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Summary

Two trends have rapidly been redefining the artificial intelligence (AI) landscape
over the past several decades. The first of these is the rapid technological de-
velopments that make increasingly sophisticated AI feasible. From a hardware
point of view, this includes increased computational power and efficient data
storage. From a conceptual and algorithmic viewpoint, fields such as machine
learning have undergone a surge and synergies between AI and other disciplines
have resulted in considerable developments.

The second trend is the growing societal awareness around AI. While insti-
tutions are becoming increasingly aware that they have to adopt AI technology
to stay competitive, issues such as data privacy and explainability have become
part of public discourse. Combined, these developments result in a conundrum:
AI can improve all aspects of our lives, from healthcare to environmental policy
to business opportunities, but invoking it requires the use of sensitive data.

Unfortunately, traditional anonymization techniques do not provide a reli-
able solution to this conundrum. They are insufficient in protecting personal
data, but also reduce the analytic value of data through distortion. However, the
emerging study of deep-learning generative models (DLGM) may form a more
refined alternative to traditional anonymization. Originally conceived for image
processing, these models capture probability distributions underlying datasets.
Such distributions can subsequently be sampled, giving new data points not
present in the original dataset. However, the overall distribution of synthetic
datasets, consisting of data sampled in this manner, is equivalent to that of the
original dataset.

In this thesis, we study the use of DLGM as an enabling technology for wider
AI adoption. To do so, we first study legislation around data privacy with an
emphasis on the European Union. In doing so, we also provide an outline of tra-
ditional data anonymization technology. We then provide an introduction to AI
and deep-learning. Two case studies are discussed to illustrate the field’s merits,
namely image segmentation and cancer diagnosis. We then introduce DLGM,
with an emphasis on variational autoencoders. The application of such meth-
ods to tabular and relational data is novel and involves innovative preprocessing
techniques. Finally, we assess the developed methodology in reproducible exper-
iments, evaluating both the analytic utility and the degree of privacy protection
through statistical metrics.
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Sommario

Due tendenze hanno rapidamente ridefinito il panorama dell’intelligenza artifi-
ciale (IA) negli ultimi decenni. La prima è il rapido sviluppo tecnologico che
rende possibile un’intelligenza artificiale sempre più sofisticata. Dal punto di
vista dell’hardware, ciò include una maggiore potenza di calcolo ed una sem-
pre crescente efficienza di archiviazione dei dati. Da un punto di vista con-
cettuale e algoritmico, campi come l’apprendimento automatico hanno subito
un’impennata e le sinergie tra l’IA e le altre discipline hanno portato a sviluppi
considerevoli.

La seconda tendenza è la crescente consapevolezza della società nei confronti
dell’IA. Mentre le istituzioni sono sempre più consapevoli di dover adottare la
tecnologia dell’IA per rimanere competitive, questioni come la privacy dei dati
e la possibilità di spiegare il funzionamento dei modelli di apprendimento auto-
matico sono diventate parte del dibattito pubblico. L’insieme di questi sviluppi
genera però una sfida: l’IA può migliorare tutti gli aspetti della nostra vita,
dall’assistenza sanitaria alla politica ambientale, fino alle opportunità commer-
ciali, ma poterla sfruttare adeguatamente richiede l’uso di dati sensibili.

Purtroppo, le tecniche di anonimizzazione tradizionali non forniscono una
soluzione affidabile a suddetta sfida. Non solo non sono sufficienti a proteggere
i dati personali, ma ne riducono anche il valore analitico a causa delle in-
evitabili distorsioni apportate ai dati. Tuttavia, lo studio emergente dei modelli
generativi ad apprendimento profondo (MGAP) può costituire un’alternativa
più raffinata all’anonimizzazione tradizionale. Originariamente concepiti per
l’elaborazione delle immagini, questi modelli catturano le distribuzioni di prob-
abilità sottostanti agli insiemi di dati. Tali distribuzioni possono essere succes-
sivamente campionate, fornendo nuovi campioni di dati, non presenti nel set di
dati originale. Tuttavia, la distribuzione complessiva degli insiemi di dati sin-
tetici, costituiti da dati campionati in questo modo, è equivalente a quella del
set dei dati originali.

In questa tesi, verrà analizzato l’uso dei MGAP come tecnologia abilitante
per una più ampia adozione dell’IA. A tal scopo, verrà ripercorsa prima di
tutto la legislazione sulla privacy dei dati, con particolare attenzione a quella
relativa all’Unione Europea. Nel farlo, forniremo anche una panoramica delle
tecnologie tradizionali di anonimizzazione dei dati. Successivamente, verrà for-
nita un’introduzione all’IA e al deep-learning. Per illustrare i meriti di questo
campo, vengono discussi due casi di studio: uno relativo alla segmentazione delle
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immagini ed uno relativo alla diagnosi del cancro. Si introducono poi i MGAP,
con particolare attenzione agli autoencoder variazionali. L’applicazione di questi
metodi ai dati tabellari e relazionali costituisce una utile innovazione in questo
campo che comporta l’introduzione di tecniche innovative di pre-elaborazione.
Infine, verrà valutata la metodologia sviluppata attraverso esperimenti ripro-
ducibili, considerando sia l’utilità analitica che il grado di protezione della pri-
vacy attraverso metriche statistiche.
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Chapter 1

Introduction

1.1 Motivation

An essential part of the European Commission (EC) digital strategy is titled
“Shaping Europe’s Digital Future” [1]. It aims at setting the worldwide standard
for horizontal and vertical data sharing through the “Towards Common Data
Spaces” initiative [2]. The main goal is to facilitate an efficient flow of data
within the EU for public as well as private sector data. However, establishing
these common data spaces is difficult to combine with the EC goal of giving
citizens more control and protection of their data.

The absence of such common data spaces restricts business and research
opportunities, as use of data is a determining factor in the productivity of or-
ganizations. Advances in data management are typically easily incorporated
into a practical setting. Data analysis, however, tends to be a more convoluted
process. While Machine Learning (ML) tools provide sophisticated analytic op-
portunities, for most small and medium-sized enterprises they are perceived as
esoteric, requiring a very specific skill set to be put to good use. In consequence,
data analysis is often outsourced to a consultancy company or a dedicated in-
ternal department. However, topics such as data protection and confidentiality
have entered public discourse and raised concern. This has forced organizations
to reflect on the role of data in their operations. Legislation such as the General
Data Protection Regulation (GDPR) and the California Consumer Privacy Act
(CCPA) has further complicated the use of data, particularly its transfer to
third-party analysts.

Anonymization techniques are a common way of coping with these risks.
Anonymization consists in masking, permuting, generalizing and/or distort-
ing records to make their origins opaque. Unfortunately, anonymization tech-
niques have been shown to be be susceptible to three seminal privacy risks
(re-identification, linkage and parameter inference attacks) [3]. Moreover, the
degree of anonymization directly affects the quality of the information still con-
tained in the dataset. More recent methods based on differential privacy offer
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12 CHAPTER 1. INTRODUCTION

more protection, but limit the number of use cases, excluding machine learning
and artificial intelligence.

Deep learning (DL)-based generative models provide a reliable alternative to
data anonymization. Generative models infer patterns from a real dataset, that
can subsequently be used to generate highly realistic, yet fully artificial data
points. Resulting artificial datasets closely mimic the real datasets, but do not
contain any sensitive information. As such, artificial datasets can potentially
be transferred without breaching privacy legislation, while the quality of the
extracted information is on a par with the original dataset.

To date, most studies on generative models were conducted in the context of
image generation (e.g., [4, 5]). These studies have introduced rigorous method-
ological frameworks and pivotal insights. However, the focus on image gener-
ation is restrictive, as most business cases are based on data in tabular form.
That is, business data is organized in one or more tables in which rows represent
entities, individuals, or individual actions and values on columns represent their
properties. When the data span across more than one table, there are usually
dedicated columns for linking entities from one table to another and multiple
rows and columns can have intricate inter-dependencies. This case is usually
referred to as relational data. A further difficulty in generating tabular data is
the presence of several data types [6] (for example, categorical and continuous
attributes) and the fact that some cells (column values for rows) can be empty,
i.e., there can be missing values. These peculiarities call for a novel approach.

In this thesis, we introduce deep-learning generative models for tabular and
relational data. To do so, we first illustrate the demand for reliable privacy en-
hancement technology, suitable for machine learning and artificial intelligence
applications. We then outline the current legal landscape surrounding data pri-
vacy, with an emphasis on the European Union. Combined, these topics provide
clear evidence that there is demand for innovative privacy technologies. We then
design and describe in detail a synthetic data generation pipeline for the case
when original data is tabular (possibly relational) and exhibits the practically
relevant peculiarities described above: heterogeneous data types and missing
values. We also propose measuring its outputs along two axes: (a) the degree
to which the technique is able to generate data that is useful as a replacement
for the original data while working with ML services (utility-preservation) and
(b) the degree to which the technique prevents the disclosure of information
about the entities represented in the original data from the synthetic data (dis-
closure-averseness). Our methods are evaluated in reproducible experiments
with publicly available and randomly generated datasets. Results indicate that
our approach is able to generate synthetic data with strong utility-preservation
and disclosure-averseness.

1.2 Research Questions

The objective of this thesis is the establishment of effective methods for gener-
ating synthetic tabular and relational data. Such data should be reliable both
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in its utility preservation and in its disclosure averseness. We also aim to show
that there is an express need for the resulting technology in practice. A multi-
disciplinary approach is taken to disclosure averseness, as this property is not
merely a mathematical concern, but perhaps more so a legal one. Combined,
these considerations lead us to the following research questions.

1.2.1 Research Question 1

What is machine learning and does the advent of its methods result in a need
for reliable privacy enhancing technologies?

To answer this question, we provide a bottom-up background of machine learn-
ing, from the basic definitions to a high-level description of deep-learning meth-
ods. This background is illustrated through two practical use-cases: an onco-
logical case and an image segmentation case. Combined, these consideration
provide a conceptual understanding of methods developed in later chapters, but
also showcase the dire need of secure data mobility across sectors and industries.

1.2.2 Research Question 2

Under what conditions is a dataset considered legally void of sensitive infor-
mation? which approaches exist to achieve these conditions? and do these
approaches meet the conditions?

To answer this question, we study the existing legislation on data privacy, with
an emphasis on the European Union (EU). By introducing the General Data
Protection Regulation (GDPR), the EU was one of the first major players in
data privacy law. The GDPR is often used as a blueprint for privacy legislation
elsewhere. Besides legislation, we also study the occurrence of data breaches in
practice. An overview of the existing data privacy enhancement techniques is
then provided, along with remarks on their merits and shortcomings.

1.2.3 Research Question 3

Can deep-learning models be applied for successfully generation of corporate
data? if so, how can their effectiveness (utility and privacy) be measured?

To answer this question, we study existing frameworks for synthetic data gen-
eration. We identify variational autoencoders (VAE) as the most promising
one for corporate datasets, that are typically tabular or relational in nature.
We study advanced VAE models to facilitate optimal performance in these use
cases. This includes a novel adaptation of introspective VAE for relational data.
Preprocessing techniques for various data types are also discussed. Metrics to
evaluate the degree to which utility and privacy are preserved are introduced.
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1.2.4 Research Question 4

How effective are variational autoencoder models for synthetic data generation
in practice?

To answer this question, we implement our models and evaluate them experi-
mentally. To do so, we use three publically aailable datasets for tabular data.
For relational data, we use randomly generated data. After applying the deep-
learning generative models, we evaluate the performance metrics for utility
preservation and disclosure averseness. This provides insight into the effec-
tiveness of the models.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows: In Chapter 2, we answer
Research Question 1, outlining the field of machine learning and providing prac-
tical motivation for privacy enhancing technologies. In Chapter 3, we answer
Research Question 2, providing an overview of data privacy legislation, how pro-
lific data breaches are, and what technologies exist for data privacy protection.
In Chapter 4, we derive the deep-learning methods for synthetic data generation
and introduce metrics to quantify the performance of their outputs. In Chap-
ter 5, the effectiveness of the methods is evaluated experimentally. The thesis
is concluded with a discussion of the obtained results and suggestions for future
research in Chapter 6.

This structure, along with precedence relations between chapters, is visual-
ized in Figure 1.1.
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Chapter 2: Introduction to deep learning Chapter 3: Data privacy legislation

Chapter 1: Introduction

Chapter 4: Generative Models

Chapter 5: Experimental
Evaluation of Generative Models

Chapter 6: Conclusion

Figure 1.1: Structure of the thesis, with precedence relations between chapters.
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Chapter 2

Machine Learning and Its
Applications

In this chapter, we provide a concise introduction to machine learning, laying the
groundwork for subsequent chapters. Machine learning is a discipline in artificial
intelligence (AI) that deals with data pattern extraction and recognition. It
has applications in nearly all sectors, including healthcare, image processing,
finance, and environmental sciences. As we outline the core terminology, we
also illustrate the involved theory in two practical use cases: prostate cancer
upgrading risk assessment and mosaic image segmentation. These use cases are
based on our work previously published as [7] and [8], respectively. This chapter
serves two main purposes: to provide the theory required to understand the
methods for synthetic data generation we present in Chapter 4; and to illustrate
what use cases of AI are common in practice, motivating why synthetic data
(and privacy enhancing technologies in general) are important in the first place.
Besides providing a concise introduction to AI, this investigation will therefore
also answer the research question What is machine learning and does the advent
of its methods result in a need for reliable privacy enhancing technologies?

17
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2.1 Machine Learning Theory

2.1.1 Introduction

Machine learning (ML) is a subfield of artificial intelligence, often concerned with
making inferences from large datasets [9]. While ML and data mining theory has
a rich history dating back to the 1940s, ML algorithms have become an indus-
try standard in recent decades [9]. Applications include recommender systems
in retail, fraud detection in insurance, computer-aided diagnosis in healthcare,
self-learning systems such as self-driving cars and more.

The field of ML can be subdivided into supervised and unsupervised learn-
ing, each associated with specific collections of problems, models, and algorithm
classes. Intuitively put, supervised learning models have access to a dataset with
dependent and independent variables, from which they infer patterns. When
given independent variables from new data points, they can then apply these
patterns to accurately predict the corresponding dependent variables. Super-
vised learning is further subdivided into classification, where the dependent
variable is one of finitely many classes, and regression, where the dependent
variable is real-valued. Various methods, including artificial neural networks,
can be applied to both types of supervised learning problems.

In unsupervised learning, information is extracted from new datasets di-
rectly, without relying on patterns inferred from previously available data. The
two most prominent examples of unsupervised learning are clustering and rein-
forcement learning. Clustering is the process of grouping together records in a
database based on the degree to which they exhibit similar features. Reinforce-
ment learning models how humans learn in an unsupervised manner, through
interaction with their environments. An overview of the field of ML is provided
in Figure 2.1.

In the remainder of this chapter, we introduce the core ML terminology ap-
plied throughout the thesis. This introduction is largely based on [9, 10, 11], to
which the reader is directed for further reading. This terminology is also illus-
trated in a straight-forward example in Section 2.2 and in a more sophisticated
use case in Section 2.4.

2.1.2 Basic Definitions

In this section, we consider tabular datasets. The definitions readily extend to
other types of datasets. In particular, we will consider relational datasets in
Chapter 4; terms are analogously redefined in said chapter.

A dataset D is a table, that is: a collection of rows {t1, t2, ..., tn} =: D.
A row t is a tuple defined over a set of attributes A(D) = (a1, ..., ap). We
let V (D, a) denote the domain of attribute a in dataset D, with v(t, a) ∈
V (D, a) ∪ {∅} the value of attribute a in row t and dataset D, for ∅ repre-
senting missing values (records for which the value of an attribute is unknown).
The type of an attribute a determines the nature of its domain V (D, a). We
consider five cases:



2.1. MACHINE LEARNING THEORY 19

Machine Learning

Supervised
Learning

Classification Regression

Artificial Neural
Networks

Unupervised
Learning

Clustering
Reinforcement

Learning

Centroid-based
clustering

Figure 2.1: Basic ML taxonomy with some examples of problem classes and
examples of solution algorithms (orange)

• a real-valued attribute has a domain V (D, a) ⊆ R;

• a discrete attribute has a domain V (D, a) ⊆ Z;

• a time attribute has a domain V (D, a) ⊆ N and its values represent time
instants;

• a categorical attribute has a finite domain V (D, a) consisting of non-
numerical items and without a natural ordering;

• a binary attribute has a domain V (D, a) with only two values.

We say that two datasets D,D′ are compatible if A(D) = A(D′) and V (D, a) =
V (D′, a) ∀a ∈ A(D). We denote by D ∼ D′ that D and D′ are compatible.

2.1.3 Supervised Learning

A ML problem is a supervised learning problem if the following hold:

1. Given are two datasets D,D′ such that D ∼ D′;

2. The datasets D and D′ have a target attribute â;

3. The values v(t, â) of â are known for all rows t ∈ D;

4. The objective is to predict the values v(t, â) for rows t ∈ D′ by leveraging
the information contained in D.
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We will call a supervised learning problem a regression problem if the target at-
tribute is real-valued, discrete or a time attribute. We call a supervised learning
problem a classification problem otherwise.

A model is a mapping m :
∏

a∈A(D)\{â} V (D, a) → V (D, â). Given a su-
pervised learning problem, a solution or learning algorithm is a procedure that,
given dataset D and target column â, produces a model m. Intuitively put, a
modelm is considered good ifm(t) closely approximates v(t, â). For an overview
of solutions for specific solutions for the most common ML problems, the reader
can consult Table 2.1 and the references therein.

In practice, this is evaluated through effectiveness metrics. To do so, the
dataset D is partitioned into a training set Dtrain and a testing set Dtest (i.e.
D = Dtrain ∪Dtest with Dtrain ∩Dtest = ∅). The solution is applied to Dtrain,
giving a model m. The model is then applied to attributes A(D) \ {â} of Dtest.
An effectiveness metric assigns a numerical value e(m,Dtest) whose semantic is,
without loss of generality, the greater, the better the model approximates the
values v(t, â) for t ∈ Dtest.

A model can overfit to a particular dataset, that is: its solution may infer
patterns that are overly specific to the training set, and do not generalize well to
new data. To deal with this, models can be evaluated through cross-validation.
This is a methodology in which the dataset D is partitioned into subsets of equal
cardinality, i.e. into sets D1, D2, ..., Dk with Di ∩Dj = ∅ ∀i ̸= j;

⋃k
i=1Di = D;

|Di| = |Dj | ∀i, j. Training is then reiterated k times, with each of the sets Di

for i = 1, 2, ..., k the test set in exactly one iteration. By using a different test
set in each iteration, and updating the model accordingly, the risk of overfitting
is significantly reduced.

We denote by mθ a model dependent on model parameters θ ∈ θ, where θ
is the parameter domain. A procedure is then synonymous with model training
(model fitting): identifying the parameters θ∗ optimizing a function of effec-
tiveness metrics. Besides model parameters, a model may also depend on hy-
perparameters. These are parameters specific to classes of models that cannot
be inferred from the data. Finding an optimal model therefore requires finding
both the optimal model parameters and the optimal hyperparameters. For each
combination of hyperparameters, the corresponding optimal model parameters
have to be identified through a separate round of model training. Hyperparam-
eter optimization or tuning is done through (meta)heuristics, exact methods or
by informed guesses by the modeler and typically requires considerable compu-
tational resources.

Example 2.1.1 An insurance company has extensive client records, including
the age, income, occupation, gender, etc., of its clients. For a large collection of
records, it has been verified whether or not the involved client exhibited fraudu-
lent behavior. The insurer wants to use this information to predict whether new
clients are likely to engage in fraudulent behavior.

This is a classical example of a (supervised) classification problem: the in-
surer wants to classify clients as either fraudulent or not. To do so, they can
subdivide the data for which the fraud-status is known into a training and a
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testing set. Subsequently, they can train a model on the training set and use
effectiveness metrics to evaluate it on the testing set. If the model showcases a
strong degree of effectiveness, it can reliably be used to classify (potential) clients
for which the fraud-status is unknown.

Example 2.1.2 A hospital maintains a large database of patient records. Var-
ious diseases are difficult for physicians to diagnose, as their symptoms present
similarly, are subject to many exceptions, and vary depending on underlying
health conditions and prior medications. The hospital wants to leverage their
full patient database to assist physicians in their diagnostic practices.

