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Abstract

Deep Neural Networks (DNNs) are powerful predictive models, exceeding human
capabilities in a variety of tasks. They learn complex and flexible decision systems
from the available data and achieve exceptional performances in multiple machine
learning fields, spanning from applications in artificial intelligence, such as image,
speech and text recognition, to the more traditional sciences, including medicine,
physics and biology. Despite the outstanding achievements, high performance and
high predictive accuracy are not sufficient for real-world applications, especially
in safety-critical settings, where the usage of DNNs is severely limited by their
black-box nature. There is an increasing need to understand how predictions
are performed, to provide uncertainty estimates, to guarantee robustness to
malicious attacks and to prevent unwanted behaviours.

State-of-the-art DNNs are vulnerable to small perturbations in the input data,
known as adversarial attacks: maliciously crafted manipulations of the inputs
that are perceptually indistinguishable from the original samples but are capable
of fooling the model into incorrect predictions [66, 90, 115, 34, 37]. In this work,
we prove that such brittleness is related to the geometry of the data manifold and
is therefore likely to be an intrinsic feature of DNNs’ predictions. This negative
condition suggests a possible direction to overcome such limitation: we study
the geometry of adversarial attacks in the large-data, overparameterized limit
for Bayesian Neural Networks and prove that, in this limit, they are immune
to gradient-based adversarial attacks. Furthermore, we propose some training
techniques to improve the adversarial robustness of deterministic architectures.
In particular, we experimentally observe that ensembles of NNs trained on
random projections of the original inputs into lower dimensional spaces are more
resilient to the attacks.

Next, we focus on the problem of interpretability of NNs’ predictions in
the setting of saliency-based explanations [8]. We analyze the stability of the
explanations under adversarial attacks on the inputs [63, 85, 4, 184] and we prove
that, in the large-data and overparameterized limit, Bayesian interpretations are
more stable than those provided by deterministic networks. We validate this
behaviour in multiple experimental settings in the finite data regime.

Finally, we introduce the concept of adversarial perturbations of amino acid
sequences for protein Language Models (LMs). Deep Learning models for protein
structure prediction, such as AlphaFold2 [81], leverage Transformer architectures
and their attention mechanism to capture structural and functional properties of
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amino acid sequences. Despite the high accuracy of predictions, biologically small
perturbations of the input sequences, or even single point mutations, can lead to
substantially different 3D structures [80]. On the other hand, protein language
models are insensitive to mutations that induce misfolding or dysfunction (e.g.
missense mutations [23]). Precisely, predictions of the 3D coordinates do not
reveal the structure-disruptive effect of these mutations. Therefore, there is an
evident inconsistency between the biological importance of mutations and the
resulting change in structural prediction. Inspired by this problem, we introduce
the concept of adversarial perturbation of protein sequences in continuous
embedding spaces of protein language models. Our method relies on attention
scores to detect the most vulnerable amino acid positions in the input sequences.
Adversarial mutations are biologically diverse from their references and are able
to significantly alter the resulting 3D structures.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) are the core engine of the modern AI revolution.
The growth in computational power and the increasing amount of available data
are major contributors to the rapid development of deep learning algorithms:
their universal approximation capabilities, coupled with advances in hardware
and training algorithms, result in remarkably strong predictive performance in a
variety of fields, from computer vision to natural language and bioinformatics.
A few applications include medical diagnostics, image and speech recognition,
artificial text generation, fraud and anomaly detection, product recommendation
and customer service. Deep learning models are structured in multiple processing
layers that can learn complex relationships between variables and reveal new
statistical properties of the training data.

DNNs are an essential component towards the construction of AI-based
technologies, yet many of the mathematical structures underlying their success
are still poorly understood. Moreover, their usage is tempered with several
drawbacks, which are somehow the natural flip side of dealing with extremely
flexible and complex models: e.g. security issues in real-world tasks, bias induced
by the learning process and lack of comprehension about the motivations behind
predictions. In this thesis, we attempt to address a few of such weaknesses,
which we briefly introduce in the next paragraphs.

Vulnerability to Adversarial Attacks Well-chosen infinitesimal changes
in the inputs of deep learning systems can produce substantial changes in the
outputs, leading to paradoxical predictions or unwanted behaviours [66, 156],
with potentially serious consequences in any application to safety-critical systems.
These small perturbations are known as adversarial attacks and are specifically
designed to induce wrong decisions with high predictive confidence, harming even
the most accurate DNNs. Adversarial perturbations are often unrecognisable by
humans [90, 35], thus developing suitable defence strategies is crucial, especially
in machine vision applications (e.g. traffic sign recognition for autonomous
driving [54]).
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8 Introduction

Lack of Interpretability Another fundamental limitation to the usage of
DNNs is their black-box nature, resulting in a lack of interpretability. Deep
learning models achieve exceptional performances, but they do not provide any
intuition about the possible explanations underlying the decisions. In several
fields of application, such as medical imaging [54], there is an increasing need for
humans to understand how the inputs are processed by the models to trust their
predictions. Industries and governments are beginning to discuss the problem
of the trustworthiness of AI systems. The European Union, for instance, even
released a checklist of desired requirements for machine learning development1.
Increased transparency in the decision-making process performed by DNNs
would result in the growing usage of such algorithms, especially for sensitive
applications like data-driven healthcare [126].

Limitations of protein structure prediction Lastly, we would like to
touch on an important biological application of DNNs, i.e. the prediction of
the three-dimensional structure of a protein from its primary sequence. Also
in this setting, we analyse the robustness of structure prediction models to
our notion of adversarial mutations on the input sequences. Thanks to the
recent advances in sequencing, most of the naturally occurring proteins can be
represented as sequences of amino acids. Understanding how such sequences fold
in a 3D structure has substantial implications for human health, especially in
drug design and in the development of disease therapies. It has been observed
that state-of-the-art models for structure prediction are unable to predict the
structural effect (e.g. misfolding) caused by the mutation of a few amino acids
in the native sequence. Therefore, it is of fundamental importance to guarantee
that the biological significance of mutations reflects on the predicted protein
structures.

1.1 Thesis Contributions
Here we summarise the main contributions of this work to the aforementioned is-
sues. In doing so, we introduce more technical terminology, which will be clarified
in the next chapters. For ease of readability, we report notation, abbreviations
and acronyms used throughout this work at the end of the manuscript.

1.1.1 Adversarial Robustness of Bayesian Neural Networks
We show a remarkable property of Bayesian Neural Networks: in a suitably
defined large data limit, we prove that the gradients of the expected loss function
of an infinitely-wide BNN with respect to the input vanish. Our analysis shows
that adversarial attacks for highly accurate architectures arise from the low
dimensional support of the data-generating distribution. By averaging over
nuisance dimensions, BNNs achieve zero expected gradients of the loss and are
thus provably immune to gradient-based adversarial attacks. Specifically, we

1https://altai.insight-centre.org/
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first show that, for any neural network achieving zero loss, adversarial attacks
arise in directions orthogonal to the data manifold. Then, we rely on the
submanifold extension lemma [94] to show that in the limit of infinitely-wide
layers, for any neural network and any weight set there exists another weight
set achieving the same loss and with opposite loss gradients orthogonal to the
data manifold on a given point. Under the assumption of infinitely many data
and flat (i.e., uninformative) prior, we then show that by averaging over these
sets of weights the expectation of the gradient w.r.t. the posterior distribution
of a BNN vanishes. Crucially, our results guarantee that, in the limit, Bayesian
posteriors are provably robust to gradient-based adversarial attacks, even though
each neural network sampled from the posterior is still vulnerable.

We experimentally support our theoretical findings on various BNN archi-
tectures trained with Hamiltonian Monte Carlo (HMC) and with Variational
Inference (VI) on MNIST, Fashion MNIST and the half-moon data set, empiri-
cally showing that the magnitude of the gradients decreases as more samples
are taken from the BNN posterior, thus confirming our results also for the
finite width and finite data setting. We then explore the robustness of BNNs
to adversarial attacks. In particular, we conduct a large-scale experiment on
thousands of different neural networks, empirically finding that for BNNs high
accuracy correlates with high robustness to gradient-based adversarial attacks,
contrary to what is observed for deterministic NNs trained via standard Stochas-
tic Gradient Descent (SGD). Finally, we also investigate the robustness of BNNs
to gradient-free adversarial attacks, showing that BNNs are substantially more
robust than their deterministic counterparts even in this setting.

1.1.2 Improved adversarial robustness using random pro-
jections of the inputs

In the deterministic setting, we propose two training techniques to improve
the robustness of pre-trained classifiers to adversarial examples. Both methods
project the input data in multiple lower-dimensional spaces, each one determined
by a random selection of directions in the space. In doing so, we aim at exploiting
relevant geometrical features for adversarial robustness during training. RP-
Ensemble trains a separate classifier in each subspace, using the corresponding
projections of the data. Then, it performs an ensemble classification on the
original high-dimensional data. RP-Regularizer, instead, is a regularization term
for the training objective. It combines the norm of the loss gradients, intended
as a measure of vulnerability, and the expectation over random projections of
the inputs. The resulting models are comparable to SOTA adversarially trained
models in terms of robustness, while improving generalization capabilities and,
in some settings, computational efficiency.

1.1.3 Stability of Bayesian Interpretations
We argue theoretically and empirically that the black-box nature of DNNs and
their vulnerability to the attacks are interlinked, and that therefore solutions that
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ameliorate resilience against adversarial attacks will also lead to more stable and
reliable interpretations. We work within the framework of (pixel-wise) saliency
explanations, which attempt to interpret post hoc DNN decisions by assigning a
relevance score to each input feature of each data point. Specifically, we use the
popular Layer-wise Relevance Propagation (LRP) [8], a method to assess the
contribution of each pixel to the final classification score which backpropagates
the prediction in the neural network until it reaches the input, using a set of
suitable propagation rules.

We introduce a novel notion of LRP robustness under adversarial attacks. As
previously observed in [63, 74, 46], our results confirm that the LRP robustness
of deterministic DNN predictions is remarkably low even when the adversarial
attack fails to change the overall classification of the data point, i.e. that LRP
interpretations are less robust than actual classifications. Considerations on
the geometry of LRP [5] suggest that the observed lack of robustness might be
imputable to large gradients of the prediction function in directions orthogonal to
the data manifold. Here we expand on such a point of view, integrating it with a
theoretical analysis in a suitably defined large-data limit [141, 49, 107] about the
robustness of BNNs to gradient-based adversarial attacks. Specifically, we prove
that Bayesian training of the DNNs in the large-data and overparameterized
limit induces a regularizing effect which naturally builds robust explanations. We
emp Wirically validate this claim on the popular MNIST and Fashion MNIST
benchmarks.

1.1.4 Structural Change Induced by Adversarial Mutations

Models for structure prediction (e.g. AlphaFold2 [81]) and Transformer based
protein Language Models (LMs) [138, 132, 53] can recover biological properties
of proteins by processing the amino acids in a sequence as words in a sentence.
Despite the remarkable capabilities of protein language models, it has been
observed that biologically small perturbations in amino acid sequences manage
to induce radical changes in the 3D structures [80], similarly the phenomenon
of adversarial attacks in computer vision, where an imperceptible alteration
in a small set of pixels induces a misclassification. Moreover, protein LMs are
often unable to predict misfolding caused by biologically meaningful single-point
mutations [23]. This limitation is presumably due to the scarcity of structure
disruptive mutations among the available PDBs [86], which makes protein
language models unable to catch all the biological features causing structural
variations. We introduce a set of mutations, which we refer to as adversarial
mutations, whose goal is to: (1) alter a small subset of residues in the original
sequences; (2) produce perturbations that are biologically distant from the native
sequences (specifically, we use BLOSUM distance, presented in Section 7.2, as
a metric of biological similarity); (3) induce misfolding with respect to wild-
type reference structures. Such mutations could then be used to augment the
available training datasets and to make structure prediction LMs more sensitive
to disruptive mutations.
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1.2 Thesis Structure

The content of this thesis is structured as follows.
In Chapter 3 we present the basic theoretical notions needed to understand

our contributions. We start with the definition of deep neural network (Section
3.2) and clarify the notion of training over a dataset. We then generalise the
definition of DNN to infinitely-wide architectures and report a fundamental
theorem behind our analysis of the geometrical properties of the data manifold,
namely the universal approximation theorem (Section 3.2.3). In Section 3.3 we
introduce the reader to Bayesian neural networks, to some approximate inference
techniques - precisely Variational Inference (Section 3.3.1) and Hamiltonian
Monte Carlo (Section 3.3.2) - and to uninformative priors (Section 3.3.3). Next,
we describe adversarial attacks (Section 3.4) and adversarial robustness, also in
the Bayesian setting. In Section 3.5 we introduce saliency explanations, with
a focus on layer-wise relevance propagation (Section 3.5.1). Finally, in Section
3.6 we provide a few fundamental notions about protein language models, from
elementary concepts in structural biology (Section 3.6.2) to state of the art
models for structure prediction (Section 3.6.3).

