PHYSICAL REVIEW B 106, L161106 (2022)

Real-space many-body marker for correlated Z, topological insulators
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Taking the clue from the modern theory of polarization [Rev. Mod. Phys. 66, 899 (1994)], we identify an
operator to distinguish between Z,-even (trivial) and Z,-odd (topological) insulators in two spatial dimen-
sions. Its definition extends the position operator [Phys. Rev. Lett. 82, 370 (1999)], which was introduced in
one-dimensional systems. We first show a few examples of noninteracting models where single-particle wave
functions are defined and allow for a direct comparison with standard techniques on large system sizes. Then, we
illustrate its applicability for an interacting model on a small cluster where exact diagonalizations are available.
Its formulation in the Fock space allows a direct computation of expectation values over the ground-state wave
function (or any approximation of it), thus, allowing us to investigate generic interacting systems, such as

strongly correlated topological insulators.

DOLI: 10.1103/PhysRevB.106.L.161106

Introduction. Topological insulators represent nowadays a
pillar of condensed-matter physics [1,2], defining a class of
materials that are fundamentally distinct from ordinary band
insulators. Their history originates in the early days of the
integer quantum Hall effect where topology plays a prominent
role [3,4]. Here, time-reversal symmetry is broken and differ-
ent quantum states are possible, which can be distinguished by
the total Chern number of occupied bands. This leads to a Z
classification of distinct topological states in two dimensions,
different from conventional band insulators. A major step
forward has been achieved when it was realized that enforcing
the time-reversal symmetry the situation changes radically [5].
In this case, only two possibilities are left, thus, leading a Z,
classification where trivial (Z,-even) and topological (Z,-odd)
states exist. Their full characterization has been obtained in
noninteracting systems where the inspection of Bloch or Wan-
nier wave functions allows a straightforward determination
of their properties [6]. For example, trivial and topological
states can be distinguished by looking at the time-reversal
polarization, which can be computed in terms of Wannier
centers [7-9]. In addition, whenever, inversion symmetry is
present, the computation is reduced to the determination of
the parity of occupied states at time-reversal momenta [10].

The inclusion of electron-electron interaction, beyond sim-
ple mean-field approximations, is far from being simple
and straightforward. Indeed, the analysis based upon single-
particle wave functions is lost, forcing us to deal with the
many-body state in its entirety. Since the early studies on
the integer quantum Hall effect, Niu and collaborators pro-
posed an ingenious way to compute topological observables
(e.g., Chern numbers) by averaging over boundary conditions
suitable derivatives of the many-body wave function [11]. As
originally noted in Ref. [11] and recently verified numeri-
cally [12], it turns out that the integration is actually not
necessary, and the Berry curvature evaluated by computing the
derivatives at fixed boundary conditions is already quantized.
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However, this procedure is not easily implemented since it
requires the determination of the ground state for different
choices of the boundary conditions [13—-15], which is particu-
larly difficult when dealing with approximate solutions of the
model.

Recently, a few investigations focused on the Bernevig-
Hughes-Zhang (BHZ) model [16] on the lattice, supple-
mented with Hubbard-like interactions, to determine their
effects on the transition between trivial and topological in-
sulators [17-19]. In one spatial dimension, density-matrix
renormalization group (DMRG) can be used [19] to evaluate
the local spin at the system edges, whose presence provides
an indication on the topological nature of the ground state.
However, this procedure is not fully satisfactory, in the view
of defining a marker that can unambiguously distinguish the
two band insulators. Alternatively, some approximate method
can be used, as, for example, dynamical mean-field theory, to
investigate either two- or three-dimensional systems [17,18].
Here, trivial and topological insulators are discriminated on
the basis of the low-energy behavior of the electron self-
energy [20], which is not easily accessible within other
ground-state approaches (e.g., DMRG or quantum Monte
Carlo methods). Real-space Chern markers have been also
introduced for noninteracting systems [21] and extended,
within dynamical mean-field theory, to include the effects of
electron-electron interactions [22].