This again is a classification problem. The hospital can leverage patient
records with correct diagnoses (verified in retrospect) to train a model that as-
signs the correct diagnosis to new patients with a quantifiable high degree of
accuracy. This model can infer all exceptions, including influences of underly-
ing health conditions and prior medication.

2.1.4 Unsupervised Learning

Unsupervised learning is any type of ML problem or solution in which there
is no training dataset available. As such, there is no dependent variable and
methods are applied directly to the harvested data. In this thesis, we are mostly
concerned with supervised learning problems. However, clustering plays a signif-
icant role in Chapters 4 and 5. The specific problem, solution and effectiveness
metrics used in these chapters are therefore discussed here.

An ML problem is a clustering problem if the following hold:

1. Given is a dataset D with attributes A(D);

2. The objective is to find a partition D = {D1, D2, ..., Dk} of D (
⋃
D = D;

Di ∩ Dj = ∅ ∀i ̸= j) such that if row t is assigned to subset Di, then
it resembles some row t′ ∈ Di more closely than it resembles t′′ ∈ Dj for
any j ̸= i

A solution to a clustering problem is a method that returns a partition D
of dataset D. An effectiveness metric is a mapping that assigns a numerical
value e(D) ∈ R to a partition D.

Both solutions and effectiveness metrics typically rely on distance metrics
defined on the space A(D). In Chapters 4 and 5, we will use a centroid-based
clustering method. Such methods typically proceed along the following steps:

1. Select k rows t1, ..., tk at random; put µi = ti, i = 1, 2, ..., k

2. For each row t ∈ D, compute l∗ = argmini∈{1,2,...,k} d(t, µi), for d : A(D)×
A(D)→ R a distance measure on A(D);

3. Put Dl∗ ← Dl∗ ∪ {t};

4. Put µi ←M(Di), for M some measure of centrality;
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5. Repeat steps 2,3 and 4 until the values µi remain unaltered in a given
iteration.

The number k of clusters is a hyperparameter of this method. If V (D, a) ⊆
R ∀a, we may use the geometric mean as a measure of centrality, that is:
M(Di) =

1
|Di|

∑
t∈Di

t. In this case, we refer to the method as k-means cluster-
ing.

An effectiveness metric assigns a numerical value e(D) whose semantic is,
without loss of generality, the greater, the more accurate the clustering policy.
Intuitively put, a clustering policy is good if there is a high degree of similar-
ity between records in a cluster, and a low degree between records in different
clusters.

Example 2.1.3 A social media platform has amassed a large amount of user
data. A vendor of clothing that are tailored to a specific youth culture wants
to run advertisements on this platform. An ad is considered effective when it
is clicked, that is: when the platform’s user goes directly from the social media
platform to the vendor’s website. An ad is ineffective if it is shown to a user
who has no subsequent interaction with the vendor.

While the vendor wishes to maximize the number of effective ads, the so-
cial media platform has incentives to minimize the number of ineffective ads.
This is because ineffective ads take up airtime which could have been dedicated
to more effective ads. Moreover, ineffective ads lead to a less immersive user-
experience. Thus, the vendor is offered fixed unit of advertisement time and
space, but wishes that these are used in the most effective way possible.

As youth cultures are defined by proximity in social factors, such as cloth-
ing, music, film and literature taste, age, gender, socio-economic status, etc.,
the platform can perform a clustering method based on such characteristics. At
least one of the resulting clusters will then correspond most closely to the cloth-
ing vendor’s target demographic. By showing the ads to this/these cluster(s),
the platform can optimize the number of website visits, while simultaneously
minimizing the number of ineffective ads.

Other unsupervised learning problems include reinforcement learning (RL) [12]
and dimensionality reduction (DR) [13]. RL is a field of ML that models the
manner in which individuals learn from experience, through penalties and re-
wards. In the resulting models, agents interact with a probabilistic environment
or state-space. Their actions result in a direct pay-off (either positive or neg-
ative), and a transition to a new state. The agents aim to optimize a function
of the obtained pay-offs (typically a discounted sum in which more recently ob-
tained rewards are given exponentially more weight). By doing so, they obtain
an optimal manner in which to interact with their environment. RL is closely
related to the study of Markov Chains and Markov Decision Processes (see,
e.g. [14]).

DR is a branch of ML that is typically tasked with data compression and
noise reduction. DR has its roots in information theory, where the smallest num-
ber of bits needed to convey a piece of information was studied. Among the most
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Problem Supervised? Applications Algorithms/models Reference(s)

Classification Yes Fraud detection; Naive Bayes; [9, 10, 15]
Client segmentation; Decision tree; [9, 10]
Medical diagnosis; Random forest; [9, 10, 16]
e-Mail spam filtering; Logistic regression; [9, 10]
Recommender systems. Adaptive boosting; [9, 10, 17]

Support vector [10, 15]
machine;

Artificial Neural [11, 10]
Network;

Regression Yes Financial forecasting; Linear regression; [9, 10]
Pattern recognition; Logistic regression; [9, 10]
Process optimization. Ridge regression; [9, 10]

Support vector [10, 15]
machine;

Artificial Neural [11, 10]
Network;

Clustering No Client segmentation; Centroid-based clustering; [9, 10, 15]
Recommender systems; Hierarchical clustering; [9, 10, 15]
Market basket analysis; Density-based clustering; [9, 10]
Social network analysis. Partition-based clustering; [9, 10]

Reinforcement learning No Self-learning systems; SARSA; [12]
Video game opponent modeling; Q-learning; [12]
Self-driving vehicles. Value/policy improvement [12]

algorithms. [12]
Dimensionality reduction No Data (including image) Principal Component Anlysis (PCA) [13]

compression Autoencoders

Table 2.1: Concise overview of prominent ML problems, applications and solu-
tion methods

prominent DR methods at present is principal component analysis (PCA) [13].
This technique is has its roots in linear algebra and is applied for both dimen-
sionality and noise reduction. In essence, PCA and other DR methods take
a dataset as input. Subsequently, they learn to represent this set in a lower-
dimensional space. This reduces the total amount of information, while pre-
serving all the valuable structures. In noise removal applications, the methods
also discern useful information from random noise. The lower-dimensional data
representation is often referred to as a code, making the compression method
an autoencoder.

2.1.5 Effectiveness Metrics

Each problem class has distinct effectiveness metrics for assessing model ac-
curacy. For classification problems, efficiency metrics assign a numeric value
e(m,Dtest) to a model m applied to test set Dtest ⊆ D. While the values of
target attribute â are known for all rows t ∈ D, model m is applied to the re-
maining attributes A(D) \ {â}. The predicted values m(t) of target attribute â
can then be compared to their real values v(t, â) for all t ∈ D, providing in
indication of how well the model predicts unforeseen test data. For clustering
problems, metrics assign a real number e(D) to the partition D of dataset D,
quantifying the internal cohesion or external dissension of each cluster.
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Classification Problems

Consider a classification problem with n distinct classes, a model m and a test
set Dtest and classes V (D, â) = {c1, c2, ..., ck}. The confusion matrix of m
and Dtest is an n× n matrix M conf(m,Dtest), such that

M conf
i,j (m,Dtest) = | {t ∈ Dtest : m(t) = ci ∧ v(t, â) = cj} |

The entry on the main diagonal of a confusion matrix indicate how many in-
stances model m correctly classified. If n = 2, we refer to the problem as
a binary classification problem. For such problems, there exists a bijection f
from V (D, â) to the set {0, 1}. We will wlog refer to f−1(0) as “positive” and
to f−1(1) as “negative”. The entries M conf

1,1 (m,Dtest), M
conf
2,1 , M conf

1,2 ,M conf
2,2 are

respectively referred to as true positive, false negative, false positive and true
negative. This is visualized in Table 2.2.

Often in binary classification problems, “positive” and “negative” have a se-
mantics that favors methods that are overestimate positive cases over one that
underestimates them. This is for instance the case in Example 2.1.2, where the
hospital would rather have a system that incorrectly classifies healthy patients
as unhealthy than misclassifying the other way around.

v(t, â) = 0 v(t, â) = 1
m(t) = 0 True positive False positive
m(t) = 1 False negative True negative

Table 2.2: Confusion matrix for a binary classification problem

The most prominent metrics for classification problems are derived from con-
fusion matrices. We will describe these wlog for binary classification problems.

Accuracy The accuracy, denoted by Acc, is simply the proportion of correct
predictions, as formalized in equation (2.1).

Acc(m,Dtest) = Tr(Mconf(m,Dtest))∑
i

∑
j Mconf

i,j (m,Dtest)
(2.1)

In the binary case, equation (2.1) simplifies to equation (2.2).

Acc(m,Dtest) =
Mconf

1,1 (m,Dtest)+Mconf
2,2 (m,Dtest)

Mconf
1,1 (m,Dtest)+Mconf

1,2 (m,Dtest)+Mconf
2,1 (m,Dtest)+Mconf

2,2 (m,Dtest)

= True positive + True negative
True positive + True negative + False positive + False negative

(2.2)

Precision Given a binary classification problem, a modelm, test setDtest and
the corresponding confusion matrix M conf(m,Dtest), we define the precision,
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denoted by Prec according to equation (2.3).

Prec(m,Dtest) =
Mconf

1,1 (m,Dtest)

Mconf
1,1 (m,Dtest)+Mconf

1,2 (m,Dtest)

= True positive
True positive + False positive

(2.3)

In words, the precision is the proportion of instances classified as positive by
the model, that are indeed positive in the real test data.

Recall Given a binary classification problem, a model m, test set Dtest and
the corresponding confusion matrix M conf(m,Dtest), we define the recall (also
known as the true positive rate), denoted by Rec according to equation (2.4).

Rec(m,Dtest) =
Mconf

1,1 (m,Dtest)

Mconf
1,1 (m,Dtest)+Mconf

2,1 (m,Dtest)

= True positive
True positive + False negative

(2.4)

In words, the recall is the proportion of real positive test data that are classified
as positive by the model.

F-Measure Given a binary classification problem, a model m, test set Dtest

and the corresponding confusion matrixM conf(m,Dtest), we define the F-measure
(also known as the F-1 score), denoted by Fm, through (2.5).

Fm(m,Dtest) = 2 · Rec(m,Dtest)·Prec(m,Dtest)
Rec(m,Dtest)+Prec(m,Dtest)

(2.5)

In words, the F-measure is the harmonic mean of the precision and recall.

Receiver Operating Characteristic (ROC) Consider a binary classifica-
tion problem, a model m, test set Dtest and the corresponding confusion matrix
M conf(m,Dtest). Define the false positive rate, denoted by FPR according to
equation (2.6).

FPR(m,Dtest) =
Mconf

1,2 (m,Dtest)

Mconf
1,2 (m,Dtest)+Mconf

2,2 (m,Dtest)

= False positive
False positive + True negative

(2.6)

The receiver operator characteristic (ROC) is an effectivieness metric that is
particularly useful when the model m is a composite of two functions such that
the first gives a real-valued output and the latter converts this into a discrete
(e.g. binary) classification through hyperparameters, i.e.:

m(t) = m2(m1(t), τ)

Where
m1 : Πa∈A(D)\{â}V (D, a)→ R; m2 : R×Xτ → V (D, â)
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for Xτ a domain of hyperparameters (note that these must also be inputs of the
composite function m, its domain thereby becoming Πa∈A(D)\{â}V (D, a)×Xτ ).
This is for instance the case if regression methods are applied to classifica-
tion tasks: the regression model m1 returns a number m1(t) ∈ R for a given
row t. The threshold function m2 then converts m1 to the most suitable class
m2(m1(t), τ) through hyperparameters τ ∈ Xτ . In a binary classification prob-
lem, with a single real-valued threshold parameter, this latter function can for
instance be of the form

m2(x, τ) =

{
0, if x ≤ τ
1, otherwise

(2.7)

for a given threshold τ ∈ R.
The dependency of the model on hyperparameters Xτ entails that the ef-

fectiveness is also affected by parameters τ ∈ Xτ . Assume that Xτ = R, and
m2 is of the form of equation 2.7. Then, as τ increases, the number of positive
classifications (rows t with m(t, τ) = 0) increases. Thus, all else being equal, the
false positive rate is a monotone increasing function of τ . Likewise, the recall is
a monotone increasing function of τ . The rate at which these metrics increase,
however, may differ.

The receiver operating characteristic (ROC) curve is the curve obtained when
plotting the increase in the recall as a function of the increase in the false posi-
tive rate. A large area under the ROC curve indicates that the recall increases
significantly faster than the false positive rate. Thus, even for relatively small
threshold values, we can identify true positives without incorrectly classifying a
large number of negatives. This is why the area under the ROC curve, denoted
by AUC, is used as an efficiency metric for classification problems.

Regression Problems

In regression problems, the objective is to find a models that capture the de-
pendence of a real-valued dependent variable on the independent ones. The
effectiveness of regression solutions is again quantified by comparing the output
model’s estimates m(t) to real values v(t, â) for rows t ∈ Dtest ⊆ D.

Mean Squared Error Given a regression problem, a model m, test set Dtest,
the mean squared error, denoted by MSE, is computed according to equa-
tion (2.8).

MSE(m,Dtest) =
1

|Dtest|
∑

t∈Dtest

(m(t)− v(t, â))2 (2.8)

Coefficient of Determination Given a regression problem, a model m, test
set Dtest, the coefficient of determination, denoted by R2, is computed according
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to equation (2.9).

R2(m,Dtest) = 1− SSRes(m,D)

SSTot(m,D)
(2.9)

for

SSRes(m,D) =
∑

t∈Dtest

(m(t)− v(t, â))2

and

SSTot(m,D) =
∑

t∈Dtest

(m(t)− µâ)
2

with µâ the arithmetic mean of real values of attribute â in test set Dtest. Note
that SSRes is simply the squared error, a measure indicating how much each
model output deviates from its real value in the test set. The value SSTot mea-
sures how much each model output deviates from the true mean. The coefficient
of determination, in combining these quantities provides an effectiveness metric
that accounts for variance in the data.

That is: if there is considerable variance in the data, and this variance is
accurately captured by the model, SSTot(m,D) should be fairly large, while
SSRes(m,D) should still be as small as possible, giving a large R2 value. If
there is little variance in the data, the degree to which individual, smaller fluc-
tuations are accurately captured by the model is better measured due to the
small value in the denominator in equation (2.9)

Clustering Problems

Recall that the output of a clustering method is a partition D of the dataset D.
An effectiveness metric assigns a numerical value e(D) to such partitions. Such
a metric quantifies how well the algorithm groups together similar objects and
the extent to which distinct groups are dissimilar enough to be considered as
such.

Sum of Squared Errors Given is a partition D of a dataset D. The sum
of squared errors of D, denoted by SSE(D), is defined through equation (2.10),
where µD′ is a centroid of D′ and d is a distance metric on A(D). For example,
if A(D) ⊆ Rn for some n ∈ N, then the standard arithmetic mean 1

|D′|
∑

t∈D′ t

can be chosen for computing µD′ and the standard Pythagorean distance can
be chosen for d.

SSE(D) =
∑
D′∈D

[∑
t∈D′

d(t, µD′)2

]
(2.10)

Note that in equation (2.10), the inner sum is simply the variance within cluster
D′. Thus, the sum of squared errors is the sum of the variances within the
individual clusters.
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2.2 Case Study: Prostate Cancer Upgrading Pre-
diction

This section is based on [7] and provides a clear example of how the outlined
theory is applied in practice. The importance of the results, directly affecting
patients’ life qualities, also exemplifies the strong need for AI methods in prac-
tice. We are given a dataset of 8357 patients who underwent robotic radical
prostatectomy (RRP) and lymph node dissection at a single center between
2012 and 2017. The following attributes are available: age, body mass index,
number of cores, number of positive cores, percentage of cancer, primary glea-
son, secondary gleason, total PSA, PSA density, ASA score, prostate volume,
transitional zone volume and clinical stage.

Our objective is to build ML models to predict prostate cancer upgrading.
We use three classification solutions to do this: a standard logistic regression
model, a classification tree, and a random forest. We then evaluate the results of
each using the AUC (area under the ROC curve). The results are also compared
to standard monograms, as used by physicians in assessing prostate cancer up-
grading.

The results show that all three methods outperform the standard monogram,
with the random forest classifier showcasing the best results (AUC = 0.78), fol-
lowed by the classification tree (AUC = 0.76) and the logistic regression model
(AUC == 0.66). These results are visualized in Figure 2.2. Note that the curve
of the random forest increases more rapidly then other curves, indicating that
it can correctly clasify more positive instances with a lower number of false pos-
itives then the other models. This initial faster increase entails a larger AUC.
The dotted line indicates the baseline, in which a fixed percentage of data points
is assigned a positive classification at random.

We note that the results seem to improve with the complexity of the model,
with the random forest classifier significantly outperforming the other classi-
fiers. Furthermore, all three methods drastically outperformed the standard
monograms used in practice by medical experts during diagnosis. This indi-
cates that advanced AI can significantly outperform legacy healthcare methods.
Unfortunately, such methods have to be implemented by experts and require
access to personal data. Traditional anonymization methods take a long time
to be applied, as do data privacy protocol clearances, resulting in long data
lead times. Furthermore, these methods come with specific caveats and short-
comings. In consequence, synthetic data generation can potentially become a
disruptive technology in the medical sector.

2.3 Artificial Neural Networks

2.3.1 Perceptrons

A perceptron is the basic unit of any artificial neural network (aNN). In this
section, we describe how perceptrons can be applied to binary classification
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Figure 2.2: ROC curves of the learning methods

problems to exemplify the underlying theory. Perceptrons and aNNs can, how-
ever, also be applied to may other ML problems.

In this context, perceptrons are a class of models that return a binary
classification when given a row of real-valued attributes. Let D be a dataset
with A(D)\{â} ⊆ Rn for some n ∈ N. A perceptron m is a model that returns a
binary classification m(t) ∈ {0, 1} for a row t ∈ A(D)\{â}. The mapping m is a
composition of two functions: a hyperplane function and an activation function
ψ. More formally put:

m(t) = (ψ ◦m′)(t)

were
m′(t) = θT t

for a vector θ ∈ Rn and ψ is a given and fixed activation function. The per-
ceptron model m is completely determined by the parameters in vector θ, the
form of the activation function being a hyperparameter. We denote by mθ the
perceptron model with parameter vector θ. Training a perceptron corresponds
to finding the vector θ such that mθ best separates the positive and negative
instances in the training set.

Perceptrons linearly subdivide the data space into two halfspaces of the re-
spective forms

H1 =
{
t ∈ Rn : θT t > b

}
; H2 =

{
t ∈ Rn : θT t ≤ b

}
for b ∈ R a hyperparameter. By taking θ′ = (−1|θ) and t′ = (b|t), with “|”
denoting concatenation of a scalar to a vector, the more common writing format

H1 =
{
t ∈ Rn : θ′T t′ > 0

}
; H2 =

{
t ∈ Rn : θ′T t′ ≤ 0

}
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Hyperplane Activation
t θT t

0, otherwise

1, if θT t > b

Figure 2.3: Structure of a perceptron with a discrete activation function

Hyperplane Activation
t θT t ψ(θT t)

Figure 2.4: Generic structure of a single perceptron

is obtained. Note that the perceptron models become increasingly inaccurate
the less evidently the data can be linearly separated by a single hyperplane.

The conceptually most straight-forward activation function is the to simply
put

ψ(x) =

{
1, if x > 0

0, Otherwise

This activation function divides the data space up into half spaces H1, H2 and
classifies all data points in H1 as positive and all points in H2 as negative. A
perceptron of this format is depicted in Figure 2.3. This choice of ψ is, however,
discontinuous and hence not differentiable. This results in problems during
model training. Continuous approximations are therefore often taken instead,
most notably the sigmoid function

ψ(x) =
1

1 + e−x

Figure 2.4 shows a perceptron with generic activation function.

2.3.2 Artificial Neural Network models

Essentially, artificial neural networks (aNN) are networks in which nodes corre-
spond to perceptrons or other data data transformation functions. A plethora
of specific aNN model classes exist, with many developed with particular ap-
plications in mind. In this section, we introduce the most common types of
aNN. In Section 2.4, a more specific class of aNN is described and applied in a
practical case study. The study of aNN is a prominent subfield of deep learning.

