 
95

8 
14

24
 

0.
99

 
0.

93
 

0.
02

 
0.

81
 

0.
04

 
1.

00
 

0.
85

 
0.

92
 

0.
99

 
0.

93
 

0.
96

 

D
29

 
Y

es
 

52
4 

10
07

 
45

3 
91

9 
0.

47
 

0.
78

 
1.

00
 

0.
41

 
0.

58
 

0.
60

 
1.

00
 

0.
77

 
0.

81
 

0.
69

 
0.

66
 

N
ot

e.
 ∗ T

ra
in

in
g 

se
t. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/2/3082/6604895 by U
niversita degli Studi di Trieste user on 04 N

ovem
ber 2022



3092 I. Marini et al. 

M

Figure 9. Stack of the metric score profiles relative to the BCG particle 
classification in the entire cluster set. The profiles are reported as a function 
of the cluster distance normalized by R 200 . The solid lines refer to P (red), R 

(blue), and FS (brown). The dashed line marks the value 0.5 in the y -axis. 
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Figure 10. Scatter plots of the (weighted) mean metric scores (P, R, and 
FS from top to bottom panel) as a function of log cluster mass (left-hand 
panels) and dynamical state (right-hand panels) for all the clusters under 
study. We mark the pure testing set with coloured points, while the clusters in 
the training set are recorded with empty squares. The colour legend follows 
the ICL fraction estimated by ICL-Subfind. The y -axis is limited to exclude 
D7, D11, and D13 having very low metric scores. 
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lassifier and the traditional labelling and o v erall the distributions
re reco v ered. Unsurprisingly, these are slightly better in the case of
 = 0.5, rather than in the case of higher redshift. 

.3.2 Changing numerical resolution 

n important step in understanding the quality of our predictions is
o estimate the effect of numerical resolution. This can be performed
y examining the results of our classifier, trained on a cluster set
t a given resolution when applied to a set at a higher resolution.
ncreasing the resolution in a simulation impro v es the description
f lower mass systems and small-scale features. In turn, this could
ffect the probability distribution function at the centre of the clusters.
n our resolution tests, we decreased the particle mass by a factor
f 3 with respect to the reference simulation set, yielding m DM 

=
.5 × 10 8 h −1 M � and the initial mass of the gas particle m gas =
.1 × 10 8 h −1 M � for two clusters. The performance scores are
ound to be quite high (e.g. P > 0.75, R > 0.80, FS > 0.78), with the
tellar density profiles from ICL-Subfind and our method agreeing
o per cent level, as shown in Fig. 12 . Further tests were performed
or simulations at even higher spatial resolutions (also increasing
ur fiducial softening lengths of three times, as in Bassini et al.
020 ) giving similar high-performance scores, but they are not shown
ere. Therefore, our ML classifier seems to be robust when applied
o simulations whose resolution is higher than that of the training
et. 

.3.3 Changing the feedback model 

o further test the robustness of our ML classifier, we applied it to
imulations having the same resolution of the training set, but not
ncluding AGN feedback. Obviously, this is an extreme (possibly
on-physical) scenario held with the only illustrative purpose of
xamining the consequences on the classifier performance facing
nderlying different physical conditions with respect to the training
et. AGN feedback regulates star formation in massive galaxies,
articularly impacting BCG masses (e.g. Ragone-Figueroa et al.
013 ), thus this test allows us to examine the ML robustness in a
NRAS 514, 3082–3096 (2022) 
onserv ati v e re gime of e xceedingly massiv e galaxies. Our analysis
hows the presence of a massive BCG at the centre of the halo in
oth ICL-Subfind (solid) and ML (dashed line), as can be seen in
ig. 13 . We notice that this causes a steepening in the density profiles
ith respect to what was predicted in presence of the AGN feedback
echanism (dotted lines), thus increasing the concentration of the

tellar halo. In the latter, the differences in the density profiles account
or up to only 3 per cent between the labels of the ML classifier
nd ICL-Subfind, so we decided to plot only one of them. Quite
nterestingly, we find that the ICL-Subfind and ML model-predicted
rofiles match better in the innermost part, where we would expect
ost of the AGN feedback to have a substantial effect, rather than in

he BCG outskirts: here, the differences reach up to 25–30 per cent
etween the two runs. A closer look at the feature distributions in
ig. 14 shows that the phase space also shows some inconsistencies
etween the two methods. Yet, we are able to fit a double Maxwellian
istribution to the star particle velocities reasonably close to the
riginal one. 
Given the good quality of our analysis to this point, we pushed

