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Simple Summary: Diptera are rich in species, contribute significantly to plant diversity, and have
the potential to assess habitat health. They also include many agricultural and forestry pests. Our
study provides baseline information on Diptera and Vespidae diversity in the Mediterranean mosaic
of agroecosystems. Additionally, we summarized the information on the importance of human
influence on Diptera diversity. We carried out an inventory of Diptera in Croatia using a set of
traps placed in the proximity of honeybee hives. We determined the presence of pests and newly
introduced species. A total of 94 species belonging to 24 families were recorded, including 7 important
agricultural and forest pests of Diptera and 17 new records for Croatia. Results pointed out that
total insect species richness, pest species richness, and the first findings depend on human activities.
Furthermore, the number of honeybee colonies was negatively correlated with total species richness,
while anthropogenic influence was positively correlated with pest species richness.

Abstract: Diptera, with their participation in pollination, significantly contribute to the maintenance
of plant diversity, and they also have great potential for assessing habitat health and preserving
it. A decline in their abundance and diversity has been recorded worldwide as a consequence of
biotic, abiotic, and anthropic alterations. In addition to pollinators, these orders include agricultural
and forestry pests, which are a threat to both cultivated and wild plants that are very important
to the economy. Many pests have escaped from their native areas, and it is important to monitor
their spread to implement sustainable means of control. Our study provides baseline information on
Diptera and Vespidae diversity in the Mediterranean mosaic of agroecosystems, giving information
on the importance of human influence on insect diversity. We carried out an insect inventory in
Istria, Croatia, using a set of traps placed in the proximity of beehives. This study was also important
in determining the presence of pests and newly introduced species. A total of 94 species from
24 families were recorded—7 important agricultural pests of Diptera and 17 new records for Croatia.
The correlation between species diversity and environmental and anthropogenic factors leads to the
conclusion that total insect species richness, pest species richness, and the first findings depend on
human activities. The number of honeybee colonies negatively correlated with species richness, while
anthropic influence positively affected total and pest species richness.

Keywords: anthropic parameters; biodiversity preservation; composition; invasive species; inventory;
mosaic ecosystems; new records; pest; richness
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1. Introduction

Efforts are continuously carried out to measure, estimate, and conserve the diversity
of insects in different habitats [1]. Most insects provide many direct (pollination, removal of
carcasses and faeces, insect predators and parasites of herbivores including pests), indirect
(apian products) services for humans, as well as other important benefits like silk (silk
moths), dyes and shellac (scale insects), and tannic acid and ink (insect galls) [2]. Diptera
is a diverse insect order not only in species richness but also its structure, habitat needs,
ecology, and human interactions [3].

The Mediterranean basin is known as a biodiversity hotspot because it has a lot of
different kinds of plants and animals that pollinate them [4]. Pollinators’ decline and loss
of biodiversity, directly affecting the worldwide provision of pollination services, have
been reported in response to anthropogenic-driven activities [5,6]. Human impact has
caused degradation, destruction, and fragmentation of natural habitats, altering pollinator
communities [7]. On the other hand, some semi-natural habitats provide good conditions
for insects [8].

Maintaining biodiversity in human-dominated landscapes, especially in agriculture-
dominated ones, is a topic of great interest. Agriculture intensification and homoge-
neous agricultural landscapes are known to affect biodiversity negatively [9–11]. In the
Mediterranean area, agriculture is fragmented into small patches, forming a mosaic land-
scape [12,13]. The mosaic landscape is defined as structurally complex spaces of variable
scale that accommodate different interacting land-cover types of both natural and anthro-
pogenic origin [14]. These traditional Mediterranean multifunctional landscapes [15] are
also typical for the Croatian coast.

Croatian agriculture in the last 30 years has been characterized by negative trends
both in the use of agricultural land and in the decrease in the economy and the number
of producers. The extensive development of tertiary activities such as tourism, with the
involvement of most of the working population, is advocated as the leading cause of the de-
cline [16]. Istrian agricultural landscapes are characterized by fragmented parcels, diverse
crop production, and mosaic agricultural practice. It is a patchwork of vineyards, olive
fields, extensive agriculture, natural karstic vegetation, and semi-natural habitats, making
suitable habitats for insect populations. The average agricultural parcel in Istrian County
has an area of only 0.51 ha [17]. Goethe et al. (2021) studied the influence of different agricul-
tural landscapes on biodiversity and concluded that agricultural landscapes dominated by
wheat are associated with decreased pest abundance in the investigated area [18]. Other au-
thors have also highlighted a need for studying how strategically managed agroecosystems
can provide habitats to maximize the conservation of insect taxa [19–23].

Besides their positive role in the ecosystem, insects can also act as pests, depending on
the environmental conditions and human activities. Invasive insect pests are a growing
problem, and many researchers are working on listing and describing their effects on
natural and anthropogenic environments [24]. Of all the insects in the world, only 1%
are pests [25], but they are responsible for the loss of 13% of agricultural crops and 9%
of forest production [26]. Human activities have significantly increased the dispersal of
pests worldwide [24]. More than 200 species of Diptera are considered pests infesting
ripening fruits [27–29]. Alien species of Diptera have exponentially increased in Europe
since the second half of the 20th century [30]. Most alien pests in Europe were introduced
unintentionally, and almost one-third originate from North America. Many are important
horticulture pests [31]. Fruit flies can cause substantial economic losses worldwide to fruit
and vegetable growing and beekeeping [32–34].