Multi-layer Perceptrons Multi-layer perceptrons are layered networks in
which each node is a perceptron. As a single perceptron classifies based on hy-
perplanes, a multi-layer perceptron network can classify based on convex poly-
topes (by definition intersections of halfspaces).
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t m(t)

Figure 2.5: Multi-layer perceptron network (artificial neural network, aNN) with
two layers plus the input and output layers.

A multi-layer perceptron can have any number of layers. Nodes in layer k
have all the nodes in layer k − 1 as their input. Hence a node i of layer k, de-
noted by nk,i, is a perceptron that constructs a hyperplane based on the values
of nodes in layer k − 1, and applies its activation function to this hyperplane.
The zeroth layer of the aNN is simply the input data, and the final layer are
the output model values. This is illustrated in Figure 2.5.

Convolutional Neural Networks Convolutional neural networks (CNN),
first introduced by LeCun [18], are layered networks of perceptrons in which at
least one of the layers is a convolution operator. CNNs are particularly useful
when the dataset D has a grid-like structure, for instance when the dataset is a
set of images. As data goes through the convolutional layer, it is convolved with
a filter, in place of the standard hyperplane computation. The output of such a
convolutional layer is the activation function of each filter. In image processing,
datasets are matrices (of color, saturation, hue, etc. values) rather than rows of
attributes, making CNNs particularly applicable. Not all nodes in a given layer
k necessarily take all outputs from preceding layer k as their input in CNN. In
Section 2.4, a specific CNN framework is studied more closely, namely U-nets
in the context of image segmentation.

Recurrent Neural Networks Recurrent neural networks (RNN), introduced
by Rumelhart et al. [19], are layered networks of perceptrons in which some pa-
rameters are shared between multiple layers. RNNs are typically applied in the
context of sequential data, for instance when the dataset D consists of time-
series. Time series of the form (x1, x2, ..., xn) require that certain patterns are
generalized over the entire sequence, such that the model can predict both in-
dividual sequence entries, but also properties shared between all entries in the
sequence.
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2.3.3 Training Artificial Neural Networks

Training a Single Perceptron

To train a single perceptron (that is: find the vector θ such that the hyperplane
θTx most accurately divides the training data), we carry out the following steps.

Initialization The initial vector w must first be chosen. It is common to
choose w randomly. This is for instance achieved by sampling from a uniform
distribution in a range deemed suitable for the application at hand.

Learning The vector θ is then incrementally updated to better represent the
training data. To do so, a loss function, denoted by L : θ → R is introduced.
The loss function is a function that assigns a real-valued quantity L(θ) to mea-
sure how well the parameter vector θ classifies training instances. The loss
function compares model outputs mθ(t) to the corresponding actual values of
attribute â of row t. In the context of classification, cross-entropy is the most
commonly used loss function, defined through equation (2.11).

L(θ) = −
∑

t∈Dtrain

(v(t, â) log(mθ(t)) + (1− v(t, â)) log(1−mθ(t)) (2.11)

Training data points t ∈ Dtest are provided as inputs to the perceptron on-by-
one. In each step, weights θ are then updated to minimize the loss function by
a term ∆θ, i.e.

θi ← θi +∆θi ∀i

The value of ∆θi is obtained through gradient descent for the loss function.
Note that we have to differentiate a composition of three functions to do so: the
loss function, the activation function and the hyperplane computation. This is
why the activation function is required to be differentiable.

Termination Training is complete when a set of stopping criteria is achieved.
For example, training may terminate when each row of the training dataset has
been used to improve the parameter vector.

Training artificial neural networks through backpropagation

Artificial neural networks are most commonly trained through (variations of)
the backpropagation algorithm. The network is equipped with a loss function.
Consider a network of k layers of l nodes each. Note that mathematically, the
network is simply a composition of kl perceptrons (a hyperplane function and
an activation function each, hence 2kl functions in total). All involved functions
are differentiable, the gradient of the network can be computed simply through
the chain rule for differentiation.

The backpropagation exploits this observation and is carried out as follows.



2.4. CASE STUDY: MOSAIC IMAGE SEGMENTATION 33

Forward pass Given a point t ∈ Dtrain, compute the output m(t). To do so,
simply apply all the functions of perceptrons in layer 1 of the network to the in-
put, then use their outputs as the input for layer 2. repeat this until the output
m(t) of the final layer is obtained. For complex network topologies incorporat-
ing multiple computational steps, block diagrams (such as those in Figure 2.4
and 2.3, but for larger networks) can provide a visual aid in understanding how
data flows through the network.

Backpropagation The output m(t) and the true value of attribute â in row t
are then available. To minimize the loss function, we can now use the chainrule,
noting that each perceptron can be optimized individually. Thus, we can first
use the output to train all perceptrons in final layer k. Once the involved
parameters are optimized, we can proceed to layer k − 1 and continue this
process until we reach the first layer.

Termination Training is again complete if a set of stopping criteria is achieved.
For example, training may terminate when all rows t of the test dataset Dtest

have been passed forward and subsequently backpropagated through the net-
work. In practice, datasets can be too large to be entered into aNN implemen-
tations. The data is then subdivided into batches, and the training algorithm
is applied to batches one by one. An epoch is then achieved once the network
has trained using all batches once. Multiple epochs are often invoked during
training, so that the model is informed by the full dataset multiple times.

2.4 Case Study: Mosaic image segmentation

This section is based on research previously published as [8].

2.4.1 Introduction

Cultural heritage is one of the most important assets of the society. Its preser-
vation and restoration are time-consuming activities performed by experts and
often consist in manual analysis of fine details of the works. It is hence natural
that these tasks, as many others where human experts are involved in some
form of data processing, are subjected to automation using machine learning
techniques. Differently than other domains, however, tasks concerning cultural
heritage may be harder because of the scarcity of labeled data and nature of the
data itself. Despite these limitations, successful examples of applications exist,
e.g., [20], and progresses in the techniques for different kinds of data pave the
way for other successful applications.

We consider a particular kind of artistic works, namely mosaics. Mosaics are
assemblies of small pieces of stone or similar materials, called tiles or tessellae,
glued together with some binder or filler, such that the overall appearance of the
assembly looks like a painting or some decorative pattern. Mosaics constitute
an essential component of the cultural heritage for many (ancient) civilizations.
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Preservation, and, to some degree, restoration of mosaics might be enhanced
if digital versions of the works were available. Moreover, the access to the
artistic works might be eased using digital means, possibly as part of a process
in which hard copies are obtained starting from digital copies, hence enlarging
the portion of population that can access mosaics, regardless of their physical
location [21]. There have been a couple of approaches, namely [22, 23], that
proposed automatic methods for obtaining a digital version of the mosaic. All
of them take as input an image of the mosaic, that can be cheaply obtained
also for non-relocatable mosaics, and output a segmentation of the image in
which regions should correspond to tiles. Starting from the segmentation, a
digital version of the mosaic may be obtained straightforwardly, hence easing
the mosaic preservation and restoration and making it more accessible [24].

Here we propose a novel technique for mosaic image segmentation that is
based on a recently proposed kind of convolutional neural networks (CNN),
called U-net [25]. Our approach differs from the previous ones in the way the
mosaic image is processed. The U-net processes the image at the pixel level,
differently than the proposal by [23], but permits, by design, that some pixels
are not associated with any region, differently than the approach of [22]: this
means that using U-net for segmentation allows to model the presence of the
filler. A key component of our approach is in the preprocessing phase that is
part of the learning process: we propose a method for augmenting the dataset
in such a way that the learning of U-net parameters is effective even when a
small number of annotated examples are available. In facts, manual annotating
mosaic images is a costly process [23].

We assess experimentally our approach applying it to 11 images of real mo-
saics, differing in style, age, and quality (both of the image and of the mosaic
itself in terms of wear). We compare the segmentation based on U-net against
previous methods using a set of established performance indexes suitable for the
mosaic image segmentation task and we found that our method outperforms the
other ones in the most relevant index. Moreover, we show that the way in which
the three methods make errors in analyzing the image varies consistently with
the fact that the methods are based on different underlying assumptions. This
finding opens an opportunity for designing an even more effective method where
U-net segmentation is a step of a more complex procedure which involves also
other processing steps, eventually resulting in a better segmentation effective-
ness.

2.4.2 Related works

In [22] the proposed approach aims to detect and to extract the tile from the
filler, using the well-known watershed algorithm [26] and some mosaic-specific
preprocessing. In [23] the authors proposal goal is the same, but they employed
deformable models as flexible shapes to be superimposed on the mosaic picture
and to be adapted to the effective shapes of the tiles. Other segmentation
approaches include laser scanners and photogrammetry [27], segmentation based
on already available mosaic cartoons [28]. We refer the reader to [29] for a
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detailed review.
Regarding the U-nets, there are many applications in biomedical image seg-

mentation, e.g., [30]. Variations of the U-nets have also been applied to volu-
metric segmentation from sparsely annotated volumetric images [31], road ex-
traction from aerial images [32], and in case of ambiguous images, i.e., when
many different annotations are available for every single image [33].

2.4.3 Problem statement

The goal of this work is to propose a method for segmenting an image of a
mosaic in such a way that, for each tile of the mosaic in the image, all and only
the corresponding pixels are assigned to the same region of the segmentation.

More formally, we call a region of the image I a subset of adjacent pixels
of I. We call a segmentation of an image I a set T = {T1, . . . , Tn} of disjoint
regions of I, i.e., ∀i, j, Ti ∩ Tj = ∅.

Let T and T ′ be two segmentations of the same image I. Following [34],
we adapt the previously outlined efficiency metrics for this particular case. We
also add the so-called count error. This gives the following four indexes:

Prec(T , T ′) =
1

|T |
∑
T∈T

max
T ′∈T ′

|T ∩ T ′|
|T |

(2.12)

Rec(T , T ′) =
1

|T ′|
∑

T ′∈T ′

max
T∈T

|T ∩ T ′|
|T ′|

(2.13)

Fm(T , T ′) =
2|T ∩ T ′|
|T |+ |T ′|

(2.14)

Cnt(T , T ′) =
abs(|T ′| − |T |)

|T ′|
(2.15)

where |T | is the number of pixels in the region T , |T | is the number of regions
in the segmentation T , and T ∩ T ′ is the set of pixels which belong to both T
and T ′.

The precision index Prec(T , T ′) is the average precision of regions in T ,
where the precision of a region T is the largest ratio |T∩T ′|

|T | among different

T ′ ∈ T ′, i.e., the proportion of T pixels which belong to the region of T ′ with
which T overlaps most. The recall index Rec(T , T ′) is the average recall of

regions in T ′, where the recall of a region T ′ is the largest ratio |T∩T ′|
|T ′| among

different T ∈ T , i.e., the proportion of T ′ pixels which belong to the region of T
with which T ′ overlaps most—it can be noted that Prec(T , T ′) = Rec(T ′, T ).
The F-measure (also known as F-1 score) is the harmonic mean of precision
and recall. Finally, the count error index Cnt(T , T ′) is the normalized absolute
difference between the number of regions in T ′ and the number of regions in T .

It can be seen that, when the indexes are applied to the same segmentation,
Prec(T , T ) = 1, Rec(T , T ) = 1, and Cnt(T , T ) = 0. Intuitively, the more
similar the two segmentations T and T ′, the closer the precision and recall
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indexes to 1 and the closer the count error index to 0. In the extreme case
where T = {I}, i.e., T consists of a single region covering the full image, recall
is 1, whereas precision may be low and count error may be high; on the opposite
case, if T = {{i} : i ∈ I}, i.e., if regions of T correspond to single pixels of I,
then precision is 1, recall may be low, and count error may be high.

Let T ⋆ be the unknown desired segmentation of a mosaic image I in which
each region exactly corresponds to a tile in the image. The goal is to find a
method that, for any image I of a mosaic, outputs a segmentation T which
maximizes Prec(T , T ⋆) and Rec(T , T ⋆) and minimizes Cnt(T , T ⋆).

2.4.4 U-net for mosaic segmentation

We propose a solution for the mosaic image segmentation problem described in
the previous section which is based on a kind of Convolutional Neural Network
(CNN). We assume that a learning set composed of images of mosaics and the
corresponding desired segmentations are available. In a learning phase, to be
performed just once, the learning set is used to learn the values of the parameters
of the network. Then, once learned, the network is used in a procedure that can
take any image I as input and outputs a segmentation T .

The CNN used in this study is known as U-net, the name deriving from the
shape of the ANN architecture. U-net was introduced by [25] who used it for the
segmentation of neuronal structures in electron microscopic stacks: according
to the cited study, U-net experimentally outperformed previous approaches.

When applied to an image, a U-net works as a binary classifier at the pixel
level, i.e., it takes as input a 3-channels (RGB) image and returns as output a
two-channels image. In the output image, the two channels correspond to the
two classes and encodes, together, the fact that the pixel belongs or does not
belong to the artifact of interest—in our case, a tile of the mosaic.

In order to obtain a segmentation from the output of the U-net, we (i) con-
sider the single-channel image that is obtained by applying pixel-wise the soft-
max function to the two channels of the ANN output and considering just the
first value, that we call the pixel intensity and denote by p(i); (ii) compare each
pixel intensity against a threshold τ ; (iii) merge sets of adjacent pixels that
exceed the threshold, hence obtaining connected regions. We discuss in detail
this procedure in Section 2.4.4.

Internally, the U-net is organized as follows: a contracting path made of
a series of 3 × 3 un-padded convolutions followed by max-pooling layers en-
ables the context capturing while the expanding path consisting of transposed
convolutions and cropping operations ensures precise features localization [25].

In our study we used an instance of the U-net tailored to input images of
400 × 400. In the contracting path, we used two 2-D un-padded convolutions
steps of size 3, both made of 32 filters and followed by a rectified linear unit
(reLU) precede a max-pooling layer with 2× 2 pool-size. The same structure is
repeated four times every time increasing the number of filters to 64, 128, 256,
and 512. At the end of the contraction phase the 400× 400 pixels input image
in reshaped in a 17× 512 tensor. In the expansion path, we started with an up-
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sampling 2-D layer of 2×2 size of the features map followed by a concatenation
with the correspondingly cropped feature map from the contracting phase and
two 2-D un-padded convolutions steps of size 3 × 3 each with reLU activation
function. The same procedure is repeated also four times every time reducing
the number of convolutions filter by half leading to a tensor of shape 216× 32.
Furthermore a zero-padding 2-D layer reshapes the tensor in a 400 × 400 × 32
shape prior to a 1-D convolution steps composed of two filters that gives in
output a 400 × 400 × 2 tensor that constitutes the output of the U-net. The
output is then used to compute pixel intensities and hence the segmentation as
briefly sketched above and detailed in Section 2.4.4.

Learning

Let L = {(I1, T ⋆
1 ), . . . , (Im, T ⋆

m)} be the learning set composed of m pairs, each
consisting of a mosaic image Ii and the corresponding desired segmentation T ⋆

i ,
obtained by manual annotation. The outcome of the learning phase consists of
the weights θ of the U-net.

We first preprocess the pairs in the learning set L as follows, obtaining a
different learning set L′, for which |L′| = |L| does not generally hold.

1. We rescale each pair (I, T ⋆) ∈ L so as to obtain a given tile density

ρ0 = |T ⋆|
|I| , i.e., a given ratio between the number of tiles in the image

and the image size; ρ0 is a parameter of our method. We use a bicubic
interpolation over 4× 4 pixel neighborhood.

2. From each pair (I, T ⋆) ∈ L, we obtain a number of pairs by cropping
square regions of I of size l×l (crops) that overlap for half of their size; l is
a parameter of our method. Let w×h be the size of the image I of the pair,
the number of pairs obtained by cropping is

(⌊
w
l

⌋
+
⌊
w
l −

1
2

⌋) (⌊
h
l

⌋
+

⌊
h
l −

1
2

⌋)
.

We build a set L′ including the resulting pairs, each one consisting of a
square image of size l × l and a segmentation with, on average, approxi-
mately ρ0l

2 regions.

3. Finally, we augment L′ by adding, for each of its pair, few pairs obtained
by common image data augmentation techniques, i.e., rotation, horizontal
and vertical flipping.

We remark that, when building L′ from L, segmentations T ⋆ are processed
accordingly to the processing of the corresponding images I.

In order to learn the weights θ of the U-net, we consider a subset L′
train of

L′ that contains 90% of the pairs in L′, chosen with uniform probability.

Then, we use the Adam optimizer [35] on image pairs in L′
train to learn the

weights θ. We feed Adam with batches of 8 images and drive it by the following
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weighted binary cross entropy loss function:

Loss(θ) =− 1

|Lb|
∑

I∈|Lb|

∑
i∈I

(
wq(i) log p(i)

+ (1− q(i)) log(1− p(i))
)

(2.16)

where Lb is the batch of pairs (I, T ⋆), w is a weighting factor, p(i) is the pixel
intensity of i obtained by applying the U-net with weights θ, and q(i) is an
indicator function that encodes in {1, 0} the fact that the pixel i belongs or
does not belong to a region of T ⋆:

q(i) =

{
1 if ∃T ∈ T ⋆, i ∈ T
0 otherwise

(2.17)

We use the weighting factor w in Equation (2.16) in order to weight differ-
ently classification errors for pixels of tiles and filler. The parameter w hence
permits to cope with the fact that image of mosaics are in general highly un-
balanced: much more pixel are associated to tiles than to the filler. We ex-
perimented with three different values of w: 0.5, 0.1, and 0.01, the former
corresponding to weighting the two classes equally.

We set Adam to run the optimization for nepoch epochs, with a learning
rate that varies at every epoch using an exponential decay function. During
the optimization, we use the remaining 10% of the set L′ for monitoring the
progress, by computing the loss of Equation (2.16) on L′ \ L′

train.

Segmentation

In the segmentation phase, we use a learned U-net to obtain a segmentation T
out of an image I, as follows.

1. We rescale the input image such that its estimated tile density ρ is approx-
imately equal to the ρ0 value used during the learning. For computing ρ,
and hence for performing the scaling, we assume that a raw estimate of
the number of tiles in the image I is available: in practice, this estimate
might be obtained by visual inspection of a small portion of the image.

2. We apply the U-net to I obtaining a single-channel image of pixel intensi-
ties that we threshold at 0.5, hence obtaining a binary image of the same
size of I. We call this image the output mask.

3. We consider the subset I ′ = {i ∈ I, p(i) ≥ 0.5} of pixels of I that are
classified by the U-net as a belonging to tiles.

4. Finally, we partition I ′ in subsets composed of adjacent pixels, hence
obtaining the segmentation T = {T1, T2, . . . }.
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2.4.5 Experimental evaluation

We performed an extensive experimental evaluation aimed at assessing our
method effectiveness in terms of precision, recall, and count error on images
of mosaics not used for learning. To this end, we considered a set of images of
real mosaics, that we manually annotated to obtain the corresponding desired
segmentations (i.e., the ground-truth segmentations), and applied our method.

We collected a dataset of 12 images of real mosaics including both images
that we acquired with a consumer camera and images that we obtained online.
Part of this dataset has already been used by Bartoli et al. [23].

The mosaics depicted in the images of our dataset belong to different ages
in time and also differ in tile density and color. The annotation required for
the training was performed manually. Despite the extensive effort and atten-
tion devoted to the process, some dissimilarities between a mosaic image and
its corresponding ground-truth segmentation may still exist. Nonetheless, the
manually annotated mask looks visually correct.

Figure 2.6 shows the images of our dataset. It can be seen that the images
greatly vary in the density and size of the tiles as well as in the visually perceived
sharpness of tile edges.

Procedure

We evaluated our method using a leave-one-out procedure on the images (and
corresponding desired segmentations) of our dataset, as follows. For each pair
(I, T ⋆) in the dataset D, we (i) performed the learning on L = D \ (I, T ⋆),
hence obtaining a learned U-net, (ii) used the learned U-net for obtaining the
segmentation T of I (i.e., the image of the left-out pair), and (iii) computed the
precision Prec(T , T ⋆), recall Rec(T , T ⋆), and count error Cnt(T , T ⋆).

