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a b s t r a c t 

Artificial intelligence (AI)-based applications exhibit the potential to improve the quality 

and efficiency of patient care in different fields, including cataract management. A system- 

atic review of the different applications of AI-based software on all aspects of a cataract 

patient’s management, from diagnosis to follow-up, was carried out in accordance with 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. All 

selected articles were analyzed to assess the level of evidence according to the Oxford Cen- 

tre for Evidence-Based Medicine 2011 guidelines, and the quality of evidence according to 

the Grading of Recommendations Assessment, Development and Evaluation system. Of the 

articles analyzed, 49 met the inclusion criteria. No data synthesis was possible for the het- 

erogeneity of available data and the design of the available studies. The AI-driven diagnosis 

seemed to be comparable and, in selected cases, to even exceed the accuracy of experienced 

clinicians in classifying disease, supporting the operating room scheduling, and intraopera- 

tive and postoperative management of complications. Considering the heterogeneity of data 

analyzed, however, further randomized controlled trials to assess the efficacy and safety of 

AI application in the management of cataract should be highly warranted. 
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1. Introduction 

Globally, cataract is one of the primary causes of visual im-
pairment. In medium- and low-income countries, more than
50% of cases of blindness can be attributed to cataract.55 In
2010 alone about 33.3% and 18.4% cases of worldwide blind-
ness and visual impairment, respectively, were traced back
to the emergence of cataract.37 , 69 A previous review reported
a cataract prevalence rate of 64% in European people aged
70 years or older.55 Cataract surgery is one of the most cost-
effective healthcare interventions 13 , 74 that effects improve-
ment physically as well as psychologically.68 , 69 

Cataract surgery has previously been shown to enhance
the cognitive function among Alzheimer and other demen-
tia patients.4 , 13 , 74 A previous study found that elderly pa-
tients who underwent cataract surgery exhibited enhanced
cognitive function, alleviated depressive mental status, and
improved quality of life.35 Another study reported that
cataract surgery, in conjunction with adequate cardiac care,
led to an increase in the life expectancy of the elderly by
1.8 years.13 Furthermore, Tseng and coworkers determined
that elderly patients who underwent cataract surgery had
a lower risk of hip fracture compared to those who did
not.70 

Recently, several factors, such as early intervention, higher
eye surgery frequency, and population aging, have led to an
increase in the frequency of cataract surgeries.75 Limited re-
sources and longer wait times, however, pose major road-
blocks to cataract management in countries that depend pri-
marily on public healthcare systems.74 

It is well known that an early diagnosis and therapeutic in-
tervention for this pathology helps to avoid complications and
reduce healthcare costs.77 The recent Coronavirus disease–
COVID-19-pandemic has forced healthcare organizations, in-
cluding ophthalmology services, to reorganize, making it hard
to pursue these aims.68 

Artificial intelligence (AI)-based applications have shown
great potential in several areas related to patient care.64

Thanks to the digital revolution, AI technology has entered
almost all parts of society, and the COVID-19 pandemic has
significantly accelerated this process. Hence, with advance-
ment in developing countries and general population aging,
AI systems could become an important part of the screening,
staging, and treatment of eye conditions. This, in turn, could
lead to higher population coverage within a short time, timely
and adequate diagnosis and treatment, and reduction in the
number of tedious tasks to be conducted by experts.5 In this
scenario, AI could contribute to filling these gaps and has thus
gained an interest regarding its role in cataract management.
Additionally, neural networks (NNs), as a set of algorithms,
are impacting diverse areas of science, including ophthalmol-
ogy.67 

Here, we provide a systematic review of the different appli-
cations of AI-based software on all aspects of cataract man-
agement, including diagnosis and follow-up. A glossary of the
main concepts related to AI is provided to facilitate the com-
prehension of this complex theme for neophytes (Supplemen-
tary Material, Table 1S). 
2. Methods 

This systematic review was conducted and reported in ac-
cordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines.49 The re-
view protocol was not recorded, and no registration number is
available for consultation. We performed a systematic search
for all available articles exploring the AI applications in the
field of human adult cataract management. 

Only original studies on adults were included in the current
review, with no restriction on study design. Exclusion criteria
included: review studies, editorials, and conference reports.
Articles dealing with animal models and/or not written in En-
glish were also excluded. The level and quality of evidence of
the selected studies were evaluated based on the Oxford Cen-
tre for Evidence-Based Medicine (OCEM) 2011 guidelines 33 and
the Grading of Recommendations Assessment, Development
and Evaluation (GRADE) system,23 respectively. 

3. Results 

The results are summarized in a flow diagram according to
PRISMA guidelines ( Fig. 1 ). Of the initially extracted 1617 arti-
cles, 44 abstracts met the inclusion/exclusion criteria. One ar-
ticle was excluded after full-text reading because it involved
porcine eyes. Five additional articles included in the analysis
were derived from the selective review of the list of references
during the full-text review of the original articles ( Fig. 1 ). 

No data synthesis was possible because of the heterogene-
ity of available data and the design of the available studies.
Thus, the current systematic review reports a qualitative anal-
ysis in a narrative fashion below. To facilitate a more compre-
hensive overview, all the included studies were subgrouped
into four main topics (“diagnosis”, “intraocular lens power cal-
culation”, “surgery”, and “complications”).The level and qual-
ity of the available evidence are summarized in Supplemen-
tary Material, Table 2S. 