We follow up with our contributions.
In Chapter 4 we examine the robustness of Bayesian NNs to adversarial

attacks. We first show that for highly accurate neural networks the gradient
of the loss function is non-zero only in the orthogonal components w.r.t. the
data manifold (Section 4.1). Then, in Section 4.1.1 we prove that for any neural
network and weight set there exists another weight set for the same architecture,
with the same loss and opposite orthogonal gradients to the data manifold. By
averaging over these weight sets we prove that for BNNs the expected gradient
of the loss is zero (Section 4.2), thus making them robust to adversarial attacks.
Experiments in Section 4.3 show that BNNs are more robust to both gradient-
based and gradient-free attacks than their deterministic counterparts and can
resist the well-known accuracy/robustness trade-off.

Chapter 5 presents the two training techniques based on random projections
of the data samples: RP-Ensemble model in Section 5.1 and RP-Regularizer in
Section 5.2. Our assumptions are empirically supported by the experiments in
Section 5.4, showing an improvement in adversarial robustness under multiple
attack strategies, compared to the adversarially trained architectures.

Chapter 6 extends the analysis to the stability of saliency-based explanations
under adversarial attacks. In Section 6.1 we introduce a novel robustness metric
for LRP heatmaps subject to adversarial perturbations on the inputs (Section
6.1). We offer a theoretical analysis of the effects of saliency attacks on the
interpretations and describe the improvements offered by a Bayesian treatment
in Section 6.2. Based on the previous discussion from Chapter 4, we prove that,
in the infinitely-wide layers and large data limit, Bayesian LRP heatmaps only
preserve the components that are tangent to the data manifold, thus improving
LRP robustness. Empirical results in Section 6.3 confirm our theoretical findings.

In Chapter 7 we present our adversarial mutations. We start by clarifying our
strategy for the selection of target positions (Section 7.1.1) and target residues
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at the chosen positions (Section 7.1.2). Experiments in Section 7.3 show the
impact of adversarial mutations on several evaluation metrics for biological and
structural similarity, also comparing them to a database of known destabilizing
mutations.

Finally, Chapter 8 discusses consequences, limitations and future directions
of our results.



Chapter 2

Acknowledgements

This work is partially supported by the PRIN project “SEDUCE” n. 2017TWR-
CNB and by AREA Science Park supercomputing platform ORFEO.

Thesis publications The content of this thesis builds on the following publi-
cations:

[27] Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patane, Luca
Bortolussi, and Guido Sanguinetti. Robustness of bayesian neural networks to
gradient-based attacks. Advances in Neural Information Processing Systems,
33:15602–15613, 2020.

[28] Ginevra Carbone, Guido Sanguinetti, and Luca Bortolussi. Random
projections for improved adversarial robustness. In 2021 International Joint
Conference on Neural Networks (IJCNN), pages 1–7, 2021. doi: 10.1109/I-
JCNN52387.2021.9534346.

[29] Ginevra Carbone, Luca Bortolussi, and Guido Sanguinetti. Resilience
of bayesian layer-wise explanations under adversarial attacks. In 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), pages 1–8, 2022. doi:
10.1109/IJCNN55064.2022.9892788.

[30] Ginevra Carbone, Francesca Cuturello, Luca Bortolussi, and Alberto
Cazzaniga. Adversarial attacks on protein language models. Proceedings of the
17th Machine Learning in Computational Biology meeting (MLCB), 2022

Other contributions Here we list the additional contributions which were
not included in this thesis:

[26] Ginevra Carbone and Gabriele Sarti. ETC-NLG: End-to-End Topic-
Conditioned Natural Language Generation. IJCoL. Italian Journal of Computa-
tional Linguistics, 6(6-2):61–77, 2020

[25] Francesca Cairoli, Ginevra Carbone, and Luca Bortolussi. Abstraction of
Markov Population Dynamics via Generative Adversarial Nets. In International

13



14 Acknowledgements

Conference on Computational Methods in Systems Biology, pages 19–35. Springer,
2021.

[19] Luca Bortolussi, Francesca Cairoli, Ginevra Carbone, Francesco Franchina,
and Enrico Regolin. Adversarial Learning of Robust and Safe Controllers for
Cyber-Physical Systems. IFAC-PapersOnLine, 54(5):223–228, 2021

[20] Luca Bortolussi, Francesca Cairoli, Ginevra Carbone, and Paolo Pulcini.
Stochastic Variational Smoothed Model Checking. arXiv preprint arXiv:2205.05398,
2022.

[21] Luca Bortolussi, Ginevra Carbone, Luca Laurenti, Andrea Patane, Guido
Sanguinetti, and Matthew Wicker. On the Robustness of Bayesian Neural
Networks to Adversarial Attacks. arXiv preprint arXiv:2207.06154, 2022



Chapter 3

Background

Contents
3.1 Learning from the Data Manifold . . . . . . . . . . 16

3.1.1 Manifold Hypothesis . . . . . . . . . . . . . . . . . . 17
3.2 Deep Neural Networks . . . . . . . . . . . . . . . . 19

3.2.1 Neural Network Architectures for Supervised Learning 20
3.2.2 Training via Stochastic Gradient Descent . . . . . . 21
3.2.3 Infinitely-wide Architectures and Universal Approxi-

mation Theorem . . . . . . . . . . . . . . . . . . . . 23
3.3 Bayesian Neural Networks . . . . . . . . . . . . . . 24

3.3.1 Variational Inference . . . . . . . . . . . . . . . . . . 25
3.3.2 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . 25
3.3.3 Flat Priors . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Adversarial Attacks . . . . . . . . . . . . . . . . . . 27
3.4.1 Gradient-based Attacks . . . . . . . . . . . . . . . . 28
3.4.2 Bayesian Adversarial Attacks . . . . . . . . . . . . . 30
3.4.3 Adversarial Robustness . . . . . . . . . . . . . . . . 30
3.4.4 Defence Strategies . . . . . . . . . . . . . . . . . . . 31

3.5 Saliency Explanations . . . . . . . . . . . . . . . . . 32
3.5.1 Layer-wise Relevance Propagation . . . . . . . . . . 33
3.5.2 LRP Rules . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.3 Saliency Attacks . . . . . . . . . . . . . . . . . . . . 35

3.6 Protein Language Models . . . . . . . . . . . . . . 36
3.6.1 Transformers . . . . . . . . . . . . . . . . . . . . . . 36
3.6.2 Keywords in Structural Biology . . . . . . . . . . . . 38
3.6.3 NLP for Contact and Structure Prediction . . . . . . 40
3.6.4 Structural Similarity Scores . . . . . . . . . . . . . . 41

15



16 Background

Cognitive capabilities of the brain enable humans to process objects, memorize
informations and perform decision making tasks despite the high complexity of
the real world. We hardly realize how challenging it is to solve such problems by
means of a computer program. Indeed, Machine Learning (ML) models try to
reproduce our cognitive system without stating an explicit set of instructions
to reach a certain goal, as it would be an unfeasible problem. Such algorithms
typically learn to solve predictive tasks directly from the observed data or from
past experience. They are black box models, meaning that they solve prediction
problems without providing an analytical description of the relationship between
the inputs and the outputs.

In what follows we clarify the main concepts in machine learning used
throughout this work, starting from the basic principles and ending with a few
fundamental models and learning paradigms. In doing so, we often rely on the
example of image recognition to give a practical intuition of such concepts.

3.1 Learning from the Data Manifold

A dataset is a collection of numerical or categorical informations used by an
ML system to learn how to solve a predictive task. It is usually split in two
parts: the algorithm learns the statistical properties of the observed data from
the training set, while the test set is used to evaluate the performances of the
learned model on new data. Additionally, a validation set can be used to test the
performances during the learning phase. The process of learning from training
data is known as training algorithm. A single entry from a dataset is called a
data sample and is composed by a set of features, which are analysed by the
ML model to extract higher level informations and to acquire the statistical
understanding that is needed to solve the prediction problem. A data sample
may also include a target, i.e. the desired outcome of prediction. For instance,
in the case of image classification the goal is to correctly label an input image
(e.g. an image of a cat) among a set of possible labels (e.g. dogs, cats, birds). In
this setting, an image is a data sample, pixel values are the input features and
the correct class is the target.

Machine learning models are the learned algorithms that perform the desired
task. As a first approximation, they are grouped in three categories, depending
on the type of information available in the training dataset: supervised learn-
ing, unsupervised learning and reinforcement learning. In supervised learning
problems the desired outcome is available in the training set and the model
has to predict it from the observed data samples. The resulting model is a
regressor if the output is a continuous numerical value (e.g. weather prediction,
sales forecasting, stock prediction) or a classifier if the output is categorical
(e.g. image classification, spam detection, speech recognition). In unsupervised
learning the data samples are unlabelled, and the model has to learn geometric
properties or patterns from the input features. An example of unsupervised
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learning is clustering, where the input samples are grouped in clusters accord-
ing to some similarity measure. Reinforcement Learning (RL), instead, solves
decision-making problems by learning an optimal set of actions to perform de-
pending on the state of the environment. Such actions are learned from previous
simulations based on the scores assigned by a reward function, which penalizes
suboptimal actions. Examples of applications of RL are in board games and
autonomous driving.

In this work, we mainly focus on image classification, a classical supervised
learning setting, and protein structure prediction, introduced in Section 3.6,
where models range from self-supervised to fully supervised. More specifically,
structure prediction models such as AlphaFold2 [81] and Rosetta [139] are
supervised since they learn from PDB data [86] of 3D coordinates. Language
models for structure prediction such as ESM-1b [138] and MSA-Transformer
[132], instead, are trained on a self-supervised masked language task.

3.1.1 Manifold Hypothesis
The number of data samples required to learn a ML model grows exponentially
with the dimension of the space, i.e. the number of input features. Manifold
learning faces the problem of nonlinear high-dimensionality reduction by means
of the manifold hypothesis, stating that data points lie on low-dimensional
manifolds embedded in high-dimensional spaces [160, 84]. The high codimension
between the data manifold and the embedding space has a fundamental role in
the generation of adversarial examples, as first highlighted by [84]. They noticed
that adversarial perturbations usually arise in the directions that are normal
to the data manifold (Figure 3.6), hence as the codimension increases there is
an increasing number of orthogonal directions and, consequently, a decrease in
adversarial robustness.

Informally, a manifold is a topological space that locally resembles a Eu-
clidean space, hence this formalization allows us to define local coordinates
in the neighbourhood of each data point as real-valued vectors. In particular,
manifolds can be covered with coordinate charts, which are continuous mappings
to Euclidean spaces.

Definition 3.1 (Coordinate chart). A coordinate chart for a topological space
M is a homeomorphism1 Φ from an open subset of M to an open subset of a
Euclidean space.

Moreover, manifolds are equipped with a differentiable structure, which is of
fundamental importance to prove our theoretical contributions in Chapters 4
and 6. We now report a formal definition of differentiable manifold and refer the
reader to [94] for further details.

Definition 3.2 (Topological manifold). An m-dimensional topological man-
ifold M is a Hausdorff and second countable topological space that is locally
homeomorphic to Rm.

1A bijective and continuous function between topological spaces, with continuous inverse.
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Figure 3.1: Low-dimensional manifold embedded in a high-dimensional space.

Definition 3.3 (Differentiable manifold). A Ck-differentiable manifold is a
topological manifold with an equivalence class of k-atlases on M.

Atlases are collections of coordinate charts such that overlapping charts are
compatible. Intuitively, this means that the higher k is, the smoother M appears.
A C∞ differentiable manifold is called a smooth manifold. Throughout this work
we often refer to almost everywhere2 differentiable manifolds.

In the context of classification, the low-dimensional surfaces described by
the manifold hypothesis correspond to the classification regions. Given K
classes and an ambient space Rd, the data points are sampled from K manifolds
M1, . . . ,MK ⊂ Rd and the whole data manifold is the union of all classification
regions

M =
[

1≤j≤K

Mj .

Let m be the dimension of M, then d − m is the codimension of M in the
ambient space Rd.

Lastly, let us define the tangent space at a point x ∈ M on the data manifold.

Definition 3.4 (Tangent space). A tangent vector to an m-dimensional manifold
M at a point x ∈ M is an equivalence class of curves passing through x and
such that their images in a chart Φ have the same tangent vector in Rm at Φ(x).
The set of all tangent vectors to M at x is a real vector space called tangent
space and denoted as TxM.

2Almost everywhere (a.e.) means everywhere except on a set with zero probability measure.
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We point out that the dimension of TxM is m, the same as that of the
manifold.

