
A Deep Learning Method for AGILE-GRID Gamma-Ray Burst Detection

N. Parmiggiani1,2 , A. Bulgarelli1 , V. Fioretti1 , A. Di Piano1 , A. Giuliani3 , F. Longo4,5,6 , F. Verrecchia7,8 ,
M. Tavani9,10,11,12 , D. Beneventano2 , and A. Macaluso13

1 INAF OAS Bologna, Via P. Gobetti 93/3, 40129 Bologna, Italy; nicolo.parmiggiani@inaf.it
2 Universitá degli Studi di Modena e Reggio Emilia, DIEF—Via Pietro Vivarelli 10, I-41125 Modena, Italy

3 INAF-IASF Milano, Via Alfonso Corti 12, I-20133 Milano, Italy
4 Dipartimento di Fisica, University of Trieste, via Valerio 2, I-34127 Trieste, Italy

5 INFN, sezione di Trieste, via Valerio 2, I-34127 Trieste, Italy
6 Institute for Fundamental Physics of the Universe, Via Beirut 2, Trieste, Italy

7 ASI Space Science Data Center (SSDC), Via del Politecnico snc, I-00133 Roma, Italy
8 INAF-Osservatorio Astronomico di Roma, Via di Frascati 33, I-00078 Monte Porzio Catone, Italy

9 INAF-IAPS Roma, via del Fosso del Cavaliere 100, I-00133 Roma, Italy
10 Dipartimento di Fisica, Universitá Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma, Italy

11 INFN Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma, Italy
12 Consorzio Interuniversitario Fisica Spaziale (CIFS), villa Gualino—v.le Settimio Severo 63, I-10133 Torino, Italy

13 University of Bologna, Department of Computer Science and Engineering (DISI) Viale del Risorgimento 2, I-40136 Bologna, Italy
Received 2019 November 8; revised 2021 April 17; accepted 2021 April 19; published 2021 June 16

Abstract

The follow-up of external science alerts received from gamma-ray burst (GRB) and gravitational wave detectors is
one of the AGILE Team’s current major activities. The AGILE team developed an automated real-time analysis
pipeline to analyze AGILE Gamma-Ray Imaging Detector (GRID) data to detect possible counterparts in the
energy range 0.1–10 GeV. This work presents a new approach for detecting GRBs using a convolutional neural
network (CNN) to classify the AGILE-GRID intensity maps by improving the GRB detection capability over the
Li & Ma method, currently used by the AGILE team. The CNN is trained with large simulated data sets of intensity
maps. The AGILE complex observing pattern due to the so-called “spinning mode” is studied to prepare data sets
to test and evaluate the CNN. A GRB emission model is defined from the second Fermi-LAT GRB catalog and
convoluted with the AGILE observing pattern. Different p-value distributions are calculated, evaluating, using the
CNN, millions of background-only maps simulated by varying the background level. The CNN is then used on real
data to analyze the AGILE-GRID data archive, searching for GRB detections using the trigger time and position
taken from the Swift-BAT, Fermi-GBM, and Fermi-LAT GRB catalogs. From these catalogs, the CNN detects 21
GRBs with a significance of �3σ, while the Li & Ma method detects only two GRBs. The results shown in this
work demonstrate that the CNN is more effective in detecting GRBs than the Li & Ma method in this context and
can be implemented into the AGILE-GRID real-time analysis pipeline.

Unified Astronomy Thesaurus concepts: Gamma-ray astronomy (628); Gamma-ray bursts (629); Convolutional
neural networks (1938); Neural networks (1933)

1. Introduction

Astrorivelatore Gamma ad Immagini LEggero, Light Imager
for Gamma-Ray Astrophysics (AGILE) is a scientific mission
of the Italian Space Agency (ASI) that was launched on 2007
April 23 (Tavani et al. 2008, 2009). The AGILE payload
detector consists of the Silicon Tracker (ST; Barbiellini et al.
2001; Prest et al. 2003; Bulgarelli et al. 2010; Cattaneo et al.
2011), the SuperAGILE X-ray detector (Feroci et al. 2007), the
CsI(Tl) Mini-Calorimeter (MCAL; Labanti et al. 2009), and an
AntiCoincidence System (ACS; Perotti et al. 2006). The
combination of ST, MCAL, and ACS forms the Gamma-Ray
Imaging Detector (GRID). AGILE-GRID is used for observa-
tions in the 30 MeV–50 GeV energy range. The Precise
Positioning System and the two Star Sensors provide accurate
timing, positional, and attitude information. The ST is the core
of the AGILE-GRID, and it relies on the process of photon
conversion into electron–positron pairs. It consists of 12 trays,
the first 10 of which include a tungsten converter followed by a
pair of silicon microstrip detectors with strips orthogonal to
each other; the last 2 consist only of silicon detectors. The γ-
rays are converted in the tungsten (silicon) layers, and a readout
electronics acquires and processes the data.

The AGILE team developed an automated pipeline to react
to external science alerts received from the Gamma-Ray
Coordinates Network (GCN) (Bulgarelli 2019). A science
alert is a communication from/to the astrophysical commu-
nity that a transient phenomenon is occurring in the sky. This
automated pipeline can react in a fast way and detect a
possible GRB counterpart in AGILE-GRID short-term
(<1000 s) observations. A detection occurs when the pipeline
finds a signal with a statistical significance above a defined
threshold. The GRB positions and trigger times are known in
advance because the pipeline reacts to external science alerts.
The analysis is performed using aperture photometry,
evaluating the counts detected inside a time window contain-
ing the target (Ton) and a time window containing only
background (Toff). The AGILE-GRID instrument has a point-
spread function (PSF)< 10° at energy>50 MeV (Sabatini
et al. 2015). The counts are selected from the AGILE-GRID
photon list in a radius of 10° from the center of the error
localization region reported by the external science alert in
order to contain the PSF of the source. The background is
evaluated before the trigger time because the true duration of
the GRB in the GRID energy range is unknown.
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In the current method used by the AGILE-GRID automated
pipeline, the significance of a GRB detection is calculated with
the Li & Ma formula (Li & Ma 1983) using the counts
extracted in the previous steps. The Li & Ma formula is a
likelihood ratio method applied to aperture photometry. It is
largely used in γ-ray astronomy and by the AGILE Team as a
standard analysis for GRB detection. This method, cited from
now on as Li&Ma, has two main limits.