3.1. Diagnosis 

There have been significant signs of progress in the processing
of medical images in different settings, allowing more reliable
diagnosis and more accurate measurements of pathological
features.3 Teleophthalmology screening programs exploiting
AI-based software could reduce the pressure on tertiary re-
ferral centers providing screening evaluations before referring
the patients to specialized hospital services. The effectiveness
of NNs in detecting and classifying lens opacities has been as-
sessed by different authors, who mainly focused on the eval-
uation of anterior segment images.3 , 17 , 20 , 38 , 44 , 45 , 47 , 77 , 80 

In 2003, Fan and coworkers proposed an automatic nu-
clear cataract classification system based on slit lamp pho-
tographs.17 The project included approximately 1000 images.
After the detection of the visual axis and the identification
of ocular landmark features from slit lamp photographs, they
devised a linear grading function to detect nuclear sclerosis
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Fig. 1 – PRISMA flow chart. Flow diagram of the study according to PRISMA guidelines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

severity based on landmark intensity. The machine grades
were compared with the human grades. The linear grading
function showed a 95.8% grading accuracy within 1 grade us-
ing the Age-Related Eye Disease Study (AREDS) grading sys-
tem (in human grading, one grade fluctuation is considered
acceptable). Moreover, the machine grading reduced the time
necessary for classification to less than 2 seconds versus the
previous 2 minutes.17 

In 2009, Acharya and coworkers employed the Artificial
Neural Network (ANN) classifier to distinguish cataract from
normal and post-cataract eye images.3 They analyzed 140 op-
tical images belonging to the three different classes (normal,
cataract, and postoperative). First, the specific features of the
three classes were extracted using image processing and ap-
plication of Fuzzy K-means clustering algorithm to the raw
optical images. For image classification, a back-propagation
algorithm (BPA) was used. They showed that the ANN clas-
sifier could correctly classify 100% of normal eye images and
90% of abnormal eyes, with an average accuracy rate of 93.3%.
Their system exhibited 98% sensitivity and 100% specificity.3 

Wu and coworkers validated a universal AI platform for
cataract diagnosis and management based on datasets de-
rived from the Chinese Medical Alliance for AI (CMAAI).77 The
dataset employed for the AI agent training included 37,638
slit lamp photographs of normal lenses, cataracts (of differ-
ent etiologies and degrees), and pseudophakic eyes (postoper-
ative eyes). Each image was analyzed and labeled by at least 2
ophthalmologists, and all the images were employed to train
the AI agent that was then employed to create a multicen-
ter validated system. A deep learning convolutional neural
network (CNN) was employed for training and classification.
The first step was the identification of the type of capture
mode (mydriatic, mydriatic-diffuse, non-mydriatic, and non-
mydriatic-diffuse). The second step was the diagnosis (nor-
mal, cataract, or postoperative), and the last step was the
degree of severity evaluation (follow-up or referral). Condi-
tions for referral included: nuclear grades III-IV and signifi-
cant anterior and/or posterior capsular opacification. The au-
thors highlighted the importance of testing under the non-
mydriatic-diffuse mode. As a matter of fact, in previous stud-
ies and cataract classifications, slit lamp and cycloplegics were
traditionally applied, implying costs, risk of complications,
and difficulty in community-based screening settings. In this
study, it was found that the performance of non-mydriatic
mode in cataract diagnosis, even in diffuse conditions, was
comparable to that of ‘gold-standard’ mydriatic mode, with
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area under the curve (AUC) values > 99% in all tests. Moreover,
even if this mode implied difficulties in the detection of com-
plicated referable conditions, it still achieved an AUC > 91%.
These findings suggested that this AI agent could be used via
a mobile application by the patients on their own. A web plat-
form was thus established. After uploading their files, users
could obtain remote real-time disease monitoring (to avoid
misdiagnoses, data were weekly analyzed by doctors, who
could even update the semantic logic according to the most
recent guidelines). These findings led to the establishment of
a new tertiary healthcare referral pattern that included three
monitoring levels: self-management, primary healthcare, and
secondary specialized services. Through this system, users
could upload self-information (such as basic personal data
and history, visual acuity, etc.). When a suspicious case oc-
curred, a notification was sent to community-based facilities,
where a slit lamp image was obtained and uploaded to the AI
platform. If the platform classified the cataract as a “referral”,
the doctors were immediately alerted. When a comprehensive
examination was needed, the patients were informed. It was
found that this tertiary referral system could improve assis-
tance, increasing the ophthalmologist-to-population service
ratio by 10.2-fold compared to traditional cataract manage-
ment (for which, Zhongshan Ophthalmic center was taken as
an example). The universal AI platform showed a robust di-
agnostic performance for the three-step tasks suggesting, in a
real-world setting, 30.3% of people to be ’referred’.77 

Li and coworkers devised a computer-aided system for the
diagnosis of nuclear cataract based on slit lamp image analy-
sis.44 Their automatic grading of nuclear cataract (AGNC) sys-
tem was structured in three components: feature extraction,
grade prediction, and structure detection. They included more
than 5000 images in their work. The nuclear opacity grading
was automatically valued using the Support Vector Machine
(SVM) regression. The automatic classification was then com-
pared to human grader classification. They reported success
rates of 95% and 96.9% in lens structure detection and lo-
calization, respectively. The grading difference for more than
97.5% of the value images was less than one grade (Wisconsin
cataract grading system).44 

In 2013, Xu and coworkers introduced a new feature and
a new approach for automatic grading of nuclear cataracts
based on slit lamp images.80 They performed parameter se-
lection, regression model training, and feature selection si-
multaneously through the employment of a group sparsity-
based constraint for linear regression (GSR). Compared to the
conventional model, their method generated superior results
with respect to clinical grading in terms of agreement ratio,
mean absolute error (MAE), and decimal grading error.80 

In 2015, Gao and coworkers proposed another method for
automatic detection and grading of nuclear cataracts based
on slit lamp images.20 They chose to adopt the convolutional-
recursive neural networks (CRNN)-based deep learning frame-
work, the only system that could extract information from
realistic-sized images. Their approach achieved a 70.7% exact
agreement ratio against clinical grading, integral grading error
≤ 1 in 99.0% of tests, decimal grading error ≤ 0.5 in 88.4% of
tests, and MAE of 0.304.20 

Kim and coworkers developed a new form of CNN they
named Tournament-based Ranking CNN that was able to
aggregate outputs of multiple binary NNs.38 Since cataract
grading using multi-label classification models and regression
models degrade the performance because these models sim-
plify the opaque patterns of cataract into linear forms, this
work proposed a tournament-based CNN and very deep pre-
trained binary models to grade cataract efficiently. By dividing
classes into two sets in a way that recorded the highest AUC,
the accuracy of the model increased (68.36% of exact match
accuracy).38 