3.2 Deep Neural Networks

Going back to the example of image recognition, our intuition makes us decom-
pose this problem into smaller tasks, performing what in image processing is
known as feature extraction: we do not directly process an entire image, but first
detect local shapes, edges or smaller objects, gradually building a multi-level
representation of the original image. Inspired by the biological structure and
functioning of the human brain, Deep Neural Networks (DNNs) are organized in
multiple processing layers, structured as directed graphs (Figure 3.2). The nodes
in this graph are called neurons, while the edges are representations of nonlinear
functions, mapping a few input neurons into a single output neuron. This deeply
layered structure allows DNNs to progressively extract higher-level features
from the input data: the further you advance into the hidden layers, the more
complex the features become, since they aggregate and recombine neurons from
the previous layers. The presence of nonlinearities is necessary for the network
to learn complex dependencies between the inputs and the outputs. Neurons are
grouped into three categories: the input layer passes the input information to
the hidden layers, without performing any calculation; the hidden layers perform
all the computations involved in feature extraction and pass the results to the
output layer; finally, the output layer outputs a complex representation of the
input which is used to perform the desired task.

In our setup, we use a deep neural network f to approximate a target function
f true : Rd → RK , for some d,K ∈ N. The target function is observed at points
x drawn from a data distribution p(D), whose support is the data manifold
M ⊂ Rd. A DNN is a parametric model, meaning that the relationship between
the inputs and the outputs depends on a set of parameters, namely the neural
network’s weights. The dimensionality of a DNN is determined by its architecture,
i.e. by the set of mathematical formulas that define the function f . We focus
on supervised learning problems, where the goal is to fit the parametric model
f(·,w) with weights w ∈ Rnw to a set of observed data points x with labels
y. Learning the best fit to the data (or training the DNN) means searching for
the most suitable set of parameters w to describe the relationship f(x,w) = y
between the observed (x, y) couples, among the set of all possible values of w in
the parameter space Rnw . Moreover, a high-quality model should also be able
to guarantee an adequate generalization, that is a good performance on unseen
data points. The model f depends on an additional set of fixed (non-learnable)
parameters called hyperparameters, which could be either the number of weights
and neurons in the architecture or additional parameters involved in the learning
algorithm (e.g. the number of iterations, the size of a step in the parameter
space, etc.).
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3.2.1 Neural Network Architectures for Supervised Learn-
ing

Let f true : M → RK be a function defined on a smooth closed data manifold
M ⊂ S ⊂ Rd with S being the ambient (or embedding) space. We consider
the problem of approximating f true via the learning of an L+ 1 layers neural
network f(·,w), with w ∈ Rnw being the aggregated vector of weights and biases.
Formally, for x ∈ S, f(x,w) is defined iteratively over the number of layers as:

f
(1)
i (x) =

dX

j=1

w
(1)
ij xj + b

(1)
i (3.1)

f
(l)
i (x) =

nl−1X

j=1

w
(l)
ij ϕ(f

(l−1)
j (x)) + b

(l)
i , for l = 2, . . . , L+ 1, (3.2)

f(x,w) = f (L+1)(x), (3.3)

for i = 1, . . . , nl, where nl is the number of neurons in the l-th layer, ϕ is a
nonlinear activation function, which we assume to be a.e. smooth.

Figure 3.2: Visualization of a Neural Network architecture solving image classifi-
cation.

The purpose of activation functions is to mimic the firing action of biological
neurons in the brain; in practice, the presence of nonlinear activations allows
neural network architectures to approximate any target smooth function on a
compact set of weights, a result known as the Universal Approximation Theorem
[40, 78]. In our experiments we mainly rely on the ReLU activation function
ϕ(z) := max(0, z), which sets a positive threshold on the input value. ReLU
is an a.e. differentiable scale-invariant function, since it satisfies max(0,αz) =
αmax(0, z) for any α > 0. Other widely used nonlinear activations in the
intermediate layers are sigmoid and tanh functions [16]. Activations in the
output layer, instead, are task-dependent. For instance, typical choices in
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regression problems with a single output (K = 1 in our notation) are the linear
function ϕ(z) = z for real-valued outputs and the sigmoid function ϕ(z) = 1

1+e−z

for outputs in the [0, 1] interval. In a classification problem with K classes,
instead, the output is a probability vector, thus a reasonable choice is the
softmax function

ϕi(z) =
ezi

PK
j=1 e

zj
.

The selection of suitable activation functions in the intermediate layers and
learning hyperparameters in the architecture is usually done during the tuning
phase, by running multiple small learning trials with different combinations of
hyperparameters.

3.2.2 Training via Stochastic Gradient Descent

The optimal weights of a NN f(·,w) are learned by means of a dataset DN =
{(xi, yi) | xi ∈ M, yi = f true(xi), i = 1, . . . , N} of size N . During training,
data points are assumed to be drawn independently and identically distributed
(i.i.d.) from the data manifold, to ensure that the algorithm learns from unbiased
samples of the true data distribution. The discrepancy between f true and f(·,w)
is measured on the training dataset through a suitable loss function L(x,w)
of the form L(x,w) = ℓ(f(x,w), f true(x)), with ℓ(·, ·) chosen accordingly to
the semantic of the problem at hand.3 Generally speaking, L(x,w) is a convex
function of the difference between observed and predicted values. For instance,
a common choice for classification problems with softmax output activations is
the Cross-Entropy (CE) loss function

L(x,w) = −
X

i=1,...,N

yi log(f(xi,w)),

where f(xi,w) is the predicted probability that xi belongs to the each possible
class and yi ∈ RK is a binary vector encoding the true class (i.e. it equals 1 on
the index of the correct class and 0 otherwise).

Intuitively, minimisation of the loss function over the weight vector w leads
to increasing fit of f(x,w) to f true(x), with zero-loss indicating that the fit is
exact [17]. In practice, the problem of approximating f true boils down to the
problem of minimizing the loss function w.r.t. w in the parameter space Rnw ,
using the training data DN , also known as Empirical Risk Minimization:

f true ≈ f∗ = argmin
{f(·,w):w∈Rnw}

E
(x,y)∈DN

[ℓ(f(x,w), f true(x))].

This optimization problem is solved by Gradient Descent algorithm, where
the weights w are initially set to a random value w0 ∈ Rnw and then are

3For simplicity of notation we omit the explicit dependence on the true function from the
loss.
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iteratively minimized in the direction of the gradient of the loss function (Figure
3.3)

wt+1 = wt − γ∇wL(wt),

where
∇wL(w) =

1

N

X

(x,y)∈DN

∇wL(x,w)

denotes the expected gradient on the whole training set and the learning rate γ
is the hyperparameter responsible for the amount of change (speed of learning) of
the model at each step. For a sufficiently small step size γ and a non-pathological
(convex or pseudoconvex) objective function the algorithm will almost surely
(a.s.), i.e. with probability 1, converge to a local minimum in the space of weights
[146]. This computation of the loss gradient, other than being inefficient as
the number of data points N increases, leads to a noisy estimate of the true
gradient. Therefore, Stochastic Gradient Descent (SGD) instead computes the
gradient of the loss at each step on a random subset of the training points, known
as mini-batch, resulting in a faster algorithm with a smoother convergence to
the optimum. SGD provides a noisy estimate of the true gradient, due to the
sampling noise coming from mini-batch sampling.

Figure 3.3: Loss minimization w.r.t. the weights w.

The computation of partial derivatives of the loss is performed through the
backpropagation algorithm, which leverages the chain rule to propagate the
output loss across the neural network graph until reaching the input nodes.
Precisely, referring to the notation from Section 3.2 and by omitting the explicit
dependence on x and w, the partial derivative of the loss in the l-th layer w.r.t.
the weight wij is computed as

∂L
∂w

(l)
ij

=
∂L
∂f

(l)
i

· ∂f
(l)
i

∂f
(l−1)
j

·
∂f

(l−1)
j

∂w
(l)
ij

.

It is important to acknowledge that ReLU activations, as well as many other
activations, suffer from the vanishing gradient problem, arising when the gradients
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decrease at each iteration until vanishing and resulting in large sets of weights
that stop being updated by the learning algorithm. Leaky ReLU function solves
this problem by setting a small slope in the negative part of the ReLU function

ϕ(z) =

(
z if z > 0

0.01 z otherwise.

3.2.3 Infinitely-wide Architectures and Universal Approxi-
mation Theorem

Our goal in this work is to analyse the adversarial robustness of NNs. For this
purpose, we will rely on crucial results from Bayesian learning of neural networks
and the properties of infinitely-wide neural networks, i.e. NNs with an infinite
number of neurons.

Definition 3.5 (Infinitely-wide neural network). Consider a family of neural
networks {f(·,wnw) : wnw ∈ Rnw}nw>0 of Equations (3.1)-(3.3), with a fixed
number of neurons for l = 1, . . . , L− 1 and a variable number of neurons nL in
the last hidden layer. We say that

f∞(x) := lim
nL→∞

f(x,wnw) (3.4)

is an infinitely wide neural network if the limit above exists ∀x ∈ S, meaning
that f(·,wnw) converges to f∞ pointwise, and if the resulting function defines a
mapping from S to RK . Furthermore, we call F the set of such limit functions.

The interest behind the set of infinitely-wide neural networks lies in the
fact that they are universal approximators [40, 78].4 More precisely, under the
assumption that the true function f true is continuous, we have that:

∀ϵ > 0, ∃f∗ ∈ F s.t. ∀x ∈ M, ||f true(x)− f∗(x)||p < ϵ, (3.5)

under some p-norm. That is, F is dense in the space of continuous functions.
Furthermore, any smooth function with bounded derivatives can be represented
exactly by an infinitely wide NN with bounded weights norm (i.e. with a bounded
sum of the squared Euclidean norm of the weights in the network) [122]. We will
rely on these crucial properties of infinitely-wide neural networks to reason about
their behaviour against adversarial attacks. For simplicity, as also common in
the literature [141], throughout this work we will assume that the approximation
error ϵ in Equation (3.5) is negligible, i.e. that the true function can be exactly
expressed as an infinitely-wide neural network. More formally, we will assume
that any smooth function g : S → RK such that g|M = f true belongs to F ,
where |M denotes the restriction to the data manifold M ⊂ S.

4Notice that the limit in Definition 3.5 is taken only w.r.t. the last hidden layer. Similar
results, albeit with additional care needed for the definition of the limiting sequence, can be
obtained by taking the limit w.r.t. all the hidden layers [106].
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We remark that, since the loss-landscape is in general non-convex, the
existence of such a neural network does not necessarily imply that a gradient
descent-based training will be able to retrieve it through training on a finite
dataset. However, recent results [141] have shown that, in the limit of infinite
points on data manifold, the loss function is a convex functional on the space
of weights of an infinitely wide NN and hence the gradient flow of stochastic
gradient descent will converge to a unique solution in the weight space. That
is, given an infinitely wide NN f∞ and a sequence of datasets {DN}N ⊂ M of
cardinality N > 0, we have that:

lim
N→∞

ℓ
�
f∞
DN

(x), f true(x)
�
= 0, ∀x ∈ M (3.6)

where f∞
DN

represents the infinitely wide NN trained on DN until convergence.

3.3 Bayesian Neural Networks
Bayesian modelling captures the uncertainty of data-driven models by turning
model parameters into random variables [10, 116]. In a nutshell, it places a
prior measure5 p(w) over the weights w and models their fit to the observed
data D through the likelihood p(D|w) [16].6 Bayesian inference then combines
likelihood and prior via the Bayes’ theorem [16] to obtain a posterior distribution
over the NN’s parameters

p (w|D) ∝ p (D|w) p (w) . (3.7)

Unfortunately, it is in general infeasible to compute the posterior distribution
exactly for non-linear/non-conjugate models such as deep NNs, so approximate
Bayesian inference methods are employed in practice. Asymptotically exact
samples from the posterior distribution can be obtained via procedures such
as Hamiltonian Monte Carlo (HMC) [117], while approximate samples can be
obtained more cheaply via Variational Inference (VI) [18].

Irrespective of the posterior inference method of choice, Bayesian empirical
predictions at a new input x are obtained from an ensemble of M ∈ N neural
networks, each one with weights drawn from the learned posterior distribution
p(w|D):

f (x|D) = Ep(w|D)[f(x,w)] ≃ 1

M

MX

i=1

f(x,wi) wi ∼ p (w|D) , (3.8)

where Ep(w|D) denotes the expectation w.r.t. the posterior distribution p (w|D).

5We employ the common notation of indicating density functions with p and their corre-
sponding probability measures with P .

6Notice that in the Bayesian setting the likelihood is a transformation of the loss function
used in deterministic settings. We use both terminologies, and the loss is not to be confused
with that used in Bayesian decision theory [16].
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Figure 3.4: Hamiltonian Monte Carlo (sampling-based) vs Variational Inference
(optimization-based) approximate inference techniques.

3.3.1 Variational Inference
Variational Inference (VI) [167] turns Bayesian inference into an optimization
problem and provides an analytical approximation q(w;ν) ≈ p(w|D) of the
posterior distribution, namely the variational distribution, which belongs to
a restricted family of known distributions (e.g. Gaussians). The variational
parameters ν are optimized by minimizing the dissimilarity between p and q.
The measure of similarity is the Kullback-Leiber divergence

KL(q||p) := −
X

w

q(w;ν) log

 
p(w|D)

q(w;ν)

!
.

and the minimization problem

ν∗ = argminνKL(q||p)

still requires the computation of the intractable term p(w|D). Notice that the
evidence log p(D) is constant with respect to ν and satisfies the equality

log p(D) = KL(q||p) + Eq[log p(w, D)− log q(w;ν)].