Honeybee apiaries can influence the diversity and abundance of insect pollinators. To
our knowledge, little is known about this topic. There are not many studies about how mo-
saic landscapes affect the number and types of pollinators, especially in the Mediterranean
area. Apiary spots could be a powerful tool for choosing points for efficient pollinator
species inventories and monitoring invasive insects and pests. Habitats close to honeybee
hives are characterized by plants often visited by honeybees and offer favorable conditions
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for pollinator species due to the vital number of floral resources. Such conditions could
favor the establishment of insect pollinator species but also attract newcomers such as
invasive species and pests. Apiary management practices do not affect vegetation structure
and diversity but may affect the diversity of certain insect groups. On the other hand,
Valido et al. (2019) showed that the expansion of beekeeping affects mutualistic interactions,
potentially disturbing the structure and functioning of pollination networks in natural
ecosystems and thus negatively impacting the biodiversity of wild pollinators [35]. It was
also assessed that numerous honeybee colonies could strongly affect the foraging activity
of wild bees in the Mediterranean area [4].

Therefore, this study aims to assess the richness and composition of Diptera and
Vespidae in the Istrian region (Croatia) and to perform an inventory of invasive pests in
the proximity of honeybee apiaries. Our specific objectives were to: (1) quantify Diptera
diversity within 16 sites in proximity of the honeybee hives placed in the mosaic land-
scape; (2) provide new insights into the distribution of agricultural and forest pests; and (3)
Assess the correlation of Diptera and Vespidae diversity with environmental and anthro-
pogenic variables.

2. Materials and Methods
2.1. Study Area

The study area is a typical mosaic of agricultural habitats with fragmented small
parcels. Sixteen local beekeepers were randomly selected in the geographical area of the
Istrian peninsula (Croatia) between the municipalities of Poreč and Buje (45◦ N, 13◦ E)
(Figure 1). The size of apiaries ranged from 8 to 90 honeybee colonies (Table S1), which is
in line with the Croatian average described for 2018 (57) and twice as large as the European
average (22) [36]. A detailed description of each location (coordinates, anthropological
and ecological data) is presented in Table S1. The surrounding vegetation is represented
by Mediterranean trees (Quercus spp., Quercus pubescens Willd., Pinus halepensis Miller,
Olea europaea L., Aesculus hippocastanum L., Tilia sp., Pinus nigra Arnold and Populus sp.),
shrubs (Carpinus betulus L., Rubus spp., Cornus mas L., Lonicera spp., Rhamnus alaternus
L., Pistacia lentiscus L., Hedera helix L., Vitis vinifera L., Juniperus oxycedrus L., Rosmarinus
officinalis L.), invasive alien tree Robinia pseudoacacia L., and herbaceous species (Sorghum
sp., Trifolium sp.).

The surveys comprised abundance records of all vascular plant species according to
the Braun-Blanquet scale in three vegetation layers (herbaceous: 0–1 m, shrubs: 1–3 m, and
trees: >3 m). Data were collected within a radius of 25 m from the set of traps.

2.2. Descriptive Variables

Mosaic habitat was described by the following quantitative (altitude, distance from
the sea, agriculture intensity, anthropic disturbance, number of honeybee colonies, number
of hornets) and qualitative (habitat type, dominant plant species) ecological and anthropic-
related variables (Table S1). Agriculture intensity and anthropic disturbance were estimated
on an ordinal scale ranging from one to three, where one is low, two is equal to medium,
and three is high. Agriculture intensity reflects agricultural intensification estimated during
field visits, while anthropic disturbance includes signs of human activities (e.g., waste
or mowing and gardening activity, the proximity of a golf course) and human-related
constructions such as small buildings, walls, fences, and bike trails. Three habitat types
were described as herbaceous, shrubs, or trees. In each location where trees were present,
the dominant tree species was also determined.
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Figure 1. Location of study sites in the Northern Istrian peninsula, Croatia (Poreč and Buje
municipalities).

2.3. Sampling

Sampling was carried out during September and October 2019, every seven days,
which is the late bloom period in the area and, thus, the specific fructification period. For
insect collection, we used commercial traps that had been purchased at an agricultural store.
The trap was a plastic container in which a wasp drowned in the attractant liquid and could
not get out. A total of sixteen traps were placed on trees about 2 m above ground level and
approximately 5 m from the honeybee hives. The sampling locations were on the private
land of beekeepers, and we had permission to place the traps. We provided them with
the results after the end of the project. On the field, we released any live species that was
readily identified as our target species or was not near the place of capture. Our locations
were not known for the occurrence of any taxa of conservation concern. According to
standardized collection methods, we performed an active specimen orientation collection
method with chemical bait classified as the B2 method [37]. Each trap was filled with
the attractant liquid (a total of 50 g). The attractor liquid was composed of 190 g/kg of
vinegar, 3 g/kg of 38% brandy, and 240 g/kg of food-grade liquid with an additional 1 dl
of blonde beer. The traps were changed every seven days, and the samples were collected
and preserved in 70% ethanol.

2.4. Selectivity of the Collecting Method

Recorded faunal composition depends on the collecting methods [38]. Selectivity of
trapping methods resulted in the high frequency and diversity of some Diptera (Drosophil-
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idae, Muscidae, Calliphoridae, and Anthomyiidae) and Hymenoptera (Vespidae and Ap-
idae) families. The composition of the attractant most likely influenced the spectrum of
captured species (mostly fruit-attacking species). Some dipteran families (Chironomidae,
Sciaridae, Empididae, Agromyzidae, and Sphaeroceridae) usually very common in other
collecting methods (Malaise traps, sweeping, colored dishes with water) were practically
not found. We also did not find any wild bees or bumblebees. In the present study, the
use of commercial traps resulted in a high number of species and specimens trapped, as
well as several pest species and other very interesting, otherwise rare findings. This can
be explained by the selectivity of the commercial traps used. Several characteristics of
used traps could be responsible for the selectivity: (a) attractiveness of the bait itself (most
Drosophilidae, Aulacigaster spp., Suillia spp., and Phaonia pallida (Fabricius 1787); (b) chance
occurrence (Platypalpus) or of groups looking for hollows (Drapetis, Culicidae); (c) vicinity of
honeybee apiaries (Achanthiptera, several Fanniidae); (d) attractiveness of decaying insects
trapped (Platystoma lugubre, Piophilidae, several Sarcophaga spp.); and (e) sampling period
(Hymenoptera).