Concerning the method parameters, we set ρ0 = 15 × 10−5, l = 400, and
nepoch = 10. We chose the values for ρ0 and l based on the minimum dimension
and tile density of the images in our dataset. In this way we obtained crops
of 400 × 400 pixels with approximately l2ρ0 = 24 tiles in each crop. In the
segmentation phase, we set ρ = ρ0 and computed ρ using the actual number T ⋆

of tiles.
We run the experiments using an implementation of the method based on

Python 3.6 with Keras and Tensorflow; we executed it on some p3.8xlarge AWS
EC2 instances, each equipped with 64 vCPU based on 2.3GHz Intel Xeon E5-
2686 v4 with 244GB RAM and with 4 GPUs based on NVIDIA Tesla V100
with 32GB RAM. In these settings, the learning time for one repetition of a
leave-one-out procedure is 30min and the segmentation time is in the order of
few seconds.

Results and discussion

We show in Table 2.3 the results in terms of the salient segmentation effective-
ness indexes presented in Section 4.3.2 (precision, recall, F-measure, and count
error) for each mosaic image, i.e., each repetition of the leave-one-out procedure.
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U-net with w = 0.5 U-net with w = 0.1 U-net with w = 0.01

Im. # Cnt Prec Rec Fm Cnt Prec Rec Fm Cnt Prec Rec Fm

0 0.49 0.56 0.71 0.62 0.18 0.62 0.54 0.57 0.19 0.74 0.40 0.51
1 0.52 0.57 0.69 0.62 0.20 0.70 0.56 0.61 0.19 0.81 0.30 0.43
2 0.75 0.41 0.76 0.51 0.40 0.51 0.52 0.51 0.40 0.51 0.40 0.43
3 0.18 0.64 0.73 0.68 0.07 0.79 0.67 0.72 0.17 0.96 0.35 0.51
4 0.15 0.66 0.61 0.64 0.10 0.68 0.57 0.62 0.08 0.79 0.38 0.51
5 0.31 0.66 0.62 0.64 0.26 0.68 0.57 0.62 0.21 0.86 0.23 0.36
6 0.32 0.58 0.61 0.59 0.17 0.63 0.60 0.61 0.11 0.81 0.32 0.46
7 0.30 0.67 0.80 0.73 0.26 0.73 0.76 0.75 0.41 0.73 0.70 0.71
8 0.28 0.59 0.71 0.64 0.29 0.62 0.67 0.64 0.27 0.68 0.53 0.59
9 0.21 0.62 0.73 0.67 0.23 0.67 0.60 0.62 0.13 0.73 0.52 0.60
10 0.52 0.65 0.70 0.67 0.41 0.70 0.62 0.65 0.31 0.88 0.31 0.45
11 0.29 0.65 0.72 0.69 0.25 0.68 0.68 0.68 0.24 0.83 0.23 0.35

Avg. 0.36 0.60 0.70 0.64 0.23 0.67 0.61 0.63 0.22 0.78 0.39 0.49

Table 2.3: Results obtained with the three U-nets with different w values.

Table 2.3 shows that average precision, recall, and F-measure at w = 0.5
are 0.60, 0.70, and 0.64 respectively, whereas the average count error is 0.36.
By looking at the figures of single images, it can be seen that the effectiveness
of segmentation varies among mosaic images, with the F-measure ranging from
0.51 of image 2 to 0.73 of image 7 and the count error ranging from 0.75 of
image 2 to 0.15 of image 4. We carefully compared the numerical features of
Table 2.3 with the corresponding mosaic images (see Figure 2.6) and found
that the segmentation effectiveness is consistent with the subjectively perceived
quality of the images. Good numerical results are obtained by our method for
images 7 and 11, while the worst result is obtained for image 2 which exhibits
poor sharpness.

Concerning the impact of the weighting parameter w, it can be seen from
the three sections of Table 2.3 that it act consistently with its semantic. As w
decreases, the balancing between precision and recall varies, namely precision
increases and recall decreases: in facts, a lower value for w corresponds to a lower
contribution, in the loss used during the learning (see Equation (2.16)), of the
errors in classifying pixel belonging to the actual tiles. As a result, the learned
U-net tends to outputs smaller regions that have a lower recall and a greater
precision. Another effect is that the count error is lower with lower values of
w, because there are fewer regions of the output segmentation in which tiles
are “glued” together (see also later discussion). These finding on the impact of
w on the output segmentations suggests that it can be used as a parameter to
tailor the output to the specific usage intended by the user. However, since in
our experiments w = 0.5 delivers the best F-measure, we report in the following
only the results obtained in this settings.

In order to put our results in perspective, we compared them with those
obtained by the two other existing methods for mosaic image segmentation, i.e.,



2.4. CASE STUDY: MOSAIC IMAGE SEGMENTATION 41

U-net with w = 0.5 GA TOS

Im. # Cnt Prec Rec Fm Cnt Prec Rec Fm Cnt Prec Rec Fm

7 0.30 0.67 0.80 0.73 0.03 0.50 0.76 0.60 0.14 0.64 0.87 0.74
8 0.28 0.59 0.71 0.64 0.03 0.42 0.63 0.50 0.54 0.56 0.72 0.63
9 0.21 0.62 0.73 0.67 0.01 0.41 0.66 0.51 0.03 0.53 0.82 0.64
10 0.52 0.65 0.70 0.67 0.07 0.50 0.63 0.56 0.06 0.49 0.68 0.57
11 0.29 0.65 0.72 0.69 0.03 0.46 0.67 0.55 0.90 0.63 0.78 0.70

Avg. 0.32 0.64 0.73 0.68 0.03 0.46 0.67 0.54 0.33 0.57 0.77 0.66

Table 2.4: Results obtained with our method and with GA and TOS for a subset
of the dataset.

[23] and [22], that we here denote by GA and TOS, respectively. Table 2.4 shows
the values of the four indexes for the mosaic images of our dataset which were
also processed with GA and TOS (for these methods, the figures are taken from
[23]). For each image, we highlight in Table 2.4 the best Fm and Cnt figure
among the three methods.

The foremost finding is that our method outperforms both GA and TOS in
terms of average F-measure, with 0.67 vs. 0.54 and 0.66, respectively: consider-
ing Fm on the single images, our method obtains the best result in 3 on 5 images.
Concerning the count error, U-net scores better than TOS (0.30 vs. 0.33) and
worse than GA (0.30 vs. 0.03): we note, however, that the latter method is de-
signed to output a number of tiles corresponding to the user-provided estimate.

Another finding concerns how the errors in segmentation are distributed
between precision and recall. For all the three methods, recall is in general
larger than precision, meaning that tiles in the computed segmentation are in
general “larger” than the corresponding tiles in the desired segmentation. The
unbalancing is, however, much greater in TOS and GA than in U-net, the
difference between recall and precision being 0.09, 0.21, and 0.20 respectively
for our method, GA and TOS. We think that this difference can be explained by
the way the three methods work. In TOS, the segmentation does not allow to
obtain regions which are not tiles: this means that the filler is always included
in a tile, resulting in a low precision and good recall. In GA, the overlapping
of tiles is not explicitly forbidden or discouraged, thus the precision is very low,
on average, because the output segmentation often contains tiles which span
across many desired tiles. In our method, instead, the network is trained to
discriminate between pixels belonging or not belonging to a tile in the desired
segmentation: the way the loss is computed during the training of the U-net
(see Equation (2.16)) favors a good balancing between false positive and false
negative classification at the level of pixels and, hence, between precision and
recall.

In Figure 2.7 we compare the visual results of the segmentation of image 11
using the three methods. Due to the aforementioned differences between the
algorithms, the number of tiles in the TOS segmentation is higher while the
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size of the tiles tend to be smaller when compared to the other methods. In
GA, since the algorithm allows for tiles overlapping, many of the predicted tiles
share the same area. In the U-net segmentation some tiles are not properly
separated, however position, size, and count are visually closer to those in the
original image.

2.5 Conclusion

In this chapter, we introduced the main notions of machine learning. This in-
cludes the definitions of datasets and various types of data types; the generic
problem structures of supervised learning methods (more specifically: classifica-
tion and regression problems); a basic description of unsupervised learning with
an emphasis on clustering; training, hyperparameter optimization, overfitting,
cross-validation, and effectiveness metrics.

These concepts were illustrated in a case study, in which ML classification
solutions were applied to an oncological real-world case. In this case study, we
trained three classifiers to predict risk of prostate cancer upgrading. The results
provide anecdotal evidence that the effectiveness of AI tasks increases with the
sophistication of the involved models. As patient data is highly confidential,
obtaining the data for the analysis was cumbersome. Combined with the direct
impact of the results, this shows the need for privacy enhancement. Because di-
rect data access was required to train the ML models, differential privacy (with
queries returning aggregate results) was not an option. The fallibility of other
traditional anonymization methods suggests that synthetic data would be the
best option for secure and accurate analysis.

The core topics in deep-learning were also introduced. We covered the basic
perceptron model, various kinds of neural networks composed of perceptrons
and their training algorithms. We applied these notions to the problem of the
segmentation of mosaic images, for which we proposed a method based on deep
learning, namely U-net. We experimentally evaluated our proposal on a set of
11 images of real mosaics acquired in different conditions, with different image
quality, and with different building properties. The results suggest that our
method is effective, scoring the better value for the most relevant index on the
majority of images used in the comparison.

We think that our results constitute a further evidence that modern deep
learning systems can help solving tasks in a variety of fields, here in digital
humanities. This further emphasizes the need for secure access to deep learning
and artificial intelligence methods across industries and disciplines.

We believe that further improvements in mosaic image segmentation might
be obtained. The most promising way to achieve them might be merging to-
gether two radically different techniques: the one presented in the present sec-
tion, based on deep learning, and the one designed in [23], based on a different
form of optimization which includes, in the solution presentation, some domain
knowledge concerning the shape of the tiles.
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(a) Image 0. (b) Image 1. (c) Image 2.

(d) Image 3. (e) Image 4. (f) Image 5.

(g) Image 6.
(h) Image 7.

(i) Image 8.

(j) Image 9.

(k) Image 10.

(l) Image 11.

Figure 2.6: The images of the dataset. Images from 7 to 11 has been used also
in [23, 34].
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(a) U-net (b) GA

(c) TOS

Figure 2.7: Example of segmentation of image 11 overlapped on the original
image with the three methods.



Chapter 3

Data Privacy Law

In this chapter, we answer the research question: under what conditions can
datasets legally be considered void of sensitive information; which approaches
exist to achieve these conditions; and how effective are these approaches at meet-
ing the conditions? To answer this question, we first outline the data privacy
legislation effective in the Europe Union. We then provide an overview of pri-
vacy enhancing technologies, including a legal evaluation of their effectiveness.
The discussion is motivated by practical examples of data breaches and legal
cases. We find that of the existing approaches to data anonymity, synthetic
data generation is the only one that can guarantee both data privacy and data
utility. Due to the novelty of this approach, jurisprudence is still lacking. The
topic is, however, gaining traction among legal scholars and policy-makers. In
this chapeter, we use the terms record, data point and datum interchangeably to
refer to the collection of attributes of a single unit in a dataset (a row in Chap-
ter 2). A data subject, individual or natural person is the real-world individual
to which a record refers. We will refer to the person or institution using data
as the data manager. Section 3.2 is based on [36].
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3.1 Data Privacy and Governance Legislation in
the European Union

3.1.1 Legal Theory of Data Privacy

The General Data Protection Regulation (GDPR [37, 38]) came into effect in
2018. The core principle of this legislation is to protect the fundamental right of
EU citizens over the processing of their personal data. This is further echoed by
the European Commission (EC) strategy “Shaping Europe’s Digital Future” [1].
At the same time, the “Towards A Common European Data Spaces” initiative
will facilitate enhanced data exchange [2]. An important part of the initiative
is the Data Governance Act, adopted in 2021 [39]. This act expressly states the
need for data sharing.

The conflict between data protection on the one hand and the need for
increased shared data spaces on the other is difficult to manage. Currently,
Recital 26 of the GDPR states that it does not apply to anonymous informa-
tion. Thus, the use of anonymous data could be a potential option in achieving
both objectives. However, the definition of the term “anonymous” is subject to
interpretation. The same GDPR article clarifies that anonymous information
is deemed as such if it does not relate to “an identified or identifiable natural
person”. To be rendered anonymous, personal data shall be processed and used
in such a manner that “the data subject is not or no longer identifiable” ([38]).

Neither the GDPR nor its predecessor, Directive 95/46/EC [40], clarify when
data can be considered sufficiently anonymous. A working definition is, how-
ever, provided in Article 4 of Regulation EU 2016/679 [41]. This Article defines
“personal data” in terms of twelve attribute categories that are lead to re-
identification susceptibility (name, identification number, location data, online
identifier, specific physical, physiological, genetic, biometric, mental, economic,
cultural, and social identity data). Natural persons should be protected against
both direct and indirect identification through these attribute classes. Globally,
the most stringent data privacy legislation is the Health Insurance Portability
and Accountability Act (HIPAA, [42]), applying to health insurance data in the
United States solely. Like regulation EU 2016/679, the HIPAA defines “personal
data” through a set of attributes that should be protected from identification.
Where regulation EU 2016/679 identifies twelve such attributes, the HIPAA
identifies seventeen, roughly covering the same categories as EU 2016/679, Ar-
ticle 4, but also including health plan membership, genetic test results of family
members, manifestations of diseases or disorders in family members, requests
for, or receipt of genetic services on the individual or family member. It also
covers genetic test results of fetuses or embryos of pregnant individuals [43].
Neither regulation EU 2016/679 nor the HIPAA further specify how an indirect
identification process may operate.

A more concrete conceptualization of (indirect) identification is provided by
the “Article 29 Working Party on the Protection of Individuals with regard
to the Processing of Personal Data” (WP29 [44]). In Opinion 03/2016 of the
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WP29, three data attacks associated with data exchange are introduced, against
which protection is required:

Re-identification attack A re-identification attack is an attack in which the
attacker identifies an individual in the (anonymized) dataset. A re-identification
attack is successful whenever an attacker can deduce the identity of at least one
data subject. Re-identification attacks often identify records with exceptional
combinations of attribute values, as these are easiest to single out. This is il-
lustrated in Example 3.1.1. They may also rely on prior knowledge that the
attacker, using known parameter values to infer unknown ones, as in Exam-
ple 3.1.2.

Example 3.1.1 Given is a dataset of patients of a medical condition that mainly
affects the elderly. The attacker wants to infer the identity of at least one of the
data subjects. However, the data managers use identification numbers in place
of patients’ names, hindering the attack.

Because the condition is geriatric in nature, the younger the data subjects
are, the more scarce their records become. The attacker can exploit this by tar-
geting the youngest cohort in the dataset. This reduces the size of the initial
target set of the attack considerably.

Next, the attacker can focus on another attribute for which some values
are highly exceptional, for instance location. While most patients may live in
large urban centers, only a select number may live in a particular rural area.
Combined with the age requirement, this may single out particular individuals,
culminating in a succesful re-identification attack.

Example 3.1.2 Given is a dataset of clients of an insurance company. The
dataset contains personal information such as age, gender, location, but also
financial information such as income and premium. An attacker has an ac-
quaintance who is a client of the insurance company. (S)He knows most of the
acquaintance’s personal information, but wants to know what hisher income is.
If the data known to the attacker is sufficiently specific, (s)he can simply find
the record matching the personal data and inspect the income attribute.

Linkage attack A linkage attack is an attack in which the attacker links an
individual’s record in the (anonymized) dataset to another record belonging to
the same individual. This other record may be in the same dataset, or a different
available dataset. Linkage attacks are problematic, as they help may provide the
attacker with sensitive information that can be directly linked to an individual
data subject through an intermediary dataset. Example 3.1.3 illustrates how a
linkage attack can take place.

Example 3.1.3 Given is a publically available dataset D of a small family re-
tailer containing customer preferences for particular ice cream flavors. This
dataset is not considered confidential, as the contained data is innocuous. An
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insurance agency maintains a second database D′ which contains detailed finan-
cial information of the clients, including their income levels. The datasets have
multiple attributes in common: age, gender, etc. Contray to dataset D, dataset
D′ is considered confidential, hence numeric pseudonyms are used in place of
names.

An attacker gains access to dataset D′ and wants to identify the individual
with the largest income. Fortunately, (s)he is unable to perform a successful re-
identification attack. However, (s)he discovers the publically available dataset
D. Through the overlap in attributes, the attacker can link the records in D to
those in D′, thereby identifying the targeted individual.

Parameter inference attack A parameter inference attack is an attack in
which the attacker aims to infer the value of a parameter from the data. This
type of attack provides the attacker with more specific information than gener-
ally available regarding a particular data subject, or a specific subset of subjects.
Note that it is difficult to quantify the effectiveness of this type of attack, as it
merely provides stronger inductive-statistical information (cf. an analogous the-
ory of explanation by Hempel [45, 46]), rather than concrete and deterministic
information. because of this, parameter inference attacks are rarely identified
in practice. Hempel’s [45, 46, 47] criteria for inductive-statistical inference may
provide a formal framework to better identify when parameter inference at-
tacks are conducted and the degree to which they are successful. Example 3.1.4
illustrates how a parameter inference attack can be conducted.

Example 3.1.4 Consider again the premise of Example 3.1.2. This attack
was successful if the combination of available personal information narrowed
the dataset down to a single record. In practice, this may be rare. Suppose
instead that the attacker’s available information narrows the dataset down from
20, 000 records to 2, 000 (hence, 10% of the data). Suppose that in the overall
dataset of 20, 000 data subjects, the median income is €25, 319 (the Italian
median income in 2019). However, in the subset of 2, 000 people meeting the
attacker’s conditions, the median income is €75, 000. The attacker now knows
that his acquaintance is highly likely to be of substantially above average wealth.

Thus, GDPR compliance requires that data is sufficiently anonymous, so that
none of these attacks are effective, regardless of their implementation. To ren-
der the attacks inapplicable, data needs to be sufficiently anonymized through
some de-identification process prior to its transfer. The European Comission [44]
expressly state that specific methods used to carry out attacks are constantly
evolving and are of increasing technological sophistication. It is therefore impos-
sible to give a concrete, exhaustive list of attack methodologies. In [48], specific
anonymization techniques are discussed by the same Article 29 Working Party.
These, among other techniques, are detailed in Section 3.2.

As a consequence, an anonymized dataset’s ability to withstand attacks can-
not be assessed using external means. For instance, when trying to deliberately
conduct an attack in a controlled environment to measure data’s level of secu-
rity, experiments are limited to a given set of attack methodologies. Even if this
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EU 2016/679, art. 4:
What data is personal?

WP29, Opinion 3:
What data is anonymous?

WP29, Opinion 5: What is the legal
status of specific anonymization techniques?

GDPR: Protect personal
data that is not anonymous

Shaping Europe’s Digital
Future: Increase protection
and personal data governance

Towards A Common European
Data Space: Increase the mobility
of data within the European Union

Figure 3.1: European Union legislation (purple) and European Commission
objectives (orange) affecting data mobility.

set is representative of all classes of attack methods currently known, they may
lack specific details and they may not be representative of all available methods
after a period of time. Thus, evaluation of the effectiveness of anonymization
techniques should include intrinsic metrics that infer security directly from data
properties.

3.1.2 Data Breaches in Practice

As industry is rapidly incorporating big data and AI into their best practices,
the number of annual data breaches is rapidly increasing. Since its implementa-
tion in May 2018, the number of issued GDPR fines has grown steadily to over
1100 fines, accounting for over $1.6 billion collectively in June 2022 [49]. Since
its coming into force, GDPR fines have become more stringent as of January
2021, as is evident from Figure 3.2. In a 2021 survey, 94% of organizations
reported to have had insider data breaches that year [50], with human errors
being a common cause.

Re-identification attacks are among the most common attacks in practice.
De Montjoye et al. [51] showed that four data points (location and time of the
purchase using a credit card) are enough to uniquely re-identify 90% of in-
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dividuals. Indeed, many anecdotal evidences appear to confirm the issues of
anonymization with respect to re-identification. In 2014, the New York City
Taxi and Limousine Commission published an anonymised dataset with data of
173 million individual taxi trips. Hackers soon discovered that they could use
the dataset to work out the incomes and addresses of the drivers [52].

Linkage attacks are also common in practice. In 1997, the Massachusetts
Governor’s medical records were identified by matching anonymous data from
medical meetings with publicly available voter registration data [53]. In 2006,
Netflix published part of its subscribers’ viewing histories: it then turned out
that users could be re-identified through Internet Movie Database (IMDb) data [54],
forcing Netflix to remove the data mere days after the publication. A customer
sued for breach of privacy; Netflix settled.