The Li&Ma method does not use the shape of the PSF
during the analysis, just the event number inside a region
defined large enough to include the PSF. Furthermore, the
Li&Ma method requires the counts in both the Ton and Toff time
windows not to be too few, with a threshold of 10 usually
applied (Li & Ma 1983). The AGILE team, following Li & Ma
(1983), defined a threshold of 10 counts for the real-time
analysis pipeline, and for this reason, detections with a lower
count rate are discarded.

This work proposes a new detection method to overcome
these limitations and, in general, improve the AGILE-GRID
automated pipeline’s capability to detect GRBs during the
follow-up of science alerts received from other observatories
through the GCN network.

This new method uses a class of deep learning (DL) methods
called convolutional neural networks (CNN), described in
detail in Section 5.

DL methods (LeCun et al. 2015) are subsets of machine
learning (ML) methods. ML methods use automated training
algorithms (without human intervention) to learn how to
predict the correct output concerning several problems
(classification, regression, etc.) without being directly pro-
grammed to do this. The training is performed using a training
data set that is a subset of the whole population of possible
inputs that the model will obtain to predict the output. ML
techniques cannot be used directly on the raw data but require a
first step of feature engineering (feature extraction) from the
raw data. This operation is time-consuming and must be
performed by field experts with a complete understanding of
the data. Once extracted, the features are used as input for the
ML model. DL methods, on the contrary, do not require this
feature engineering performed by experts because they can
extract features directly from the raw data. DL architectures,
called deep neural networks (DNN), are composed of several
layers that are able to extract features at different levels of
abstraction during the training phase. The number of layers can
vary with the problem complexity and the available computing
power starting from fewer than 10 layers (Krizhevsky et al.
2012) to more than 100 (He et al. 2016) and up. DNNs have
become even more popular in recent years thanks to three main
factors: (i) the improvement in computational hardware (e.g.,
graphical processing unit—GPU) required to train DNNs with
millions or billions of parameters, (ii) the availability of huge
amounts of data suitable for the training of large DNN models,
and (iii) the development of frameworks that can be used to
implement these DNN models with standard technologies (e.g.,
Python).

The CNN developed in this work is used to classify AGILE-
GRID intensity maps and detect the presence of GRBs in the
field. Intensity maps are counts maps divided by the exposure
and therefore report the measurement in ph cm−2 s−1sr−1 for
each pixel. The CNN uses the intensity maps as input and does
not require information about the exposure.

The CNN requires a training phase with large simulated data
sets of intensity maps representing the average background
level and the GRB flux distribution expected in the AGILE-
GRID energy range 0.1–10 GeV. The study of the observing
pattern is described in Section 3. Section 4 describes the GRB
model used to simulate GRBs for CNN training. After
performing CNN training, the p-value distribution from only
background maps is computed in different observational
conditions (Section 6). The CNN is then applied to real data
using the GRBs’ position and trigger time of the Swift-BAT14

Fermi-LAT (Ajello et al. 2019) and Fermi-GBM15 catalogs.
Section 7 describes this analysis, and the results show a
considerable improvement in the detection capability compared
to the Li&Ma method.
The main reasons why the CNN method improves the

AGILE-GRID GRBs detection capabilities are:

1. The CNN can be trained on the data of a specific
instrument, learning from huge data sets of simulated
data, while Li&Ma is a generic method. In fact, the PSF
of the AGILE-GRID instrument is used during the CNN
training phase to define the size of the kernels used during
the convolution process.

2. The CNN is trained with data sets simulated using the
background level calculated during real AGILE-GRID
observation. In addition, the fluxes of the simulated
GRBs are extracted from the Fermi-LAT GRB catalog
(Ajello et al. 2019) and scaled to the AGILE energy
range. All this knowledge is learned by the CNN, while
Li&Ma is applied as is.

3. The CNN does not require a minimum number of events
to be applicable. On the contrary, Li&Ma requires at least
10 events in the Ton and Toff time windows.

This is the first attempt to use a CNN to classify the AGILE-
GRID γ-ray sky maps. The results obtained in this work
(Section 7) encourage further research in this direction. Future
works are planned to use the CNN to classify AGILE-GRID γ-
ray sky maps containing more than one source and perform a
regression analysis to determine the GRB position and the flux.
These kinds of analyses cannot be performed with the Li&Ma
method. The method described in this work can also be used to
train a CNN network to classify sky maps produced by the next
generation of X-ray and γ-ray observatories such as the
Cherenkov Telescope Array (Actis et al. 2011; Acharya et al.
2019) or the e-ASTROGAM (De Angelis et al. 2021) and
THESEUS (Amati et al. 2021) spacecraft. These observatories
will produce more complex sky maps collecting a larger
number of events and background information. The CNN can
be trained on the observing condition (e.g., the background
level) of the specific instrument and can learn detection patterns
following the instrument’s PSF. These are additional reasons to
promote research in this field.
CNNs are used in astrophysics to analyze data in several

contexts. In particular, CNNs can be used for image
classification problems. As described in Hezaveh et al.
(2017), a CNN is used to perform fast and automated
gravitational lens analyses. With the next generation of ground
and space observatories such as the Vera C. Rubin Observatory

14 Swift-BAT Gamma-Ray Bursts online catalog: https://swift.gsfc.nasa.gov/
archive/grb_table/.
15 Fermi-GBM Gamma-Ray Bursts catalog: https://heasarc.gsfc.nasa.gov/
W3Browse/fermi/fermigbrst.html.
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(formerly Large Synoptic Survey Telescope—LSST; Thomas
et al. 2020), tens of thousands of new lenses are expected to be
discovered. A CNN can improve these analyses’ performances
and reduce the time required to obtain results in contrast with
traditional analysis methods based on the maximum likelihood
estimator (MLE). CNN technologies can be used to analyze the
Big Data generated by the next generation of observatories,
exploiting the GPUs computing power and parallel processing.
Several works use CNNs in γ-ray data analysis. In Caron et al.
(2018), the CNN approach is used to analyze Fermi-LAT γ-ray
maps of the Galactic Center. In Drozdova et al. (2020), the
CNN method is used to extract point sources on Fermi-LAT
simulated images.