Therefore, the optimization problem above is equivalent to the minimization of
the Evidence Lower Bound (ELBO) loss

ELBO(ν) = Eq[log p(w, D)− log q(w;ν)].

The first term in the ELBO loss encourages q to place its probability mass on
the MAP estimate, while the second favours entropy on the mass, to avoid its
concentration in a single location.

3.3.2 Hamiltonian Monte Carlo
Markov Chain Monte Carlo (MCMC) [64] is a class of stochastic algorithms that
allow sampling from an unknown high-dimensional probability distribution (in
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our case the posterior p(w|D)) by building a Markov chain with the desired
distribution as its equilibrium distribution. The efficiency of these methods in
high-dimensional spaces is guaranteed by a proper exploration of the typical set,
which is the region contributing the most to the computation of expectations w.r.t.
the target density [13]. Hamiltonian Monte Carlo (HMC) [117] is a Markov Chain
Monte Carlo technique that combines an approximate Hamiltonian dynamics
simulation and a Metropolis-Hastings [109, 71] acceptance step: at each step,
Metropolis-Hastings computes the probability of keeping the new samples (ρ′,w′)

min{1, exp(H(ρ,w)−H(ρ′,w′))}.
It is designed to generate efficient transitions in the parameter space and to reduce
the problems of low acceptance rates and autocorrelation between consecutive
samples. HMC introduces some momentum variables ρ and defines a Hamiltonian

H(ρ,w) = − log p(ρ|w)− log p(w) = T (ρ|w) + V (w),

where p(ρ,w) is the joint density p(ρ|w)p(w). Starting from the initial values of
ρ and w, the system evolves according to Hamilton’s equations

dw

dt
=

∂H

∂ρ
=

∂V

∂ρ

dρ

dt
= −∂H

∂w
= − ∂T

∂w
− ∂V

∂w
,

which are solved by means of leapfrog integration [77]. HMC build a chain of
samples w1, . . . ,wM , that are used to compute an empirical approximation of
the posterior. In the limit of infinite samples, the distribution of the recorded
samples exactly matches the posterior distribution.

3.3.3 Flat Priors
In this work, we rely on flat or uninformative priors [22, 39], that is wide priors
resembling a uniform distribution. Notice that defining a distribution over the
weights p(w) naturally leads to the definition of a distribution over functions
in F , which we denote by p(f(·,w)). For simplicity of notation, in this section
we consider the space F of real-valued continuous functions f : S × Rnw → R,
but the argument naturally extends to the multi-output case by treating each
output value separately.

In particular, p(f(·,w)) leads to a probability measure P over the space
F , with a σ-algebra generated by sets of the form {f(·,w) ∈ F : f(x1,w) ∈
G1, ..., f(xN ,w) ∈ GN} where N is an arbitrary integer, x1, ...,xN ∈ S, and
G1, ..., GN ⊂ R are closed intervals [3]. According to the above definition of
σ-algebra, any measurable set of functions F ⊆ F only depends on the behaviour
of f(·,w) on a countable set of input points. Nevertheless, in our setting, this
is not limiting. Indeed, properties involving an uncountable set of points can
be reframed over a countable set of inputs by relying on the continuity of each
function f(·,w) ∈ F [3]. Here we introduce the concept of flat priors over the
space F .
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Definition 3.6 (Flat Prior). Let p be a prior distribution on the weight space
Rnw and P the corresponding probability measure. Then, we say that p is flat if
for any N > 0, any choice of N points x1, ...,xN ∈ S, any sequence of closed
intervals G1, ..., GN ⊂ R, and any g1, ..., gN ∈ R it holds that

P ({f(·,w) ∈ F : f(x1,w) ∈ G1, ..., f(xK ,w) ∈ GK}) =
P ({f(·,w) ∈ F : f(x1,w) ∈ G1 + g1, ..., f(x1,w) ∈ GK + gK})

that is, if its finite-dimensional distributions are translation invariant.

According to Definition 3.6, a flat prior gives a uniform distribution on
the outcomes of f(·,w) for any finite set of input points. Furthermore, as
P is uniquely defined through its behaviour on a countable number of input
points, Definition 3.6 implies that for any measurable set of functions F ⊂ F ,
function g ∈ F , and set Fg = {f ∈ F : ∃f ′ ∈ F s.t. f = f ′ + g}, it holds that
P (f(·,w) ∈ F ) = P (f(·,w) ∈ Fg), that is if we translate a set of function by a
given function we obtain the same probability. Intuitively, the invariance principle
implies that the prior distribution provides equal beliefs in any transformed
version of the parameters. We should stress that, formally, a prior so defined is
not a distribution but an improper prior, as the scaling factor for a translation
invariant measure defined over an infinite support does not exist [22]. In practice,
one can approximate a flat prior with a Gaussian distribution with a variance
that tends to infinity.

Notice that while Definition 3.6 defines a prior over the space of functions
induced by a neural network, in practice, it would be convenient to define a prior
directly over the weights. In this context, we stress that, for an infinitely-wide
BNN, a Gaussian prior with large (finite) variance over the weights induces
a Gaussian prior with large variance over the space of functions [106]. Thus,
assuming a prior p(w) with large variance is in practice a good approximation of
a flat prior as per Definition 3.6. In this work, we rely on flat priors in the large
data setting, where the influence of a flat prior on the posterior is often limited
[39]. In this context, a flat prior assumption is necessary to guarantee that all
possible functions that the neural network can represent equally influence the
posterior.

3.4 Adversarial Attacks

An adversarial attack (or adversarial example) against a DNN classifier f is a
small perturbation x̃ of an input point x ∈ M that leads to a large change in
the output prediction [66]; more precisely, a perturbation x̃ is an attack if the
prediction on x̃ differs from the original prediction on x.

Let us formally define an adversarial attack on the data manifold M with
respect to a fixed p-norm || · ||p and using an attack strength ϵ ∈ R.

Definition 3.7 (ϵ-neighbour). The ϵ-neighbour of a manifold M is the set of
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Figure 3.5: Example of misclassification induced by an adversarial attack.

points whose distance from M in the p-norm is lower than ϵ ∈ R:

Mp(ϵ) =
n
x ∈ Rd : inf

x′∈M
||x− x′||p ≤ ϵ

o
.

Definition 3.8 (ϵ-adversarial attack). An ϵ-adversarial attack against a classifier
f(·,w) on K classes at a point x ∈ M is a perturbation x̃ ∈ Mp(ϵ) such that

argmax
j=1,...,K

fj(x,w) ̸= argmax
j=1,...,K

fj(x̃,w).

As f(·,w) is a non-convex function, computing x̃ is a non-convex optimisation
problem for which several approximate solution methods have been proposed.
Most attack strategies utilise information on the training loss function to detect
an optimal perturbation direction, either through explicit knowledge of the loss
(white box ) or via point-wise estimations of the loss (black box or query-based
attacks, generally weaker than their white box counterpart). In our theoretical
discussion we primarily focus on gradient-based attacks, a specific category
of white box attacks that employ the gradient of loss function w.r.t. x [14].
Our experiments include the following attacks: the gradient-based attacks Fast
Gradient Sign Method [66], Projected Gradient Descent [90], DeepFool [115],
Carlini and Wagner [34], all presented in the next section; and the black box
attack ZOO [37], based on a finite-difference approximation of the gradient of
the loss function.

We also extend the definition of adversarial attack to Bayesian architectures
in Section 3.4.2 and discuss the evaluation of adversarial robustness in Section
3.4.3.

3.4.1 Gradient-based Attacks

Gradient-based attacks utilize gradient information on the training loss function
L to determine the attack direction. They have complete knowledge of the target
network f(·,w), yet they could also be effective on unknown models, thanks to
their transferability properties [42]. Given an input point x ∈ M and an attack
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Figure 3.6: Adversarial examples usually arise in the directions that are normal
to the data manifold M.

strength ϵ > 0, the worst-case adversarial perturbation can be defined as the
point x̃ in the ϵ-neighbourhood of x that maximises the training loss:

x̃ = argmax
x̃:||x̃−x||p≤ϵ

Ep(w|D)[L(x̃,w)].

One of the most known gradient-based attacks is the Fast Gradient Sign
Method (FGSM) [66], a computationally efficient single-step attack. FGSM
takes a step of size ϵ in the direction of the sign of the gradient of the training
loss function w.r.t. x:

x̃ = x+ ϵ · sgn∇xL(x,w),

with the aim of inducing the highest change in the loss function towards a
misclassification, with minimal attack strength ϵ. In the untargeted setting it
does not push the misclassification towards a specific wrong class.

Projected Gradient Descent (PGD) [90] is a stronger, iterative version of
FGSM. It starts from a random perturbation x̃0 in an ϵ-ball around x in the
L∞ norm, then at each iteration performs an FGSM attack with a smaller step
size ε < ϵ and projects the perturbation back in the ϵ-ball:

x̃t+1 = Clipε,L∞

�
x̃t + ε · sgn∇xL(x̃t,w)

�
.

The size of the final perturbation at a chosen timestep t is smaller than ϵ,
resulting in a stronger attack.

DeepFool attack [115] searches for the nearest decision boundary to the data
point x in the L2 norm and pushes the perturbation x̃ beyond this boundary.
Specifically, it starts from the original data point x and iteratively minimizes the
classifier f around the input point until it produces a misclassification, i.e. until

argmax
j=1,...,K

fj(xt,w) ̸= argmax
j=1,...,K

f true
j (xt).
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Experiments using DeepFool show that for common classifiers almost all test
samples are very close to the decision boundary, suggesting that DNNs are
usually not robust to small perturbations [177].

Similarly to FGSM, Carlini & Wagner (C&W) attack [34] in the L∞ norm
searches for the minimal perturbation that causes a misclassification, that is

min
x̃∈[0,1]d

||x̃− x||∞ + γ · L(x̃,w, c)

where c is the target class for misclassification and L(x̃,w, c) := maxj ̸=c[fj(x̃,w)−
fc(x̃,w)] is the margin loss, that penalizes output scores higher than fc(x̃,w)
on the other classes. C&W is currently one of the strongest adversarial attacks
available, but also one of the most computationally expensive.

3.4.2 Bayesian Adversarial Attacks
Bayesian adversarial attacks are crafted against a Monte Carlo approximation
of the posterior distribution, that is against an ensemble of deterministic NNs
sampled from the posterior. For instance, an FGSM attack with strength ϵ
against a BNN with posterior distribution p(w|D) becomes

x̃ = x+ ϵ · sgn Ep(w|D)

�
∇xL(x,w)

�
(3.9)

≃ x+ ϵ · sgn
MX

i=1

∇xL(x,wi) wi ∼ p(w|D). (3.10)

Similarly, the definition of Bayesian attack can be extended to other pertur-
bation strategies.

3.4.3 Adversarial Robustness
The robustness of classifiers to adversarial attacks is strongly related to the
geometry of the learned decision boundaries since adversarially perturbed points
always lie extremely close to these surfaces [50]. The evaluation of adversarial
attacks can be either qualitative or quantitative. In the qualitative case, one
simply observes whether an attack strategy with a certain strength is successful
in changing the classification label of the given data point. Formally, adversarial
robustness in an ϵ-neighbour of a data point is defined as follows.

Definition 3.9 (ϵ-adversarial robustness). A classifier f(·,w) is robust to ϵ-
adversarial examples if Mp(ϵ) is classified correctly.

In practical terms, any robustness evaluation reports the fraction of successful
attacks on the input dataset. The quantitative metric we use to evaluate
network performances against adversarial attacks is softmax robustness, which
computes the softmax difference between original and adversarial predictions as
1− ||f(x)− f(x̃)||∞ and is a real number between zero (maximal fragility) and
one (complete robustness).
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3.4.4 Defence Strategies

Defence research proposes a multitude of strategies to mitigate adversarial vulner-
ability. A first simple countermeasure against the attacks is adversarial detection
[129], which attempts to check whether a sample is benign or malicious before
feeding it to the model, but does not provide any improvement in robustness to
the DNN.

Other techniques modify the input data at test time. Data compression, for
instance, is an effective defence method against simpler attack techniques, like
FGSM and DeepFool [52], although a large amount of compression causes a
drastic decrease in test accuracy. Also resizing or adding random noise to test
images sightly improves adversarial robustness [176, 168]. Purification methods,
instead, learn generative models that are able to remove adversarial noise from
the input images [181].