Even visible wavelength eye images taken by a compact
digital camera could be applied for automatic cataract diagno-
sis. The Computer-Aided Diagnosis (CAD) program proposed
by Mahesh Kumar and coworkers, based on an SVM, was char-
acterized by high values of sensitivity (97%), specificity (99%),
and predictive accuracy (96.96%).47 

AI algorithms typically rely on high-quality data to achieve
optimal training.45 Li and coworkers devised a novel work-
flow named “Visionome” (DSV) to annotate pathological fea-
tures and to segment anatomical structures in slit lamp im-
ages. Their workflow was employed to improve the perfor-
mance of a deep-learning algorithm for multiregional detec-
tion and classification of abnormal eyes (including age-related
cataracts) and normal eyes. They established a densely anno-
tated dataset based on anatomical structures and pathological
features of selected lesions. Their algorithm was tested in dif-
ferent clinical scenarios (mass screening, comprehensive clin-
ical triage, hyperfine diagnostic assessment, and multipath
treatment planning). Compared to the image-level-annotated
classification technique, the Visionome (DSV)-based diagnos-
tic system showed better diagnostic performances.45 

In 2008, Abdul-Rahman and coworkers evaluated the ef-
ficacy of Fourier analysis of digital retinal images in grading
cataract severity.1 In their method, discrete Fourier transforms
(DFT) were employed to assess the optical degradation of a
fundus image of a cataract-affected eye to detect and assess
the severity of cataracts. They compared the DFT’s predictive
value in classifying cataract severity with LogMAR visual acu-
ity and the Lens Opacity Classification System (LOCS III) grad-
ing. Using the Fourier analysis technique, they achieved 72.4%
sensitivity and 52.7% specificity. The results for cataract sever-
ity grading were moderately correlated with LOCS III (regres-
sion coefficient value - R2 - = 0.59). DFT analysis demonstrated
a comparable correlation with LogMAR visual acuity (R2 = 0.39
- as LOCS III, R2 = 0.44), while a poor correlation was found
in clear (R2 = 0.05) and pseudophakic lenses (R2 = 0.07), as
with LOCS III score. Using this technique, however, they were
not able to distinguish corneal defects or vitreous haze from
lenticular opacities, nor could they determine the cataract
type.1 

Until 2015 existing methods for automatic fundus im-
age classification used a single learning model.81 Since it
was widely accepted that a combination of multiple learn-
ing models could provide more accurate classification com-
pared to any of the constituent models, Yang and coworkers
proposed an ensemble method.81 In their system, three inde-
pendent feature extraction techniques and two base learning
models (Support Vector Machine and Back Propagation Neu-
ral Network) were employed for base classifier construction.
Then, two ensemble approaches (majority voting and stack-
ing) were used to combine the multiple base classifiers. It was
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found that the ensemble classifier achieved 93.2% accuracy
for cataract classification (two-class task) and 84.5% accuracy
for cataract grading (four-class task). This approach outper-
formed the single learning models significantly considering
that for single learning models, the maximum accuracy was
91.9% for cataract detection, achieved by Wavelet-BPNN - and
83.2 for cataract grading - achieved by All-SVM).81 

Zhang and coworkers proposed an automatic method for
cataract diagnosis and grading based on fundus image eval-
uation.84 The more the lens opacifies, the more the images
get blurred. In order to describe cataract evolution, they iden-
tified a new 6-stadium grading classification of lens opacity
depending on what structures could be detected during fun-
dus examination: non-cataractous (in which structures were
clear and distinguishable), slightly mild (small retinal vessels
still visible), mild (fuzzy, small retinal vessels), medium (only
optical disc and thick vessels could be seen), slightly severe
(only optical disc was detectable), and severe (fundus was not
visible at all). In their study, they proposed a new AI method
(called “multi-feature & stacking”) based on deep learning that
could detect the above-mentioned characteristics by analyz-
ing fundus images captured by a specialized fundus camera
to automatically diagnose and grade cataracts. They reported
an average accuracy of 92.66%, with differences depending
on the degree of disease severity. The highest sensitivity and
specificity values were reached in normal lenses (95.68% and
99.37%, respectively) and severe cataracts (98.52% and 96.43%,
respectively). The other levels were characterized by lower lev-
els of accuracy, with the lowest values in mild cataracts (sensi-
tivity of 81.33% and specificity of 82.40%). They concluded that
although their method could not detect other diseases that
could modify image quality, it might be useful in narrowing
down the number of patients who needed to be examined by
ophthalmologists.84 Zhou and coworkers analyzed 1355 reti-
nal images from more than 1000 consecutive cases from the
Beijing Tongren Hospital to develop automatic cataract clas-
sification algorithms.85 In addition, they compared their al-
gorithms with other cataract detection and grading methods.
They proposed some classification methods, such as expo-
nential DST (EDST-MLP) or multilayer perceptron with dis-
crete state transition (DST-MLP), for cataract grading (four-
category classification). They proposed NNs with discrete pa-
rameters (EDST-ResNet, DST-ResNet, EDST-MLP, and DST-MLP)
for cataract classification (two-category classification). The
authors concluded that other classification methods that pos-
sess prior knowledge are better suited for complex tasks,
such as classification of complicated medical images, whereas
deep NNs, without prior knowledge, showed the better perfor-
mance to perform simple tasks, such as cataract detection.85 

Xu and coworkers employed CNN to directly investigate
the input data and deconvolution network method to inves-
tigate how CNN characterized cataract layer-by-layer.79 They
found that vascular information played a key role in cataract
grading.79 

In 2021, Tham and coworkers proposed a new method for
disease-related visual impairment diagnosis, employing reti-
nal photograph-based deep learning.65 Patients affected by
different major age-related eye diseases such as cataract, dia-
betic retinopathy, and maculopathy were included, and a deep
CNN was used (Residual Neural Network ResNet-50 architec-
ture). First, they determined the AUC for the detection of any
disease-related visual impairment. Then, they assessed the
performance of the algorithm for the detection of cataract-
related visual impairment. The AUC was 94.8% (95% CI 93.4–
96.3) for any disease-related visual impairment and 95.0%
(95% CI, 92.6–97.4) for moderate or worse disease-related
visual impairment. The tested algorithm needed a single
macular-centered retinal photograph as input, without requir-
ing an expert intervention. Consequently, it could potentially
help identify cases that should be referred to a specialist.65 