2. Assumptions of This Work

The analyses presented in this paper use parameters inherited
from the AGILE real-time analysis pipeline developed for the
follow-up of external science alerts. The new method based on
DL techniques is compared with the standard method used in
this pipeline. The parameters that are not inherited by the
AGILE pipeline are defined here to test the CNN model with
the common conditions that can be found during the AGILE-
GRID observations. This work does not treat rare and
complex situations that will be analyzed in future works. Not
all parameters are fixed. They may be calculated during the
analyses (e.g., the time window used to evaluate the back-
ground level). The main assumptions made for this work are:

1. The γ-ray sky maps used to train and evaluate the CNN
have a size of 100× 100 pixels and a bin size of 0°.5.
This map size is defined to be larger than the AGILE-
GRID PSF and to include background regions. The bin
size is a standard parameter used in the AGILE-GRID
data analysis.

2. The γ-ray sky is simulated with a time window of 200 s.
This value is selected after the analysis of the AGILE
observing pattern described in Section 3.1.

3. The maps are simulated using a representative value for
the AGILE-GRID exposure in maps with 200 s time
windows, calculated excluding exposure levels under a
threshold defined to avoid limit conditions that are not the
goal for this work.

4. The energy range considered in this work is 0.1–10 GeV.
This energy range is the standard one used by the AGILE
Team to perform analysis on AGILE-GRID data and is
supported by the AGILE Science Tools’ simulation
software.

5. This work is focused on GRBs in the extragalactic region
(|b|> 10°, where b is the Galactic latitude) to evaluate the
new method excluding regions with several background
sources and to avoid the diffuse Galactic γ-ray back-
ground (Section 3.2).

6. The background levels of the maps classified with the
CNN are calculated with an MLE analysis. The AGILE
Team defined that the time windows to calculate the
background with an MLE analysis must contain a
minimum of 10 counts. The time windows are found
automatically to have at least 10 counts. For a minimum
of 10 counts, the background time windows last from 6 to
32 hr. During extragalactic observations, the AGILE-
GRID background is isotropic and mainly dominated by
charged particles populating the low-Earth orbit radiation

environment (see Section 3.2 for a full description). This
background flux is fairly quiescent, and no significant
variations are expected for timescales from several hours
to a few days. In fact, when studying the general
background fluctuation trends within a year, an average
variability of only 30% (1σ) is found.

7. As described in Bulgarelli et al. (2012), the AGILE Team
uses analysis regions with a radius of 10° for the AGILE-
GRID data centered on the source position to include the
PSF of the instrument.

8. The external science alerts considered for this work have
a maximum error region of 1°. This scenario covers more
than 90% of GRBs presented in the Second Fermi-LAT
GRBs catalog and 100% of the GRBs reported in the
Swift-BAT GRBs catalog. The science alerts with greater
error regions are excluded because this work does not
have the goal of finding the source’s position in a blind
search.

9. The CNN uses intensity maps (counts maps divided by
the exposure maps) as input. This solution makes the
CNN exposure independent.

3. Modeling the Observations

The AGILE orbit (quasi-equatorial with an inclination angle
of 2°.5 and an average altitude of 500 km, 96 minute period) is
optimal for low-background γ-ray observations. From July
2007 to October 2009, AGILE observed the γ-ray sky in
“pointing mode,” characterized by a quasi-fixed pointing with a
slow drift (∼1°/day) of the instrument boresight direction
following solar panel constraints.
Due to a change in the satellite pointing control system, since

November 2009, the AGILE γ-ray observations have been
obtained with the instrument operating in “spinning mode”
(i.e., the satellite axis sweeps a 360° circle in the sky
approximately every 7 minutes). The axis of this circle points
toward the Sun, so the whole sky is exposed every six months.
This new mission configuration provides a unique capability

to the AGILE satellite to discover transients. The actual
spinning configuration of the satellite, together with a large
field of view and a sensitivity of typically F= (1–2)×
10−8 erg cm−2 s−1 for 100 s time integration, provides a
coverage of 80% of the sky, with each sky position covered
200 times per day with 100 s of integration time.

3.1. Parameter Identification

The complex observing pattern of AGILE in “spinning
mode” is studied to identify the range of conditions during the
observations (average exposure level and background level).
These conditions are used to perform the Monte Carlo
simulations of the training, validation, and test data sets.
Because this work is focused on extragalactic sky regions, a
sky region centered at Galactic coordinates (l, b)= (45, 30) is
selected to study the exposure and background level. The
AGILE-GRID exposure in the center of this sky region is
calculated during one spinning revolution. Figure 1 shows the
typical exposure pattern for fixed accessible sky regions: the
exposure values are calculated in a time window of 500 s
divided into 1 s bins and in a radius of 10°. The exposure is
highly variable, with a well-defined peak due to the AGILE
rotation. The study of the exposure pattern during the AGILE
spacecraft spinning is used to determine the time window size
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used during the maps simulation. A time window of 200 s
(shown in Figure 1 with red dotted lines) is selected because it
contains an entire spin of AGILE exposure.

The exposure analysis is repeated for a year of observation
(2018 January 1, 2019 January 1), with an integration time of
200 s to obtain the exposure distribution. Excluding intervals
with no exposure, the mean value obtained is∼20× 103 cm2 s
(Figure 2). Thus, all exposure levels lower than 20× 103 cm2 s
are excluded from this work. Then, a new distribution is
obtained with a mean value of∼40× 103 cm2 s. The obtained
value is used to simulate the data sets. This procedure aims to
focus the training and the evaluation of the CNN on exposure
values excluding limit conditions that are not the goal of
this work.