Robust optimization [177] refers to training techniques that improve adversar-
ial robustness, typically leveraging some prior knowledge of the attacks. In this
setting, the most popular method is adversarial training [89], where adversarial
examples are crafted on the original model and added to the training set of a
new model with the same architecture. One of the most significant limitations
of adversarial training is that it protects against the chosen attack strategy, but
the model can still be vulnerable to malicious perturbations in general; however,
it has been shown that the transferability properties of NNs also guarantee some
degree of robustness against other attacks or different architectures. Moreover,
adversarial training is computationally expensive on complex attacks, such as
Carlini & Wagner; for this reason, it is usually performed using FGSM attack,
since it only requires one gradient evaluation at each input point. Robust op-
timization is also achieved by Lipschitz regularization of the loss function in
Parseval Networks [155], whose goal is to penalize large instabilities in hidden
representations of the inputs. Provable defences, instead, provide exact robust-
ness bounds under a set of theoretical constraints which need to be satisfied
during training [57, 177].

Gradient masking defences hide the gradient information provided by the
model, which is used in most attack strategies [177]. An example is defensive
distillation [76], which trains a smaller DNN on pre-softmax activations, also
known as logits, to obtain smoother decision boundaries and less sensitivity
to the adversaries; however, it is still vulnerable to some perturbations [34].
Another strategy that induces gradient masking is pruning [45], which randomly
drops some neurons in the original architecture.

Lastly, several recent works provide empirical evidence of the robustness of
Bayesian NNs [58, 182, 110, 123, 149, 161]. Earliest attempts to understand
the robustness properties of BNNs appear in [11, 62]. In particular, [11] define
Bayesian adversarial spheres and empirically show that, for BNNs trained with
HMC, adversarial examples tend to have high uncertainty. Moreover, they
show how basic ensembling strategies, like bootstrapping, are vulnerable to the
attacks. Interestingly, [62] derive sufficient conditions for idealised BNNs to
avoid adversarial examples; however, it is unclear how such conditions could be
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checked in practice, as it would require one to check that the BNN architecture
is invariant under all the symmetries of the data. Because of the capabilities of
BNNs to model uncertainty, which can be intuitively linked to their robustness
properties, many recent works introduce both empirical [33, 95, 58, 133, 68] and
formal verification methods [171, 12] to detect adversarial examples for BNNs.
Other works perform adversarial training on BNNs [183, 179, 99, 172], together
with robustness constraints or penalties added at training time. Empirical
results obtained with such techniques highlight how, in the Bayesian settings,
high accuracy and high robustness often are positively correlated with each
other. In Chapter 4 we provide a theoretical and empirical analysis that further
confirms the adversarial robustness of BNNs, as well as the aforementioned
correlation.

3.5 Saliency Explanations

Explainable AI seeks to provide human-interpretable explanations that support
DNNs’ decisions. Most of the recent explanation methods provide post hoc
interpretations of black box classifier, which generate visual explanations of the
decisions performed on single input samples [2, 70, 104]. Among the variety
of available techniques, gradient-based attribution methods rely on gradient
information provided by the models to produce the explanations. We briefly
mention a few of them in what follows.

[148] compute image-specific saliency maps using a single back-propagation
step across the network for a chosen class. Local Interpretable Model-agnostic
Explanations (LIME) [136] searches for the optimal explanation of a sample
from a specified class of explanation models which are intrinsically interpretable
[104]. The attribution method of Integrated Gradients [153] satisfies two specific
axioms: sensitivity and implementation invariance. Sensitivity indicates that
whenever an input and a baseline differ by a single feature and their predictions
on that input are distinct, the attribution associated with the differing feature is
non-zero. Two functionally equivalent networks satisfy implementation invariance
if they associate identical attributions to the same input. Integrated gradients
have been extended in several works [44, 79, 108]. Deep learning important
features (DeepLIFT) [147] assigns attributions by comparing the activation of
each neuron to a reference activation, i.e. the activation of a baseline input, which
is task-dependent. It satisfies the sensitivity axiom but breaks implementation
invariance [153]. Shapley additive explanations (SHAP) [100] generalizes all the
explanation functions that can be expressed as a linear combination of binary
variables, including LIME and DeepLIFT.

In this work we focus on Layer-wise Relevance Propagation (LRP) explanation
method, introduced in Section 3.5.1, in the context of image classification.
The reason for this choice is that LRP scales well with highly complex DNN
architectures and can be easily extended to the Bayesian setting.
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3.5.1 Layer-wise Relevance Propagation

Let f : M × Rnw → RK be an image classifier on K classes, where M is
the data manifold, Rnw is the space of learnable weights w and the vector
f(x,w) denotes the probability that an image x ∈ M belongs to each one of the
possible classes. The idea of pixel-wise decomposition of a given image x is to
understand how its pixels contribute to the prediction f(x,w). In particular,
LRP associates with each pixel xp a relevance score R(xp,w), which is positive
when the pixel contributes positively to the classification, negative when it
contributes negatively to the classification and zero when it has no impact on
the classification. All the relevance scores for a given image x can be stored in a
heatmap R(x,w) = {R(xp,w)}p, whose values quantitatively explain not only
whether pixels contribute to the decision, but also by which extent.

One can leverage suitable propagation rules to ensure that the network output
is fully redistributed through the network, namely that the relevance heatmap
catches all the saliency features from the inputs [144]. For this purpose, the
heatmap should be conservative, i.e. the sum of the assigned relevance values
should correspond to the total relevance detected by the model: f(x,w) =P

p R(xp,w). In the multi-label setting R(x,w) is the heatmap associated with
the correct classification label. Although the conservative property is not required
to define a relevance heatmap, it has been empirically observed that conservative
rules better support classification [144, 113]. Several propagation rules satisfy
the conservative property, each of them leading to different relevance measures.
In the next section, we report three practical propagation rules: the Epsilon rule,
the Gamma rule and the Alpha-Beta rule.

[8] also presented LRP using a functional approach, i.e. independently of the
network’s topology. Then, [113] used deep Taylor decomposition to express any
rule-based approach under the functional setting. Their method builds on the
standard first-order Taylor expansion of a non-linear classifier at a chosen root
point x∗, i.e. a point on the data manifold such that fj(x

∗) = 0 on the true
class j ∈ {1, . . . ,K} of x,

f(x,w) = f(x∗,w) +∇xf(x
∗,w) · (x− x∗) + γ

=
X

xp

∂f

∂xp

���
x=x∗

· (xp − x∗
p) + γ,

(3.11)

where γ denotes higher-order terms. The root point x∗ represents a neutral
image which is similar to x, but does not influence classification, i.e. whose
relevance is everywhere null. The nearest root point to the original image x can
be obtained by solving an iterative minimization problem [113]. The resulting
LRP heatmap is R(x,w) = ∇xf(x

∗,w) · (x− x∗).
In a similar way, it is possible to introduce a concept of Bayesian explanations

for BNN predictions. Since the relevance score assigned to an input feature
depends on the NN’s weights, in the Bayesian setting it becomes a random
variable and the LRP heatmap is computed in expectation under the posterior
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distribution over the weights:

R(x,w) = Ep(w|D)[∇xf(x
∗,w)] · (x− x∗)

=

MX

i=1

∇xf(x
∗,wi) · (x− x∗) wi ∼ p(w|D).

3.5.2 LRP Rules

Following the notation in Section 3.2, for ease of reading let us denote a relevance
heatmap R(x,w) as R and the i-th activation at the l-th layer f

(l)
i (x) during

the forward pass as ali. We recall that w
(l)
ij is the weight connecting the neuron

alj to all neurons al−1
i in the previous layer, that is for i = 1, . . . , nl−1.

Figure 3.7: Visualization of a Neural Network architecture showing the indexing
of neurons and weights.

A practical example of propagation rule is the Epsilon rule (ε-LRP) [114].
The computation starts with the relevance RL

j = 1 attributed to the output
classification neuron aLj , that is backpropagated through all the connected
neurons until reaching the input features xp. The resulting ε-LRP score for a
chosen ε > 0 and neuron index i = 1, . . . , nl−1 at layer l − 1 amounts to

Rl−1
i =

nlX

j=1

aliw
(l)
ij

ε+
Pnl−1

k=0 alkw
(l)
kj

Rl
j .

The Gamma rule (γ-LRP) favours positive contributions over negative con-
tributions by a factor of γ. The score for a chosen γ > 0 is

Rl−1
i =

nlX

j=1

ali ·
�
w

(l)
ij + γ ·max{0, w(l)

ij }
�

Pnl−1

k=0 alk ·
�
w

(l)
kj + γ ·max{0, w(l)

kj }
�Rl

j .
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Finally, the Alpha-Beta rule (αβ-LRP) computes

Rl−1
i =

nlX

j=1

 
α ·

max{0, aliw
(l)
ij }Pnl−1

k=0 max{0, alkw
(l)
kj }

− β ·
min{0, aliw

(l)
ij }Pnl−1

k=0 min{0, alkw
(l)
kj }

!
Rl

j ,

where the conservative property holds for any choice of α and β s.t. α− β = 1.
We refer to [114] (Section 10.2.3) for a complete derivation of the propagation

rules listed above within the deep Taylor decomposition framework [113]. Notice
that for the αβ-LRP rule this generalization holds only when α = 1 and β = 0,
which are the values used in our experiments in Section 6.3.

3.5.3 Saliency Attacks
In this section, we define a few adversarial perturbations of the explanations
used in our experiments (Section B.2), whose goal is to alter interpretations
without affecting classifications.

[63] present a variety of attacks against feature importance methods, which
iteratively maximize the diversity between original explanations R(x,w) and
perturbed explanations R(x̃,w). At each step the image is perturbed in the
direction of the gradient of a dissimilarity function D(x, x̃)

x̃t+1 = Proj{x̃t + α · sgn∇xD(x, x̃t)}ϵ,∞,

where t indexes the current step in the iterative algorithm. We leverage two of
the proposed techniques, with the following dissimilarity functions:

• D(x, x̃) =
P

p∈Ak
R(x̃p,w) for the target region attack, where Ak is a

pre-defined region of k% pixels;

• D(x, x̃) = −Pp∈Topk(x)
R(x̃p,w) for the top-k attack, where k indicates

the chosen percentage of most relevant pixels.

In our experiments (Fig. B.8) we set α = 0.5, k = 20, number of iterations
T = 10 and the region of pixels was chosen randomly.

For each test image x, beta attack by [46] builds a targeted perturbation x̃
such that the classification is almost constant but the explanation resembles
the target explanation of a randomly chosen test image x̂ ̸= x. Specifically, it
optimizes the loss function

||R(x̃,w)−R(x̂,w)||22 + γ ||f(x̃,w)− f(x,w)||22
w.r.t. x̃ and clamps x̃ at each iteration to keep the image valid. Additionally,
during the optimization phase, ReLU activations in the NN are replaced with
softplus non-linearities

softplusβ(x) =
1

β
log

�
1 + eβx

�

to avoid the problem of vanishing gradients. In our tests (Fig. B.9 (b)) we set
γ = 1, iterations T = 10 and learning rate lr = 0.01.
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3.6 Protein Language Models
Proteins are complex molecules that serve a variety of functions in our body’s
tissues and organs and are essential for life and reproduction. They consist of
one or multiple chains of smaller units, called amino acids, which determine the
three-dimensional structure and biological function of the protein. Naturally
occurring proteins are composed of 20 different types of amino acids that can
aggregate in a huge variety of unique combinations. In this large space of amino
acid sequences, only a small fraction of proteins are expected to fold in a 3D
structure [135]. The recent developments in sequencing techniques have enabled
a large growth in the number of publicly available protein sequences; however,
to understand the information encoded in amino acid chains it is essential to
know how they fold in a three-dimensional structure. This is currently one of
the main challenges in computational biology. Thanks to the development of
powerful algorithms for structure prediction from the primary sequences, such as
AlphaFold2 [81], it is now possible to predict 3D structures with high accuracy.

Structure prediction can be framed as a problem of Natural Language process-
ing (NLP), a branch of computer science that deals with the analysis of human
language and with automated tasks involving text generation (e.g. question
answering, machine translation, etc.). Language Model (LM) architectures learn
the probability distribution of characters in a sentence, which in the case of
proteins translates into the probability distribution of amino acids in a sequence.
LMs have recently emerged as a powerful tool in protein modeling, from the
analysis of the relationship between amino acids [166], to the study of the
evolutionary history of proteins [75, 72] and the generation of novel sequences
[101, 82, 97, 135]. In particular, Transformer-based architectures [163] play a
critical role in protein language modeling (and in NLP in general) and are the
main focus of our work in Chapter 7.

3.6.1 Transformers

Transformers [163] are the current state-of-the-art models in NLP, solving tasks
such as text classification, named entity recognition, question answering, text
translation, text generation, with recent advances also in computer vision (e.g.
image classification, object detection and segmentation) and signal processing
(e.g. automatic speech recognition and audio classification). They solve sequence-
to-sequence tasks by learning representations of large-scale sequence datasets
that are aware of long-range dependencies. Unlike previous language model
architectures, such as RNNs and LSTM, they have no recurrent connections and
no sequential processing - i.e. they process an entire sequence simultaneously -
therefore being suited for parallel computing on modern accelerators.