Computer-aided cataract diagnosis (CACD) existing algo-
rithms have not been optimized for the presence of noise
in digital fundus retinal pictures, which is a severe concern
because even minor noise levels might compromise cataract
diagnosis efficiency. Pratap and coworkers studied a CACD
method against a noisy environment that was found superior
to existing CNN based CACD methods at different noise lev-
els.54 

Peissig and coworkers developed and validated an Elec-
tronic Health Records (EHR)-based algorithm for the identifi-
cation of age-related cataract-affected subjects.53 They found
a positive predictive value (PPV) of 95.6% and a negative pre-
dictive value (NPV) of 95.1%. For the first time, a multimodal
phenotyping strategy was tested to increase and optimize the
accuracy of identification of cataract patients. This method
combined three different detection methods, applying them
in the following order: conventional data mining (CDM), which
used data from data warehouse, natural language process-
ing (NLP), which analyzed electronic text documents, and op-
tical character recognition (OCR), which valued scanned im-
ages. Data from 2159 cataract subjects were analyzed: 752
(34.8%) were identified by CDM, 767 (35.5%) were recognized
by NLP, and 640 (29.6%) were assessed by OCR. Consequently,
multimodal strategy helped increase the detection of cataract
subjects compared to single-mode approach, while keeping
high PPV. Focusing on nuclear sclerotic cataract subtype, the
most common subtype, only 493 (26.7%) subjects were iden-
tified by CDM, which represented the approach that is first
used to identify subtypes in actual practice, since it required
the least effort. Furthermore, 1213 (65.6%) subjects were de-
tected by NLP, while OCR methods recognized 813 (44%) sub-
jects. Multimodal phenotyping increased the number of sub-
jects with NS subtypes from 493 (11.6%) to 1849 (43.6%). For
cataract severity and location, no coded values were found in
the EHR, so CDM could not be used. NLP detected cataract loca-
tion (right or left eye) with high reliability in 53% subjects. The
OCR yield was low because only a limited number of data were
processed (only the cases not diagnosed using NLP). Finally,
the authors validated the transportability of their algorithm
by testing it on Group Health Research Institute/University
of Washington’s data. A PPV of 96% was obtained; however,
because of did not use the digital forms, only CDM and
NLP were implemented at the electronic MEdical Records
and GEnomics (eMERGE) institutions participating in the
study.53 

The Ophthatome TM , a knowledge base of ophthalmic dis-
eases, was introduced by Raj and coworkers.58 They con-
structed a licensed database containing patient-contributed
data to create highly specialized disease cohorts for oph-
thalmology and vision science research utilizing combination
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search terms and built-in logical processes. Ophthatome TM

contained comprehensive clinical data captured from the
electronic medical record at Narayana Nethralaya, a multi-
specialty tertiary eye hospital in Bangalore, India, between
September, 2012 and January, 2018. The Ophthatome TM

database contained clinical and phenotype data from 581,466
subjects with 524 distinct ophthalmic disease types and 1800
disease sub-types. Age, disease diagnosis, quantitative traits,
systemic diseases, prescription drugs, family history, diag-
nostic procedural images, visual impairment, and longitudi-
nal data were all captured in Ophthatome TM . ICD10 codes
were used to diagnose diseases in the EMR. The ICD diagno-
sis was divided into disease types and subtypes to allow for
more comprehensive and informative data querying. For ex-
ample, all types of cataracts, such as cortical, nuclear, and an-
terior subcapsular cataracts, were first classified as cataracts
and then subclassified into their respective subtypes. Compre-
hensive ophthalmic clinical variables such as refraction, in-
traocular pressure, central corneal thickness, slit lamp exami-
nation details, diagnosis, medications, surgical interventions,
and thirteen clinical diagnostic images were included in the
knowledgebase. Each subject’s clinical variables were mapped
longitudinally, beginning with the most recent value.58 

3.2. Intraocular lens power calculation 

After phacoemulsification and implantation of intraocular
lens (IOL), changes in trabecular-iris angle width (TIA) and an-
terior chamber depth (ACD) are expected, and these variations
play a crucial role in IOL calculation. Although the qualita-
tive relationship between baseline eye anatomy and surgery-
induced variation is clear, its quantitative character is still
difficult to determine. R ̨ekas and coworkers proposed a new
method for the evaluation of the phacoemulsification-related
anterior segment anatomical changes, to establish their cor-
relation with baseline anatomical parameters.59 Included pa-
tients were previously divided into 4 groups, depending on
their phenotype characteristics (ACD, TIA, central lens thick-
ness, and axial length (AL)). They detected a linear connec-
tion; however, the degree of the over-mentioned phenomenon
could not still be explained. It was shown that the application
of NNs could help generalize the results. They showed that the
network’s data and actual data achieved a positive correlation
coefficient that, based on the network used, ranged as follows:

• Training set: 0.75 to 0.83 
• Testing set: 0.72 to 0.77 
• Validation set: 0.79 to 0.83 

The highest error was obtained when phenotype clusteri-
zation was removed from the network structure.59 

Accurate IOL calculation performed during the preopera-
tive assessment of cataract surgery is a critical step to achieve
the desired refractive outcome. Several formulas, used to de-
termine the best IOL power, require the ACD, AL, and keratom-
etry values for. Other formulas also require lens thickness
(LT).78 To date, optical biometer devices have been the gold
standard to provide ocular biometric parameters.71 On the ba-
sis of ocular biometric variations, the surgeon can choose the
most adequate formula. A crucial weakness of all these formu-
las is the need for an accurate estimation of the postoperative
IOL position (ELP), a parameter that can be predicted consid-
ering biometric measurements and the lens as constant.78 

Since the ideal refractive outcome, emmetropia, is ob-
tained only in about 80% of cases, this has led the researchers
to continue searching for new formulas through ray-tracing
software (Okulix10) and AI (Hill-RBF-based calculators, Kane
method, Pearl-DGS, FullMonte IOL software system, Ladas Su-
per Formula (LSF) AI). As the number of available data in-
creases the AI approaches to IOL power calculation might
provide higher accuracy.51 Fernandez-Alvarez and coworkers
trained one of these networks, Multilayer Perceptron (MLP) to
predict the IOL power, given average corneal K power, AL, the
desired refraction, and the predicted refraction using a theo-
retical formula.18 