3.2. AGILE-GRID Background Estimation

Two background components are taken into account. The
diffuse γ-ray background (ggal) is assumed to be produced by
the interaction of cosmic rays (CR) with the Galactic
interstellar medium, the cosmic microwave background
(CMB), and the interstellar radiation field (ISRF). The (quasi)
isotropic background (giso) includes both a contribution from
the cosmic extragalactic diffuse emission as well as a
component of noise due to residual CR-induced background
at the detector level. In the extragalactic regions, the isotropic
background dominates the AGILE-GRID data. For this reason,
the ggal value is considered equal to zero. More details about
the AGILE-GRID background model can be found in
Bulgarelli et al. (2019). One year of data (2018 January 1,
2019 January 1) is analyzed using time windows of 6 hr to
obtain the distribution of giso values in an extragalactic
position. The time window size is defined to have a mean of
10 counts in a radius of 10°. This counts value is required to
perform the statistical analysis of the background level using
the MLE method. Figure 3 shows the giso distribution
excluding time windows with fewer than 10 counts in a
radius of 10°. The mean of the distribution is 10.4×
10−5cts cm−2 s−1 sr−1 and the standard deviation is 3.0×
10−5cts cm−2 s−1 sr−1. This distribution is used to simulate

the data sets to train the CNN; more details are given in
Section 5.1.

4. GRB Model

AGILE-GRID has detected so far only 11 GRBs, namely
GRB 080514B (Giuliani et al. 2008), GRB 090401B (Giuliani
et al. 2009; Moretti et al. 2009), GRB 090510 (Giuliani et al.
2010), GRB 100724B (Del Monte et al. 2011), GRB 130327B
(Longo et al. 2013), GRB 130427A (Verrecchia et al. 2013),
GRB 131108A (Giuliani et al. 2013), GRB 170115B
(Verrecchia et al. 2017), GRB 180914B (Verrecchia et al.
2018), GRB 190501A (Lucarelli et al. 2019), and GRB
1905030A (Verrecchia et al. 2019).
These events exhibit some of the main properties of the

larger GRB population detected by the Fermi-LAT experiment
and discussed, for example, in its First GRB catalog
(Ackermann et al. 2013) and confirmed more recently in its
Second GRB catalog (Ajello et al. 2019). From here on, the
work will refer to the Second Fermi-LAT GRB catalog. In
particular, the GRBs’ main characteristics at energies greater
than 100MeV, as detected by LAT and used in this study, are
the spectral model and its temporal decay. The first one shows a
clear flattening of the spectrum to a value of around −2 at late
times, independent of other GRB properties, and a typical
larger duration concerning lower energies, extending up to
1000 s in the first catalog and up to 10,000 s in the second one.
The temporal power-law decay index is clustered around −1.

Figure 1. Typical pattern of the AGILE-GRID exposure for a fixed accessible
sky region given in values of [cm2 s] as a function of time during the AGILE
spinning mode. The red dotted lines represent the time window of 200 s used
for the maps simulation.

Figure 2. Histogram of exposure values (cm2 s) calculated with 200 s
integrations during one year of AGILE-GRID data.

Figure 3. Histogram of giso values, expressed in 10−5 cts cm−2 s−1 sr−1, for 6
hours integrations during one year of AGILE-GRID data.
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The GRBs detected by the LAT, in its first catalog, were among
the brightest detected by the Fermi-GBM, with a fluence
generally greater than a few 10−6 erg cm−2 (see the discussion
in the First LAT GRB catalog). In the Second LAT GRB
catalog, the fluence limit decreased up to around 10−6 erg cm−2

for long GRBs.

4.1. Flux Estimation from the LAT Catalog

Under the assumption that the simple power-law model
from Ajello et al. (2019) is a good enough estimate of
the spectral shape of the Fermi-LAT-detected sources, the

- -F ph cm sph
LAT 2 1( ) within the 0.1–100 GeV energy range

observed by Fermi-LAT is scaled to an - -F ph cm sph
GRID 2 1( )

value within the AGILE-GRID energy range (0.1–10 GeV).
The photon fluence was then computed as fph= Fph× T100.

16

The fraction of the integrated photon flux emitted by the source
in 200 s exposure time is required to simulate the data sets. For
events with T100 greater than 200 s, the photon flux emitted
within the said exposure time is calculated, assuming the
cataloged simple power-law evolution model to weight the loss
of later emission. The average photon flux of events with T100
less than 200 s is instead mediated over the exposure time to
preserve the total photon fluence (Figure 4).

The simulation process is based on the use of a function
fitted from GRB data having F> 6.6× 10−6 ph cm−2 s−1 to
extract random flux values. This exponential function is
obtained through the Levenberg–Marquardt method: y=
a · e− x/ b where =x Flog10 ph( ), a= 2.7× 10−5 and b= 0.523.
In Figure 5 the distribution and fitting function are displayed in
the top panel, with residuals shown in the bottom panel.

5. Convolutional Neural Network

A DL approach, described in Section 1, is used to build a
GRB detection algorithm. The DL architecture used in this
work is the CNN, a class of DNN specifically developed
to analyze and classify images (Krizhevsky et al. 2012;
Goodfellow et al. 2016). The CNN is trained to classify the
intensity maps in the AGILE-GRID energy range to detect
GRBs. This CNN has a multiple-layer architecture where each

layer can identify specific features inside the image. The
supervised learning technique is used to train the CNN. This
technique requires the training of the CNN with a labeled
data set. These kinds of data sets contain the results of the
classification for each element.
As described in Section 1, CNNs are used in several

astrophysical contexts, exploiting the features of this technol-
ogy for data analysis and object classification.