Well before these developments in the framework of
topological insulators, Resta and Sorella [23] introduced a
many-body operator to discriminate metals and insulators in
interacting systems. Building on the modern theory of polar-
ization [24], they focused the attention on one-dimensional
models, defining
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where M is the number of sites and #; is the electron density
operator on the jth site, whose physical coordinate is x;.
Then, the modulus of its expectation value over the (normal-
ized) ground-state z = (Wy|Z|W,) can be used to measure the
localization length 2V=—[M /2w ))?1In |z|%. In the thermody-
namic limit, a metal is characterized by A — oo (|z] — 0) and
an insulator by a finite A (|z] — 1). For insulators, the phase
of z is related to electronic polarization (in units of the electric
charge e) through the many-body Berry phase y [25,26],
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The Z operator is very useful to detect the Mott transition in
the one-dimensional Hubbard model [27,28]. However, quite
remarkably, little attention has been given to the phase (or
sign, for centrosymmetric lattices) of z. In fact, two classes of
interacting centrosymmetric insulators may be distinguished
by having either z =1 or —1 [29]. Although in the one-
dimensional noninteracting case the topological properties of
the Berry phase have been already discussed in relation to the
surface charge theorem [30,31], the phase of z in interacting
systems has not been investigated. In addition, since then, no
attempts to extend the analysis to two-dimensional systems
have been pursued.

In this Letter, we perform an important step forward in
this direction, defining a marker, which is inspired by Eq. (1);
then, its phase can be expressed in terms of the Chern num-
ber, allowing us to discriminate between Z,-even and Z,-odd
insulators. Specific examples of non-interacting lattice sys-
tems with time-reversal symmetry, such as the BHZ [16] or
the Kane-Mele (KM) [5] models are provided. In addition,
calculations on the interacting BHZ model (where the on-site
Hubbard-U is included) are also reported for a 3 x 3 clus-
ter (with 18 electrons). The present Letter will allow one to
perform ground-state calculations in interacting systems and
obtain a clearcut way to distinguish trivial and topological
states.

Settings and definitions. In the following, we will focus
on two-band lattice models of spinful fermions at half-filling
(i.e., with two electrons per site on average). In the BHZ
model, there are two orbitals, labeled by n = &£, on each site
R of the underlying Bravais lattice; instead, in the KM model,
there are two sites again labeled by n = &+ in the unit cell.
The band structure is assumed to display a gap, leading to an
insulating ground state. We will first consider Hamiltonians
conserving the z projection of the total spin S., which is
customary in the literature [32]. In this case, the Z, invariant
can be equivalently discussed in terms of the parity of the spin
Chern number [33], calculated over the occupied states with
spin up (or down) only [6]. The effects of symmetry-breaking
perturbations are also discussed.

In order to generalize the definition of lattice position
operator of Eq. (1) in finite clusters of any geometry and
dimension, we have to introduce a many-body operator that
commutes with lattice translations and contains the informa-
tion on the average electron position. A useful definition,

which plays a central role in our treatment, is given by

7, (8K) = exp <i8k : ZR,ﬁ j,g), (3)

J

where §k is a yet unspecified wave vector, quantized ac-
cording to the lattice geometry, and 2, = ), ;5 is the
spin-projected electron density operator on the jth Bravais
lattice site, located at R;. Whatever choice of the parameter
8k, the operator Z, (8K) is a legitimate estimator of the average
electron position within the cluster.

It is useful to first prove an interesting property of the
operator defined in Eq. (3). Indeed, the ground-state average
of Z,(8k) can be related to the overlap between the ground
states of the model with and without a magnetic field pierc-
ing the two-dimensional torus. This can be easily proved by
noting that the unitary operator Z, (8k) implements a gauge
transformation on the fermion operators,

Z,(6K)¢], 2 (k) = Mgl 4)

where 6';”’0 creates an electron on the Bravais site j, or-
bital n, and spin o. Then, if [¥y) is the many-body ground
state of the Hamiltonian 7 with periodic boundary condi-
tions, then |Wy(8k)) = Z,(8K) |Wy) is the ground state of the
Hamiltonian Z, (8k)7:[Z§ (6k). The density operators in the
transformed Hamiltonian are left invariant by the gauge trans-
formation, whereas the hopping terms of the electrons with
spin o acquire a phase factor which can be attributed, via the
Peierls substitution, to the presence of a (pure) gauge field,
i.e., the presence of an integer number of magnetic quantum
fluxes piercing the torus. Note that periodic-boundary condi-
tions are preserved by the gauge transformation due to the
quantization of §k. As a result, the ground-state average of
7, (8K) without the quantum flux, equals the overlap between
the ground states of the model with and without the quantum
flux,

(WolZ5 (8K)[Wo) = (Wo| Wo(Sk)). &)

This relation is exact but rests upon the precise definition of
the phase factor of the ground state |y (5k)), which must be
chosen according to the previous derivation.