The advantages of NNs against traditional linear regression
formulas have been discussed since this topic first emerged
in 1997 by Clarke and Burmeister.14 Mean postoperative er-
ror and absolute error from predicted refraction were + 0.271
diopters (0) and -0.217 diopters and + 0.630 and + 0.930 for
NN and Holladay personal groups, respectively. Both these er-
rors differed significantly (P < 0.022; nonparametric Mann-
Whitney test). An error of less than + /-0.75 D was observed
for 72.5% and 50.0% of the NN and Holladay groups, respec-
tively.14 Findl and coworkers conducted a study aimed at op-
timizing postoperative refractive outcome through a more ac-
curate prediction of the pseudophakic ACD, necessary for the
prediction of the effective lens position (ELP).19 They used a
neural-network-type multilayer perceptron (MLP) and a linear
regression technique, but in the end they found that predic-
tions from the artificial network were less accurate than those
done by the linear regression model.19 

Sramka and coworkers investigated the potential improve-
ments to IOL power calculation that could be made by employ-
ing the Support Vector Machine Regression model (SVM-RM)
and the Multilayer Neural Network Ensemble model (MLNN-
EM).62 Using a dataset of pseudophakic eyes whose IOL was
calculated using the SRK/T formula (with an optimized A con-
stant of 119.1), they investigated how the refraction outcome
might have differed if an SVM-RM-based or an MLNN-EM-
based IOL calculation had been used. When compared to clin-
ical outcomes, both models were found to have much lower
absolute error; nevertheless, the difference between the two
AI approaches was not significant. When it came to predic-
tion errors (Pes), both models had a significantly greater over-
all percentage of eyes with PEs of 0.25, 0.50, 0.75, and 1.00 D
than clinical outcomes. The percent of eyes within a predic-
tion error (PE) of ±0.25 was 33.4% for clinical results, 48.2% for
SVM-RM and 48.9% for MLNN-EM. The percent of eyes within a
PE of ±0.50 resulted 57.7 % for clinical results, 82.8 % for SVM-
RM and 82.3% for MLNN-EM. The percent of eyes within a PE
of ±0.75 was 79.4 % for clinical results, 93.4% for SVM-RM and
93.7% for MLNN-EM. The percent of eyes within a PE of ±1.00
resulted 91.8 % for clinical results and 97.7% for both SVM-
RM and MLNN-EM; however, the differences between SVM-RM
and MLNN-EM were not statistically significant.62 

Nemeth and coworkers analyzed the biometric results of
Hill–radial basis function (RBF) method 2.0 (online version),
comparing its outcomes with those provided by the Barrett
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Universal II formula and the SRK/T formula.52 This AI-driven
method was linked to the best percentage of subjective and
objective PEs fewer than 0.5D, as well as the best percentage
of subjective refraction errors, whereas the SRK/T formula was
linked to the worst. Furthermore, the Hill–RBF system had the
narrowest range of PE, whereas the SRK/T formula had the
broadest.52 

Carmona González and coworkers developed a new IOL
power calculator based on machine learning approaches.9 

This approach, like the Hill-RBF system, is data driven, but it
contains more calculation factors than the former: WTW dis-
tance, central LT, and the ratio between the curvature of the
anterior and posterior corneal surfaces. A novel nonlinear re-
gression model (called “Karmona’’) was tested. The accuracy
of this novel approach was compared to Holladay 2, Haigis,
Barrett Universal II, and Hill-RBF v2.0: it was observed that the
Karmona method had the lowest SD of the refractive predic-
tion error (RPE), followed by Haigis, Holladay 2, Barrett Univer-
sal II, and Hill-RBF v2.0. Furthermore, significant variations in
the MAE and the median of the absolute error (MedAE) were
found between Karmona and Hill-RBF.9 

Another study led by Cheng and coworkers looked at
how AI-based constant optimization for SS-OCT biometry im-
proved the accuracy of current formulas (Barrett, Emmetropia
Verifying Optical 2.0, Haigis, Hoffer Q, Holladay 1, Holladay 2,
Olsen, STK/T and T).11 They specifically looked at how refrac-
tion outcomes (i.e., mean PE, MAE and MedAE, and percent-
ages of eyes within different PE ranges) were affected when
compared to those associated with standard User Group for
Laser Interference Biometry (ULIB) constants. Both optimized
constants (obtained by using Kane, PEARL-DGS, and RBF 2.0)
and ULIB constants were used. The MedAE of the Haigis, Bar-
rett, and Hoffer formulas were much lower than those ob-
tained using the single ULIB a0 constant, but the SRK/T and
Holladay 1 formulas showed no significant difference. With
the Kane formula, the lowest MAE was attained. Kane (45.4%)
came in third in terms of eye proportions within 0.25 D, be-
hind Olsen (47.1%) and Barrett (45.9%), while the PEARL- DGS
(42.7%) and RBF 2.0 (41.2%) formulas performed poorly. Fur-
thermore, the Kane formula had the highest value for the 0.50
D endpoint (77.1%) and the lowest probability of refractive
surprise ( > 1.00 D from intended refraction, 3.7%). Finally, it
was observed that applying the same formula to different ax-
ial length subgroups was associated with different outcomes.
The Hoffer formula provided the lowest MedAE, while the
PEARL-DGS formula produced the lowest MAE; the RBF 2.0 for-
mula produced the worst results in short eyes. The Olsen for-
mula produced the lowest MedAE in medium eyes. The Barrett
formula had the lowest MedAE while the Kane formula had
the lowest MAE in both medium and long eyes.11 

Szalai and coworkers investigated the performance of
three types of IOL power calculators: five third- and fourth-
generation vergence IOL power calculation formulas (Barrett
Universal II, Haigis, Hoffer Q, Holladay 1, and SRK/ T), an ar-
tificial intelligence–based method (Radial Basis Function 2.0),
and two combined IOL power calculation methods (Kane and
LSF).63 The Kane approach produced good results, with one of
the lowest MAEs (second only to Haigis), followed by LSF and
RBF 2.0, and the other systems achieving much higher values.
Moreover, the Kane method was associated with the second
highest percentage of eyes (41%) within ±0.25 D PE, following
Haigis formula (56%) and with the highest percentage (79%)
of eyes within ±0.50 D PE, followed by Haigis formula (78%),
Hoffer Q (63%), LSF (62%) and RBF 2.0 (61%).63 