2.5. Morphological Identification

From the total trap content, we extracted specimens of Diptera and Hymenoptera. All
specimens were identified at least at the family level and, if possible, at the species level.
Other specimens were assigned to higher taxonomic levels due to sample degradation. The
research was carried out in two locations: the Civic Museum of Natural History of Trieste
(IT) (Hymenoptera) and the Czech University of Life Sciences (Diptera). Hymenoptera
specimens were identified under a stereomicroscope with direct comparison with the Stolfa
Collection of Vespidae (“Vespidi 3◦, n◦ 256” e “Vespoideae II-IB 12-ex 445”). Diptera speci-
mens were sorted under the Nikon SMZ 1500 stereomicroscope into families and readily
identifiable species and selected representatives of most families were dry-prepared and
sent to the specialists for closed species identification (see section “acknowledgements”).
Taxa represented by a small number of specimens were counted in full, more numerous taxa
were counted from smaller subsamples (usually an eighth of a sample), and some species
were confirmed without quantitative data. For the determination of new records for Croa-
tia, the following databases were consulted: EASIN (European Alien Species Information
Network), Fauna Europaea, GISD (Global Invasive Species Database), and EPPO (European
and Mediterranean Plant Protection Organization). Voucher specimens are deposited in
the collection of the Czech University of Life Sciences Prague (acronym: CULSP).

2.6. Statistical Analyses

Since there was no statistical difference between the sampling dates, we analyzed the
data for each location separately, but with no temporal separation. All collected samples
were pooled into one sample per location, unifying six individual samplings. Data analysis
was performed only for species with counted units. Different statistical analyses were used
to determine species richness and composition patterns for different response variables.
Specifically, Diptera’s and Vespidae’s species richness patterns have been described using
classic extrapolation sampling curves of species richness for individual-based abundance
data. Bootstrap confidence intervals around the diversity for extrapolated samples have
also been calculated to facilitate comparisons of diversities across multiple sites [39]. The
function iNext in the R package iNext [40] was used. A correlation analysis based on the
Pearson coefficient was used to evaluate the pairwise linear relationship between species
richness and the set of quantitative environmental variables.

A generalized linear model (GLM) [41] was estimated to find the set of environmental
variables useful to explain variability in species richness. Poisson error distribution was
selected as a fitting parameter in GLM to model species richness (count data). The adequacy
of the selected error distributions in GLM and the occurrence of linear relationships between
responses and predictors were checked and tested on model residuals once the model
was performed. The significance of each predictor in the linear predictor was tested
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using the X2 statistic. As a measure of “goodness of fit” for each GLM, the adjusted D2

(D2adj) was calculated [42]. The minimally adequate model (including only significant
environmental variables) was found based on the minimization of the Akaike information
criterion (AIC) considering the combination of all the subsets of environmental predictors.
The function glmulti in the glmulti R package [43] was used to compare the whole set of
models and to select the best-reduced one. The same modeling approach was used to
model species richness for pests in relation to environmental variables. Moreover, since
Robinia pseudoacacia is the most spread alien tree plant species in the study region, we
investigated the relation to the distribution of Callopistromia annulipes (Macquart, 1855).
To have a clearer idea of the effect of R. pseudoacacia on the distribution of C. annulipes, an
independent one-tier t-test was carried out to test if R. pseudoacacia stands had a higher
abundance of this pest.

The species composition of Diptera and Hymenoptera was analyzed via redundancy
analysis (RDA). Specifically, the RDA was based on the Hellinger-transformed plant species
abundances constrained by all the environmental predictors. Quantitative predictors were
standardized (mean 0, 1 standard deviation) before running the analysis. RDA analysis
and tests for statistical significance (for constrained axes and environmental predictors)
were performed using the “rda”, “anova.cca”, and “permustats” functions within the “vegan”
v.2.5–7 package [44]. Finally, we carried out an abundance-based indicator species analysis
to detect the indicator species for different levels of anthropic disturbance, habitat type, and
agriculture intensity factors. We used the function multipatt in the package indicspecies [45].

3. Results
3.1. Diptera and Vespidae Diversity

From sixteen sampling locations, we collected 80 samples. In total, we isolated
31.284 individuals belonging to 94 species and 24 families (Table S2). Total species richness
varied from 20 to 37 (Table S2). A significant number of autochthonous hornets Vespa
crabro (L., 1758), a known bee predator, were trapped (Table S1). The species V. crabro is
unable to destroy a honeybee colony like invasive hornets. Still, due to its high predation
rate, especially at the end of the summer, its presence can be extremely costly, especially
for weakened honeybee colonies [46]. We identified 807 specimens of Vespa crabro and
1.969 specimens of wasps (Vespidae family). The invasive alien hornet species Vespa velutina
Lepeletier, 1836, and Vespa orientalis L. 1771. have not been found. A total of 2.776 individu-
als belonging to one family (Vespidae) and four species of Hymenoptera were recorded.
The majority of collected wasps have been identified as Vespula germanica (Fabricius 1793)
and Vespula vulgaris (Linnaeus 1758). In the traps, we also found nine specimens of the
Polistes genus (Table S2). A total of 28,508 specimens of Diptera were found. Special atten-
tion was paid to pests and newly recorded species (details are in Sections 3.2 and 3.3). We
identified 23 families and 90 species of Diptera insects in the traps (Table S2). The most
abundant family in all the investigated localities was Drosophilidae (abundance frequency:
52.6%), followed by Muscidae (20.9%) and Heleomyzidae (5.6%). Comparing accumulation
curves between localities showed significantly higher total species richness in Diptera and
Vespidae, indicating that some species remained undetected (Figure 2).