Masked language modeling The first step in any language model is tok-
enization, which is the process of breaking a sequence into individual components,
e.g. words in a sentence or residues in a protein sequence. Transformers are
trained to solve masked language modeling, which predicts missing tokens in
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the input sequence by learning the probability distribution of each masked to-
ken conditioned on the surrounding context, i.e. the remaining tokens in the
unmasked part of the sequence.

Attention mechanism Attention is the basic concept in Transformer archi-
tectures, with the double goal of capturing long range-dependencies in a text
and preserving coherence w.r.t. the surrounding context. It learns semantic
dependencies between words in a text by processing an entire sequence, while
also focusing on specific parts of it, similar to the mechanism of attention in
the human mind [59, 163]. More specifically, attention computes correlations,
named self-attention scores, between all couples of tokens in a sequence and
uses them to control the impact of the contribution of each token to the hidden
representations, therefore learning semantic dependencies between words.

Figure 3.8: Computation of self-attention for a token x1 in a sequence x of
length 3.

Self-attention for each token in a sentence x of length N is computed as
follows. The sequence of tokens is first converted into a sequence of embedded
representations called word vectors, which is the input of the first attention layer
in the architecture. Precisely, let xi ∈ RD denote the dense representation of
a single token in x, which is typically a one hot encoding over the reference
alphabet summed up with a positional encoding. Given an input xi an attention
layer outputs three vector representations, namely key (ki), query (qi) and value
(vi) vectors. The product between a query value qi and the key value kj for
each token in the sentence (j = 1, . . . , N) is divided by the square root of the
dimension of kj and passed through the softmax function

ui := softmax

 "
qi · kjp
dim(kj)

#

j

!
∈ RN ,
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so that the total impact of token xi on all other tokens xj sums up to 1. Each
softmax score u

(j)
i in ui is then multiplied by the j-th value vector vj , and finally,

all the weighted scores are summed up to obtain the self-attention vector

A(xi) =
NX

j=1

u
(j)
i · vj ∈ RM ,

representing the attention that token xi places on itself and on all the other
tokens in the surrounding context. Using multiple attention blocks, called
attention heads, allows the Transformer to build several hidden representations
of the input sequence, capturing different semantic information to improve local
coherence.

In practice, self-attention is computed by matrix calculation, for faster
processing. Given an input sequence of length N with dense representations of
length D, represented in matrix form as X ∈ RN×D, an embedding dimension M
and the learnable key, query and vector weight matrices Wk,Wq,Wv ∈ RD×M ,
each attention head h computes an N ×M matrix:

Ah(Wk,Wq,Wv, X) = softmax

 
(X ·Wq) · (X ·Wk)

T

√
M

!
· (X ·Wv).

Matrices from H attention heads are concatenated and multiplied by an addi-
tional matrix Wo ∈ RM×M , to obtain a single multi-headed attention matrix,
encoding the information provided by all the attention heads:

A(X) = concat
h=1,...,H

(Ah) ·Wo.

Architecture and training Transformers are composed of multiple blocks
of two types: an encoder block that combines a self-attention layer and a
feed-forward layer; a decoder block that combines a self-attention layer, an
encoder-decoder attention layer and a feed-forward layer (see Figure 3.9). The
encoder-decoder layer processes the encoder’s key and value vectors with the
query vector from the decoder. A Transformer typically contains the same
number of encoder and decoder modules (six in the original formulation). The
decoder outputs a vector which is passed through a fully connected layer and a
softmax layer, to return a probability distribution over words in the alphabet, i.e.
to choose an output token that solves masked prediction. The learnable weights
are initialized randomly and updated at each training step, using a random
percentage of masked tokens for masked prediction. For further details on the
architecture and the training procedure we refer the reader to [163].

3.6.2 Keywords in Structural Biology

The next paragraphs introduce some fundamental concepts in structural biology.
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Figure 3.9: Example of Transformer architecture with one Encoder block and
one Decoder block.

Amino acid An amino acid is a group of molecules that contains a central
carbon (Cα) atom, an amino group, an acidic carboxyl group and an organic R
group (or side chain), the latter being unique to each amino acid. Depending
on the locations of the core functional groups, it is classified as α, β, γ or δ
amino acid; for instance, a Cβ atom is the second carbon atom that attaches to
a functional group. In proteins, amino-acid pairs that are far apart in a sequence
are often spatially close in the 3D structure; this phenomenon, known as folding,
ensures protein stability [135].

Protein structure A single protein has four orders of structure representations.
The primary structure is the sequence of amino acids forming a polypeptide
chain. The secondary structure describes local segments, such as alpha helices
or beta sheets. The tertiary structure denotes the full 3D shape of a protein,
which is determined by the interactions between groups of amino acids. Many
proteins are composed of a single polypeptide chain, but others are made up of
multiple chains, that together build its quaternary structure.

Contact map Contact maps provide a reduced representation of the tertiary
structure of a protein. Precisely, they are 2-dimensional matrices containing the
distances between all pairs of amino acids that are in contact but far apart (of at
least 6 positions) in the sequence. Typically, two residues are considered to be in
contact if their Cα atoms and their Cβ atoms are within 6-12Å. Contact maps are
invariant to rotations and translations, and their diagonal represents the backbone
of the protein. Interestingly, it is possible to retrieve the 3D coordinates of a
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protein from its contact map using distance geometry and stochastic optimization
techniques [120, 164] or deep learning techniques [55, 128].

Binding site Binding sites describe the interaction of proteins with other
molecules, i.e. their function. A binding site is a region that binds to a smaller
external molecule, called ligand, eventually causing a conformational change that
alters the protein’s function.

Mutation A mutation is an alteration of an amino acid sequence, that can
occur in both normal (e.g. evolution) and abnormal (e.g. cancer) biological
processes. A mutation may alter the 3D structure (i.e. induce misfolding) of a
protein without altering its function. However, some mutations at vulnerable sites,
known as missense (or dysfunctional) mutations, can alter function, eventually
causing diseases or influencing drug treatments [23, 150].

Sequence homology and Multiple Sequence Alignment Due to divergent
evolution, biological organisms from the same common ancestor can evolve in
different ways to serve several functions, resulting in homologous structures.
Sequence homology quantifies the homology between proteins based on the evolu-
tionary similarity between their amino acid sequences. For instance, percentage
homology computes the percentage of conserved residues in the evolutionary
history. A Multiple Sequence Alignment (MSA) is an alignment of multiple
sequences according to their homologous regions.

BLOSUM matrix The BLOcks SUbstitution Matrix (BLOSUM) contains
integer similarity scores between all couples of residues in a sequence and is
used to score the alignments between evolutionarily divergent protein sequences.
Scores in a BLOSUM-k matrix are based on replacement frequencies observed
in known alignments with less than k% sequence similarity [80]. Therefore, it
is a quantitative approach to determine whether an amino acid substitution is
conservative (i.e. a substitution that preserves the biochemical properties of the
chain) or nonconservative. In particular, the BLOSUM62 matrix has become
a standard scoring matrix for a wide range of alignment programs. Positive
BLOSUM scores for a substitution are classified as conservative, while negative
values are classified as non-conservative.

3.6.3 NLP for Contact and Structure Prediction

The advancement of DNA sequencing has brought a rapid increase in the number
of available protein sequences and several new algorithms that attempt to infer
the biological function, the evolutionary history, the structural contacts and the
full 3D structure of such sequences. Protein language models leverage state-of-
the-art NLP architectures, and in particular, the attention mechanism, to learn
rich representations of proteins from large databases of sequences.
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In this work, we rely on two of the most known Transformer-based archi-
tectures for solving residue-residue contact prediction, namely ESM-1b [138]
and MSA Transformer [132]. The former is trained on individual sequences of
amino acids and computes classical row-attention on each sequence, while the
latter takes as input an MSA of evolutionarily related sequences and combines
row-attention with column-attention, which learns statistical properties among
different positions in sequence alignments and identifies residues that are pre-
served during evolution. Similarly, AlphaFold2 model [81] is trained on MSAs
and protein structures from the Protein Data Bank (PDB) [86] to predict 3D
atomic coordinates of proteins from raw input sequences. In our experiments, we
perform structure prediction through ColabFold [112], which optimizes structure
prediction from AlphaFold2 by adding fast homology search of MMseqs2 [111].

3.6.4 Structural Similarity Scores
In our experiments, we rely on the following similarity measures [121] between
two 3D protein structures:

• the Root-Mean-Square-Deviation computes the Euclidean distance between
matching atoms after optimal superimposition

RMSD =

vuut 1

N

NX

i=1

d2i ,

where N is the number of equivalent atoms and di is the distance between
couples of corresponding atoms. It is a global superimposition measure,
ranging from 0 (same structure) to ∞;

• the Local Distance Difference Test [105] measures the percentage of pre-
served distances between all pairs of atoms in the target structure closer in
space than a predefined cutoff, then it averages the resulting score using
four different cutoffs (0.5, 1, 2 and 4Å)

LDDT =
1

4
· N0.5 +N1 +N2 +N4

M
,

where M is the number of atom pairs that do not belong to the same
residue and are not further apart than 15Å in the target structure and Nk

is the number of atom couples in the reference structure whose inter-atom
distances deviate by no more than kÅ from the corresponding distances in
the target structure. It is a score for local structural similarity, ranging
from 0 (less similar structures) to 1 (more similar structures);

• the TM-score [185] computes the distances between all couples of Cα atoms
after optimal superposition

TM-score = max

"
1

Lreference

LcommonX

i=1

1

1 + ( di

d0
)2

#
,
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where Lreference is the length of the reference sequence, Lcommon is the
number of common residue pairs w.r.t. the target structure, di is the dis-
tance between corresponding residue pairs, d0 = 1.24 3

√
Lreference − 15−1.8

length-dependent distance parameter that normalizes distances and the
score is maximized w.r.t. superposition coordinates. It is a global superim-
position score, ranging from 0 (less similar structures) to 1 (more similar
structures).
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The robustness of BNNs to adversarial examples has already been observed
empirically in various works [58, 182, 110, 123, 149, 161] and has been discussed
in Section 3.4.4. However, while these works present empirical evidence on
the robustness of BNNs, they do not give any theoretical motivation on the
mechanisms that lead to BNN robustness. The framework we develop in this
work further confirms and grounds findings from recent literature, by additionally
providing a theoretical justification of such behaviour.

Indeed, we analyze the effect of dimensionality of the data manifold and the
weight space on adversarial examples, proving that overparameterized BNNs are
robust to gradient-based attacks in the limit of infinitely many data. Specifically,

43
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we first show that, for any neural network achieving zero loss, adversarial attacks
arise in directions orthogonal to the data manifold. Then, we rely on the
submanifold extension lemma [94] to show that in the limit of infinitely-wide
layers, for any neural network and any set of weights there exists another set of
weights achieving the same loss and with opposite loss gradients orthogonal to
the data manifold on a given point. Under the assumption of infinitely many
data and flat (i.e., uninformative) prior, we then show that by averaging over
these weights sets the expectation of the gradient w.r.t. the posterior distribution
of a BNN vanishes.

We conduct large-scale experiments on thousands of different neural networks,
empirically finding that in the cases here analysed for BNNs high accuracy
correlates with high robustness to gradient-based adversarial attacks, contrary to
what is observed for deterministic NNs trained via standard Stochastic Gradient
Descent (SGD). Finally, we also investigate the robustness of BNNs to gradient-
free adversarial attacks, showing that BNNs are substantially more robust than
their deterministic counterpart even in this setting.

4.1 Gradient-Based Adversarial Attacks for Neu-
ral Networks

Equation (3.9) in Chapter 3 defines adversarial attacks for Bayesian Neural Net-
works in terms of an expectation under the posterior distribution. This suggests
a possible mechanism through which BNNs might acquire robustness against
adversarial attacks: averaging under the posterior might lead to cancellations in
the expectation of the gradient of the loss. In the next sections, we prove that
this averaging property is closely related to the geometry of the data manifold
M. As a consequence, to study the expectation of the gradient of the loss for
BNNs, we first introduce some results that link the geometry of M to adversarial
attacks.

We start with a trivial, yet important observation: for a NN that achieves
zero loss on the whole data manifold M, the loss gradient is constant (and zero)
along the data manifold for any x∗ ∈ M. Therefore, in order to have adversarial
examples the dimension of the data manifold M must necessarily be smaller
than the dimension of the ambient space S ⊂ Rd, that is, dim (M) < dim (S) ,
where dim (M) denotes the dimension of M.

Lemma 4.1. Assume that ∀x ∈ M L(x,w) = 0, that is f(x,w) achieves
zero loss on M. Then, if f is vulnerable to gradient-based attacks at x∗ ∈ M,
dim (M) < dim (S) in a neighbourhood of x∗, i.e. M is locally homeomorphic
to a space of dimension smaller than the ambient space S.