ur investigation to simulations when both effects (numerical res-
lution and subgrid physics) are different relative to the reference
imulation set. Although we do not display any of the profiles, we
an confirm that the performance scores for this case are in line
ith the previous ones, demonstrating that the ML classifier results

re robust across small changes in numerical resolution, redshift
at least in the late Universe, within z ≤ 1), and physical subgrid
odels. 
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Figure 11. Density profiles of the stellar content in D2 taken at three different snapshots: from left to right the correspondent redshifts are z � 1, z � 0.5, and 
z = 0. For each of these plots, we show two panels. In the top panel, we report the profiles normalized at R 200 of both ICL (red) and BCG (blue) identified by 
ICL-Subfind (solid line) and the ML classifier (dashed line). The lower panel shows the residuals (in per cent, normalized by the number of star particles in each 
bin) between the BCG true and predicted labels. 

Figure 12. Density profiles of the stellar content in D2 simulated at higher 
resolution. In the top panel, we report the profiles normalized at R 200 of 
both ICL (red) and BCG (blue) identified by ICL-Subfind (solid line), the 
ML classifier (dashed line). The lower panel shows the residuals (in per cent, 
normalized by the number of star particles in each bin) between the BCG true 
and predicted labels. Differences account for a per-cent level only between 
the profiles. 
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Figure 13. Density profiles of the stellar content in D2 simulated with no 
AGN feedback scheme. In the top panel, we report the profiles normalized 
at R 200 of both ICL (red) and BCG (blue) identified by ICL-Subfind (solid 
line), the ML classifier (dashed line). Additionally, we o v erplot the BCG and 
ICL profiles from the same cluster but including the AGN feedback model 
(dotted line). The lower panel shows the residuals (in per cent, normalized by 
the number of star particles in each bin) between the BCG true and predicted 
labels. 
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.4 Phase-space structure 

o further investigate the accuracy and robustness of these methods, 
e examine several quantities that generally describe the phase-space 

tructure of galaxy clusters (e.g. Marini et al. 2021 ), in particular
iscussing it in terms of the stellar density profile ρ( r ), stellar velocity
ispersion profile σ ( r ), and phase-space density profile Q ( r ) =
( r )/ σ 3 ( r ). We expect these quantities to provide insights into the

obustness of these two methods based on the star particle distribution 
nd dynamical information. Our ultimate goal is to detect major 
nd/or systematic differences within the ICL and BCG subgroups as 
iven by the two methods. 
Our main findings are illustrated in Fig. 15 . From the top to bottom

anel, we report the density, velocity dispersion, and phase-space 
ensity profiles of the star particles labelled as BCG (blue) and ICL
red) by the ICL-Subfind (solid lines) or the ML classifier (dashed 
ines). The radial distance is scaled by the virial radius R 200 , to
roperly account for the different cluster sizes when stacking. The 
haded bands represent the intrinsic scatter within the sample of 
lusters, computed as the standard deviation. 

The BCG and ICL density profiles predicted by the two methods 
o not show significant differences. Therefore, we can provide 
n estimate of the transition radius, defined as the cluster-centric 
istance at which the ICL distribution starts dominating the stellar 
omponent. Given our different approach based on dynamical criteria 
ather than from a fitted profile, we are able to provide an independent
omparison with the values proposed in the literature. The cluster set
ields an average transition radius of about 90 kpc (corresponding to
.04 R 200 ), which is in agreement with both theoretical and observa-
ional findings (e.g. Gonzalez et al. 2021 ; Contini et al. 2022 ). On the
ther hand, in the velocity dispersion profiles we observe a systematic 
ifference in the profiles for large radii, even beyond the expected 
ransition radius. The ML classifier tends to prefer a dynamically 
otter BCG component compared to the output of ICL-Subfind. This 
s particularly highlighted in the central panel, where we compare 
he velocity dispersion profiles σ ( r ) scaled by the velocity dispersion
f the stars within the virial radius σ � 

200 to correctly stack the distinct
lusters. Velocity dispersions traced by the ICL stars are generally 
igher than those of the BCG stars at all radii, consistently with the
esults shown in Section 2 on the velocity distributions: we find that
CL profiles are consistent within 1 σ in the two methods. Conversely,
CG profiles are similar at the centre, while at large radii the ML
lassifier tends to include particles in the BCG with higher velocity
MNRAS 514, 3082–3096 (2022) 
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M

Figure 14. Histograms of the distributions of the features of D2 simulated with no AGN feedback scheme. In the top row, we report the number count 
distributions of (from left to right): the logarithmic cluster-centric distance o v er R 200 and the particle rest-frame velocity over V 200 . The lo wer ro w sho ws the 
residuals (in per cent, normalized by the number of star particles in each bin) between the BCG true and predicted labels. 
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ispersion than in the ICL-Subfind case. This results in an almost
at velocity dispersion profile. Indeed, these differences are present
t large radii, where the assignment of star particles to one of the two
omponents is less obvious, as seen in Fig. 9 . 