Ladas and coworkers recently tested three formulas (SRK,
Holladay I, and LSF) and three supervised learning algorithms
(Support Vector Regression, Extreme Gradient Boosting, and
Artificial Neural Network).39 The use of each type of AI method
on each formula was found to result in a lower mean and me-
dian AE than the baseline formula; all differences were statis-
tically significant. For instance, SRK was associated to a mean
AE of 0.499 ± 0.012; this valued was reduced to 0.439 ± 0.026
for SRK + ANN, to 0.325 ± 0.023 for SRK + SVR and to 0.314 ±
0.022 for SRK + XGB. As regards Holladay 1, its baseline MAE
was 0.392 ± 0.013; when adding SVR, it ameliorated to 0.307 ±
0.021; for Holladay 1 + XGB, it was 0.309 ± 0.022; adding ANN, it
was 0.326 ± 0.022. As regards LSF, its MAE at baseline was 0.355
± 0.017; when adding SVR, it was 0.311 ±0.021; for LSF + XGB, it
was 0.310 ± 0.024; with ANN, MAE was 0.319 ± 0.024. Further-
more, the use of this “fusion method’’ was associated with
higher percentages of eyes falling within 0.5 diopters of the
predicted refraction than the baseline formula: for example,
when the XGB algorithm was applied to LSF, the percentage
increased from 76 to 82 percent. Both the SVR and XGB algo-
rithms increased the Holladay 1-associated percentage from
72 to 82 percent. When the XGB algorithm was applied to SRK,
which had a percent of 61 percent at the start, it achieved a
maximum of 81 percent.39 

Nemeth and coworkers compared the accuracy of results
from Barrett Universal II to three AI-based methods for calcu-
lation of the IOL power (Hill-RBF 2.0, Kane method, Pearl-DGS
method).51 They retrospectively collected and calculated the
differences between the manifest and objective postoperative
refractions of 114 eyes (PE). They found significant differences
for PEs among the AI-based methods both for subjective and
objective refractions (all P < 0.05). When compared to BUII, the
Hill-RBF 2.0 method provided better PE accuracy. When com-
pared to BUII, the Kane and Pearl-DGS techniques performed
similarly.51 

Cheng and coworkers compared new AI formulas (Kane
and RBF 2.0) to other formulas in eyes with high to ex-
treme myopia (AL 26.0 mm), including Wang-Koch adjustment
methods for Holladay and SRK/T, BUII, EVO 2.0, and Haigis.12 

The Wang-Koch AL adjustment was created to improve the
accuracy of standard formulas and prevent postoperative hy-
peropia surprises. Kane was comparable to RBF 2.0, BUII, H1-
MWK and H1-WK in highly myopic eyes with an AL ≥26.0 mm,
and was better than BUII and RBF 2.0 in extremely myopic eyes
with an AL ≥30.0 mm.12 

Langenbucher and coworkers attempted to model the
measured postoperative position of an intraocular lens im-
plant after cataract surgery using machine learning tech-
niques.42 Based on preoperative effect sizes of AL, corneal
thickness, internal ACD, LT, mean corneal radius, and corneal
diameter, 17 machine learning algorithms were tested for pre-
diction performance for calculation of internal anterior cham-
ber depth (AQD post) and axial position of the equatorial plane
of the lens in the pseudophakic eye (LEQ_post). In terms of
root mean squared error for AQDpost and LEQpost prediction,
the Gaussian Process Regression Model with an exponential
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kernel outperformed the machine learning algorithms. Thus,
the advantage of machine learning algorithms appeared to be
limited when compared to a standard multivariate regression
model.42 

A detailed discussion of the best available methods for
IOL power calculation, including special cases (i.e., premium
IOLs, post-refractive surgery, keratoconus, etc.) goes beyond
the scope of this review. We strongly encourage interested
readers to consult more resources to obtain more in-depth in-
formation.2 , 6 , 61 , 72 , 73 , 76 , 78 , 10 , 15 , 21 , 22 , 31 , 32 , 36 , 60 

3.3. Surgery 

There has been increased interest in modeling surgical proce-
dures during the last decade. Besides operating room (OR) or-
ganization, the implementation of modeling into clinical prac-
tice could improve the evaluations done using surgeons and
surgical tools. 

3.3.1. Scheduling and perioperative management 
Proper scheduling of the OR is the first important step to guar-
antee access to treatment while providing an adequate level
of care.16 Devi and coworkers developed three novel predic-
tion models to optimize and estimate the duration of three
different types of ophthalmic surgeries, including cataract
surgery.16 In their work, they considered different variables,
including surgeon and staff nurse experience and the type
of anesthesia. Mathematical models and algorithms were uti-
lized to obtain an ANN system, an adaptive neuro fuzzy infer-
ence system (ANFIS) and a multiple linear regression analy-
sis (MLRA) system and the results of estimation were subse-
quently compared. They demonstrated on computer simula-
tions of the OR how a good system of planning and scheduling
could enable more work to be carried out within a reasonable
time.16 . 

Despite the introduction of checklists, the risk of medical
errors, including wrong-site surgeries, remains, especially in
high volume settings and in the presence of concomitant co-
morbidities. Yoo and coworkers designated a deep-learning-
based smart speaker in ocular surgery, including age-related
cataract surgery, to confirm surgical information, especially
during the time-out phase.82 

3.3.2. Video-monitored surgery and intraoperative assistance 
Video-recording systems in the OR are increasingly common
because they can generate reports and can be employed for
critical review of surgical skills. Real-time analyses of video-
monitored surgeries might be useful to communicate infor-
mation to the surgeon in due time, especially for less expe-
rienced surgeons. Thanks to the development of novel tech-
niques relying on AI, such as machine learning and deep
learning techniques, videos of cataract surgery could be seg-
mented into constituent phases for subsequent automated
skill assessment and feedback. With these tools, recommen-
dations on how to deal with the next surgical tasks and warn-
ings about possible task complications might be communi-
cated to the surgeon. 