Proof. By assumption ∀x ∈ M,L(x,w) = 0, which implies that the gradient
of the loss is zero along the data manifold. However, if f is vulnerable to
gradient-based attacks at x∗ then the gradient of the loss at x∗ must be non-zero.
Hence, there exists an open neighbourhood B of x∗ such that B ̸⊆ M, which
implies dim(M) < dim (S) locally around x∗.
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Lemma 4.1 confirms the widely held conjecture that adversarial attacks may
originate from degeneracies of the data manifold [67, 56]. Indeed, it has been
already empirically noticed [84] that adversarial perturbations often arise in
directions normal to the data manifold. The suggestion that lower-dimensional
data structures might be ubiquitous in NN problems is also corroborated by
recent results [65] showing that the characteristic training dynamics of NNs are
intimately linked to data lying on a lower-dimensional manifold. Notice that the
implication is only one way; the data manifold can be low dimensional and still
not vulnerable at many points.

We note that, as discussed in Section 3.2.3, at convergence of the training
algorithm and in the limit of infinitely-many data, infinitely-wide neural networks
are guaranteed to achieve zero loss on the data manifold, satisfying the assumption
of Lemma 4.1. As a result, once an infinitely-wide NN is fully trained, for any
x ∈ M the gradient of the loss function is orthogonal to the data manifold as
it is zero along the data manifold, i.e., ∇xL(x,w) = ∇⊥

xL(x,w), where ∇⊥
x

denotes the gradient projected into the normal subspace of M at x. Note that
for a given NN, ∇⊥

xL(x,w) is, in general, non-zero even if the network achieves
zero loss on M, thus explaining the existence of adversarial examples even for
very accurate classifiers. Crucially, in Section 4.1.1 we show that for BNNs, when
averaged w.r.t. the posterior distribution, the orthogonal gradient vanishes.

4.1.1 A Symmetry Property of Neural Networks
Before considering the BNN case, in Proposition 4.1 below we show a symmetry
property of neural networks: given a neural network, we can always find an
infinitely-wide NN that has the same loss but opposite orthogonal gradient.
To prove this result, we first introduce Lemma 4.2, which is a generalization
of the submanifold extension lemma and a key result we leverage. It proves
that any smooth function defined on a submanifold M can be extended to the
ambient space, in such a way that the choice of the derivatives orthogonal to the
submanifold is arbitrary.

Lemma 4.2 ([5]). Let TxM be the tangent space of M at a point x ∈ M. Let
V =

Pd
i=dim(M)+1 v

i∂i be a conservative vector field along M which assigns a
vector in TxM⊥ for each x ∈ M. For any smooth function f true : M → R there
exists a smooth extension F : S → R such that

F |M = f true,

where F |M denotes the restriction of F to the submanifold M, and such that
the derivative of the extension F is

∇xF (x) = (∇1f
true(x), . . . ,∇dim(M)f

true(x), vdim(M)+1(x), . . . , vd(x))

for all x ∈ M.

Notice that in Lemma 4.2, in ∇xF (x), we pick the local coordinates at x ∈ M,
such that the first set of components parametrises the data manifold. We stress
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that as M is smooth, this is without any loss of generality [94]. Lemma 4.2,
together with the universal approximation capabilities of NNs [78], is employed in
Proposition 4.1 to show that for any possible value v of the orthogonal gradient
to the data manifold in a point, there exists at least two (possibly not unique)
different weight vectors that achieve zero loss and have orthogonal gradients
respectively equal to v and −v.

Proposition 4.1. Consider a NN f with M + 1 layers, last hidden layer of size
nM and an input x ∈ M. Then, in the limit of nM → ∞ (size of last hidden
layer going to infinity), for any smooth function f true : M → R and vector
v ∈ Rdim(S)−dim(M), there exist two sets of weights w1,w2 such that

f(·,w1)|M = f true = f(·,w2)|M (4.1)

∇⊥
x f(x,w1) = v = −∇⊥

x f(x,w2). (4.2)

Proof. From Lemma 4.2 we know that there exist smooth extensions F+ and
F− of f true to the embedding space such that ∇⊥

x F
+(x) = v = −∇⊥

x F
−(x).

As a consequence, to conclude the proof it suffices to apply Theorem 3 in [78]
that guarantees that infinitely-wide neural networks are uniformly 1-dense on
compacts in C1(S), under the assumptions of smooth, bounded, and non-constant
activation functions. Specifically, for any F ∈ C1(S) and ϵ > 0, for any compact
S ′ ⊆ S there exists a set of weights w s.t.

max
n
sup
x∈S′

||F (x)− f(x,w)||∞, sup
x∈S′

||∇F (x)−∇f(x,w)||∞
o
≤ ϵ.

As F+, F− ∈ C1(S), this concludes the proof.

Note that by the chain rule, the gradient of the loss is proportional to the
gradient of the NN. As a consequence, Proposition 4.1 guarantees that, for
infinitely-wide NNs, for any set of weights achieving the minimum loss, then
there exists another set of weights with the same loss and opposite orthogonal
gradient of the loss w.r.t. the input. This suggests that by averaging over these
configurations of the weights one can achieve a robust model that has a vanishing
expected orthogonal gradient. In the next section, in Theorem 4.1 we show this
is indeed the case. However, we should already emphasize that such a result
does not hold by simply averaging the set of weights w.r.t. any distribution.
Intuitively, for this result to hold, it is required that each set of weights achieving
a given gradient value has the same measure as the set of weights with the same
loss and opposite orthogonal gradient value.

4.2 Adversarial Robustness via Bayesian Averag-
ing

We are now ready to state Theorem 4.1, where we show that under the assumption
of a flat prior, the posterior of an infinitely-wide BNN achieving zero loss has
vanishing orthogonal gradients.
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Theorem 4.1. Let f(x,w) be an infinitely-wide BNN trained on a data set
DN composed by N data points with true underlying function f true : M → R.
Assume that:

(1) The prior is flat.

(2) For N → ∞ the posterior distribution of the BNN converges weakly to a
distribution that achieves zero loss with probability 1, i.e.,

P (f(·,w)|DN )
d−→ P (f | D∞),

where P (f | D∞) is such that

P
�
sup
x∈M

|f(x)− f true(x)| = 0
���D∞

�
= 1. (4.3)

Then, for any x ∈ M it holds that

Ep(f(·,w)|DN )[∇⊥
x f(x,w)] → 0 (4.4)

as N → ∞.

Proof. Without any loss of generality assume that dim (S) − dim (M) = 1.1
Consider the operator

Gx : f 7→ ∇⊥
x f(x),

which is linear and bounded under the boundedness assumption on the derivatives
of f . By the Portmanteau theorem, Gx preserves weak convergence, hence as
N → ∞

Ep(f(·,w)|DN )[∇⊥
x f(x,w)] → Ep(f |D∞)[∇⊥

x f(x)]. (4.5)

Then, to prove Equation (4.4) it is enough to show that

Ep(f |D∞)[∇⊥
x f(x)] = 0.

To do that, we proceed as follows. By definition of expectation, we have that

Ep(f |D∞)[∇⊥
x f(x)] =

Z

v∈R

v p(∇⊥
x f(x) = v|D∞)dv

=

Z

v∈R>0

v p(∇⊥
x f(x) = v|D∞)dv +

Z

v∈R<0

v p(∇⊥
x f(x) = v|D∞)dv.

(4.6)

If we now can show that for any v ∈ R and ϵ ∈ R>0

P (∇⊥
x f(x) ∈ [v − ϵ,v + ϵ] | D∞) =

Z

[v−ϵ,v+ϵ]

p(∇⊥
x f(x) = v | D∞)dv

1In the case that dim (S) − dim (M) > 1, because of the linearity of the partial
derivatives, any component of Ep(f |D∞)[∇⊥

x f(x)] can be treated analogously to the case
dim (S)− dim (M) = 1.
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is constant w.r.t. v, then this guarantees that equation (4.6) is zero. In fact,
by applying the fundamental theorem of calculus, the above implies that for
any v, p(∇⊥

x f(x) = v | D∞) = p(∇⊥
x f(x) = −v | D∞) almost surely (i.e. with

probability 1), hence terms in equation (4.6) cancel out. We prove that

P (∇⊥
x f(x) ∈ [v − ϵ,v + ϵ] | D∞)

is constant w.r.t. v in what follows.
By assumption it holds that any f ∼ P (·|D∞) is such that ∀x̄ ∈ M, f(x̄) =

f true(x̄) almost surely. Hence, to conclude, being our prior invariant to transla-
tions (see definition 3.6), it is enough to show that for any v,v′ sets

Fv = {g ∈ F : ∀x̄ ∈ M, g(x̄) = f true(x̄) ∧∇⊥
x g(x) ∈ [v − ϵ,v + ϵ]}

Fv′ = {g ∈ F : ∀x̄ ∈ M, g(x̄) = f true(x̄) ∧∇⊥
x g(x) ∈ [v′ − ϵ,v′ + ϵ]}

are equal up to a translation. This can be shown as follows. Using Lemma 4.2 we
extend f true to a smooth function fv in S such that its orthogonal gradient in
x ∈ M equals v, i.e. ∇⊥

x fv(x) = v. Then, because of the linearity of the gradient
operator, any other function g on X that is equal to f true when restricted to M
and such that ∇⊥

x g(x) ∈ [v − ϵ,v + ϵ] can be written as

g(x) = fv(x) + k̄(x),

where k̄ is a function that has the orthogonal gradient in x within [−ϵ, ϵ] and
that is 0 on M, i.e.,

k ∈ K = {k̄ : ∀x̄ ∈ M, k̄(x̄) = 0 ∧∇⊥
x k̄(x) ∈ [−ϵ, ϵ]}. (4.7)

Let’s consider a function fv′ built similarly as fv, then we obtain that all
g′(x) equal to the true function and such that ∇⊥

x g
′(x) ∈ [v′ − ϵ,v′ + ϵ] can be

written as
g′(x) = fv′(x) + k̄(x),

with k̄ ∈ K, where K is as in equation (4.7). It then follows that the sets Fv and
Fv′ are such that Fv = Fv′ + (fv − fv′). Hence,

P (∇⊥
x f(x) ∈ [v − ϵ,v + ϵ] | D∞) = P (∇⊥

x f(x) ∈ [v′ − ϵ,v′ + ϵ] | D∞).

Thus, concluding the proof.

The proof of Theorem 4.1 relies on two main assumptions: (1) the prior
is flat, which guarantees that probabilities are invariant to translations, thus
allowing for perfect cancellation in expectation; (2) the limiting distribution
of an infinitely-wide BNN has zero loss with probability 1, which allows us
to only focus on the set of functions that are a.s. equal to the true functions
on the data manifold. While we will discuss the implication of the flat prior
assumption in Section 8.1, we would like to stress that because of the universal
approximation properties of neural networks, the second assumption in Theorem
4.1 is a standard assumption to require, as it guarantees that our posterior
converges to the true function with infinitely many data. For example, under
mild assumptions, a similar requirement has been explicitly shown to hold for
infinitely-wide feed-forward Bayesian neural networks with one hidden layer [93].
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4.2.1 Multimodality of Posterior Weight Distribution

Figure 4.1: Prior (first column) and posterior (columns 1-3) distributions for
models trained with an increasing number of training points. Models are trained
on MNIST dataset with HMC. Samples are projected on the first two principal
components (here x and y) using PCA.

A key aspect in the proof of Theorem 4.1 is that when the data manifold has
a dimension smaller than the ambient space, then there are multiple weight sets
minimizing the loss (see Lemma 4.2) and the BNN posterior averages between
them achieving vanishing orthogonal gradients. Note that, if there were just one
set of minimizing weights, we could have employed standard results of asymptotic
statistics, such as the Bernstein von Mises Theorem to study the asymptotic
behaviour of the BNN [162]. However, a standard application of Bernstein
von Mises Theorem would have led to convergence to a Gaussian distribution
centred in the maximum likelihood parameters and with vanishing variance: this
would have implied that a BNN is robust if and only if also the correspondent
deterministic NN with fixed (deterministic) weights is robust, which we know
not to be the case.

Figure 4.1 empirically confirms this phenomenon by showing that the posterior
distributions of the weights are multimodal, thus Bernstein von Mises theorem
does not apply to BNNs.