5.1. Data Set Simulation

Three Monte Carlo simulations for the training, validation,
and test data sets, each with 40,000 AGILE-GRID intensity sky
maps, are performed.
The first step executed to obtain the intensity maps is the

counts maps simulation, then intensity maps are obtained from
the counts maps. This simulation is performed using BUILD25
of the AGILE Science Tools (Bulgarelli et al. 2019), which
includes a sky simulator called AG_multisim. The background
event filter called FM3.119 and the instrument response
functions (IRFs), called H0025, have been used. The energy
range used for these simulations is 0.1–10 GeV. The simulator
applies a Poisson-distributed noise to each pixel and produces
each resulting counts map exactly as flight data. The simulated
maps have an integration time of 200 s and a size of 100× 100
pixels with a bin size of 0°.5, i.e., 50°× 50°. The data sets are
labeled to train the CNN with a supervised learning procedure.
One of the inputs required for the simulation is the exposure
map. The 200 s exposure map (Figure 6) is obtained from
AGILE-GRID data, centering the map in the sky region defined
before and searching for a time window with an exposure level
equal to the mean level found in Section 3.1.
This work is focused on common conditions that can be

found during the AGILE observations. The investigations to
detect faint GRBs in more complex conditions and with more
computing power will be performed in future works.
The γ-ray sky maps used as input for the CNN are intensity

sky maps where the counts are divided with the exposure. This
operation is used to make the CNN independent from the

Figure 4. Average photon flux of the second Fermi-LAT GRB catalog
population as a function of the Fermi-LAT duration. Red data represent the
cataloged flux values within the AGILE-GRID energy range (0.1–10 GeV). In
green is the evaluation of the average flux of each event for 200 s emission.

Figure 5. Gamma-ray burst population of the second Fermi-LAT catalog, with
photon flux above 6.6 · 10−6 ph cm−2 s−1. The distribution fit (blue continuous
line) is achieved with an exponential law. Residuals are shown in the bottom
panel.

16 The duration of the burst (T100) is defined as the time between the first and
last photon detection to be associated with the GRB with probability p > 0.9 in
the 0.1–10 GeV energy range (Ajello et al. 2019).
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exposure level. For this reason, the exposure value selected for
the simulation is not a critical value for the CNN training.

As described in Section 2, only external alerts with a
maximum error localization region smaller than 1° are
considered in this work. For this reason, the GRB maps are
simulated with a GRB in a random position inside the 1° radius
from the maps’ center. The external alert error localization
region is assumed to be in the center of the simulated maps.

The background level for the simulations is obtained from
the isotropic background distribution calculated in Section 3.2;
no Galactic diffuse emission is considered.

The fluxes of the sources (simulated GRBs) are randomly
generated using the fit function described in Section 4.1. The
minimum flux value for the maps simulation is defined to reach
a significance of 2σ. The flux and position of the GRBs
simulated with this method are thus compatible with real
external science alerts. This approach simulates the data sets
with the background levels and GRB fluxes obtained from real
data, improving the CNN’s transfer learning from simulated
data sets to real data.

The data sets contain half of the maps with a simulated GRB
and the other half background only. There are no additional
sources simulated into the maps.

Figure 7 shows the counts’ distribution of sky maps with a
simulated GRB (blue) and background only (red).

5.1.1. Image Preprocessing

Figure 8 shows an example of smoothed intensity maps. The
data sets are processed by performing a Gaussian smoothing of
the intensity maps with a radius of 6°, assuming it to be twice
the value of the AGILE-GRID instrument PSF for the energy
range considered in this work.

Two 3D histograms are created by summing up all the
intensity maps, pixel by pixel, to verify the counts’ spatial
distribution in the data set maps. The X and Y axes refer to the
map pixels’ reference system, and the Z-axis refers to the
normalized value of summed pixels from all maps in the data
set. Figure 9 shows the histogram obtained from the intensity
maps containing a simulated GRB. In this histogram, the peak
in the center of the map is due to simulated GRBs. Figure 10
shows the histogram for the background-only maps.

5.2. CNN Architecture

In order to find the best CNN architecture for the GRB
detection, more than 700 different parameterizations were
tested on a separate validation set. In particular, each CNN
architecture tested changed for at least one of the following
parameters: epoch number, number of convolutional layers,
number of filters in convolutional layers, number of dense
layers, batch size, and learning rate. However, as usually
happens when working with real-world problems, increasing
the neural network’s complexity does not always lead to better
results. Thus, the final CNN (Figure 11) is chosen according to
the best tradeoff between training time and validation
performance. This network is composed of 10 layers, and it
is implemented using two open-source frameworks, Keras17

running on top of Tensorflow.18

The final architecture is defined as follows. The first layer
receives an array of maps, each with a size of 100× 100 pixels,
then a Convolution2D layer with 20 filters is applied. The
Convolution2D layer executes the convolution operation on the
2D input map. This layer applies all of the filters defined with a
specific kernel size to the input image, producing a Feature
Map for each filter. The filters are smaller than the input maps,
and they are applied systematically to each overlapping part of
the map. Each time a filter is applied on the input maps, it
produces a Feature Map pixel. These Feature Maps are then
used as input for the next layer of the CNN. In this first
Convolution2D layer, the CNN uses filters with a kernel size of
12× 12 pixels to identify features within the intensity maps.
The size of these filters is defined starting from the PSF of the
AGILE-GRID instrument. A 12× 12 pixels kernel size with
0°.5 side pixels is used to cover an area (6°× 6°) approximately
equal to twice the value of the AGILE-GRID PSF. The next

Figure 6. Exposure map used as input for the Monte Carlo simulations,
expressed in cm2 s sr. The map is represented in ARC projection and Galactic
coordinates, with a bin size = 0°. 5.

Figure 7. Histogram of the sum of photon counts inside the simulated counts
maps. The red histogram is for the background-only maps, the blue histogram
for the maps with a GRB.