As mentioned, parameter inference attacks are harder to identify in practice.
While information may be leaked, it is difficult to apply the moniker. In the
2014 NYC New York City Taxi and Limousine Commission case, some concerns
over parameter inferences were raised alongside the re-identification concerns.
Hern [52] points out that the dataset not only allows for the re-identification
of drivers and their sensitive information. It can also provide information on
the likely whereabouts of drivers and passengers. The degree to which this is a
substantial problem are, however, not addressed. This underscores the lack of
a framework for qualifying parameter inference attacks.

3.2 Data Anonymization Technology

Neither the GDPR, nor Directive 95/46/EC clarify how such a de-identification
process should or could be performed. Opinion 05/2014 of WP29 [48] classi-
fies data anonymization techniques common in practice into three categories:
pseudonymization, randomization and generalization.

3.2.1 Pseudonymization

Pseudonymization is simply the replacement of one attribute (typically a unique
identifier or other attribute with unique values) by another. Pseudonymization
can help reduce linkability, but it cannot be relied on exclusively for anonymiza-
tion. Pseudonymization methods rely on methods from encryption to assign the
pseudonyms.

There are various methods to implement pseudonymization, namely:

Hash functions A hash function is a mathematical function that takes the
value of a data attribute and transforms it into a hash code. Hash functions
are useful for pseudonymization, as multiple occurrences of the same attribute
value for several data points will be preserved. This is illustrated in Figure 3.3.
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(a) Cumulative number of fines

(b) Cumulative overall sum of fines

Figure 3.2: GDPR fines since its implementation [49]
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Figure 3.3: Hash functions applied to two personal attributes of a table. Note
that Trieste is consistently mapped to the same hash code.

Cryptography Cryptographic techniques can also be used to transform at-
tribute values into codes. Like hash functions, these methods preserve multi-
ple occurences of the same value across records. Unlike hash functions, how-
ever, cryptographic methods are invertible. That is, if a user has the key,
then (s)he can be transform codes back into the corresponding original names.
Public-key cryptographic methods (e.g. RSA) may be useful in the context of
pseudonymization, if multiple trusted parties need access to the real attribute
values. A public, pseudomyzed version of the data can then be shared and only
parties with the key can access the un-pseudomyzed attrbute values. This is
illustrated in figure 3.4. By making the transformation invertible, cryptography
imposes considerably more privacy risk than hash functions, which are not in-
vertible.

Figure 3.4: Pseudonymization through cryptography. The transformation can
be inverted by anyone with access to the key.

Data obtained after applying pseudonymization cannot legally be considered
fully anonymized [48, 55]. Individuals can easily be re-identified using values
of other attributes. These values also make linkage attacks highly applicable.
Pseudonymization methods are therefore insufficient as stand-alone privacy so-
lution. Indeed, this is easily illustrated in computational experiments [3].
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3.2.2 Randomization

Randomization is the introduction of statistical inaccuracies to the data. Parties
accessing the data after randomization do not know true attribute values. How-
ever, if the inaccuracies are sufficiently small, the data may still be statistically
representative of the underlying population. Several methods for randomization
exist, including:

Noise addition Noise addition is a collection of methods that alter attribute
values. Rather than containing literal attribute values, values of attributes after
treatment are their original value plus or minus some error term (“ε”). This
is illustrated in Figure 3.5. When applying noise addition, it is important to
alter values enough to obscure personal information. At the same time, such
alterations should not remove the overall distribution of the dataset, as this
renders the anonymized data useless for statistical analysis.

Figure 3.5: Randomization: noise addition

Permutation Permutation is the shuffling of a number of attribute values.
After permutation, the values of (some of the) attributes no longer belong to
the corresponding individual.

Figure 3.6: Randomization: permutation

Data anonymized through randomization was shown susceptible to reidentifica-
tion and linkage attacks in practical cases [3, 44, 48, 54, 55, 56]. It offers no
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protection against parameter inference attacks and is insufficient as a standalone
anonymization method [48].

3.2.3 Generalization

Generalization is applied when specific values in a dataset are replaced by more
general ones. This reduces the risk of individuals with highly specific attribute
values being re-identified. For instance, in certain datasets, an individual’s
place of birth may be so unique that it is easy to infer the individual from it.
Using country of birth (a more general category) instead reduces the risk of a
re-identification attack, as more individuals share this attribute value. This is
illustrated in Figure 3.7

Figure 3.7: Generalization

The most common generalization framework is k-anonymity, in which attributes
are generalized to the point where at least k individuals share each value. For
example, suppose an attacker knows a data subject’s city of birth, but this is
generalized to a country of birth. Under k-anonymity, the attacker cannot iden-
tify the subject’s record, as the country of birth is shared with at least k − 1
other data subjects.

A further generalization step is l-diversity. This mechanism imposes the con-
straint that in each of the classes with at least k values, the remaining attributes
take on at least l distinct values. l-diversity entails that not just individual at-
tribute values, but also combinations of multiple attribute values cannot single
out records. Consider again the example in which the location is generalized
from city to country of birth. Under k-anonymity, there at least k individuals
for any country of birth. Under l-diversity, there additionally are at least l
records that have highly distinctive attribute values for each country of birth.

Generalization techniques significantly reduce the expressiveness of the in-
formation contained in a dataset. In 2016, a lawsuit forced the California
Supreme Court to assess anonymization techniques. Of the inspected frame-
works (pseudonymization, randomization, generalization), only k-anonymity
was deemed sufficient in protecting privacy. Unfortunately, k-anonymity was
proven to destroy the data’s utility in the same lawsuit [55]. That is: while
k-anonymity was the only traditional anonymization method to guarantee the
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required degree of privacy, applying it meant the data became too generic for
its intended use.

3.2.4 Differential Privacy

The aforementioned anonymization frameworks were all constructive in nature:
they are classes of specific methods that alter the data with the intention of safe-
guarding the involved privacy. Generalization, however, had specific conditions
under which data could be considered sufficiently anonymized (k-anonymity, l-
diversity).

Diferential privacy (see, e.g. [57]) is a more recent paradigm in privacy en-
hancement. In this paradigm, data managers do not have direct access to data,
but can query it through a system that returns aggregate results (descriptive
statistics about attributes and combinations thereof). Differential privacy is a
property of such a system: a system is considered differentially private if the
manager cannot infer whether a given data subject is included in the dataset
from any (combination of) query results.

To achieve the differential privacy property, systems typically also distort
data prior to answering queries. This distortion is similar to those described in
the other anonymization techniques. However, the data is distorted in an on-
line fashion once the query is submitted. This means that the system’s output
differs even if the same query is submitted twice.

Example 3.2.1 A data manager has a differentially private data system. (S)he
wants to know the median income of data scientists in Trieste. As (s)he has no
direct data access, (s)he cannot browse the records that satisfy these conditions.
Instead, (s)he queries the system, instructing it to return the descriptive statistic
of interest.

By bypassing the need for direct data access, data systems significantly reduce
the risks of both re-identification and linkage attacks [57]. However, if an at-
tacker has detailed information about a data subject, (s)he can ask very specific
questions that, to preserve differential privacy, the system cannot accurately
answer. Multiple queries can also be combined to obtain specific sensitive infor-
mation (“how many people live in Tytsjerksteradiel?” and “How many people
not named Sebastiano live in Tytsjerksteradiel?” provide an answer to whether
or not Sebastiano lives in said location). Arguably, differentially private systems
may increase the risks of parameter inference attacks. As results are distorted
in a different manner in every query, they may ultimately leak more information
about a parameter’s true value than a statically anonymized dataset.

Differential privacy offers improved protection over the previously outlined
anonymization methods by restricting data access. This, however, directly im-
pacts the data’s utility. While the data manager can still obtain aggregate statis-
tics, artificial intelligence techniques require direct data access. The anonymiza-
tion techniques significantly reduced data utility through distortion, making the
data unrepresentative of the true subject population. Differential privacy ad-
ditionally directly limits the number of use cases to which the data can be
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applied. For instance, in the case study in Section 2.2, access to the full dataset
was needed to train the AI models. While differential privacy can help with ele-
mentary business intelligence, it is not suitable for training AI models, limiting
innovation and forcing domain practitioners to rely on legacy technologies.

3.2.5 Synthetic Data Generation

Synthetic data generated using deep generative models form a new framework
in secure data transfer. Artificial intelligence methods extract the patterns from
the data that are analytically relevant. New, synthetic records are then gen-
erated, such that a dataset of synthetic records exhibits these same patterns.
Every single datum is artificially generated, bearing no relation to entities in the
original database. Synthetic data generation removes any link between avail-
able data and the individual. When using artificial data, the singularity of
some records (e.g. a very specific location data) cannot be easily attributed to
a single data subject. Due to the novelty of synthetic data, jurisprudence and
established legal frameworks are unavailable.

A minor risk with generative models is that they may “overfit”, learning and
replicating exact patterns rather than randomly sampled ones. This can in the-
ory lead to successful re-identification and linkage attacks even with synthetic
data. However, this risk is only significant in small datasets and mechanisms
are available to avoid this from occurring (a trivial verification after construct-
ing the dataset can suffice, more theoretical methods are also possible; these
are detailed in Chapter 4). In consequence, synthetic data aptly fits the legal
moniker of anonymous data.

Another risk specific to synthetic data is that of themembership inference at-
tack [58, 59]. This is a specific subcategory of re-identification attacks in which
the attacker has access to a synthetic dataset and wants to assess whether a
given synthetic record is also a record of the original dataset. Such attacks
can be successful against partially synthetic data. However, Zhang et al. [59]
show that fully synthetic electronic health records can be deemed sufficiently
protected against membership inference attacks, regardless of the synthetic data
generation methodology. This is corroborated by Bellovin et al. [60], who state
that even if a synthetic dataset reproduces a datum that corresponds to a real
data point, it cannot be automatically identified as such.

Carlini et al. [61] consider the specific case of text generation, in which the
synthetic texts may contain real secrets (inferred from real texts). Given that
the attacker knows that the text contains a secret, they inspect the likeliness
of him/her finding it. The researchers experimentally conclude that identifying
the secret is possible only three out of seven times. Note that the text format
imposes considerably more structure (grammar, narrative, etc.) on the data
than is present in tabular data. Thus, the effectiveness rate of the attacks is
an overestimation of that of synthetic tabular data. Furthermore, explicit con-
ditions under which finding the secret was possible could not be formulated,
making secret discovery a matter of chance [61].

Synthetic data can allow for a more open flow of information than previ-
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ously possible, in line with the “Towards A Common European Data Spaces”
initiative. For this reason, synthetic data generation is receiving increasing at-
tention in legal discourse within EU institutions. For example, the European
Data Protection Supervisor (EDPS), dedicated a workshop to synthetic data
recently [62]. The Artificial Intelligence Act makes explicit mention of synthetic
data, recognizing it as an autonomous framework of techniques, separate from
anonymization [63] (see Article 54, titled ”Further processing of personal data
for the development in the AI regulatory test space of certain AI systems in the
public interest”).

3.3 Conclusion

While the European Commission strives for increased data mobility in Europe,
it struggles to reconcile this with the need to protect its citizens’ personal infor-
mation. Personal information is defined through a collection of attribute types.
Date privacy is violated if a data subject can be re-identified directly, through
linking multiple databases, or when information about a parameter is be in-
ferred. Since the coming into force of the general data protection regulation,
the number of violations has been steadily increasing.

Privacy enhancement methods can be classified into five categories. Of these,
psuedonymization, randomization and generalization have the longest history.
These three methods have been shown inadequate in countless data breaches.
Moreover, they alter the data, limiting its analytic use. Resulting distorted
data can only be considered secure if the degree of distortion fully outweighs
the information contained in the dataset in the first place.

Differential privacy is an alternative in which the risks of re-identification and
linkage are reduced. Differential privacy is a property of a data system, provid-
ing a formal mathematical definition of privacy. Unfortunately, this definition
does not coincide with data privacy definitions in jurisprudence. Furthermore,
differentially private systems only return aggregate data, dramatically limiting
the number of use-cases by excluding methods from artificial intelligence. Fur-
thermore, by applying distinct distortions whenever aggregate data is computed,
differentially private systems may increase the risks of parameter inference at-
tacks.

Synthetic data generation is an emerging technology in which privacy is pro-
vided by removing any link between available data and any real individual. Due
to the novelty of the field, jurisprudence is lacking. However, the technology is
hailed as a potential superior privacy protection method by scientists and policy
makers.
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Chapter 4

Synthetic Data Generation

In this Chapter, we address the research question “Can variational autoencoder
models be applied to generate disclosure averse and utility preserving tabular and
relational data and if so, how can their effectiveness be measured?”. In doing so,
we first provide an intuitive explanation of the involved terminology, along with
a motivation for the choice of variational autoencoders. We then formalize these
notions to obtain a mathematically exact problem formulation. This allows
us to define effectiveness metrics and develop suitable generative models for
both tabular and relational datasets. We also introduce novel preprocessing
techniques to handle advanced (combinations of) data types and provide an
overview of how the methods efficiently can be implemented.

59
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4.1 Motivation

In this chapter, we derive deep-learning methods for generation of realistic syn-
thetic tabular and relational data. Two deep-learning frameworks for synthetic
data generation have rose to prominence in the past few years. The first of
these is that of Generative Adversarial Networks (GANs). Creswell et al. [64]
and Aggarwal et al. [65] provide accessible introductions to GANs.

Intuitively, GANs consist of two interconnected neural networks: the gen-
erator and the discriminator. The generator is trained to produce synthetic
data points, and the generator is trained to classify data points as either real
or synthetic. The two networks are trained in a zero-sum game, in which the
generator, by generating very realistic points, aims to maximize the number of
false positives, whereas the discriminator aims to minimize this same quantity.
With an origin in image generation, GANs are usually implemented as convo-
lutional neural networks. They have for instance been shown useful in image
segmentation [65].

The second framework is that of variational autoencoders (VAE). Doersch
[66] provides an accessible introduction to VAE. Intuitively, VAE are based on
the more striaght-forward autoencoders (AE). These are compression algorithms
in which an encoder maps each data point to a code, a smaller representation of
the data point. A decoder can then invert this process, inferring the original data
point from the code. AE are deterministic algorithms, using one code for each
point in a dataset. VAE are obtained when there there is no one deterministic
code per datum. Instead, in VAE, the data are used to build one probabilistic
representation of the overall distribution of the input dataset. Random samples
can then be taken from this probability distribution, much like in traditional
stochastic simulation (e.g. Monte Carlo simulation).

In this thesis, we chose VAE-based models for synthetic data generation.
Training GANs involves starting with randomly generated data points from a
latent space. While this works well for image processing, it is inefficient in the
context of tabular data, where more structure is imposed by the multitude of
possible data types. Tabular data also makes the results more dependent on
the random initial conditions, hindering the robustness of the output for tab-
ular and relational data. We have, however, also included introspective VAE
models. These combine the strengths of both VAE and GAN-based methods
by inferring patterns directly from the data (like VAE-based models), but also
using a discriminator network for fine-tuning results (like GAN-based models).
In particular, the inclusion of a discriminator helps identify relationships that
are causal rather than merely correlations.

4.2 Relation to Prior Research

Most previous studies addressed the problem of synthetic data generation aiming
at solving one of the two following problems: (a) the scarcity of real, actual data
for training a ML system; (b) the need of not disclosing some information when
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giving the real data away. In both cases, DL proved to be an effective tool.
Su et al. [56] show that a combination of real and artificial data resulted

in an increase in performance in image processing. In 2019, a purely synthetic
dataset was used to train a Convolutional Neural Network (CNN) for object de-
tection purposes [67]. Park et al. [6] developed an algorithm based on Generative
Adversarial Networks (GANs) with an additional classifier named table-GAN
to generate synthetic data that can be used to train machine learning models.
The resulting models are subsequently applicable to the original data set. In
Chatterjee et al. [68], the authors combine GANs with transfer learning to aug-
ment datasets to better train ML algorithms for image classification. Castelli
et al. [69] consider the problem of fault detection in wireless networks based on
data obtained through monitoring: in order to mitigate the scarcity of data,
the authors propose the use of a GAN (and a variant named Wasserstein GAN)
to generate synthetic telecommunication data related to Wi-Fi signal quality.
These studies indicate that findings obtained through artificial datasets are also
representative of the original dataset. Oliveira et al. [70] use VAE-based models
for the design of novel molecules, and the prediction of their properties.

Studies that coped with data synthesis with the motivation of non-disclosure
deal more commonly with tabular data. Three recent articles have shown the
potential to generate tabular data with one record per entry using generative
models. Xu et al. [71] propose a conditional GAN named CTGAN where a con-
ditional generator is used to synthesize eight different datasets. Xu and Veera-
machaneni [72] employ both a GAN variation named Tabular GAN (TGAN) to
address the same problem. Li et al. [58] experimentally show that synthetic data
generated with GANs is sufficiently protected against attacks aiming to identify
whether specific synthetic data points are also present in the real dataset. They
show this for both images and on single-table tabular data. All three studies
focused on tabular data containing continuous and categorical data-types. All
three papers only focus on data with one record per entry, relying on GAN
models. In our study, we show that methods based on VAE have an equally
promising performance. Moreover, these models are adapted to generate the
more complex, yet practically relevant class of relational datasets.

4.3 Definitions and Problem Statement

We consider the case where an organization (customer) is looking for a ML-
based solution provided by another organization (provider). The customer aims
at obtaining a preview of the solution from the provider based on its customer,
problem-specific data. However, the customer does not want to give the data
to the provider, nor to disclose the underlying information. For this reason, the
customer wants to generate some synthetic data such that the preview of the
solution based on the simulated data estimates the quality of the solution that
would be based on the actual problem-specific data.

In the next sections, we define this scenario in detail, introducing formal
definitions for the key concepts and formally stating the problem to be solved.
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4.3.1 Data

A dataset D is a collection of one or more tables {T1, T2, . . . }. A table T
is a collection of rows {t1, . . . , tn}. A row t is a tuple defined over a se-
quence of attributes A(T ) = (a1, . . . , ap) and represents an entity in the real
world: we denote by v(t, a) ∈ V (T, a) ∪ {∅} the value of the attribute a
for the row t, with V (T, a) being the domain of the attribute a and ∅ rep-
resenting the undefined value (i.e., v(t, a) = ∅ means that a is not defined
for t). We say that an attribute a is unique for a table T if and only if
(a) ∀ti, tj ∈ T, ti ̸= tj ⇒ v(ti, a) ̸= v(tj , a) and (b) a is always defined in
T .

We say that a dataset D is relational if the following conditions hold: (a) it
contains at least two tables; (b) at least one primary table T ⋆ has a unique
attribute a⋆; (c) for each other secondary table T in the dataset, A(T ) ∋ a⋆

and ∀t ∈ T, ∃t⋆ ∈ T ⋆ : v(t, a⋆) = v(t⋆, a⋆). Intuitively, a relational dataset is a
dataset with a primary table T ⋆ describing some entities, one row per entity,
and other tables describing some other entities, each one linked to one specific
entity of T ⋆. In this work, we deal with two kinds of datasets: those containing
one table, that we call single-table datasets, and the relational ones.

The type of an attribute a determines the nature of its domain V (T, a). We
consider five cases:

• a real-valued attribute has a domain V (T, a) ⊆ R;

• a discrete attribute has a domain V (T, a) ⊆ Z;

• a time attribute has a domain V (T, a) ⊆ N and its values represent time
instants;

• a categorical attribute has a finite domain V (T, a) consisting of non-
numerical items and without a natural ordering;

• a binary attribute has a domain V (T, a) with only two values.

Without loss of generality, we assume that, in relational datasets, the unique
attribute a⋆ of the primary table T ⋆ is of type discrete and its values are
1, 2, · · · ∈ N, i.e., for each ti ∈ T ⋆, v(ti, a

⋆) = i.
We say that a dataset D′ is compatible with a dataset D if the following con-

ditions hold: (a) D and D′ contain the same number of tables; (b) there exists a
one-to-one mapping ϕ : D → D′ between tables of D and tables in D′ such that
a table T and its image T ′ = ϕ(T ) have the same attributes and the attributes
have the same domains, i.e., A(T ) = A(T ′) and ∀a ∈ A(T ), V (T, a) = V (T ′, a).
Clearly, every dataset D is compatible with itself.