An extra step can be taken by e v aluating the phase-space density
hich combines the density and velocity dispersion profiles to

nvestigate the phase-space structure of haloes. Both numerical and
bservational (just to name a few Taylor & Navarro 2001 ; Dehnen &
cLaughlin 2005 ; Faltenbacher et al. 2005 ; Biviano et al. 2013 ,

016 ; Marini et al. 2021 ) studies have demonstrated that the profiles
f phase-space density (or equi v alently, of the pseudo-entropy S ( r ) =
 ( r ) −2/3 ) have a power-law dependence on the cluster-centric radius,
ith a rather small scatter. In this context, Marini et al. ( 2021 )

nvestigated the pseudo-entropy profile of different tracers in a set
f simulated clusters, including the star particles as tracers of the
hase-space structure of the cluster, and demonstrated that, while
CG and ICL components separately do not produce accurate power

aws for the phase-space density, the power-law profile is instead
eco v ered when analysing together the star particles of such two
omponents. Once again, we see that the largest differences are in
he BCG outskirts. 

 C O N C L U S I O N S  

e presented a robust and efficient method to label stars in the main
alo of simulated galaxy clusters as ICL or bound to the BCG based
n a Random Forest classifier. The classification model is trained,
ross-validated, and tested on 29 galaxy clusters simulated with
osmological hydrodynamical simulations, reaching a high level of
recision. This ML method is based on a more traditional algorithm,
hich we call ICL-Subfind, fully described in Dolag et al. ( 2010 ).

n that paper, the authors showed the existence of two dynamically
istinct components in the stellar population of simulated galaxy
lusters (associated with the main halo), which are identified because
heir velocity distributions can be fitted by a double Maxwellian
istribution. Including this information in a gravitational unbinding
rocedure yields a spatial separation of the ICL and BCG stellar
omponents in the central subhalo of simulated galaxy clusters. The
ubset of stars with the largest velocity dispersion is associated with
he hottest stellar component, the ICL, while the other is assumed to
NRAS 514, 3082–3096 (2022) 
e bound to the central galaxy or BCG. By applying the ICL-Subfind
lgorithm to the star particles in the 29 simulated clusters of the
IANOGA set, we obtain several data sets which we can use to fit
 supervised model, intending to obtain consistent results with the
raditional ICL-Subfind method, but far more efficiently. 

To construct the classifier, we find the combination of input
eatures that pro v es to best represent the two classes (labels) we
re seeking, which for our specific problem are the cluster mass
 200 , the cluster-centric distance of particles normalized by R 200 ,

nd the velocity of the rest frame of particles normalized to V 200 . We
se randomly selected subgroups of particles from five clusters to
rain and cross-validate the classifier, while the rest of the clusters are
mployed to further test the predicted generalization of the algorithm.

Our results can be summarized as follows. 

(i) Our classification method agrees to a high degree of precision
ith the true labels (i.e. ICL-Subfind) of the two stellar components

n the cluster population. We find the existence of a central, more
ravitationally bound, stellar bulk, the BCG, which is disentangled
rom the more diffuse ICL, that instead extends to larger distances.
he fraction of ICL is also consistent with that found by ICL-Subfind
nd is generally higher (by a factor of about 3) than that associated
ith the BCG. Nevertheless, we stress that the ICL mass fraction

ound here shall not be regarded as immediately comparable to
bservations, where the separation between ICL and BCG is not
erformed in a dynamical analysis. 
(ii) We show that the metric scores relative to the BCG decrease

teadily beyond 0.1 R 200 , as shown in Fig. 9 , in turn affecting the
ensity and dynamical profiles. We shall recall that at these distances,
oth algorithms carry uncertainties to a certain extent in labelling star
articles. In other words, a lower metric score at these scales may
e also due to the composite effect of wrong labelling from both
lgorithms. 