3.2. Pests Findings

Drosophila suzukii (Matsumura, 1931) was the most abundant invasive alien species
found at every sampling site. Moreover, we found a total of 34 specimens of Chymomyza
amoena (Loew 1862); this species was previously confirmed only twice in Croatia [30,47].
Callopistromyia annulipes was also found in fourteen locations with 265 specimens, represent-
ing the second record in Croatia. Atherigona varia (Meigen, 1826) (89 specimens), Bactrocera
oleae (Rossi, 1790), (27 specimens), Silba adipata (McAlpine 1956) (15 specimens) and Ceratitis
capitata (Wiedemann 1824) (1 specimen) were also discovered in collected samples. More
information on the most relevant pest species is presented in Table 1.
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Table 1. List of agricultural and forest Diptera pests, their distribution, and host plants; * invasive
assumes alien invasive species.

Species/
Family

Number of
Specimens Location

Invasive * and
Pest Status in

Croatia

Pest Status
Worldwide/References Host Plants

Drosophila suzukii
Drosophilidae 17,352 L1-L16 Important

pest/invasive

Worldwide pest; Italy [48],
Spain [49], Poland [50],

USA [51], Argentina [52],
and India [53].

fruits vegetables

Callopistromyia
annulipes Ulidiidae 265 L1-L11, L13,

L15, L16
n.d., the second
record, invasive

Pest in Europe:
Germany [54], Slovakia [55],

France [56], and
Croatia [57].

deciduous dead
trees

Atherigona varia
Muscidae 89 L1, L3, L5-L9,

L13, L16
Important

pest/invasive
Pest in Europe and Asia:

Turkey [58] and India [59] corn, sorghum

Chymomyza amoena
Drosophilidae 34 L1, L2, L6, L8,

L9, L15

Important pest,
invasive, third
appearance in

Croatia

Pest in Europe; Croatia [30],
The Netherlands [60], and

Switzerland [61].
fruits, nuts

Bactrocera oleae
Tephritidae 27 L1, L3, L6, L7,

L9, L14, L15
Important

pest/domestic

Worldwide pest:
Greece [62], Pakistan, India,
Nepal [63], Kenya, Tanzania,
Zanzibar, Uganda, and DR

Congo [64].

olive trees, fruit

Silba adipata
Lonchaeidae 15 L7 Important pest

Pest in the Mediterranean,
South Africa: Croatia [65],

Tunisia [66], and South
Africa [67].

fruit

Ceratitis capitata
Tephritidae 1 L7 Important pest

Worldwide pest:
Morocco [68], Turkey [69],

and South African
Republic [70].

fruit, vegetable,
nuts
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3.3. First Findings

Seventeen species have been recorded for the first time in Croatia (Table 2).

Table 2. First record species for Croatia and their distribution in Europe.

Species/
Family

Number of
Specimens Location Other Records Inside

Europe/References Host Plant

Ulidia apicalis
(Wiedemann, 1824)

Ulidiidae
464

L1, L2, L3, L4, L5, L6, L7,
L8, L9, L10, L11, L12, L13.

L14, L15, L16
Italy Spain, and Portugal [71] possibly flowers

Herina lacustris
(Meigen, 1826)

Ulidiidae
58 L1 Spain [72] and France [71] n.d.

Desmometopa microps
(Lamb 1914)
Milichiidae

4 L7, L10, L12 Czech Republic and The Netherlands
[71,73] n.d.

Periscelis (Myodris)
piricercus

(Carles-Tolrá & Verdugo
Páez, 2009)

Periscelididae

3 L9, L10 Spain [74] and Portugal [75] trees

Toxoneura muliebris
(Harris, 1780
Pallopteridae

3 L4, L15
Ireland [76]; Russia [77], Italy France,
Spain, The Netherlands, Greece, and

Portugal [71]

possibly saprophagous
species, flowers

Periscelis (P.) winnertzii
(Egger, 1862)

Periscelididae
2 L10, L11 Portugal and Czech Republic [78],

Finland, France, and UK [71] n.d.

Cephalia rufipes
(Meigen, 1826)

Ulidiidae
1 L4

Spain [79], Portugal [80], France,
Germany, The Netherlands, and

Austria [71]
n.d.

Desmometopa discipalpis
(Papp, 1993)
Milichiidae

1 L2
Greece [81], Germany [82], Czech

Republic [83], Sweden, and Denmark
[71]

n.d. (possibly
saprophagous species)

Phaonia regalis
(Stein, 1900)

Phaonia
/ / Austria and Bulgaria [71] n.d.

Grzegorzekia hungarica
(Papp & Ševčík, 2007)

Mycetophilidae
/ / Hungary and Romania [84,85] n.d.

Lonchaea peregrina
(Becker, 1895)
Lonchaeidae

/ /

Lamprolonchaea smaragdi
(Walker, 1849)
Lonchaeidae

/ / Spain, Portugal, and Greece [71,86] vegetables, crops

Neoalticomerus formosus
(Loew, 1844)

Odiniidae
/ / The Netherlands [87], Sweden, Finland

[71], Poland, France, and Italy [87] n.d.

Odinia ornata
(Zetterstedt, 1838)

Odiniidae
/ / Sweden, Finland, and UK [71] n.d.

Amiota alboguttata
(Wahlberg, 1839)

Drosophilidae
/ / Sweden, Finland, UK, and Norway [71] possibly fermenting tree

sap

Scaptodrosophila deflexa
(Duda, 1924)

Drosophilidae
/ / UK, Sweden, Finland, Switzerland,

and The Netherlands [71,88] n.d.
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3.4. Correlation with Environmental Variables

A description of the habitats is presented in Table S1. The correlation plot showed
that distance from the sea and the number of honeybee colonies were negatively correlated
to total species richness (Table 3 and Figure 3). The number of hornets was positively
correlated to species richness (Table 3 and Figure 3).