As an example, consider a relational dataset containing a table T ⋆
user describ-

ing users, with the |A(T ⋆
user)| = 4 attributes id⋆, age, country, gender, id⋆

being unique, and a table Tpurchases describing purchases made by users, with
the |A(Tpurchases)| = 5 attributes id⋆, prodId, quantity, date, prodPrice.
The attributes id⋆, prodId, gender, and country would be categorical; age
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and quantity would be discrete; prodPrice would be real-valued (likely, with
V (prodPrice, Tpurchases) = R+).

4.3.2 Problem Statement

The goal of this study is to propose a method that, given an original dataset
D, produces a compatible synthetic dataset D̂ such that:

(a) for every problem based on D, every solution of that problem, and ev-
ery effectiveness metric, the effectiveness of the solution built on D̂ well
estimates the effectiveness of the solution build on D;

(b) does not disclose any information about the real-world entities described
by D.

In other words, D̂ should be utility-preserving with respect to D, because it
should allow to predict the utility of any solution in solving any problem based
on D—in particular, it should allow to tell apart good solutions, i.e., those with
great effectiveness, and bad solutions. And D̂ should be disclosure-averse with
respect to D, because it should not reveal information about entities described
in D.

Because (i) the set of combinations of problem, solution, effectiveness metric
is potentially infinite and (ii) measuring the degree to which the information
is disclosed is hard, strictly verifying the two conditions above in practice is
very hard. To overcome this limitation, in this chapter we introduce a few ways
for measuring utility-preserving and disclosure-averse abilities of a synthetic
dataset. We present them in the following sections.

4.3.3 Synthetic Data Performance Metrics

We propose three ways for measuring the utility-preservation (UP) of a synthetic
dataset D̂ with respect to a dataset D. One of them is extrinsic, i.e., it measures
UP considering the effects of using D̂ after using it for building a solution to
a problem. The other two are intrinsic, i.e., they do not use D̂ for actually
building solutions and instead take into account some properties of D̂ and D.

Model compatibility (MC) The model compatibility simply instantiates
the idea that the greater the UP, the closer the effectiveness of a model m̂ built
on D̂ to the effectiveness of a model m build on D, when both are assessed on
D. As such, MC is an extrinsic measure of UP.

More formally, given a problem, a solution, and an effectiveness metric e, we
define the MC of D̂ with respect to D as:

MC
(
D̂,D

)
=

∣∣∣∣1− e (m,Dtest)

e (m̂,Dtest)

∣∣∣∣ (4.1)
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where Dtest is a portion of D compatible with D, m is a model learned with the
solution on the remaining portion Dtrain of D, and m̂ is a model learned with
the solution on D̂.

In practice, MC(D̂,D) considers the ratio between the effectiveness of the
model learned on (a portion of) the original dataset and assessed on (a different
portion of) the original dataset and the effectiveness of a model learned on the
synthetic dataset D̂ and assessed on (a portion of) the original dataset. The
closer the two effectiveness values, the closer MC(D̂,D) to 0. That is, the more
similar D̂ and D.

Pairwise correlation difference (PCD) The pairwise correlation difference
captures the idea that the correlation between pairs of attributes in the syn-
thetic and original dataset should be similar. Measuring PCD does not require
applying a solution for learning a model: PCD is hence an intrinsic measure of
UP.

More formally, given the dataset D and D̂ and the mapping ϕ between their
tables, we define the PCD of D̂ and D as:

PCD
(
D̂,D

)
=

1

|D|
∑
T∈D

1

αT
∥C(T )−C(ϕ(T ))∥F (4.2)

where |D| is the number of tables in D (and hence D̂) and C(T ) is the corre-
lation matrix of attributes in T , αT is a normalization factor, and ∥·∥F is the

Forbenius norm of matrices, i.e., ∥A∥F =
√∑

i

∑
j |ai,j |

2
. We assume that a

proper measure of correlation is available for any possible pair of attribute types.
Concerning the normalization factor, we set it to αT =

√
4 (|A(T )|2 − |A(T )|),

with |A(T )| being the number of attributes in the table and hence the size of
the matrix, in such a way that PCD takes values in [0, 1].

In practice, PCD
(
D̂,D

)
considers the correlation matrices of all the tables

in the datasets, measures the difference, and averages them. The more similar

the correlation matrices, the closer PCD
(
D̂,D

)
to 0. That is, the more similar

D̂ and D.

Cluster synthetic evenness (CSE) The cluster synthetic evenness is appli-
cable only to single-table datasets and investigates the tendency of the synthetic
data to groups in clusters similarly to the original data. Similarly to PCD, mea-
suring CSE does not involve learning a model; thus, CSE is an intrinsic measure
of UP.

More formally, given the two single-table datasets D and D̂, consisting re-
spectively of the tables T and T̂ , and a clustering technique, we define the CSE
for D and D̂ as:

CSE
(
D̂,D

)
=
α

k

i=k∑
i=1

∣∣∣∣∣∣
∣∣∣Ci ∩ T̂

∣∣∣
|Ci|

−

∣∣∣T̂ ∣∣∣
|T |+

∣∣∣T̂ ∣∣∣
∣∣∣∣∣∣ (4.3)
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where Ci is the i-th cluster among the k clusters obtained by applying the
clustering technique to the union of T and T̂ and α is a normalization factor,
depending only on |T | and |T̂ |, that makes CSE take on values in [0, 1]. Precisely,
we set the value of α to:

α =


|T |+|T̂ |

|T | if |T̂ | ≤ |T |
|T |+|T̂ |

|T̂ | otherwise
(4.4)

In practice, CSE merges the original and synthetic rows (i.e., data points)
and cluster them in k clusters. Then, it measures the proportion of synthetic
data in each cluster and compares this figure against the overall proportion of
synthetic data. Finally, it averages the difference of the proportions across all
clusters. The smaller the average difference, the more evenly the synthetic data
distributes across clusters, i.e., the more similar are synthetic and original data
in the way they group together. Practical experiments that indicate how well
the metric measures the intended property are provided in Appendix A.1.

Disclosure-averseness (DA)

For measuring the degree to which a synthetic dataset D̂ prevents disclosure
of the information about entities described in the original dataset D, i.e., the
disclosure-averseness (DA) of D̂, we propose three intrinsic measures, described
below.

Differently than for UP, we do not propose any extrinsic measure, i.e., a
measure that aims at capturing the amount of information that is disclosable
upon a reasonably meaningful attempt of disclosure. Despite, in principle, such
a measure would be desirable, it is in practice very hard to devise it, since its
soundness would greatly depend on the concrete nature of information, its value,
and on a realistic modeling of the disclosure attempt, i.e., on a realistic threat
model. Very likely, meeting all these requirements would make the measure very
specific.

Nearest neighbor distance ratio (NNDRµ, NNDRσ, and NNDRp)
The three intrinsic measures of DA are all based on the the concept of nearest
neighbor and are applicable only for single-table datasets and with a proper
distance function d between rows of the table T (and T̂ , that has the same
attributes). More formally, given the two single-table datasets D and D̂, con-
sisting respectively of the tables T and T̂ , we define the mean nearest neighbor
distance ratio for D and D̂ as:

NNDRµ

(
D̂,D

)
=

∣∣∣∣∣1− 1

|T |
∑
t∈T

mint̂∈T̂ d
(
t, t̂

)
mint′∈T\{t} d (t, t′)

∣∣∣∣∣
=

∣∣∣∣∣1− 1

|T |
∑
t∈T

ρ(t)

∣∣∣∣∣ (4.5)
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In practice, NNDRµ considers each original row t ∈ T and measures its
distances to the closest original and synthetic rows: if the ratio ρ(t) between
these figures satisfies ρ(t) > 1, then t is closer to an original, than a synthetic
row; else, if ρ(t) < 1, then t is closer to a synthetic row. Then, NNDRµ averages
the ratio across all original rows and tells its distance from 1: the closer the
average to 0, the smaller the difference between closest distances to synthetic
and original data. That is, the harder the task of re-identifying a real entity
from synthetic data.

Similarly, we define the standard deviation of NNDR as:

NNDRσ

(
D̂,D

)
=

√√√√∑
t∈T

(
ρ(t)− 1

|T |
∑

t∈T ρ(t)
)2

|T | − 1
(4.6)

In practice, the lower NNDRσ, the more even the value of ρ across entities, i.e.,
the harder to identify some of them (for the same value of NNDRµ). Moreover,
if NNDRσ is large and NNDRµ is close to 1, it follows that a set of synthetic
rows may be too close to original rows, and the remaining are very far.

In order to capture the quantity of original rows that are too close to syn-
thetic rows, i.e., that could be identified easily, we define a further index:

NNDRp

(
D̂,D

)
=

∣∣∣∣12 − 1

|T |
|{t ∈ T : ρ(t) < 1}|

∣∣∣∣ (4.7)

In practice, NNDRp measures the rate of original rows that are closer to syn-
thetic rows than to other original rows and then tells how this rate is close to
the ideal value of 50%: the lower NNDRp, the lower the proportion of original
rows that are closer to synthetic rows than to other original rows.

Nearest neighbor distributions difference (NNDD) Finally, we define
the nearest neighbor distributions difference as follows. Let X and X̂ the distri-
butions of the values of the distance to the closest original and synthetic neigh-

bors across original rows t ∈ T , then NNDD
(
D̂,D

)
is 1 if the null-hypothesis

that the two distributions are different cannot be rejected and 0 otherwise. In
practice, if the distributions are statistically the same, it would be hard to find
a pattern in distances among real and synthetic entities that is exploitable for
telling apart the former from the latter. In our experiments, we perform the sta-
tistical significance test for the null-hypothesis using the Kolmogorov-Smirnov
test and a predefined value for α.

4.4 Deep-Learning Generative Models

4.4.1 Variational Autoencoders

We considered three variants of VAEs for generating numerical data: standard
variational autoencoders (VAE), beta-variational autoencoders (β-VAE), and
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introspective variational autoencoders (introVAE). These methods were origi-
nally conceived in the field of image processing.

VAEs form a paradigm in generative machine learning, in which an algorithm
referred to as the encoder infers a probabilistic latent representation in Rr (the
latents space, also named code) of an input numerical dataset in Rq. A decoder
is an algorithm trained to take random samples from the latent representation
and convert them back to Rq. Both the encoder and decoder are typically
artificial neural networks and they are learned concurrently using a combined
loss function [73]. The dimension r of the latent space, as well as the architecture
(i.e., number of hidden layers, activation function, etc.) of the encoder and the
decoder are hyperparameters.

β-VAEs form an extension of the VAE modeling framework. This method-
ology was originally developed to infer disentangled latent representations. In
such representations, each latent variable affects observable attributes in an in-
dividual manner, rather than having single latent variables encoding complex
interactions of factors. A disentangled representation enables users to control
individual factors of variation. Disentanglement is achieved through requiring
the variables in the latent space to be statistically independent. β-VAEs are
promising in syntethic data generation as they allow to explore different trade-
offs between realism of synthetic data and the strictness of this independence
constraint. In practice, both objectives are terms in the loss function, and an
additional hyperparameter β is used to manage their relative importance [4].

IntroVAEs form a hybrid framework that combine VAE with generative ad-
verserial networks (GANs) [74]. In GANs, two neural networks are trained con-
currently: a generator that samples synthetic data points from a latent spaces
and a discriminator, trained to make distinctions between empirical and syn-
thetic data points. By training both networks with one loss function, a zero-sum
game is obtained. This is because the generator aims to maximize the number of
times the discriminator incorrectly classifies an artificial data point. Naturally,
the discriminator aims to minimize this quantity. In IntroVAE, a standard VAE
model is augmented with a discriminator. The VAE generates artificial data
points, and the discriminator classifies data points as either real or synthetic.
The incorporation of the discriminator results in synthetic data in which realism
is achieved on a finer scale [5]. While VAE and β-VAE guarantee that coarse
patterns in data are preserved, IntroVAE enable the generation of synthetic data
that is realistic at the level of individual data points. This is because the dis-
criminator infers and exploits particular inter-dependencies between attributes
that (β-)VAE loss functions, typically based on Kullback-Leibler (KL) diver-
gence cannot identify. In IntroVAE, two parameters for leveraging the trade-off
between KL-divergence and reconstruction error are additional hyperparame-
ters. Compared to GANs, the use of VAE as a generating mechanism results
in accelerated convergence. IntroVAE are also less likely to overfit, reproducing
exact patterns inferred from empirical data. Unfortunately, the discriminator
in IntroVAE complicate the back-propagation algorithm for non-numeric data
types. Therefore, we use the Gumbel softmax function as the activation func-
tion, with its temperature being a hyperparameter as outlined for GANs in [74].
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The use of this loss function to make IntroVAE applicable to tabular data is a
novel contribution of our work.

4.4.2 Preprocessing Techniques for Tabular and Relational
Data Types

In general, we convert values of attributes whose type is one of the five types
described in Section 4.3.1 to numerical vectors of a suitable size—that is, one
value corresponds to a vector in Rp with p ≥ 1. Formally, we define the conver-
sion to and from numbers of values for the attribute a of a table T as a pair of
functions ϕtype : V (T, a) → Rp and ϕ−1

type : Rp → V (T, a). We describe how we

build ϕtype and ϕ−1
type, given a table T ∈ D and an attribute a ∈ A(T ), for the

five types in the following sections.

Eventually, we convert each table T in D to a collection X = {xi}i of
numerical vectors, one vector per row, resulting from the concatenation of the
single vectors obtained by converting each attribute:

xi = [xi,a1
xi,a2

. . . ]

= [ϕtype (v(ti, a1)) ϕtype (v(ti, a1)) . . . ] (4.8)

Consistently, when converting a collection of numerical vectors back to a table
of rows with proper attributes (i.e., the same of T ), we first split a vector xi

in chunks of proper size, then use the corresponding ϕ−1
type to map each chunk

to an attribute value of the row ti. We denote these two steps respectively as
X := ϕtype(T ) and T := ϕ−1

type(X).

Real-valued and discrete attributes

For real-valued and discrete attributes, we use a quantile-based conversion. We
remark that we convert also this kind of attributes, that are already numerical
in the original dataset, in order to make them more VAE-friendly. Indeed, in
image processing applications, where VAEs are particularly common, continuous
numerical attributes typically represent color, hue, or saturation values, with
magnitudes represented on the same scale. In tabular data, no such scale-
indifference between numerical attributes can be guaranteed: for instance, in
financial data, investments may be expressed in magnitudes of tens of thousands,
whereas age is measured on a much smaller scale. This may make the VAE less
effective, as attributes with larger values may be incorrectly be interpreted as
having more impact. A quantile-based conversion is one of the method to cope
with this problem [75].

Formally, let {v(ti, a)}i be the defined values (i.e., not ∅) of the attribute a
in the table T , with ∀i, v(ti, a) ∈ V (T, a) ⊆ R, since the attribute is numeric. We
first compute the k quantiles (q1, . . . , qk) of {v(ti, a)}i, with q1 = mini v(ti, a)
and qk = maxi v(ti, a) and k ≥ 2 being a parameter of the conversion. Then,
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we define ϕtype : [q1, qk]→ [0, 1] as:

ϕtype(v) =

{
j
k if v ̸= ∅
0.5 otherwise

(4.9)

with j such that v ∈ [qj , qj+1[. We define ϕ−1
type : [0, 1]→ [q1, qk] as:

ϕ−1
type(x) = qj + (qj+1 − qj)(kx− j) (4.10)

with j = ⌊kx⌋.
In practice, an input numerical value is mapped to the corresponding per-

centile (scaled to [0, 1]); in the other direction, a value in [0, 1] is mapped to
the corresponding quantile interval and, inside it, linearly scaled. As a result,
all real-valued and discrete attributes are mapped to [0, 1] (thus p = 1), hence
mitigating the scale problem.

Time attributes

Time attributes typically represent timestamps of events related to an entity.
When converting time attributes, we consider the time density of these events,
we attempt to infer the periodic component of this density and decouple it from
the trend component, and we map these components to normalized values.

Formally, let {v(ti, a)}i be the defined values of the attribute a in the table
T , with ∀i, v(ti, a) ∈ V (T, a) ⊆ N—in practice, time values are expressed using
numbers, as in the Unix time format. First, we compute the earliest value
τmin = mini v(ti, a) and the latest value τmax = maxi v(ti, a). Second, we build
a time series b with 1

δτ (τmax − τmin) elements, where δτ is a parameter of the
conversion, as:

bj = |{i : τmin + jδτ ≤ v(ti, a) < τmin + (j + 1)δτ}| (4.11)

that is, bj is the number of values within the j-th δτ -long interval. Third, we
compute the discrete cosine transform (DCT) of b and obtain the period τ⋆ of
the strongest harmonic of b. Then, we define ϕtype : [τmin, τmax]→ [0, 1]2 as:

ϕtype(v) =

{
(x1, x2) if v ̸= ∅
(0, 5, 0.5) otherwise

(4.12)

with:

x1 =

⌊
v − τmin

τ⋆

⌋
τ⋆

τmax − τmin
(4.13)

x2 =
v mod τ⋆

τ⋆
(4.14)

where mod means the remainder of the real division. We define ϕ−1
type : [0, 1]

2 →
[τmin, τmax] as:

ϕ−1
type(x) = ϕ−1

type(x1, x2) = τmin + x1 (τmax − τmin) + x2τ
⋆ (4.15)
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In practice, given the periodicity τ⋆ computed considering the DCT, x1
represents the period in which the value v(ti, a) falls in and x2 represents the
offset with respect to the starting time of that period.

Categorical and binary attributes

For categorical and binary attributes we rely on one-hot encoding.
Formally, let c1, . . . , ck be the different categorical values (with k = 2 for

binary attributes) in C ⊆ V (T, a). We define ϕtype : C → [0, 1]|C| as:

ϕtype(v) =

{
x if v ̸= ∅
(0.5, . . . , 0.5) otherwise

(4.16)

with x ∈ {0, 1}k and:

xi =

{
1 if v = ci

0 otherwise
(4.17)

We define ϕ−1
type : [0, 1]

|C| → C as:

ϕ−1
type(x) = cj (4.18)

with j = argmaxi xi.

Missing values

In order to support datasets with missing values, that are rather common in
business data, we perform a further processing for each attribute of each table
for which there are missing values, i.e., for which at least one value is ∅.

Formally, for each attribute a and each table T such that for at least one
row ti ∈ T the value v(ti, T ) = ∅, we introduce a further numerical value in the
conversion (besides those deriving from the type conversions described above)
that encodes the fact that the value is undefined (i.e., ∅). We define this further
mapping based on the previously described cases:

ϕ′type(v) =

{
[ϕtype(v) 0] if v ̸= ∅
[ϕtype(v) 1] otherwise

(4.19)

and:

ϕ′−1
type(x) =

{
ϕ−1
type(v) if xlast > 0.5

∅ otherwise
(4.20)

where xlast is the last element of x.
In practice, for attributes that can be undefined, we append one further

element to the vector output by the conversion that is 1 if the value is missing
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and 0 otherwise. When converting back to the attribute type, we use the last
element to decide if the value has to be set to ∅.

Summarizing, each value of an attribute is converted to a numerical vector
in [0, 1]p, with p = 1 for real-valued and discrete attributes, p is the number |C|
of distinct categorical values for categorical and binary attributes, and p = 2
for time attributes. When attributes have missing value, p is increased by 1.

Having described how to convert tables in collection of numerical vectors
(and the opposite conversion), the problem of synthetic dataset generation can
be split in five steps. For ease of presentation, we first describe those steps for
the single-table dataset case, then we will refine the description for the more
complex case of relational datasets.

Given a single-table dataset D with a table T , we:

1. transform T to X = {xi}i = ϕtype(T ), with each xi ∈ [0, 1]q;

2. learn a VAE on X, i.e., a pair consisting of a encoder ϕenc : Rq → Rr and
a decoder ϕdec : Rr → Rq;

3. generate a collection Ŷ = {ŷj}j of numerical vectors, with each ŷj ∈ Rr;

4. obtain a collection of X̂ = {x̂j}j of numerical vectors, with each x̂j =
ϕdec(ŷ) ∈ [0, 1]q by applying the decoder to each element in Y ;

5. transform X̂ to a synthetic table T̂ = ϕ−1
type(X̂) by converting back to an

attribute value each chunk of x̂.