(iii) Our model pro v ed to be robust to changes in the numerical
esolution, across different redshifts (up to z = 1) and with the
xclusion of an AGN feedback model in the simulation. These results
upport the use of this method in various heterogeneous situations. It
s unclear to what extent this model becomes unresponsive, and
hus we conclude that further analyses are required for systems
ignificantly different from those tested. 
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Figure 15. Density (top), velocity dispersion normalized for the velocity 
dispersion of the stars within R 200 (central), and phase-space density (bottom) 
profiles of the star particles in the BCG (blue) and ICL (red). Results from the 
ICL-Subfind labels are given with solid lines; on the other hand, the dashed 
lines mark the profiles extracted from the ML classified labels. In each panel, 
we report the median profile of each method (dark solid line) and uncertainty 
given by the intrinsic standard deviation with the shaded coloured band. 
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(iv) Additionally, we examined the dependence of the perfor- 
ance of the ML algorithm on the mass of the cluster and the

ynamical state. Both effects may play a role in changes of the
hase-space structure of a cluster and, in turn, affect the performance.
o we ver, we did not detect any significant correlation with either of

hese properties. 
(v) Finally, to gain more insight into the quality of the dynamical

nformation retrieved by this method, we studied the phase-space 
tructure of the two stellar components after applying both classifiers 
o the simulated cluster set in Fig. 15 . We estimate the transition
adius between the BCG-dominated and ICL-dominated regions at 
round 0.04 R 200 (corresponding to a physical scale of 90 kpc),
n line with pre vious observ ational measurements and theoretical 
redictions. This is particularly interesting in light of the different as-
umptions used to determine its value. We identify the BCG outskirts
o be the most critical re gion (i.e. be yond 0.1 R 200 , corresponding
o a physical distance of roughly 250 kpc) and far more prone to
ncertainties in the classification process. This is due the coexistence 
f the two stellar components whose physical properties o v erlap. 

In conclusion, this method pro v ed to be reliable and faster
han the traditional method to identify ICL and BCG in the main
alo of simulated galaxy clusters. Although it does not provide 
 new methodology for detecting ICL, it offers a robust tool to
urther investigate the dynamical characteristics of ICL compared 
o the traditional method. As a final remark, we shall refrain from
laiming that this classifier will perform at this level of accuracy for
imulations including significantly different astrophysical models, 
nless these are included in the original training set. To remain a
ompetiti ve alternati ve, when applied to very different simulations, 
ne should resort to more advanced models, trained on vaster sets
f simulations, which will need to include different cosmological 
nd astrophysical scenarios for structure evolution. Ultimately, a 
ynamical analysis of the ICL should be regarded as an attempt to
etermine its physical properties and its origin to gain insights into
he evolution of clusters and their stellar components. 
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PPENDI X  A :  H I N T S  F O R  T H E  

DENTI FI CATI ON  O F  SHELL  G A L A X I E S  

mong the test cluster set, we observe a handful of clusters that
resent particularly interesting features in their spatial distribution.
ne of the most striking cases is reported on the mass-weighted map

n Fig. A1 . We point out that this cluster has not reached convergence
n the ICL-Subfind algorithm, therefore our next discussion will
e mostly addressed to the ML output. In the central panel, we
isplay both components (BCG + ICL), the central one illustrates
he ICL population, while the right plot is for the BCG stars. The
lot shows a complex stellar structure composed of spherical shells
urrounding the central stellar peak in the BCG, which is not seen
n the ICL-Subfind case. We assume this feature to not be caused by
ome numerical artefact, given that several clusters have this same
ymmetrical distribution in the ICL-Subfind analysis. This shell-
ike distribution could be due to the expansion and later disruption
f stars occurring during a tidal shock, which gives origin to shell
alaxies. The shells are formed as density waves induced in a thick
isc population of dynamically cold stars by a weak interaction with
nother galaxy Thomson ( 1991 ) and relatively major mergers (e.g.
ith a mass ratio of 1:10 Pop et al. 2018 ). It is not clear whether the

omplexity of the shell structure may be responsible for the difficulty
f ICL-Subfind converging, but it is striking to notice that the ML
lgorithm can detect it without specific training on this particular
eature. Additionally, it is also able to spot it whenever the ICL-
ubfind does. We will defer a complete analysis of this hypothesis

o future work. 
G (in the left-hand panel), ICL (central), and BCG (left) spatial distributions. 
 converge for this case. 
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