Effect plots based on model-estimated coefficients explained the relationship between
total species richness and three ecological variables (distance from the sea, number of
hornets, and number of honeybee colonies) and two anthropic variables (agriculture in-
tensity, anthropic disturbance) included in the minimal adequate model (Figure 3). Total
species richness increased with low to medium agriculture intensity, although it was not
statistically significant. The species richness of Diptera varied between 20 and 37 species
per location. It was noted that the highest level of anthropic disturbance was present in 5
out of 6 locations with species richness above 30.

Table 3. Generalized linear model for total species richness. Statistical significance: ** p < 0.05;
* p < 0.01.

Selected Variables Degree of
Freedom Sum Sq Coefficient Sign p-Value (F Tests)

Agriculture Intensity 2 59.43 Factor 0.071

Anthropic Disturbance 2 98.08 Factor 0.025 *

Distance from the sea 1 4.62 −0.932 0.458

N◦ of hornets 1 36.16 0.253 0.064

N◦ of bee colonies 1 112.66 −0.348 0.006 **

R-squared 0.855 **
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with log link function).
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The number of pest species is also negatively correlated to elevation and distance from
the sea (Figure 4 and Figure S1). Generalized linear models for pest species richness showed
that anthropic disturbance is positively correlated with pest species richness (Table 4).
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Figure 4. Effect plots based on the estimated coefficients for environmental variables (agriculture
intensity, anthropic disturbance, and elevation) retained in the minimally adequate model of pest
species richness (Poisson GLM with log link function).

Table 4. Generalized linear model for pest species richness. Statistical significance: ** p < 0.05;
* p < 0.01.

Selected Variables Degree of
Freedom Sum Sq Coefficient Sign p-Value (F Tests)

Agriculture Intensity 2 4.52 Factor 0.168

Anthropic Disturbance 2 10.20 Factor 0.034 *

Elevation 1 2.63 −0.004 0.145

R-squared 0.621 **

Effect plots based on model-estimated coefficients explained the relationship between
pest species richness and three ecological and anthropic variables. Total pest richness
increased in the location with high anthropic disturbance, although it was not statistically
significant (Figure 5). The analysis confirmed a significant (positive) influence (t = -2.67,
df = 9.44, p-value = 0.012) of Robinia pseudoacacia stands on the presence of Callopistromyia
annulipes.
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Figure 5. Correlation between dominant plant species Robinia pseudoacacia and pest C. annulipes
(1 = stands with R. pseudoacacia; 0 = stands without R. pseudoacacia).

The first two axes of the RDA (see the biplot in Figure 6) explained 60.9% of the total
variation in species composition, where the first axis explained 37.58% and the second
23.32%. Specifically, the first axis highlighted a gradient of increasing agricultural and
human impact intensity (from right to left) that inversely moves with the distance from the
sea and with the altitudinal gradient (from left to the right). Along with these two inverse
gradients, species such as Phaonia pallida, Suilia spp., Atherigona varia, and Ulidia apicalis
(Wiedemann, 1824) differed. The biplot identified one group where the highest number of
D. suzukii was found. On the right, three locations with an elevation higher than 200 m and
a distance from the house higher than 100 m showed the highest abundance of the species
Phaonia pallida. The second axis, on the other hand, was positively related to the number of
honeybee colonies and the number of hornets connected with the T and S habitats.
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Figure 6. RDA analysis of species composition in relation to environmental and anthropic pre-
dictors. Note: categories of habitat type where H is herbaceous, S is shrubs, and T is trees. Pre-
dictors abbreviations: dfs—distance from the sea; elev—elevation; agri_int—agriculture intensity;
antro_dist—anthropic disturbance.
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Indicator species analysis (Table 5) showed that Bactrocera oleae and Scathophaga sterco-
raria are found in all locations with high agriculture intensity. Additionally, A. varia was
found in all locations with medium to high agriculture intensity. B. oleae was also found in
all locations with the highest anthropic disturbance. Bercaea africa (Wiedemann, 1824) was
found in all locations with the habitat type herbaceous. Chymomyza amoena was found in
all locations with the shrub habitat type.

Table 5. Indicator species analysis. Statistical significance: ** p < 0.05; * p < 0.01.

Agriculture Intensity—level 3

Species A B stat p-value significance

Bactrocera oleae 0.7835 1 0.885 0.0186 *

Scathophaga
stercoraria 0.8082 0.75 0.779 0.0224 *

Agriculture Intensity—combined levels 2 and 3

A B stat p-value significance

Atherigona varia 0.8992 1 0.948 0.0038 **

Anthropic disturbance—level 3

A B stat p-value significance

Bactrocera oleae 0.807 1 0.898 0.0038 **

Habitat type—habitat H (herbaceous)

A B stat p-value significance

Bercaea africa 0.7903 1 0.889 0.0098 **

Heteronychia filia 1 0.6667 0.816 0.021 *

Habitat type—habitat S (shrubs)

A B stat p-value significance

Chymomyza amoena 1 0.6667 0.816 0.4446 *

4. Discussion

The present work assesses the Diptera biodiversity of captured taxa in a mosaic
agricultural landscape in the proximity of apiaries and in the presence of insect pests.
At the same time, it investigates dependency on environmental and anthropic variables.
Our case study may well reflect a situation typical for other Eastern and Mediterranean
European countries whose agricultural landscapes are still structurally complex and rich in
biodiversity [83].