Learning a VAE

From the point of view of our approach, all the three variants (standard VAE,
β-VAE, and IntroVAE) can be seen as “black boxes” that given a dataset X =
{xi}i, with xi ∈ Rq, a target latent space dimension r, and a suitable set of
hyperparameters values (that is different among the three versions of VAE),
output a pair of multivariate numerical functions ϕenc : Rq → Rr and ϕdec :
Rr → Rq (encoder and decoder, respectively). The two functions are neural
networks and are completely described by a vector θ = [θenc θdec] ∈ Rm of
numerical parameters, whose size m depends on the variant. We obtain θ from
X in a learning process which is a gradient-based optimization driven by a loss
function L : Rm → R such that the lower L(θ), the better the pair ϕenc, ϕdec
described by θ.

The loss function is based on the assumption that the decoder and the en-
coder act as conditional probability distributions on the proper spaces. The
values of X are considered observations stemming from an underlying probabil-
ity distribution over a latent space Z. The decoder ϕdec defines a probability
distribution depending on parameters θdec, such that p(x|z,θdec) is the prob-
ability that x was observed, given that the latent variables were z and the
model parameters were θdec. Symmetrically, the encoder ϕenc defines the dis-
tribution of the latent space for given observations parametrized by θenc. Thus,
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p(z|x,θenc) is the probability that z was the latent vector, given that x was
observed.

Specifically, for standard VAEs we use the Kullback-Leibler (KL)-divergence
between observations X and the distribution of generated data the following loss
function:

L(θ) = Ez∼p(z|x,θenc) log p (x|z,θdec)

= Eϕenc
log ϕdec (4.21)

where the latter is a shorthand for the former.

For β-VAEs, a constraint is imposed that the encoder ϕenc must also be
sufficiently similar to a given prior P (z) (of the latent space). Typically, the
multivariate normal distribution N (0,1) is chosen as the prior, which enforces
statistical independence on the latent space. KL-divergence ia also invoked to
achieve this. The constraint is incorporated into the loss function through the
KKT-conditions. Hence, β-VAEs we use the following loss function:

L(θ) = −Eϕenc
log ϕdec + βDKL (ϕenc ∥ N ) (4.22)

where DKL(ϕenc ∥ N (0,1)) denotes the KL-divergence between distributions
p(z|x,θenc) and N (0,1). The parameter β is a hyperparameter used for scaling
the relative importance of reconstruction accuracy and similarity to the prior.

Finally, for IntroVAEs we use the loss function specified in [5], that we do
not report here for brevity.

Concerning the optimizer, we use ADAM with standards parametrization.

Latent data generation and mapping

Given a target size n of the synthetic data n = |X̂|, we generate the collection
Ŷ = {ŷj}j of n points in the latent space as follows.

First, we compute the image of the input data X in the latent space, i.e.,
the collection Y = {yi}i, with yi = ϕenc(xi) ∈ Rr; we denote this step as
Y := ϕenc(X). Then, we fit a multivariate normal distribution over Y and obtain
its parameters µ ∈ Rr and Σ ∈ Rr×r; we denote this step as (µ,Σ) := N−1(Y ).
Finally, we sample the multivariate normal distribution N (µ,Σ) n times and

obtain Ŷ ; we denote this step as Ŷ :
n∼ N (µ,Σ). As the last step, we obtain

X̂ := {x̂j}j by applying the decoder to Ŷ , i.e., ∀j, x̂j := ϕdec(ŷj); we denote

this step as X̂ = ϕdec(Ŷ ).
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ϕtype learn

ϕenc N−1

N ϕdec ϕ−1
type

T X ϕenc, ϕdec

Y µ,Σ

n Ŷ X̂ T̂

Figure 4.1: Schematic representation of the steps for going from a table T of
a single-table dataset to a synthetic table T̂ . In red, the parameter and input
provided by the user.

Summarizing, the entire process from T to T̂ consists of the following steps:

X := ϕtype (T ) (4.23)

(ϕenc, ϕdec) := learn (X) (4.24)

Y := ϕenc (X) (4.25)

(µ,Σ) := N−1 (Y ) (4.26)

Ŷ :
n∼ N (µ,Σ) (4.27)

X̂ := ϕdec

(
Ŷ
)

(4.28)

T̂ := ϕ−1
type

(
X̂
)

(4.29)

The same steps are depicted in Figure 4.1.

4.4.3 Relational datasets

Relational datasets require a different approach, since they are constituted by
more than one table. We modified the approach described above in order to
accommodate this difference and driven by a further two-fold goal: (1) generate
synthetic secondary tables whose size are consistent with the corresponding
original tables; (2) make several rows of the synthetic secondary tables refer to
the same row in the synthetic primary table, as happens for the original data.

For achieving these goals, we use a multi-level VAE (ML-VAE), i.e., a single
VAE variant that is different from the three variants used in the case of single-
table datasets. ML-VAE were originally conceived for inferring disentangled
latent representations when data is not independent, identically distributed [76].
The use of this methodology for generating synthetic dataset with more than
one table is a novel contribution of our work. The original method proposed
in [76] operates by stratifying the data into strata with shared characteristics:
each of the characteristics upon which stratification is based are then mapped to
one latent variable during encoding. A disentangled latent representation is then
obtained in which the properties of each stratum correspond to a unique variable
in the code. In our case, instead, we use the disentangled latent variables to
represent the row in the primary table to which a point refers to.
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In practice, we repeat a slightly modified version of the steps described in
Section 4.4.2 one time for each table in the dataset and add, for each table, a
pre-processing step and a post-processing step. Let the original dataset D be
composed by the primary table T ⋆ and by h secondary tables T 1, . . . , Th. We
proceed as follows.

Primary table

We pre-process the primary table T ⋆, obtaining a table T ′⋆, by adding one
new discrete attribute aT l for each secondary table T l. For each row t in T ⋆

and each l, we set the value v (t, aT l) to the number of rows t′ in T l such
that v(t′, a⋆) = v(t, a⋆). In other words, aT l for t represents the number of
secondary entities, i.e., entities of a secondary table, that refer to the primary
entity described by t. We also remove a⋆ from A(T ⋆).

Then, we learn a β-VAE ϕ⋆enc, ϕ
⋆
dec, with r⋆ as latent space dimension, on

X⋆ = ϕtype(T
′⋆).

We build Y ⋆, Ŷ ⋆, and X̂⋆ in the same way of the single-table case: in
particular, we use n as the user-provided size of the synthetic primary table
to be generated from X̂⋆. Then, when building the synthetic primary table,
we apply ϕ−1

type to X̂⋆, obtaining T̂ ′⋆ = ϕ−1
type(X̂

⋆), and finally post-process T̂ ′⋆,

obtaining T̂ ⋆, by removing the attributes aT 1 , . . . , aTh and by adding again a⋆,
whose values are set to v(t̂j , a

⋆) = j.

Summarizing, for the primary table T ⋆ we do the following steps in order to
obtain the corresponding synthetic primary table T̂ ⋆:

T ′⋆ := preProc (T ⋆) (4.30)

X⋆ := ϕ⋆type (T
′⋆) (4.31)

(ϕ⋆enc, ϕ
⋆
dec) := learn (X⋆) (4.32)

Y ⋆ := ϕ⋆enc (X
⋆) (4.33)

(µ⋆,Σ⋆) := N−1 (Y ⋆) (4.34)

Ŷ ⋆ :
n∼ N (µ⋆,Σ⋆) (4.35)

X̂⋆ := ϕ⋆dec

(
Ŷ ⋆

)
(4.36)

T̂ ′⋆ := ϕ−1
type

(
X̂⋆

)
(4.37)

T̂ ⋆ := postProc
(
T̂ ′⋆

)
(4.38)

Secondary tables

We repeat the same procedure, described below, for each secondary table T l.

First, similarly to the case of the primary table, we pre-process T l by re-
moving the attribute a⋆, hence obtaining T ′l. We remark that, since we never
alter the ordering of items in the collections that we work with (each T l and its
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corresponding T ′l, X l, and Y l), we are still able to track items back to the row
in the primary table they refer to.

Then, we learn a ML-VAE ϕlenc, ϕ
l
dec from X l. In this ML-VAE, the encoder

is a function ϕlenc : Rql → Rrl , ql being the size of elements of X l and rl being
the user-provided size of the latent space for this secondary table. Differently

than previous cases, here the decoder is a function ϕldec : Rrl+r⋆ → Rql : that is,
the dimension of the source space for the decoder is larger than the dimension of
the destination space of the encoder. Precisely, the former has r⋆ more variables
than the latter. When learning the ML-VAE on X l, i.e., when computing the
loss for elements {xl

i}i of X l, each point in the latent space is obtained as a
row-wise concatenation:

yl
i = [

∈Rrl︷ ︸︸ ︷
ϕlenc

(
xl
i

) ∈Rr⋆︷ ︸︸ ︷
ϕ⋆enc (x

⋆)] ∈ Rrl+r⋆ (4.39)

where x⋆ is the element of X⋆ corresponding to the row t⋆ of the primary table
such that v(t⋆, a⋆) = v(tli, a

⋆), i.e., the primary row related to the row xl
i of the

secondary table T l. As a shorthand, we write collectively that:

Y l = {yl
i}i =

{
[ϕlenc

(
xl
i

)
ϕ⋆enc (x

⋆)]
}
i

=
[
ϕlenc

(
X l

)
ϕ⋆enc

(
prim

(
X l

))]
(4.40)

When learning this ML-VAE, we use the same optimizer described in Sec-
tion 4.4.2 and the following loss function:

L(θ) =
1

|T ⋆|

|D|−1∑
l=1

∑
v⋆∈V (T⋆,a⋆)

(Lreg(l, v
⋆,θ)− βlLKL(l, v

⋆,θ)) (4.41)

where:

Lreg(l, v
⋆,θ) =

∑
tli:v(t

l
i,a

⋆)=v⋆

Eϕl
enc(v

⋆)Eϕl
enc(t

l
i)
log ϕldec (4.42)

LKL(l, v
⋆,θ) =

∑
tli:v(t

l
i,a

⋆)=v⋆

DKL(ϕ
l
enc(t

l
i) ∥ P(l,v⋆)) (4.43)

and where ϕlenc(v
⋆) denotes the encoder of table T l restricted to rows tli such

that v(tli, a
⋆) = v⋆ (that is: the conditional probability distribution of the latent

space given that v(tli, a
⋆) = v⋆, the set of such observations and the parameters

θ). Likewise, ϕlenc(t
l
i) is the conditional probability of the latent representation

of row tli given the parameters and observations. Decoder ϕldec(t
l
i) is defined

analogously. P(l,v⋆) is the prior for table T l and unique attribute v⋆ ∈ V ⋆

represented in the latent space (in our case each chosen as multivariate normal
Gaussian); βl is a table-specific factor analogous to standard β in β-VAE.

Then, we extract the rounded values nl1, . . . , n
l
n of the attribute aT l from

T̂ ′⋆, with n = |T̂ ′⋆|. Each nlk represents the number of rows in the synthetic
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secondary table T̂l that should refer to the k-th primary entity in T̂ ⋆. We also
take the corresponding points ŷ⋆

1, . . . , ŷ
⋆
n in the primary latent space.

Subsequently, for each k ∈ {1, . . . , n}, we:

(1) compute Y ′l,k as the image ϕlenc(X
l,k) in the reduced latent space of X l,k,

where X l,k is the sub-collection of points in X l that corresponds to the
k-th primary entity in the primary table, i.e., X l,k = {xl

i : v(t
l
i, a

⋆) = k};

(2) fit a multivariate normal distribution over Y ′l,k obtaining µl,k and Σl,k;

(3) sample the multivariate normal distribution N
(
µl,k,Σl,k

)
nlk times ob-

taining Ŷ ′l,k;

(4) build Ŷ l,k by row-wise concatenation of Ŷ ′l,k and nlk copies of ŷ⋆
k, that

constitute the disentangled variables representing the k-th primary entity;

(5) compute X̂ l,k as the image of ϕlenc(Ŷ
l,k).

Once, we collected all the h collections X̂ l,1, . . . , X̂ l,h, we obtain X̂ l by merg-
ing them, i.e., X̂ l =

⋃k=n
k=1 X̂

l,k. Finally, we obtain T̂ ′l by applying ϕ−1
type on X̂ l

and then post-process T̂ ′l by adding the attribute a⋆: for each row, we set the
value to the k corresponding to the X l,k the row comes from.

Summarizing, for each secondary table T l we do the following steps in order
to produce the corresponding synthetic secondary table T̂ l:

T ′l := preProc
(
T l

)
(4.44)

X l := ϕltype
(
T ′l) (4.45)(

ϕlenc, ϕ
l
dec

)
:= learn

(
X l

)
(4.46)

X l,k :=
{
xl
i : v

(
tli, a

⋆
)
= k

}
∀k (4.47)

Y ′l,k := ϕlenc
(
X l,k

)
∀k (4.48)(

µl,k,Σl,k
)
:= N−1

(
Y l,k

)
∀k (4.49)

Ŷ ′l,k :
nl
k∼ N

(
µl,k,Σl,k

)
∀k (4.50)

Ŷ ′l,k :=
[
Ŷ ′l,k nOf

(
ŷ⋆
k, n

l
k

)]
∀k (4.51)

X̂ l,k := ϕldec

(
Ŷ l,k

)
∀k (4.52)

X̂ l :=

k=n⋃
k=1

X̂ l,k (4.53)

T̂ ′l := ϕ−1
type

(
X̂ l

)
(4.54)

T̂ l := postProc
(
T̂ ′l

)
(4.55)

We remark that, for secondary tables, the number of rows in the table is not
chosen by the user, but is instead generated as part of the synthetic data. Hence,
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∀k ∈ {1, . . . , n}

Figure 4.2: Schematic representation of the steps for going from a relational
dataset D = (T ⋆, T 1, . . . , Th) to a compatible synthetic relational dataset D̂ =
(T̂ ⋆, T̂ 1, . . . , T̂h). In red, the parameter and inputs provided by the user; in
colored dashed rectangles, parts of the steps that are repeated for l and k.

we meet the first goal stated in Section 4.4.3. Moreover, since we reserve a
portion of the latent space for disentangled variables that represents the primary
entity, and since we use several copies of the same values, we meet the second
goal stated in Section 4.4.3: rows in a secondary table that refers to the same
primary entity are generated from point in the latent space that are the same
for a portion of the dimensions.

The overall process for generating synthetic relational datasets is depicted
in Figure 4.2.

4.4.4 Implementation

In practice, we implemented the approach described above based on a mix of
existing (e.g., TensorFlow) and ad hoc developed software frameworks. We
made the synthetic data generation service available online, as a Software-as-a-
Service (SaaS) tool. If particular security concerns forbid the transfer of data
to the cloud, the structure could also be deployed directly on a client local
infrastructure.

We defined an API for accessing the service. When the user requires a
synthetic data generation service, he/she uploads the data through the API. We
store the data using an array of HDFS nodes. A centralized component of the
system, that we call coordinator, saves the data structure, the targeted section
of the HDFS, the TensorFlow model (i.e., the various parameters θ for the
VAEs), and the job details on a job database. Computing nodes, equipped with
GPUs and having direct access to HDFS, train the TensorFlow model. After
training, compute nodes generate the requested amount of synthetic data and
store them to HDFS. The coordinator also takes care of training and generating
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Figure 4.3: Overview of the implementation as a SaaS.

jobs and of the resource allocation for each of them, using a message queue.
The architecture is depicted in Figure 4.3.

4.5 Conclusion

In this chapter, we identified the variational autoencoder (VAE) framework as a
viable method for generating synthetic tabular and relational data that is both
utility preserving and disclosure averse. That is: it retains the analytic utility of
a real dataset, but also protects the privacy of the real dataset’s data subjects.
To quantify the degree to which these two objectives are met, we introduced
normalized performance metrics for synthetic data. We then introduced data
preprocessing techniques that map raw data into data suitable for the applica-
tion of VAE-based methods. These include techniques for processing real-valued
numeric, discrete numeric, time, categorical and binary attributes realistically.

A particular novelty of our method is that it can also accurately reproduce
the distributions of missing values. We introduce three types of VAE for tabu-
lar data (VAE, β-VAE and introspective VAE) and one for treating relational
data (multi-layer VAE). We also describe how to apply the performance metrics
in the presence of advanced data types. An overview of an architecture for the
implementation of the methods was also provided. Combined, these results indi-
cate that VAE can be applied for generation of synthetic tabular and relational
data, and metrics are available to evaluate the results.



Chapter 5

Experimental Evaluation of
Generative Models

In this chapter, we answer the research question “How well do VAE-based meth-
ods for generating synthetic tabular and relational data perform in practice?”.
To answer this question, we apply the developed methods for tabular data to
publicly available datasets. The datasets vary in size, combinations of data
types and application (the ML problem to be applied to the synthetic data af-
ter it is generated). This casts light on the versatility of the methods. We test
the method for relational data with a custom randomly generated relational
dataset. The experiments are entirely reproducible. Experimental results are
presented in a clear format and discussed in detail.

79
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Dataset |T | |A(T )| R+D B C T Target

Insurance 1338 14 14 0 0 0 R
Covertype 581 012 54 10 44 0 0 C
Bank 45 211 16 3 3 8 2 C
Relational
Users 1000 4 4 0 0 0 C
Events A 20 050 3 3 0 0 0
Events B 20 253 2 2 0 0 0

Table 5.1: Overview of the four datasets used in the experiments, one row per
table. Column |T | indicates the number of rows in the table. Column |A(T )|
indicates the number of attributes. Columns R+D, B, C, and T indicate the
number of real-valued and discrete, binary, categorical, and time attributes
respectively. The column Target indicates whether the ML problem build on
the table is a classification (C) or a regression (R) problem.

5.1 Datasets

We took three single-table datasets from the UCI Machine Learning Reposi-
tory [77]: Insurance, Covertype, Bank, The size of the corresponding tables
ranges from ≈ 1000 to ≈ 600 000 rows. The number of attributes ranges from
14 to 54: overall, all types of attributes are represented (real-valued, discrete,
time, categorical, binary). Each dataset has a predefined target attribute, i.e.,
one for which a supervised learning problem can be built: for two of them
(Covertype, Bank), the target attribute is categorical; for Insurance, it is nu-
meric. The corresponding problems are hence classification and regression.

We also built an ad hoc relational dataset composed of three tables (Users,
Events A, Events B): Users is the primary table. We here included only numer-
ical attributes, with the exception of a single categorical attribute, for the table
Users, that we set as the target attribute.

Table 5.1 summarizes the salient information of the four datasets.

5.2 Procedure

We performed a five-fold cross validation of our data synthesis technique. That
is, for each dataset, we split the dataset in 5 partitions. Then, for each partition
Dout, we took it apart and learned a synthetic dataset D̂ on the four remaining
partition D. Finally, we measured the UP and DA indexes on the pair D̂,D.
For the single-table datasets, we perform the split in partitions by simply parti-
tioning the corresponding tables in equally sized slices (after shuffling the rows)
For the relational dataset, we first partitioned the primary table in equally sized
slices, then, for each partition, we selected the rows of the two secondary tables
accordingly—as a results, the overall size of the five datasets were different.
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We applied our data synthesis pipeline in the three variants (VAE, β-VAE,
IntroVAE) for each partition of the single-table datasets. We used the single
proposed variant for the relational dataset partitions. Overall, we hence gener-
ated 3 · 3 · 5 + 1 · 1 · 5 = 50 synthetic datasets.

Concerning the UP and DA indexes, we proceeded as follows.
For MC and classification datasets, we considered Random Forest (RF),

logistic regression classifier (LRC), adaptive boosting (ADA), and multi-layer
perceptrons (MLP) as solutions (i.e., learning techniques) and accuracy (Acc.)
and area under the ROC curve (AUC) as effectiveness metrics. For MC and re-
gression datasets (only Insurance), we considered linear regressions (LR), ridge
regression (RR), polynomial Support Vector Regressions (SVR), and multi-layer
perceptrons (MLP) as solutions and the coefficient of determination (R2) and
the mean squared error (MSE) as effectiveness metrics. For all single-table
datasets, we used all the attributes as features when applying the learning tech-
nique for building a prediction model for the target attribute. For the relational
dataset, we (i) built a single aggregated table by associating with each row of the
User table a tuple consisting of the means of the attributes of the corresponding
rows in the secondary table, hence obtaining a table with 10 attributes, and
(ii) use all the attributes of the aggregated table as features. For clarity, we
present these indexes as triplets: e.g., MC-RF-AUC is the MC measured on a
classification datasets using RF as learning technique and AUC for evaluating
the learned models.