The analysis of noninteracting centrosymmetric models in
one spatial dimension provides a useful check on the method,
as we show in the Supplemental Material [34].

The BHZ model. Let us focus now on the BHZ model,
defined on a a square lattice with N = L x L sites by the
Hamiltonian 7 = Y 7, with

N t ' 4
— AT A At A
Ho = ) Z MCinoCime T mz NCinoCine
(i,).m )
). i(pg- "T ~
=) Ze U L oCi_ +H.c., (6)
(i)
where (i, j) are nearest-neighbor sites and the phase factor

(piTj = —(pii. depends on the vector r;; = R; — R;, i.e., £ /2
forr;; = (£1,0), 0 forr;; = (0, 1), and 7 forr;; = (0, —1).
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Here, we take 8k, = 6k, = ZT” and introduce the ratio,

(WolZo (8ks, 8ky)|Wo)

Po =

(WolZo (8ky, 0)|Wo) (W0l Z, (0, 8k,)[Wo)

@)

Then, we can exploit Eq. (5) in order to express p, in terms of overlaps, independently of the chosen global phase of the ground

states,

(Wo(—8ky, 0)[Wo(0, 8ky))

g =

(Wo(—8ky, 0)[Wo) (Wo|Wo (0, 5ky))

®)

For a noninteracting model, the ground state is written as a Slater determinant of the single-particle eigenfunctions, and each
overlap is written as the determinant of the matrix built out of the overlaps of the single-particle states. Expressing each single-
particle eigenstate in the Bloch form, the determinant can be explicitly evaluated in the thermodynamic limit as

(Ugtsk,.o | Ug—sk,.0)

pazl_[(
q

= [ 11 — Skedky (0, 1g.0 130, 14.0) —

q

Ug+8k,,0 |Mq,or ) (”q |uqu$ky,a )

<3qx Ug,o |uq,o) (uq,a | aqy Ug,o ))]

= exp |:_ /BZ dCdeQy(wqxuq,a|aqyuq,0> - <8qxuq,a|uq,a) (uq,a |aqyuq,a>):|

= |,0tr | CXP(iﬂCa)-

Therefore, p, is expressed in terms of the off-diagonal com-
ponents of the metric-curvature tensor [26], and its phase is
written as the integral of the Berry curvature, implying that it
is just 7w times the spin Chern number of the occupied spin-o
manifold. The results of p, as a function of the lattice size
L are shown in Fig. 1 for two cases corresponding to trivial
and topological insulators. For this model, p, is real on finite
clusters, and its modulus tends to 1 in the thermodynamic
limit. We emphasize that the sign of p, provides a clear
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FIG. 1. The quantity p, for the BHZ model with t = A =1 as
a function of the linear lattice size L = +/N. In the upper panel
m = 0.1, corresponding to a Z, topological insulator; in the lower
panel m = 3, corresponding to a trivial insulator. Note that in the
BHZ model p, is real.

€))

(

marker for the topological nature of the ground state since it
does not depend on the cluster size.

The KM model. We now consider the Kane-Mele model,
defined in the honeycomb lattice with 2N sites, which are
labeled by o = (i, n) (where i denotes the unit cell of the
Bravais lattice and 7 the site in the unit cell). The Hamiltonian
is given by

?%:—IZC cﬁ—i——Vso Z éo-d, ﬁxdo,y)cﬂ
\/g ({e. B))
—I—Zmac

+ lVR Z
(. B)

where (a, 8) and ({«, B)) are nearest and next-nearest
neighbors in the honeycomb lattice, &/ = (6Z,T, ey, VD), o=
(oy, 0y, 0;) are Pauli matrices, and d, g is a vector pointing
from site B to «, whereas y denotes the common nearest
neighbor of the two next-nearest-neighbor sites « and . The
on-site (mass) term m, = £m has alternate signs on each
sublattice of the honeycomb lattice.