17 https://keras.io
18 https://www.tensorflow.org
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layer consists of a MaxPooling2D operation with a kernel size
of 2× 2 pixels. This layer aims to reduce the size of the image
before sending it to subsequent layers. The MaxPooling2D
layer executes operations on each Feature Map separately. This
layer applies the kernel on each possible overlapping position
over the Feature Map and calculates the maximum value for the
pixel included in the kernel. This value is reported in the new
Feature Map. This layer’s kernel size indicates the level of
reduction that the layer applies to the Feature Maps. With a
kernel size of 2× 2 pixels, the Feature Map size is reduced by a
factor of 2 and the number of pixels by a factor of 4. This
operation speeds up the training of the CNN by reducing the
size of the whole model.

Three additional Convolution2D layers and a MaxPoo-
ling2D layer are applied to find new features, reducing the
image size. At this point, a Dropout layer with the probability
of 25% is applied as a regularization technique to prevent
overfitting. The Dropout technique consists of setting to zero
the output of a percentage of neurons in the CNN. The neurons
that are “dropped out” do not contribute to the learning

algorithm. Using the Dropout technique, the CNN assumes a
different architecture for each iteration during the training, but
all of these architectures share the weights, and the procedure
optimizes a single model. The neurons cannot rely on the
presence of particular other neurons, reducing the coadapta-
tions of neurons. The model also implements a Dense layer that
flattens the 2D map into a single-dimension array of 1000
elements and a Dropout layer with a probability of 50%. The
Dense layer is a single-dimension array of neurons fully
connected to the next layer of neurons. Finally, a two-neuron
Output layer (the last layer of the network) is applied with a
Softmax activation function that provides the predicted
probabilities of the two classes of intensity maps: background
and GRB. The Softmax activation function is applied to the last
layer of the CNN to convert the output into a probability
distribution; the sum of all outputs is equal to 1.
The CNN’s output value, defined as CV, is the probability

computed by the Softmax activation function for the two
classes. If CV= 0, then the map is classified as background
only with 100% probability. Otherwise, if CV= 1, the map

Figure 8. Smoothed intensity maps from the simulated data set used to train the CNN. The top two images are background only. The bottom two images contain a
simulated GRB. No other γ-ray sources are present inside the maps. The maps are represented in ARC projection and Galactic coordinates, with a bin size = 0.5°.
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contains a GRB signal with 100% probability. Usually, the
CVs are numbers between these two opposite situations, and
the 0.5 value is the standard threshold between the two
classifications.

As a final remark, all of the convolutional layers use the
Rectified Linear Unit (ReLU) activation function ( =f x( )

xmax 0,( )) that returns as output the input if it is positive;
otherwise, it returns zero. This activation function is largely
used with the CNN because it improves computing efficiency.

Before starting the CNN training, all the weights of the CNN
model (that will be optimized during the training phase) must
be randomly initialized with an initialization criterion. In this

work, the initializer used to set weights is a Keras method
called the variance scaling initializer. With this method, the
weights are initialized with a random number obtained from a
uniform distribution [−limit, limit] with = nlimit 3/ and n
equals the average of the numbers of the input and output units.
The CNN model also contains biases initialized to zero and
used together with weights during the training.
All the experiments are performed using Python 3.6 on an

NVIDIA Tesla K80 GPU.

5.3. CNN Training and Testing

Once the set of optimal parameters is obtained, the final
training is performed using a batch size of 200 maps, and the
CNN model achieves convergence after five epochs
(Figure 12). The epoch number defines the number of times
that the learning algorithm examined all of the maps inside the
training data set. During one epoch, each map in the training
data set is used to update the model weights during the learning
process. The data set contains thousands of maps. Instead of
performing a single training step with the complete data set,
each epoch is divided into several iterations. During each
iteration, the learning algorithm analyzes a batch of data that is
a subsample of the whole data set. The CNN requires a loss
function as part of the optimization process to calculate the
error for the current state of the model between the predicted
output and the expected output. The CNN implements the
sparse categorical cross-entropy loss function:

å= -
=

CE t f slog , 1
i

N

i i
1

( ( ) ) ( )

where ti is the target vector for the ith simulated map, f (s)i is
the prediction of the CNN after the Softmax activation
function, and N is the number of maps used for the training.
The cross-entropy loss function is used when there are two or
more labeled classes. The learning procedure updates the
weights to reduce the loss on the next evaluation with an
iterative process. The optimization algorithm used in this work
to train the CNN is the Adam optimizer applied with a learning
rate of 0.001. The Adam optimization algorithm, described in
Kingma & Ba (2014), is an extension of the stochastic gradient
descent algorithm, and empirical results demonstrate that it
works well in many DL applications.
The accuracy and the area under the curve (AUC) are

calculated as performance metrics. The accuracy is the
percentage of input maps that the CNN classifies correctly
with respect to all the maps tested. The AUC is calculated as
the area under the receiver operating characteristic (ROC)
curve, which is a graphical plot that shows the discrimination
ability of a binary classifier when the probability threshold to
determine the target class varies. In Fawcett (2006), the ROC
curve and the AUC are described in detail. The X-axis of the
ROC represents the false-positive rate (FPR), while the Y-axis
represents the true-positive rate (TPR):

=
+

=
+

TPR
TP

TP FN
and FPR

FP

TN FP
, 2( )

where TP= True Positive, FP= False Positive, TN= True
Negative, and FN= False Negative. These values are calcu-
lated on the results obtained evaluating the test data set. The

Figure 9. 3D histogram obtained summing all the counts of the smoothed maps
of the data set with a GRB. X and Y axes represent the pixels of the maps, while
the Z-axis represents the normalized summed counts.

Figure 10. 3D histogram obtained summing the smoothed counts maps of the
background-only data set. X and Y axes represent the pixels of the map while
the Z-axis represents the normalized summed counts.
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AUC provides an aggregated measure of performance
calculated with all the possible classification thresholds
represented in the ROC curve. The AUC value ranges between
[0, 1], a model with 100% wrong predictions has an AUC= 0,
while a model with 100% correct predictions has an AUC= 1.
The AUC value should be as close as possible to 1.