4.1. Pests Findings

Globalization and the increased movement of people led to the rapid spread of pests
into new habitats [84]. The ongoing flow of plant pests between countries has been recorded
in Europe [85], the USA [86], The Netherlands [87], Japan, and Australia [88,89]. The
majority of the introductions of alien insects in Europe are associated with the international
trade in ornamental plants. Alien species often cause enormous costs to agriculture, forestry,
and human health [90–92]. Since the increased spread and worldwide distribution of plant
pests, fast detection is essential for effective control and management measures. This
study gives special attention to searching for the yellow-legged hornet Vespa velutina, an
important invasive species causing environmental and economic damage in new areas.
Fortunately, the Asian yellow-legged hornet was not detected.

Some of the species reported within this study are important economic pests since they
cause severe damage to agricultural production [93–95]. Some of them are being recorded
in Croatia for the first time. There is no up-to-date species list of invertebrates harmful
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to plants recently established in Croatia. In the Istria region, Diptera plant pests have
never been systematically researched. So far, only a few families have been investigated
in this region: Drosophilidae, Sarcophagidae, Muscidae, Tephritidae, and Culicidae. The
research on species from Drosophilidae and Tephritidae has been focused mainly on
the most common pest species, such as Drosophila suzukii and Ceratitis capitata [96,97].
Literature records were summarized and have shown the presence of 148 species from
the Sarcophagidae family in Croatia [98]. We found twenty-four species from the family
Sarcophagidae, of which fifteen were also detected in the study of Krčmar et al. (2019) [98].
More recent research in Istria [99,100] reports a list of 97 known species from the Muscidae
family in Croatia, of which twenty-two were found in this study. The study by Merdic
et al. (2008) [101] on the Culicidae family has shown a great faunistic diversity (54% of
the total Croatian mosquito fauna) with twenty-seven determined mosquito species. The
recent faunistic data by Verves and Bartak (2021) comprises a list of thirty-three species of
Sarcophagidae in Croatia [102], some also mentioned in this study.

In our study, we particularly paid attention to seven main agricultural and forest
pest species. All of the found species, besides Callopistromyia annulipes, are registered
in the EPPO Global Database as important pests. Drosophila suzukii (Matsumura, 1931)
(17.352 specimens) was found in all sixteen locations in our study in 80 samples. This
species has since 2010 spread on new cultivated and wild host plants, causing damage to
raspberries, peaches, and grapes [103,104]. D. suzukii was included in the EPPO A2 list of
pests recommended for regulation as a quarantine pest in 2011. This species was found
at every investigated locality, regardless of altitude or habitat type. The Istrian region is
well known for its high production of wine grapes (Vitis vinifera L.) and figs (Ficus carica
L.) in Croatia. During the late summer and early autumn months, those fruits are in full
production, providing food, shelter, and suitable hosts for the reproduction of D. suzukii.
Recent studies confirm that D. suzukii in European habitats is an important economic pest
in fruit production since it causes severe damage to strawberry, apple, pear, grape, and fig
production [105–107]. Even though D. suzukii is well known as a threat to fruit production,
the investigation of its influence on grapes and viticulture has only recently begun [108].
The authors of this study concluded that, at present, D. suzukii might not be considered a
threat to viticulture in North Italy. Still, further studies are needed to better understand the
relationship between D. suzukii and grapevine. On the other hand, some other invasive
and dangerous species from the Drosophilidae family (Zaprionus spp.) were not captured
in the Istria region in Croatia. Possibly they have not invaded this area so far. Apart from
D. suzukii, other species from the same family can also breed in various fruits [96].

The pest fly Callopistromyia annulipes was found for the second time in Croatia during
our study [57]. This species originally had a Nearctic distribution but has been discovered
in several European countries since 2007: Slovakia [55], France [56], Belgium [109], and
Germany [54]. This species, native to North America, has rapidly spread through Europe
since its first appearance in Switzerland in 2007, recorded by Merz (2008) [72]. It is usually
found near Robinia pseudoacacia and Acer negundo trees or trunks [56]. The high number of
individuals found in this study could be related to the dense population of R. pseudoacacia in
the Istrian region (OIKON). In this study, we statistically proved the relationship between
C. annulipes and R. pseudoacacia (Figure 5). In the few studies that have been carried out up
to date, no known harmful behavior of this species in Europe has yet been observed [110].

The presence of the species of sorghum shoot fly, Atherigona varia, has been recorded. A.
varia is one of the most important grain sorghum pests in Asia, Africa, and Mediterranean
Europe [58,111]. It causes damage to the seedlings from 1 week to 30 days of age. The
typical symptom of damage is the drying of the central shoot, called the “dead heart.”
The common appearance of this species could be correlated with the large population of
wild Sorghum species in the Istria region (https://invazivnevrste.haop.hr/katalog/5647,
accessed on 20 October 2022). Sorghum species spread is connected to agriculture and causes
severe impacts [112], so we proved the link between A. varia and agriculture intensity. In
fact, A. varia was found at all locations with medium-to-high agriculture intensity.

https://invazivnevrste.haop.hr/katalog/5647
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The presence of Chymomyza amoena has been confirmed in the northern part of Croa-
tia [30], and this study has revealed its presence at six new localities in the Istria region.
The collecting localities are surrounded by Mediterranean forests and extensive production
of grapes, figs, and sweet cherries. So far, this species has been recorded throughout
Europe [113,114], but its occurrence is “pointed” in a particular area [115]. Although it
is considered an invasive alien species in Europe, the abundance of C. amoena within the
natural population is small and, so far, does not represent a threat to fruit production.

In the samples, we have found the olive fruit fly Bactrocera oleae, one of the most
important olive pests of the Mediterranean basin. Accordingly, this study found it in all
locations with high anthropic disturbance and intensity. This pest occurs every year, and
its success is mainly controlled by climate conditions (temperature, rainfall, and relative
humidity) [116]. For example, in addition to causing significant losses to nature, the
infection of the olive fly contributes a lot to the decline in oil quality [117]. Consequently,
this species is responsible for high economic losses in olive oil production [118].