In the absence of Rashba coupling (Vz = 0), the total spin
projection is still conserved by the Hamiltonian, and the previ-
ous analysis is readily applicable. The quantized wave vectors
8k appearing in the definition (3) must be chosen according
to the quantization rules of the underlying triangular Bravais
lattice. We choose 8k; as the smallest wave vector in the
direction of the ith primitive vector of the reciprocal lattice;
in a L x L cluster with primitive vectors a; and a,, we have
that 5k; - a; = T” 8;j. As performed before, we now define

2-(0 xdyp)s  (10)

B (Wo|Z, (ki + 8ko)|Wo)
(Wo|Z, (8k1)|Wo) (¥o|Z, (8ka)| W)

L

The derivation closely follows the one sketched before. Here,
po 18 complex on any finite sizes but becomes real for N —
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FIG. 2. Modulus (empty points) and phase (full points) of p, =
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|os| € in the KM model of Eq. (10) in absence of Rashba coupling

(Vg = 0) as a function of the number of sites N for ¢t = 1 and V5o = 1/3. In the left panel m = 1 and the system is a Z, topological insulators,

whereas in the right panel m = 2 and the system is a trivial insulator.

00, where its phase equals 7 times the Chern number of the
band. Therefore, it represents an easily computable quantity
that marks the topological transition. The numerical results
for the KM model in absence of Rashba coupling are reported
in Fig. 2. Even if our marker (11) is complex on any finite
cluster, its phase is very close to either O or 7, even on small
sizes. Therefore, the identification of the topological nature of
the ground state can be easily assessed.

When the Rashba coupling V¢ is included, the z component
of the total spin is no longer a conserved quantity. Still, we
keep the same formal definition of p, in Eq. (11) and show
that its phase remains quantized even for Vx > 0. The numeri-
cal results are reported in Fig. 3. For large N the imaginary
part gets smaller and eventually tends to zero whereas the
modulus |p,| diverges in the thermodynamic limit, however,
its phase ¢ can be again taken as a marker for the Z, topolog-
ical transition. In fact, the convergence of the phase of p, to
7 (0) in the topological (trivial) phase is not affected by the
presence of Rashba coupling.

The interacting BHZ model. Here, we add the Hubbard-
U interaction between electrons with the same orbital
n in the BHZ model of Eq. (6), namely, Hi, =
U qunﬁj,n,quw [19]. The ground state can no longer be
written in terms of a single Slater determinant, and many-body
methods are necessary to evaluate expectation values as that in

1.0
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Eq. (7). Here, we perform exact diagonalizations on a 3 x 3
cluster with 18 electrons to give a proof of concept for the
applicability of the many-body marker that we introduced. In
Fig. 4, we report the results for U = 1 and 2 (with A = 1) by
varying the on-site term m, the noninteracting case being also
reported for comparison. The ground state is topological for
small values of m, and the transition to the trivial insulator is
marked by an abrupt jump from negative to positive values of
po - Note that the presence of the Hubbard-U interaction shifts
the transition point from m =2 at U = 0 to m = 2.75(5) at
U = 2, indicating that the electron-electron repulsion favors
the topological phase.

Conclusions. To summarize, we have examined the role of
the spin-projected position operator Z, (§k) in the topological
transition of lattice models, proving that it allows us to define
a robust marker, whose phase clearly identifies the occurrence
of a change in the topological properties of the ground-state
wave function. The Z, (8k) operator is particularly suited for
wave-function-based approaches (e.g., quantum Monte Carlo,
Lanczos, and density-matrix renormalization group), where
the topological nature can be extracted even in small clus-
ters. Other markers, have been introduced and employed in
previous works [21,22]. However, being based on a single-
particle picture (e.g., by the use of Wannier orbitals), these
markers can be exploited in dynamical mean-field theory in-
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FIG. 3. The same as in Fig. 2 with a finite Rashba coupling Vz = 0.1.
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FIG. 4. The many-body Z, marker p, for the interacting BHZ
model with r =X =1 in the 3 x 3 cluster with 18 electrons as
obtained by exact diagonalization. The results are shown for U = 1
and 2, as a function of the on-site term m. The case with U = 0 (on
the same cluster) is also reported for comparison. As in Fig. 1, p, is
real.

vestigations, but their application to fully many-body states
is not possible. Our Z, marker bears some resemblance with
the many-body invariant for Chern insulators discussed in
Ref. [35]; however, whereas the latter one needs calculations
with different boundary conditions, our maker is defined by
a single many-body computation. Most importantly, the def-
inition of p,, can be exploited to study interaction-induced
topological transitions in strongly correlated electron models.
The very same definition can be applied even if the total
spin projection S, is not conserved, e.g., in the presence of
the Rashba coupling in the Hamiltonian. Finally, the position
operator could be useful also in experimental setups on quan-
tum gases trapped in optical lattices in which high-resolution
imaging is now possible [36], allowing a direct evaluation of
operators, such as 7, (8K).
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