Figure 12 shows the accuracy and the loss for training and
test sets. As expected, the training accuracy increases with the
number of epochs, while the opposite behavior is observed
when considering the training loss function. This means that
the CNN model gradually learns how to classify the maps
correctly. The final CNN has an accuracy of 98.2% on the test
data set, which means that the CNN correctly classifies the
98.2% of evaluated maps, and it performs accurately in both
classes, GRB and background.

Figure 13 shows the ROC curve of the CNN obtained
evaluating the test data set after the training phase. The AUC
calculated with the ROC curve is equal to 0.997. This value is
very close to 1 and indicates that the model reached a high-
performance level.

Notice that, from a technical point of view, similar results
when considering different parameterizations and a low

number of epochs to obtain optimal performance indicate that
the problem is relatively simple to solve for the CNN.
During the first epoch of the training, the network reaches an

accuracy close to the optimal accuracy value, improving it in
small quantities in the following epochs. This because the
40,000 γ-ray sky maps that compose the training data set are
enough to teach the CNN how to classify maps with and
without a GRB. The CNN can learn from this data set all of the
information required with a few epochs.
Several different CNN architectures with more layers are

tested, but these additional layers do not lead to better results.
The additional layers increase the training time, and for this
reason, the CNN architecture with the best tradeoff between
training time and results is selected.

6. CNN p-value Evaluation

This CNN network is trained to work as part of the
automated pipeline for detecting GRBs in AGILE-GRID maps
starting from external notices received from other instruments.
If the CNN detects a GRB, the AGILE team can communicate
this detection to the community.
The CV value provided by the CNN cannot be used directly

to determine the significance level of a GRB detection. An
evaluation using empty fields to determine the p-value of the

Figure 11. Schema of the CNN architecture created with a graphical tool.19

Figure 12. Accuracy and loss values obtained during the five epochs of training of the CNN, with both train and test data sets.

19 http://alexlenail.me/NN-SVG/LeNet.html
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CNN is performed. The determination of the p-value for an
MLE method is described in detail in Bulgarelli et al. (2012). A
similar approach is used for the CNN presented here. The
p-value distributions are calculated using the CNN output
values obtained with background-only maps in different
conditions. The main goal of the CNN is to detect GRBs in
the context of the AGILE-GRID real-time analysis minimizing
the false positives and avoiding the communication of false
transient alerts to the community. For this reason, this analysis
is focused on background-only maps to obtain the thresholds
on CV values used to reject the null hypothesis and classify the
map as a GRB map with a certain σ level.

The distribution Φ of the CV values resulting from the CNN
analysis procedure on empty simulated fields with a defined
level of background is defined to evaluate the p-value. The
probability that the result of a trial in an empty field has CV� h
(that is the complement of the cumulative distribution function)
is

ò= F
+¥

P CV h x dx, 3
h

( ) ( ) ( )

which is also called the p-value p= P(CV� h) and defines the
probability of obtaining that value or larger when the null
hypothesis is true.

6.1. p-value Determination for Different Background
Conditions

The p-value distribution is strongly affected by the back-
ground level. Different p-value distributions are calculated to
determine the statistical significance of a CNN detection in
different background conditions, allowing this method to be
applied to real maps.

Three different background levels have been selected
from the background distribution defined in Section 3.2 and
reported in Figure 3: the mean level (giso= 10.4× 10−5

cts cm−2 s−1 sr−1) and two 1σ deviations adding or subtracting
the standard deviation of 3.0× 10−5 cts cm−2 s−1 sr−1, obtain-
ing giso= 7.4× 10−5 cts cm−2 s−1 sr−1 and giso= 13.4×
10−5 cts cm−2 s−1 sr−1.

For each background level, a data set of 10 million
background-only maps is simulated. The maps are simulated
using the parameters and the same observational model
used to create the data sets described in Section 5.1.
These background-only maps are evaluated using the trained
CNN, and the classification results are used to calculate
the p-value distribution for each different observing condition.
The p-value distribution of CV values obtained with the
mean background level is shown in Figure 14. The number
of different observing conditions is limited for constraints
on computing power and time. More p-value analyses
are planned for the future to improve the accuracy of this
method.
The simulation software requires an exposure map as input,

and a map with the exposure level of∼40× 103cm2 s, defined
in Section 3.1, is selected. The exposure level used to simulate
the maps is fixed because the CNN evaluates intensity maps,
which are not influenced by different levels of exposure.
Table 1 shows the thresholds of the CNN classification

values (CV) reported as (1-CV) in relation to different σ levels
for different background conditions. It is possible to note the
dependence of the CV thresholds on the background levels.
This behavior is expected, given that the detection of a GRB
depends strongly on the background conditions. The results
reach a maximum significance level of 5σ due to constraints on
computing power and time. A fitting function between the three
p-value distributions is calculated to estimate the CV thresholds
for giso values different from the three values used to calculate
the p-value.

7. AGILE-GRID GRB Search and Results

The GRB catalogs of Swift-BAT, Fermi-LAT, and Fermi-
GBM are used to test the trained CNN with real GRBs and real
AGILE-GRID data.

Figure 13. Receiver operating characteristic (ROC) curve. The X-axis of the
ROC represents the false-positive rate (FPR), while the Y-axis represents the
true-positive rate (TPR).

Figure 14. p-value distribution of the CV values, giso = 10.4 × 10−5

cts cm−2 s−1 sr−1.
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AGILE-GRID intensity maps are generated for each GRB
using the GRB trigger time and the center of the error
localization region defined in the catalogs. The integration time
and the map size are defined in Section 5.1. This analysis is
performed on the consolidated AGILE-GRID data archive.
This archive covers a time window that starts on 2010 January
2 and ends on 2019 November 30. A list of 193 GRBs is
obtained from these catalogs after applying four filters: (i) the
AGILE-GRID map with 200 s of integration starting from
the GRB trigger time must have an exposure value greater than
the minimum value of 20× 103 cm2 s, fixed in Section 3.1, (ii)
the localization error region radius of the GRB must be<= 1°,
(iii) the GRB trigger time must be inside the AGILE-GRID
consolidated archive time window, and (iv) the GRBs must be
extragalactic, so GRBs with |b|< 10 are excluded. From these
193 GRBs the CNN detected 21 GRBs with σ� 3. Not all
GRBs detected by other instruments can be detected by the
AGILE-GRID due to the different energy ranges or the lower
AGILE-GRID sensitivity.