The species Silba adipata found in our samples can cause significant economic damage
to fig fruits by infesting unripe figs and leading to premature fruit drop [119]. In the last
two decades, a high intensity of infection has been recorded in coastal Croatia and along
the entire coastal region of Croatia [65].

We found the Mediterranean fruit fly, Ceratitis capitata, in only one sample. The
Mediterranean fruit fly is one of the world’s most destructive fruit pests and is widely
distributed all over the world (https://www.cabi.org/isc/datasheet/12367, accessed on
5 October 2022). It has a high economic impact, affecting production, control costs, and
market access. C. capitata has been present in Croatia for more than 70 years [120]. Since
then, it has become an important pest, particularly in citrus production, but also in apple,
peach, apricot, pear, and grape production [121]. To prevent the spread of this species
in Croatia, the Ministry of Agriculture published an action plan with flat measures for
eradication in 2018. The symptoms of fruit infestation and size of C. capitata larvae are
similar to those of Black fig fly, Silba adipata, and the damages are often mistaken.

4.2. First Records in Croatia

In this study, seventeen species have been recorded in Croatia for the first time, which
is an important number of additions to the Croatian insect fauna. Ulidia apicalis Meiden,
1826, is a species from the Ulidiidae family so far confirmed in France (south, mainland,
Corsica), Italy (Sicily), Portugal, Spain, Morocco, and Tunisia [122]. More recent distribution
data show its presence in Greece and Turkey (https://www.inaturalist.org/taxa/322843
-Ulidia-apicalis, accessed on 3 November 2022). In this study, U. apicalis was found in
all locations with medium-to-high agricultural intensity, which may be the reason for its
spread in the Mediterranean. Another species new to Croatia from the Ulidiidae family is
Herina lacustris Meigen. It is a Western Palaearctic species [72].

We found Desmometopa discipalpis (Papp, 1993), a species with limited records avail-
able. According to records from Roháček 2016, D. discipalpis is a saprophagous ther-
mophilous species inhabiting rotten wood and/or excrement [83]. Another species of the
genus Desmometopa, D. microps, was found. This species, originally distributed in the
Oriental, Afrotropical, and southeastern Palaearctic regions, expanded into Central Europe
approximately 10 years ago [123]. Our records show further spreading of D. microps.

The captured Periscelis piricercus is important because it represents the new easternmost
distribution limit of the species, which is otherwise only known from Portugal, Spain [88],
and Switzerland [124].

Periscelis winnertzii Egger, 1862 (=P. fugax Roháček and Andrade, 2017), see Roháček
(2022) [125], which was described and illustrated based on a series of specimens from
Portugal and the Czech Republic [78]. This is the first record from Croatia, represented
by two specimens. In our samples, we also recorded a high number of other rare groups
from the Periscelis genus. We also found Toxoneura muliebris (Harris, 1780), known as the
flutter fly because the males extend and vibrate their wings. According to a previously

https://www.cabi.org/isc/datasheet/12367
https://www.inaturalist.org/taxa/322843-Ulidia-apicalis
https://www.inaturalist.org/taxa/322843-Ulidia-apicalis
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published report [126], flutter fly larvae can be saprophagous, phytophagous, or carnivo-
rous. T. muliebris of the Pallopteridae family ranges in Europe from Spain and Italy to Great
Britain, France, Austria, Turkey, Ireland, and western Russia [127].

Cephalia rufipes (Meigen, 1826) is a species with a northern Mediterranean and central
European distribution, occurring from the Iberian Peninsula, southern Germany, Austria,
Israel, and Portugal [80]. This work shows that its geographical distribution has broadened.

An extremely rare species, Phaonia regalis (Stein, 1900), was recorded. So far, it has
been found in Austria, Bulgaria, Greece (Cyclades Islands), Georgia, and Turkey (https:
//fauna-eu.org/cdm_dataportal/taxon/ac3f7319-3974-4cc1-859d-a9e916aaa397, accessed
on 7 November 2022) [128]). Grzegorzekia hungarica is also a new species in Croatia; so far, it
has been recorded only in Hungary [74] and Slovakia [129].

Recording the first appearance of species in different habitats is important for dis-
tribution tracking and taking timely management or removal actions. Our data provide
information on the spread and distribution of some rare Diptera species in Europe. The
faunistic value of a given area can be determined mainly by the number of recorded rare
species, but these species do not have any significant effect on their ecosystem services [130].
These authors found that rare species in Poland were more abundant in natural habitats,
while common species dominated farmlands. Our study also shows that human-dominated
habitats can sink rare and new species.

4.3. Species Diversity in the Mosaic Agricultural Landscape and Correlations with
Different Variables

Generally, agriculture and anthropic influence are major drivers of biodiversity loss [131].
Complex landscape structures specific to intensive agriculture and increased use of agro-
chemicals are the main drivers of the reduction of arthropod species richness [132–134].
Some authors have proved that anthropogenic influence in specific habitats linearly de-
creased the Diptera diversity [135]. On the other side, much biodiversity can be retained
within specific agricultural landscapes [136]. Land use changes in the last decade included
intensification of land use in some areas and land abandonment in others. Although the loss
and fragmentation of semi-natural and mosaic habitats are prominent causes of biodiversity
loss, little is known about the species diversity in different agricultural landscapes [22]. Like
in many other Eastern European countries, traditional practices have created small-scale
mosaic landscapes. For example, in Croatia, the average size of an agricultural farm was
0.51 ha [17]. Our study may well reflect a situation that is typical for many Eastern Euro-
pean countries whose agricultural landscapes are still considered biodiversity hotspots [84].
Previous studies have suggested that habitat type is an important factor in explaining the
diversity of insects [137,138]. It is well understood that agricultural practices, particularly
conventional farming, have a direct or indirect impact on pollinator populations [139].