For PCD, we computed the Pearson correlation on the numerical conversion
of the tables, rather than on the actual tables, i.e., on X = ϕtype(T ) and X̂ =

ϕtype(T̂ ) rather than on T and T̂ . This way, we circumvented the problem of
finding a suitable correlation measure for each possible pair of attribute types.

For CSE, we proceeded as for PCD. Moreover, for the relational dataset
case, we measured this index on the (numerical conversion of the) single aggre-
gated table. We use k-means as clustering technique, choosing the value of k
automatically in each case with the elbow method.

Finally, for all the NNDR indexes (NNDRµ, NNDRσ, and NNDRp) and
for NNDD, we proceeded as for CSE. For NNDD, we performed the statistical
significance test with two values of α, 0.05 and 0.01.

We performed all the experiments by using the implementation of our pipeline
described in Section 4.4.4 for generating the datasets and an ad hoc piece of
software (written in Python 3) for measuring the UP and DA indexes on the
generated datasets. We set the parameters of the synthesis pipeline to the values
shown in Table 5.2 after some preliminary experiments.

5.3 Results and Discussion

Tables 5.3 and 5.4 present the results, respectively for the classification datasets,
for which the target variable is categorical (Covertype, Bank, and the relational
one), and for the regression dataset, for which the target variable is numeric
(Insurance)—we show the results in two separate tables because the ML tech-
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Param Context Description Value

k ϕtype R+D N. of quantiles min(1000, |T |)
δt ϕtype T Time span of the interval 1

1000 (τmax − τmin)
r VAE (all) Latent space dimension 10
β β-VAE Reconstruction accuracy

vs. prior similarity trade-
off

0.6

βl ML-VAE Reconstruction accuracy
vs. prior similarity trade-
off

0.3

Table 5.2: Summary of the parameter values.

Utility-preservation (UP) Disclosure-averseness (DA)

MC-RF MC-LRC MC-ADA MC-MLP NNDR NNDD

Dataset Method Acc. AUC Acc. AUC Acc. AUC Acc. AUC PCD CSE µ σ p 0.05 0.01

Covertype
VAE 0.12 0.05 0.14 0.06 0.11 0.10 0.26 0.19 0.00 0.03 0.02 0.95 0.16 0 0
β-VAE 0.17 0.03 0.05 0.06 0.10 0.07 0.03 0.20 0.01 0.08 0.19 0.83 0.02 0 0
IntroVAE 0.17 0.04 0.10 0.05 0.10 0.09 0.08 0.20 0.02 0.17 0.32 1.14 0.01 0 0

Bank
VAE 0.10 0.12 0.29 0.12 0.10 0.22 0.08 0.12 0.02 0.04 0.22 0.75 0.25 0 0
β-VAE 0.01 0.05 0.01 0.03 0.03 0.07 0.03 0.06 0.00 0.04 0.06 0.87 0.00 4 4
IntroVAE 0.00 0.05 0.02 0.04 0.03 0.08 0.02 0.06 0.01 0.09 0.25 0.92 0.00 3 4

Relational ML-VAE 0.04 0.16 0.08 0.23 0.17 0.03 0.03 0.23 0.08 0.18 0.10 0.43 0.02 0 0

Table 5.3: Results for the classification datasets. For each of the rightmost
13 indexes (from MC-RF-Acc. to NNDRp), the table shows the mean value
across the five folds. For the two remaining indexes (NNDD with α = 0.05 and
α = 0.01), the table shows the number of folds for which the statistical test
rejects the null hypothesis. For all the indexes, the lower the better.

niques and the effectiveness metrics used while evaluating MC are different for
the classification (Accuracy and AUC) and regression cases (R2 and MSE).
Both tables show the variants of our method applied to different datasets on
rows and the values for the performance indexes on columns, grouped in UP
indexes (columns 3 to 13) and DA indexes (last 5 columns). For each row, i.e.,
for each pair of synthetic data generation technique and dataset, the tables show
the mean value across the five folds of each performance index, with the excep-
tion of the last two indexes, NNDD computed for α = 0.05 and for α = 0.01: for
those, the tables show the number of folds for which the statistical test rejects
the null hypothesis that the two distributions are the same (see Section 4.3.3).
For all the indexes, the lower the better.

By looking at the table, it can be seen that, in general, all UP values are very
low, i.e., very good. In particular, for what concerns MC, β-VAE and IntroVAE
obtain better results than the vanilla VAE in almost all cases (i.e., dataset and
effectiveness metric), one exception being MC-RF-Acc. for Covertype. For the
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Utility-preservation (UP) Disclosure-averseness (DA)

MC-LR MC-RR MC-SVR MC-MLP NNDR NNDD

Dataset Method R2 MSE R2 MSE R2 MSE R2 MSE PCD CSE µ σ p 0.05 0.01

Insurance
VAE 0.06 0.54 0.06 0.52 0.15 1.09 0.14 1.14 0.01 0.08 1.11 4.17 0.02 0 2
β-VAE 0.04 0.29 0.04 0.29 0.10 0.39 0.11 0.42 0.01 0.14 0.61 2.82 0.05 0 3
IntroVAE 0.03 0.21 0.03 0.21 0.20 0.48 0.09 0.39 0.02 0.09 1.10 4.29 0.04 2 3

Table 5.4: Results for the regression dataset. For each of the rightmost 13
indexes (from MC-LR-R2 to NNDRp), the table shows the mean value across the
five folds. For the two remaining indexes (NNDD with α = 0.05 and α = 0.01),
the table shows the number of folds for which the statistical test rejects the null
hypothesis. For all the indexes, the lower the better.

regression dataset, Insurance, the absolute values for MC-*-MSE are larger than
the other MC values: we believe that this is because MSE does, differently from
the other effectiveness measures, depend on the scale of the target variable.
However, the relative ranking among the three variants of VAEs stays the same.

Concerning PCD, it can be seen that the values are very close to zero in
all the cases. This means that the way the variables are correlated in the
original and synthetic dataset is very similar. For gaining further insights in
how our technique correctly preserve the general structure of the data, in terms
of correlation, we show in Figure 5.1 the correlation matrices for the original
and synthetic data (after the numerical conversion, i.e., on X and X̂) for one
fold of the Bank dataset with β-VAE. The figure highlights that the pairwise
inter-dependencies among variables of the original dataset are well preserved in
the synthetic dataset.

In terms of differences among the three variants, the values of CSE, differ-
ently from those of PCD, seem to suggest that IntroVAE is in general worse than
the other two variants: this means that the synthetic data generated with this
technique cluster in a way that is slightly different than the way in which the
original data do. Overall, the values for UP performance indexes suggest that
all the four technique variants (VAE, β-VAE, IntroVAE, and ML-VAE for the
relational dataset case) are able to generate synthetic data that can be useful
for replacing the original data.

Concerning the DA indexes, the numbers in Tables 5.3 and 5.4 suggest that,
for classification datasets IntroVAE, seems in general better in generating data
that prevents disclosure: NNDRp for this variant is consistently lower than the
values of the index for the other two variants. We recall that the closer NNDRp

to 0, the more even the distribution between original rows that are more similar
to other original rows and to synthetic rows. In other words, with NNDRp = 0,
for any original row, the probability that its closest row is a synthetic data point
is exactly 50%: hence, it is hard to tell apart original and synthetic rows by
just looking at proximity to known rows. The other two indexes related to the
concept of nearest neighbor distance ratio (NNDRµ and NNDRσ) appear more
difficult to interpret. For the regression dataset, the values of NNDRp are in
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(a) Original data. (b) Synthetic data.

Figure 5.1: Correlation matrices (of variables after the numerical conversion) of
original and synthetic data for one fold of the Bank dataset with β-VAE. Red
denotes negative correlation; blue denotes positive correlation; yellow denotes
≈ 0 correlation.

general very close to 0, regardless of the VAE variant, but the values for NNDRµ

are larger. Since the fact that the target variable does not impact in any way on
neither the generation process, nor on the measurement of DA indexes, we infer
from this observation that Insurance is a harder dataset, from the point of view
of DA. For what regards NNDD, that builds over the same idea of distance, it
can be seen that the results are very good (NNDD = 0 for both values of α)
for all the variants and datasets, with the exception of Bank, for which β-VAE
and IntroVAE do not obtain the best score. An example of the cumulative
distributions of minimal distances between pairs of real data points and pairs
of one real and one fake data point is provided in Figure 5.2.

Finally, Table 5.3 shows that the ML-VAE works well with the relational
dataset, since all DA indexes have low values.

We performed our experiments on a machine with an Intel i7 6500U CPU
with 4 logical cores at 2.5GHz, equipped with 16GB RAM and a NVidia
RTX1080 GPU. The generation of the synthetic dataset took a time that was
dependent mostly on the size of the original dataset: on average, 0.02 s for each
row.

5.4 Conclusion

In this chapter, we evaluated experimentally our VAE-based methods for syn-
thetic generation of realistic tabular and relational data. We used perfor-
mance metrics to evaluate the methods’ performances on three publicly available
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Figure 5.2: Cumulative distributions of minimal distances between pairs of two
real points (orange) and between pairs of one real and one fake point (blue).
The supremum of the distance between these distributions is the test statistic
for NNDD.

datasets consisting of one table each and on a custom relational dataset con-
sisting of three tables. The results indicated that β-VAEs and IntroVAEs are
particularly reliable for generating synthetic tabular data. They preserve pri-
vacy and vital statistical data properties such as correlations. Furthermore, they
preserve utility for the development of ML models, particularly in the context
of classification problems. For regression problems, the utility appears more dif-
ficult to guarantee. For relational data, ML-VAE showed effective in generating
reliable and privacy preserving synthetic data.
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Chapter 6

Conclusion and Future
Research

6.1 Conclusion

In this thesis, we studied synthetic data generated through deep-learning meth-
ods as a privacy enhancement technology. Our core research objective was to
develop algorithms that produce utility preserving and disclosure averse syn-
thetic data modeled after a real input dataset. Utility preservation means that
when the synthetic data is used to train artificial intelligence models, the results
are on a par with the results of such methods applied to the real dataset. Disclo-
sure averseness means that access to the synthetic dataset does not provide the
synthetic data owner with sensitive information about any of the data subjects
in the real dataset.

To achieve this objective, we first provided an overview of machine learn-
ing. This provided an overview of terminology that was later applied. However,
through practical case studies, it also illustrated that there is a pronounced de-
mand for AI methods in industry. Such methods can only be applied if full and
secure data access is available.

Next, we studied the legislative framework for data privacy, including ex-
isting privacy technologies and their legal status. This study revealed that the
number of data breaches and their costs are increasing rapidly in the European
Union. The most common tyoes of breaches are re-identification attacks and
linkage attacks. In the former, an attacker can identify a data subject, even if
the victim’s record is anonymized in a dataset. In the latter, the attacker can
link victim’s records from two distinct databases, in one of which the attacker
knows the victim’s identity. By doing so, the attacker can infer sensitive infor-
mation. Parameter inference attacks, in which the attacker aims to infer the
value of a specific attribute were rare in practice, because they are difficult to
formally define.

Traditional data anonymization techniques rely on data distortion. Besides
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not providing sufficient protection, they reduce the degree to which the data
accurately represent reality. Differential privacy is more reliable, both from a
utility and a privacy viewpoint. However, by providing merely aggregate data,
they severly limit the number of use cases that can be conducted, excluding
AI methods. Synthetic data is an emerging technology for which a thorough
legal evaluation is still lacking. The technology is, however, met with enthu-
siasm from AI practitioners, domain experts and policy-makers. By removing
any link between data and real individuals, synthetic data do not disclose any
sensitive information. Through deep learning methods, such data can, however,
be constructed to contain the same analytic utility as any real dataset.

We then studied deep-learning generative models as a privacy enhancing
technology for tabular and relational data. By introducing novel data prepro-
cessing methods, we demonstrated that variational autoencoder models origi-
nally conceived for image generation can be applied in this context. We also in-
troduced performance metrics to measure the degrees of utility preservation and
disclosure averseness of synthetic datasets modeled after specific real datasets.
We also provided remarks on efficient implementation of the methods, in a man-
ner that can handle large quantities of data.

Finally, we conducted experiments to assess how well the designed methods
perform. We used three publicly available datasets with highly distinctive num-
bers of records, combinations of attribute types and applications (classification
and regression) to evaluate the methods for tabular data. For relational data,
we used a randomly generated dataset with one parent table and two child ta-
bles. The results indicated that the methods can accurately produce synthetic
data for classification and regression tasks.

6.2 Future Research

As synthetic data is an emerging field, it currently lacks jurisprudence. Future
research should address the technology’s legal status, imposing conditions on its
use. This type of research is multi-disciplinary in nature, as it requires knowl-
edge of law, artificial intelligence, application domains (such as healthcare and fi-
nance), and possibly ethics and philosophy. Furthermore, while re-identification
and linkage attacks have sound definitions, the definition of a parameter infer-
ence attack is more opaque. Additional multi-disciplinary research should ad-
dress this, possibly redefining the term and introducing quantitative metrics to
assess the occurrence and gradation of attacks. Future research should inspect
whether the target application of synthetic data can inform the performance
metrics used, and thereby the hyperparameter optimization process. This can
help tune parameters so that VAE-based models are better equipped to generate
synthetic data for regression problems. Metrics specifically developed for mea-
suring the performance of generators of relational data should also be further
inspected.

In this these, we noted that some metrics cast light on both privacy pro-
tection and utility preservation. Intuitively put, this is because if a synthetic
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dataset is very realistically distributed over its space, its data points will not
be centered suspiciously around specific empirical (real) data points. As such,
the synthetic data points will not leak information about any empirical data
points. The accurate distribution will, however, also increase the utility of the
synthetic data for statistical and artificial intelligence purposes. This observa-
tion should be studied further, as utility and privacy are often seen as competing
objectives.



90 CHAPTER 6. CONCLUSION AND FUTURE RESEARCH



About the Author

Academic background I obtained both a
bachelor’s and a master’s degree in mathemati-
cal optimization from the Sapienza University in
Rome. I also obtained a master’s degree in Op-
erations Research at Maastricht University (The
Netherlands). This field lies in the interplay be-
tween mathematics, AI, computer science and
economics. While I still rely on the mathemat-
ical maturity I gained during my studies, this
was only part of what I learned. I also learned
how to function as part of an interdisciplinary
team (through the university’s extracurricular
program MARBLE for talented students); how

to set up a strong network and how to properly launch and manage a company
(through the university’s extracurricular program LaunchBase). I learned that
in life and business, there are no mistakes, there are only opportunities!

Professional experience I started my professional career in The Nether-
lands, where I worked for over two years as a data scientist at the Medtronic
Bakken Research Centre. Subsequently, I joined Allianz Technology in Trieste,
where I was the principal data scientist in the business development team. In
both these positions, I witnessed first-hand how big the impact of data science
is. By properly analysing data, not only can business targets be much easier
achieved, lives can even be saved. It was through these experiences that I shaped
my vision to make cutting-edge advances in AI and data science available to the
world.

Scientific career and founding of Aindo To realise this vision, I knew I
needed two things: advanced expertise in AI and a vessel for my natural en-
trepreneurial and networking talents. For this reason, I commenced my studies
as a PhD researcher in AI at the University of Trieste in 2017. In 2018, I fol-
lowed my entrepreneurial instincts and founded Aindo. As a PhD scholar, my
research interests soon became centered around deep generative models. As an
entrepreneur, I then quickly realised that there was a tremendous potential for
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such models as an enabling technology for AI innovation. My research therefore
quickly became intertwined with the development of a synthetic data product
at Aindo.

What I love about my work is that it allows me to combine my passion for
data science with a friendly and engaging approach to business. This combina-
tion has proven to be rather successful: while still an active scientific researcher
at the University of Trieste, I was able to grow Aindo into a company with
departments spanning R&D, engineering, IT, business intelligence and com-
munications. I myself am mainly involved in R&D, engineering and business
development. This includes designing and implementing new products and so-
lutions, but also positioning them in a complex market and fostering a strong
network.

Achievements The Aindo synthetic data platform was conceived in late 2019
and soon gained traction with industry experts, investors and organizations.
In January 2020, it was one of eight out of roughly five hundred companies
to win the European Data Incubator (EDI). Aindo was granted €100 000 for
the further development of the product. After testing a proof of concept with
multiple industrial partners in April 2020, the EDI trajectory was successfully
completed in September 2020, with the implementation of a fully functional
beta-version. In June 2020, Aindo was one of ten finalists at the COLLISSION
2020 conference, one of North America’s most influential tech conferences. In
October 2020, the software was tested on the Reachout platform. In November
2020, Aindo was selected as a participant in Oxford University’s prestigious
Creative Destruction Lab (CDL) for the AI stream of the academic year 2020-
2021. Wired Italia, Le Scienze, The MIT Technology Review, and Il Sole 24Ore
have all dedicated articles to Aindo’s succes story.

In late 2021, Aindo obtained a €2.8M investment from venture capitalists.
This investment allows us to step up all of our activities. At fifteen people,
we are currently assembling one of the best AI teams in Europe, if not the
world. We are upscaling our R&D activities so that our technology is always the
most cutting-edge solution. We are increasing our IT activities to facilitate the
most intuitive user-experience. Our business development and communications
branches are quickly expanding, so that we can better inform the world about
the endless possibilities that deep learning generative models offer.



Appendix A

Assessment of Performance
Metrics

A.1 Experiments: Cluster Symmetric Evenness

In this section, we experimentally determine the extend to which the CSE metric
effectively measures utility preservation (UP) between datasets. To do so, we
procede as follows:

1. We construct pairs (D1, D2) of datasets in I1 × I2, for I1 = [1800, 2000]
and I2 = [1000, 1200] at random;

2. Each dataset has strong clustered behavior. That is: there are k clusters
present in each dataset. this is achieved by randomly smapling k “means”
µ1, µ2, ..., µk from the uniform distributions over the intervals I1 and I2;

3. Next, we treat the obtained means as the means of normal distribu-
tionsN (µk, 2), k = 1, 2, 3, ... and we sample a number in {700, 701, ..., 1000}
of points (selected by sampling from U [700, 1000]) from each normal dis-
tribution;

4. We compute the CSE for D1 and D2;

5. We repeat this process in three types of experiments:

• Equal sampling: the normal distributions of D1 and D2 have the
same means;

• Half-equal sampling: ⌈k2⌉ distributions of the datasets D1 and D2

have the same means; the other ⌊k2⌋ have randomly selected means
that are distinct between sets D1 and D2;

• Unequal sampling: All 2k means distinct.
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If the cluster symmetric evenness is an accurate metric of UP, then it will be
close to zero under equal sampling; close to 0.5 under half-equal sampling; and
close to one under unequal sampling. Figures A.1, A.2 and A.3 show the results
of one sampling trial for equal, half-equal and unequal sampling types, respec-
tively. Table A.1 contains experimental results for 100 experiments per sampling
type. The results indicate that the CSE is indeed close to 0 for equal sampling;
close to 0.5 for half-equal sampling; and close to 1 for unequal sampling. The
larger standard deviation for the latter two sampling types is because when dis-
tributions are randomly generated “unequally”, there might still be considerable
overlap, leading small CSE results.

(a) D1 (orange) versus D2 (blue) (b) Clustered data

Figure A.1: Equal sampling results: CSE= 0.07

(a) D1 (orange) versus D2 (blue) (b) Clustered data

Figure A.2: Half-equal sampling results: CSE= 0.52
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(a) D1 (orange) versus D2 (blue) (b) Clustered data

Figure A.3: Unequal sampling results: CSE= 0.90

Data pair Equal Half-equal Unequal

Statistic µ σ µ σ µ σ

Value 0.06 0.02 0.61 0.17 0.87 0.10

Table A.1: Experimental results for 100 experiments per data pair type. Each
dataset has four means. The number of datapoints per dataset is randomly
sampled from U [700, 1000].
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