Table 2 shows the list of the detected GRBs, including the
statistical significance of the CNN detection, as described in
Section 6.1. The background level (giso), used to determine the
right p-value distribution, is evaluated in a time window (Toff)
preceding the GRB trigger time, starting from 6 hours and
expanding it until at least 10 counts are found in a radius of 10°
from the GRB position. The giso value is evaluated using an
MLE. The significance is then calculated with giso and CV
values using the fitting function for the p-value threshold
defined in Section 6.1.

Table 2 also reports the detection with σ� 3 calculated using
the Li&Ma method on the same list of 193 GRBs and with the
same On–Off parameters used for the CNN analysis. The
Li&Ma method applied to the same maps and with the same
parameters can detect only two GRBs.

The Non values are the number of photons inside a 10° area
from the center of the GRB’s alert error localization region. As
already said in Section 1, the Li&Ma method requires at least
10 counts to be applied. The CNN has not this limit and can
detect GRBs even when the counts of photons are less than ten.
The CNN is more flexible and more suitable in this context of
short detection with few photons.

The comparison between the results obtained with the CNN
and with the Li&Ma method shows that in this context, the
CNN detects more GRB counterparts than the Li&Ma
algorithm, improving the detection capability of the AGILE-
GRID automated pipeline.

8. Conclusions

This paper describes the method used to train and evaluate a
CNN to detect GRBs inside the AGILE-GRID intensity maps.
This CNN can be implemented into the AGILE-GRID real-
time analysis pipeline to react to external science alerts. The
AGILE satellite’s complex observing pattern is analyzed and
convoluted with a GRB model extracted from the Second
Fermi-LAT GRB catalog. After the CNN training, the p-value
distribution of the method is calculated in different background
conditions. From the p-value distribution, the thresholds on the
CNN classification values are defined for each considered
observing condition to find the statistical significance of a GRB
detection. The CNN is tested with the catalogs of GRBs
detected by Swift-BAT, Fermi-LAT, and Fermi-GBM. From
these catalogs, a list of GRBs suitable for the AGILE-GRID
analysis is extracted. The position and the trigger time
presented in these catalogs are used to search for GRBs
counterpart in the AGILE-GRID consolidated data archive,
analyzing the AGILE-GRID intensity maps with the CNN.
Table 2 shows the GRBs counterpart detected by the CNN

from these catalogs having σ� 3. The CNN detects 21 GRBs
from a list of 193 observable GRBs. The CNN leads to a 5σ
detection of the important GRB 130427A, previously detected
by AGILE (Verrecchia et al. 2013) only with an MLE analysis
on a very long (12 hr) exposure including the T0, while no
Li&Ma detection on prompt time interval was obtained. The
CNN can detect GRBs in different observing conditions
without requiring new training, thanks to the different p-value
distributions calculated with different background levels. Not
all GRBs detected from other instruments can be detected by
AGILE-GRID due to instrument constraints. However, the

Table 1
Relation between σ and Threshold on CNN CV Values for Different Observing

Conditions

σ p-value giso = 7.4 giso = 10.4 giso = 13.4

3 1.35 × 10−3 2.4 × 10−1 1.1 × 10−1 6.5 × 10−2

3.5 2.32 × 10−4 5.5 × 10−2 2.7 × 10−2 1.4 × 10−2

4 3.17 × 10−5 1.5 × 10−2 4.9 × 10−3 2.0 × 10−3

4.5 3.40 × 10−6 2.2 × 10−3 8.9 × 10−4 2.8 × 10−4

5 2.86 × 10−7 2.1 × 10−4 3.5 × 10−5 2.5 × 10−5

Note. The table shows thresholds on the CNN values expressed as (1-CV) for
different statistical significance levels. These thresholds are calculated in
different background conditions defined in Section 6. The giso are expressed in
10−5 cts cm−2 s−1 sr−1.

Table 2
List of GRBs Detected with the CNN and Li&Ma Methods

CNN Li&Ma

GRB Ton Non σ Ton Non σ

100724B 200 9 5
110530A 200 3 3
120711A 200 2 3
121202A 200 2 3.5
130427A 200 5 5
130518A 200 2 3.5
130828A 200 5 5
131108A 200 11 5 200 11 4.4
141012A 200 3 4
141028A 200 4 3
160325A 200 4 4
160804A 200 2 3.5
160912A 200 8 4
170115B 200 4 4
170127C 200 3 4.5
170522A 200 5 5
170710B 200 4 3.5
180418A 200 2 3.5
180720B 200 13 5 200 13 4.7
190324B 200 5 3
190530A 200 6 4.5

Note. The table shows the comparison between the results obtained with the
CNN and the Li&Ma methods searching for GRBs in AGILE-GRID data
starting from GRB catalogs of other γ-ray detectors. The Ton is expressed in
seconds. The Non indicates the number of counts in a radius of 10° from the
GRB error localization region’s center.
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results of this work prove that the CNN can improve the
detection capability of the AGILE-GRID in the 0.1–10 GeV
energy range when an external science alert is received. The
same analysis performed with the Li&Ma detects only two
GRBs from the same GRB list, confirming the effectiveness of
the CNN in the context of the AGILE-GRID real-time analysis.

The AGILE Mission is funded by the Italian Space Agency
(ASI) with scientific and programmatic participation by the
Italian Institute of Astrophysics (INAF) and the Italian Institute
of Nuclear Physics (INFN). Investigation supported by ASI
grant I/028/12/6. We thank the ASI management for unfailing
support during AGILE operations. We acknowledge the effort
of ASI and industry personnel in operating the ASI ground
station in Malindi (Kenya), and the data processing done at the
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management.
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