This investigation provides data on Diptera and Vespidae species richness across
gradients of agriculture and anthropic influence and in response to variables representing
altitude, vegetation type, honeybee colony number, and the number of hornets. Our
research showed that mosaic agroecosystem areas in Istria still sustain a significant number
of Diptera and Vespidae species. As expected, anthropic influence positively correlated to
pest richness since these species depend on human activities.

It is known that polycultures and florally diverse environments support native polli-
nator diversity due to a continuous supply of food resources [140,141]. Casanelles-Abella
and Moretti (2022) proved that apiaries in cities are a potential problem for the biodiversity
of some pollinator species, especially wild bees [142]. In fact, maybe for this reason, we did
not capture any wild bees in our traps. In our study, the relationship between the size of the
apiaries and species richness was statistically confirmed. The number of honeybee colonies
was negatively correlated to species richness. Honeybees can have a negative impact on
wild pollinators [143]. The study by Torné-Noguera et al. (2015) supports the hypothesis
that high honeybee apiary densities may have an impact on other insect pollinators via
competition for flower resources [144]. This is in accordance with our results showing that

https://fauna-eu.org/cdm_dataportal/taxon/ac3f7319-3974-4cc1-859d-a9e916aaa397
https://fauna-eu.org/cdm_dataportal/taxon/ac3f7319-3974-4cc1-859d-a9e916aaa397
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a higher density of honeybee hives has a lower total species richness and fewer rare first
findings. Moreover, a complete absence of wild bees in the traps could also be connected to
the presence of apiaries and the result of food competition with honeybees.

We found the lowest species richness in locations L5 and L11, characterized by low
agricultural intensity and low anthropic influence. Moreover, our study recorded a positive
correlation in insect richness and composition between environments with lower to higher
agricultural influence and between environments with different anthropic influences. This
appears to be in concordance with the results documented in similar analyses on Hy-
menoptera diversity, where insect richness was positively connected to some extent of
human activities. Semi-natural habitats providing different feeding and nesting resources
proved to be diversity hotspots [138]. We assume that high insect biodiversity in our study
area results from agricultural practices still dominated by semi-intensive farming and
labor-intensive, traditional techniques with low levels of agrochemical inputs.

The agricultural intensity was not clearly related to species richness, and it was not
possible to prove statistically any correlation between those two factors. We observed that
both species richness and the number of pests were statistically (negatively) associated
with elevation and distance from the sea. Other authors have also confirmed the connection
between species richness and those two elements. Martín-Vega et al. (2016) found that
elevation is negatively correlated with species richness in Spain [145]. It can be assumed
that this is connected with the transport of people and goods along the coastline. Mosaic
semi-natural landscapes support high plant species diversity [146] and consequently also
high insect diversity [141]. Proper management of artificial nests for solitary bees in semi-
natural mosaic agricultural areas can support and maintain pollination services [147], but
only after limiting pesticide use and planting native flowering plants between crop fields
(prairie strips).

5. Conclusions

The inventory performed in the mosaic agricultural landscape in the Istrian Region
(western Croatia) gives new information on the diversity of Diptera and Vespidae in the
Mediterranean. Selectivity of the trapping method resulted in a high frequency of some
Diptera (Drosophilidae, Muscidae, Calliphoridae, and Anthomyiidae) and Vespidae species
and the absence of otherwise frequent species in a similar environment (Chironomidae, Scia-
ridae, Empididae, Agromyzidae, and Sphaeroceridae). The number of honeybee colonies
was negatively correlated to species richness. Pest richness was positively correlated with
anthropic influence since these species depend on human activities. The agricultural inten-
sity was not clearly related to species richness, and it was not possible to prove statistically
any correlation between those two factors. Assessing pest spread is important for gen-
erating a new understanding of environmentally friendly agroecosystems and directing
management actions. Our results can be helpful for decision-makers and local authorities to
develop appropriate conservation strategies and monitoring measures for pests to preserve
biodiversity within Mediterranean mosaic agroecosystems. Several Diptera were recorded
for the first time in Croatia, providing new information on the distribution of some rare
species in South Europe. Our data suggest that mosaic agricultural landscape contributes
to Diptera and Vespidae diversity in semi-rural landscapes. That leads us to the conclusion
that it is necessary to diversify the types of semi-natural habitats to promote a variety of
plant communities and natural nesting sites. Since the high specificity of semi-intensive
agriculture landscapes, the relation between habitat specificity and habitat-specific in-
sect communities should be explored in the future, as well as their contribution to insect
diversity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13061024/s1, Supplement Table S1. A detailed description
of locations (geographical, anthropic, ecological data). Geographical, anthropic, and ecological
variables of selected sites and the number of collected hornets (Vespa crabro) as the main bee predator
(Agriculture diversity: 1—low, 2—medium, 3—high diversity; Anthropic disturbance: 1—low,
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2—medium, 3—high disturbance). Supplement Table S2. All recorded Diptera and Hymenoptera
species and families for each location. Locations (L) correspond to sites described in Table 1 and
Figure 1. Supplementary Figure S1. The correlation of ecological variables (DFS: distance from the sea,
elevation, and number of pests) with pest richness. The blue gradient expresses positive correlation
coefficients, and the red gradient expresses negative coefficients. Statistical significance: *** p < 0.001;
** p < 0.05; * p < 0.01.
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73. Roháček, J.; Barták, M. Trixoscelididae. In Diptera in an Industrially Affected Region (North-Western Bohemia, Bílina and Duchcov

environs), II.—Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis, Biologia; Barták, M., Vaňhara, J., Eds.;
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