Quellec and coworkers developed an automatic video anal-
ysis system based on a new algorithm capable of recognizing
surgical tasks in real-time.56 A content-based video retrieval
(CBVR) model was used to detect key video subsequences and
to categorize surgical tasks. These subsequences were then
decomposed into an optimal set of overlapping basic image
intervals. They successfully applied a system that could re-
trieve such subsequences to recognize surgical tasks in eye
surgeries.56 In 2015, an algorithm for phase segmentation and
recognition was proposed.57 Key spatiotemporal polynomials
were identified in videos to detect key gestures, and therefore,
to recognize the target surgical tasks.57 Morita and cowork-
ers performed groundwork for a broader and safer cataract
surgery training doing real-time phase segmentation from
cataract surgical video recordings using an NN.50 Real-time
extraction of two important phases (i.e., the curvilinear cap-
sulorhexis and nuclear extraction phase) was obtained with
the aim of preventing complications by evaluating the surgical
techniques of inexperienced surgeons too.50 Yu and cowork-
ers designed five deep learning algorithms to classify a given
video segment (belonging to a phase of cataract surgery), pre-
viously pre-segmented manually.83 Al Hajj and coworkers car-
ried out a series of interesting works on AI-based tools for
surgical video analysis.24–27 In 2017, they developed a detec-
tor of surgical tools in surgical videos based on CNNs analyz-
ing the sequences of consecutive images. Features extracted
from each image by the CNN were fused inside the network
using the optical flow to combine different views of the same
object.24 In the same year, they addressed the surgical detec-
tion tool problem and generated datasets of artificial surgery
videos to train the CNNs and evaluating two classification
methods to detect tool presence.25 In another report, Al Hajj
and coworkers monitored usage of surgical tools in cataract
videos analyzing each frame of the video by CNNs and tem-
poral relationships between events by RNNs.27 

In 2017, the Automatic Tool Annotation for cataRACT
Surgery (CATARACTS) challenge was organized to evalu-
ate tool annotation algorithms in the context of cataract
surgery.26 This challenge relied on more than nine hours
of videos of 50 cataract surgeries, of which the presence of
21 surgical tools was manually annotated by two experts.
Manual annotations were compared with deep learning solu-
tions proposed by 14 different teams. The authors concluded
that automatic annotations were comparable to manual an-
notations.26 Annotation of surgical videos is a difficult and
time-consuming task, but it is necessary for the training of
deep learning algorithms. Lecuyer et al developed a semi-
automated method to assist annotation of phases and steps
of surgical procedures based on CNN, to reduce the duration
of annotation procedure while increasing its accuracy.43 

Surgical process models (SPMs) have been defined as mod-
els of a set of one or more related activities or procedures per-
formed to achieve a surgical objective. Lalys and coworkers
developed a new method for the automatic detection of the
phases of the surgery from videos (high-level tasks).41 They
eventually extended their method for the detection of low-
level surgical tasks (activities). An activity was defined by a
triplet < surgical tool, action, anatomical structure > . An exam-
ple of a phase in cataract surgery was represented by corneal
incisions. During this phase, one of the actions identified was
< 1.1 mm knife, incise, cornea > . In their work, they moved
from high-level to low-level tasks using a complex system
with validated methods that included formalization of surgi-
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cal activities, surgical tool detection, and anatomical structure
detection. They reported a mean accuracy of the recognition
of surgical activities of 64%, a specificity of 76.3%, and a sensi-
tivity of 54.9%.40 

Phacoemulsification is a critical phase of cataract surgery.
The amount of energy released can be controlled by the sur-
geon and is considerably influenced by the level of experience
of the first operator. For this reason, Tian and coworkers in-
troduced a Video-Based Intelligent Recognition and Decision
(VeBIRD) system to automatically track the operation process
and to classify the cataract grade.66 

This system included an iris detector, a phacoemulsifica-
tion probe tracker, and an intelligent discriminator to detect
the cataract grade. The hardness of the lens nucleus, and cor-
respondingly, the release of the ultrasonic energy were auto-
matically decided by a computer-aided system with intelli-
gent programs in real-time.66 

Although small incision cataract surgery has become a safe
and quite reproducible procedure, the integration of robotics
systems into it could improve accuracy, dexterity, and prevent
some complications. Hubschman and coworkers developed
electromagnetic tracking to quantify and accurately evalu-
ate the range of motion of each instrument during the five
main surgical steps of cataract surgery.34 The aim was to help
design new robotic systems that could give assistance dur-
ing ophthalmological procedures.34 The integration of AI and
robotics might represent the future for telesurgery, but fur-
ther steps, including the analysis of big data to deploy deep-
learning models, would be necessary for building intelligent
robots that are independent of human intelligence.7 

3.4. Complications 

Artificial models and NNs have also been applied in the field
of cataract surgery complications to improve patient care in
terms of diagnosis, prognosis, and planning. Antibiotic in-
jection into the anterior chamber is considered an effective
approach to reduce the risk of postoperative endophthalmi-
tis. Despite the intraoperative administration of antibiotics,
the development of a posterior capsular rupture is a well-
known risk factor for postoperative endophthalmitis follow-
ing cataract surgery.8 , 28 Liu and coworkers performed a natu-
ral language processing (NLP) to identify two crucial intraop-
erative variables from surgical reports: the rupture of the pos-
terior capsule and the injection of intracameral antibiotics.46 

This could support the monitoring of complications and the
identification of their incidence by simplifying the data anal-
yses. Moreover, this work could help other specialists to de-
velop and implement NLP protocols in their own settings.46 

Posterior capsule opacification and cystoid macular edema
(ME) are the most frequently occurring postoperative com-
plications after uncomplicated cataract surgery.48 Moham-
madi and coworkers generated three back-propagation ANNs,
trained them using 282 randomly selected eyes, and tested
them using 70 eyes, to predict posterior capsule status that
would require capsulotomy.48 

In case of diabetic patients affected by ME shortly after
cataract surgery, identifying the real underlying pathology can
be challenging and of crucial importance to determine the
proper treatment.30 Hecht and coworkers developed an auto-
mated classifying algorithm based on machine learning meth-
ods using different spectral-domain optical coherence tomog-
raphy (SD-OCT) parameters to develop a simple clinical clas-
sifier capable of distinguishing the underlying pathology of
ME between pseudophakic ME, diabetic ME, or “mixed” ME.30 

Hecht and coworkers also developed a simple web tool for
use on a personal computer or mobile phone specifically de-
signed to accurately diagnose the underlying pathology of ME
post-cataract surgery and to implement the research into this
field.29 

4. Conclusions 

The application of AI-driven diagnostics has been reported to
be comparable and, in selected cases, even to exceed the accu-
racy of experienced clinicians in correctly classifying eye dis-
eases, including cataract. More recently, other applications of
AI in cataract surgery have included OR scheduling, intraop-
erative support, and postoperative management of complica-
tions. With advances in technology, there has been an emer-
gence of several AI-based imaging tools and smartphone ap-
plications to provide support for clinical decisions. Such ap-
plication can help deliver ophthalmology care across triage,
diagnosis, and monitoring. 

The unique features of these AI tools, however, make them
vulnerable to distinct biases with respect to training data that,
in turn, might decrease their efficiency in improving patient
outcomes in clinical settings. AI algorithms perform advanced
computational analysis of a huge amount of “training data” to
devise a mathematical function that can be used for further
extrapolation. The training set might comprise text or labeled
images (as in ophthalmology). Such data reflect a reference
frame for real-world scenarios; hence, it is important that the
data also reflect the setting in which the AI algorithm would
be used. For instance, the studies demonstrating the use of
AI-based diagnostic tools must at least provide the specificity,
sensitivity, NPV, and PPV values for these tools. The datasets
that are used for AI algorithm generation may contain incom-
plete clinical metadata. This limitation makes it difficult to
extrapolate population characteristics to assess the disease
spectrum. In addition, AI algorithms often dichotomize diag-
nostic tools with unclear thresholds, which may result in inac-
curate prediction of the disease spectrum as well as inefficient
diagnostic potential. 

Several AI algorithms have been created and tested us-
ing experimental designs and datasets; however, these cannot
replicate the real-world scenarios, leading to generalizability
issues.42 Machine learning datasets cannot effectively repre-
sent the actual human population. Hence, for patients beyond
these groups, the results obtained from the application of AI
algorithms become less predictable, which may lead to un-
desirable inferences. The real-world applicability and gener-
alizability of these algorithms might be limited owing to the
challenges in their development and validation. Prior to their
real-world application, these AI algorithms must be evalu-
ated through randomized trials to assess their safety, cost-
effectiveness, and efficacy in clinical settings. Recent stud-
ies have shown that AI algorithms have the potential to ex-
hibit comparable or higher accuracy compared to that of ex-
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perienced clinicians.42 Using rigorous validation approaches,
these AI applications might be optimized to support clini-
cians and patients while delivering ophthalmology care across
triage, diagnosis, and monitoring. 

Optimization of cataract patient management is crucial
now more than ever. COVID-19 has significantly increased the
waiting lists to access cataract surgery. International guide-
lines have suggested a reduction of the number of unneces-
sary visits for the patients and minimizing the number of OR
staff without negative effects of training of young surgeons.
AI tools could meet the increased needs of both surgeons and
patients by optimizing preoperative management and surgery
and, eventually, by reducing the incidence of complications.
The implementation of AI into the clinical practice could ex-
pand the access to care and safety for the patients. Moreover,
AI-guided systems could support surgeons in training as well.

To date, only a few clinical trials have compared the effi-
cacy of AI systems in real-world settings. Indeed, only a few
algorithms have also been shown to be reliable in a clinical
setting. Given the possibility of potential biases, however, it is
essential that more randomized controlled trials be conducted
to evaluate the efficacy of AI algorithms. 

5. Method of literature search 

The following terms were combined as shown: (“Eye
Diseases” [MESH] OR “Cataract Extraction”[Mesh] OR
“Cataract/analysis”[Mesh] OR “Cataract/classification”[Mesh]
OR “Cataract/complications”[Mesh] OR “Cataract/diagnosis”
[Mesh] OR “Cataract/diagnostic imaging”[Mesh] OR “Cataract/
drug therapy”[Mesh] OR “Cataract/economics”[Mesh] OR
“Cataract/epidemiology”[Mesh] OR “Cataract/etiology”[Mesh]
OR “Cataract/prevention and control”[Mesh] OR “Cataract/
rehabilitation”[Mesh] OR “Cataract/surgery”[Mesh]
OR “Cataract/therapy”[Mesh]) OR (“Lens, Crystalline/
abnormalities”[Mesh] OR “Lens, Crystalline/analysis”[Mesh]
OR “Lens, Crystalline/anatomy and histology”[Mesh] OR “Lens,
Crystalline/diagnosis”[Mesh] OR “Lens, Crystalline/diagnostic
imaging”[Mesh] OR “Lens, Crystalline/pathology”[Mesh] OR
“Lens, Crystalline/physiopathology”[Mesh] OR “Lens, Crys-
talline/surgery”[Mesh] OR “Lens, Crystalline/therapy”[Mesh]
OR “Lenses, Intraocular”[Mesh] OR “Lens Implantation, In-
traocular”[Mesh] OR CATARACT OR LENS ∗ AND “Artificial
Intelligence”[Mesh]. 

For this comprehensive review, a literature search of all
original articles published up to 1st March 2021, was per-
formed in parallel by three authors (A.L.V.,S.M. and K.Z-O.)
from PubMed. 

Three reviewers (A.L.V,S.M and K.Z-O.) independently
screened the titles and the abstracts of articles identified by
the initial search using Rayyan QCRI Software. The full texts
of the relevant articles were then analyzed, and the bibliog-
raphy of eligible articles were assessed to identify any study
not obtained through electronic search. A fourth reviewer (R.G)
was consulted in case of disagreement. The same reviewers
independently extracted the following data: study title, year
of publication, author, number of participants, study design,
type of AI-related application, and main outcomes measured.
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