4.2.2 Comparison with other Randomization Strategies

While the Bayesian posterior ensemble may not be the only randomization
to provide protection, it is clear that some simpler randomization techniques
such as bootstrap will be ineffective, as noted empirically by [11]. This is
because bootstrap resampling introduces variability along the data manifold,
rather than in orthogonal directions. In this sense, bootstrap clearly cannot
be considered a Bayesian approximation, especially when the data distribution
has zero measure support w.r.t. the ambient space. Similarly, we do not expect
gradient smoothing approaches [7] or adaptive attacks [159] to be successful, since
the type of smoothing performed by Bayesian inference is specifically informed
by the geometry of the data manifold. In Section 4.3.5 we also run an empirical
comparison with Deep Ensembles [91] - i.e. ensembles of deterministic NNs - and
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Figure 4.2: Expected loss gradients components on 100 two-dimensional test
points from the Half Moons dataset [142] (both partial derivatives of the loss
function are shown). We used a collection of HMC BNNs, by varying the number
of hidden neurons (a different number in each subplot) and training points
(different colours and sizes of dots). Each dot represents a different NN. Only
models with test accuracy greater than 80% were taken into account.

show that ensemble averaging does not provide an improvement in robustness.
However, in Chapter 5 we propose two randomization methods to improve the
adversarial robustness of pre-trained deterministic architectures, both based on
the computation of random projections of the training data. We show that such
techniques contribute to the robustness of the networks, but, to our knowledge,
do not provide any certifiable robustness in the limit. Lastly, it is worth noticing
that Gaussian Processes [173] are equivalent to infinitely wide BNNs, therefore
Theorem 4.1 provides theoretical backing to recent empirical observations of
their adversarial robustness [32, 69, 125].

4.3 Experimental Results

In this section, we empirically investigate our theoretical findings on different
BNNs. We train a variety of BNNs on the popular MNIST and Fashion MNIST
[174] datasets. Both data sets are composed of 60.000 training images belonging
to ten classes: in the MNIST case, these are hand-written digits, while the
Fashion MNIST data set consists of stylized Zalando images of clothing items.
While MNIST is considered a relatively trivial data set, with accuracies over
99% being regularly reported, Fashion MNIST is considerably more complex,
and the best architectures report accuracies around 95%. We infer the posterior
distributions using HMC and VI approximate inference methods, presented
in Section 3.3. In Section 4.3.1, we experimentally verify the validity of the
zero-averaging property of gradients implied by Theorem 4.1, and discuss its
implications on the behaviours of FGSM and PGD attacks (Section 3.4.1) on
BNNs in Section 4.3.2. In Section 4.3.3 we analyse the relationship between
robustness and accuracy on thousands of different NN architectures, comparing
the results obtained by Bayesian and by deterministic training. Furthermore, in
Section 4.3.4 we investigate the robustness of BNNs on a gradient-free adversarial
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attack [7]. Details on the experimental settings and BNN training parameters
are reported in Appendix A.

Simulations2 are conducted on a machine with 34 single core Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30GHz processors and 200GB of RAM. We make an extensive
use of PyTorch [124] and Pyro [15] libraries.

4.3.1 Evaluation of the Gradient of the Loss for BNNs

We investigate the vanishing behaviour of input gradients - established by
Theorem 4.1 for the infinite limit regime - in the finite, practical settings, that is
with a finite number of training data and with finite-width BNNs. Specifically,
for each inference method, we perform hyperparameter tuning and select the
architecture achieving the highest test accuracy: we train a two hidden layers
BNN (with 1024 neurons per layer) with HMC and a three hidden layers BNN
(512 neurons per layer) with VI. These achieve approximately 95% test accuracy
on MNIST and 89% on Fashion MNIST when trained with HMC; as well as 95%
and 92%, respectively, when trained with VI.

Figure 4.3: The expected loss gradients of BNNs exhibit a vanishing behaviour
when increasing the number of samples from the posterior predictive distribution.
Here we show an example image from MNIST (first column) and heatmaps
(second to fourth column) of the expected loss gradients w.r.t. BNNs trained
with SVI.

Figure 4.3 depicts anecdotal evidence on the behaviour of the component-wise
expectation of the loss gradient as more samples from the posterior distribution
are incorporated into the predictive distribution of the BNN. As the number of
samples taken from the posterior distribution of w increases, all the components
of the gradient approach zero. Notice that the gradients of the individual NNs
(that is those with just one sampled weight vector), are far away from being zero.
As shown in Theorem 4.1, it is only through Bayesian averaging of the ensemble
predictors that the gradients cancel out.

This is confirmed in Figures 4.4 and 4.5, where we provide a systematic
analysis of the aggregated gradient convergence properties on 1k test images for
MNIST and Fashion MNIST. Each dot shown in the plots represents a component
of the expected loss gradient from each one of the images, for a total of 784k
points used to visually approximate the empirical distribution of the component-
wise expected loss gradient. For both HMC and VI the magnitude of the gradient
components drops as the number of samples increases and tends to stabilize

2Code is available at: https://github.com/ginevracoal/robustBNNs.
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around zero already with 100 samples drawn from the posterior distribution,
suggesting that the conditions laid down in Theorem 4.1 are approximately met
by the BNN analysed here. Notice that the gradients computed on HMC-trained
networks drop more quickly and towards a smaller value compared to VI-trained
networks, most likely because VI introduces additional approximations in the
Bayesian posterior computation.

Figure 4.4: The components of the expected loss gradients approach zero as the
number of samples from the posterior distribution increases. For each number of
samples, the figure shows 784 gradient components for 1k different test images,
from both the MNIST and Fashion MNIST datasets. The gradients are computed
on HMC-trained BNNs.

4.3.2 Gradient-Based Attacks for BNNs

The fact that gradient cancellation occurs in the limit does not directly imply
that BNNs’ predictions are robust to gradient-based attacks in the finite case. For
example, FGSM attacks are crafted such that the direction of the manipulation
is given only by the sign of the expectation of the loss gradient and not by its
magnitude. Thus, even if the entries of the expectation drop to an infinitesimal
magnitude but maintains a meaningful sign, then FGSM could potentially
produce effective attacks. To test the implications of vanishing gradients on the
robustness of the posterior predictive distribution against gradient-based attacks,
we compare the behaviour of FGSM and PGD3 attacks to a randomly devised
attack.

Namely, the random attack mimics a randomised version of FGSM in which
the sign of the attack is sampled at random. In practice, we perturb each
component of a test image by a random value in {−ϵ, ϵ}. In Table 4.1 we
compare the effectiveness of FGSM, PGD and the random attack and report the
adversarial robustness for 500 images. For each image, we compute the expected
gradient using 250 posterior samples. The attacks were performed with ϵ = 0.1

3With 15 iterations and 1 restart.
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Figure 4.5: The components of the expected loss gradients approach zero as the
number of samples from the posterior distribution increases. For each number of
samples, the figure shows 784 gradient components for 1k different test images,
from both the MNIST and Fashion MNIST datasets. The gradients are computed
on VI-trained BNNs.

Dataset/Method Rand FGSM PGD

MNIST/HMC 0.850 0.960 0.970
MNIST/VI 0.956 0.936 0.938

Fashion/HMC 0.812 0.848 0.826
Fashion/VI 0.744 0.834 0.916

Table 4.1: Adversarial robustness of BNNs trained with HMC and VI with respect
to the random attack (Rand), FGSM attack and PGD attack. Robustness is
computed on 500 images with 250 posterior samples. Attacks are performed
using ϵ = 0.1.

and using the categorical cross-entropy loss function. In almost all cases, we
see that the random attack is stronger than the gradient-based attacks in the
Bayesian setting, showing how the vanishing behaviour of the gradient makes
FGSM and PGD attacks ineffective.

4.3.3 Robustness Accuracy Analysis in Deterministic and
Bayesian Neural Networks

Theorem 4.1 holds in a specific thermodynamic limit, however, we expect the
averaging effect of BNN gradients to still provide considerable protection in
conditions where the network architecture and the data amount lead to high
accuracy and strong expressivity. In practice, high accuracy might be a good
indicator of robustness for BNNs. An empirical confirmation of this result is
shown in Figure 4.2, where we examine the impact of the assumptions made
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in Theorem 4.1: by exploiting a setting in which we have access to the data-
generating distribution, the half-moons dataset [142]. Precisely, we show that
the magnitude of the expectation of each component of the gradient shrinks as
we increase the number of the network’s parameters and the number of training
points.

In this section, we analyze more than 1000 BNNs with different hyper-
parameters trained with HMC and VI on MNIST and Fashion-MNIST. We
experimentally evaluate their accuracy/robustness trade-off on FGSM attacks as
compared to that of the same neural network architectures trained via standard
(i.e., non-Bayesian) SGD method. For the robustness evaluation, we consider the
average difference in the softmax prediction between the original test points and
the crafted adversarial input, as this provides a quantitative and smooth measure
of adversarial robustness that is closely related to misclassification ratios [31].
That is, for a collection of N test points, we compute

1

N

NX

j=1

���Ep(w|D)[f(xj ,w)]− Ep(w|D)[f(x̃j ,w)]
���
∞
. (4.8)

Figure 4.6: Robustness-Accuracy trade-off on MNIST (first row) and Fashion
MNIST (second row) for BNNs trained with HMC (red dots) and SGD (blue
dots). The boxplots show the correlation between model capacity and robustness.
Different attack strengths (ϵ) are used for the three methods depending on their
average robustness.

The results of the analysis are plotted in Figures 4.6 and 4.7 for MNIST and
Fashion MNIST datasets. Each dot in the scatter plots represents the results
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Figure 4.7: Robustness-Accuracy trade-off on MNIST (first row) and Fashion
MNIST (second row) for BNNs trained with VI (red dots) and SGD (blue
dots). The boxplots show the correlation between model capacity and robustness.
Different attack strengths (ϵ) are used for the three methods depending on their
average robustness.

obtained for a specific network architecture trained with SGD (blue dots), HMC
(pink dots in Figure 4.6) and VI (pink dots in Figure 4.7). As already reported
in the literature [152] we observe a marked trade-off between predictive accuracy
and robustness (i.e., 1 - softmax difference) for high-performing deterministic
networks. Interestingly, this trend is fully reversed for BNNs trained with HMC
(Figure 4.6) where we find that as networks become more accurate, they also
become more robust to FGSM attacks. We further examine this trend in the
boxplots that represent the effect of the network’s width on the robustness of
the resulting posterior. We observe an increasing trend in robustness as the
number of neurons in the network grows. This is in line with our theoretical
findings, indeed, as the BNN approaches the infinite width limit, the conditions
for Theorem 4.1 are approximately met and the network is protected against
gradient-based attacks.

On the other hand, the trade-off behaviours are less obvious for the BNNs
trained with VI. In particular, in Figure 4.7 we find that, similarly to the
deterministic case, also for BNNs trained on Fashion-MNIST with VI robustness
seems to have a slightly negative correlation with accuracy. Furthermore, only
in the case of VI trained on MNIST we observe an increasing trend in robustness
w.r.t. the growing size of the model, but this could also lead to poor robustness,
which may be indicative of mode collapse.
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4.3.4 Gradient-Free Adversarial Attacks

We empirically evaluate the most accurate BNN posteriors on MNIST and
Fashion MNIST from Figures 4.6 and 4.7 against gradient-free adversarial
attacks. In particular, we select ZOO attack [37] because it is effective even
when tested on networks that purposefully obfuscate their gradients or have
vanishing gradients [7]. In Figure 4.8 we observe that, similarly to gradient-based
methods, ZOO is substantially less effective on BNNs compared to deterministic
NNs in all cases, with BNNs again achieving both high accuracy and high
robustness simultaneously. Furthermore, once again, HMC is more robust to
the attacks compared to VI, which is in turn substantially more robust than
deterministic NNs. This suggests how, similarly to what was observed in the
previous subsections, a more accurate posterior distribution may lead to a more
robust model, also in the case of gradient-free adversarial attacks.

Figure 4.8: Gradient-free adversarial attacks on BNNs display similar behavior to
gradient-based attacks. We evaluate the more accurate networks from Figures 4.6
and 4.7 with ZOO attacks on MNIST (first row) and Fashion MNIST (second
row) for BNNs trained with HMC (left column), VI (center column), and SGD
(right column).

4.3.5 Empirical comparison with Deep Ensembles

[91] presented Deep Ensembles as a computationally cheap alternative to Bayesian
NNs. Deep ensembles are an ensemble of deterministic neural networks trained
with different random initial conditions, whose outputs are averaged at prediction
time. As already discussed in this chapter, adversarial attack strategies identify
directions of high variability in the loss function by evaluating the gradient w.r.t.
to the neural network input [67, 103]. We showed how this variability is linked
to uncertainty in predictions and how Bayesian Neural Networks can guarantee
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robustness to gradient-based attacks, even in the finite data regime. Therefore,
it is important to run a comparison between deterministic NNs, deep ensembles
and Bayesian NNs in terms of adversarial robustness.

In Table 4.2 we consider the same architectures used to perform the exper-
iments in Section 4.3.2 and perform FGSM and PGD adversarial attacks on
the three models under comparison. Training hyper-parameters are reported in
Table A.3 in the appendix. As expected, Bayesian NNs are more robust than
deterministic ones. Moreover, we find that deep ensembles and deterministic
NNs are comparable in terms of robustness, suggesting that simply averaging
predictions for different weight initialization and mini-batching is not enough to
achieve a robust model.

Model Test
accuracy

FGSM
accuracy

PGD
accuracy

Deterministic NN 97.69 21.19 1.45

Ensemble NN 99.4 20.6 0.3

Bayesian NN 96.1 90.0 89.8

Table 4.2: FGSM and PGD attacks on the network employed in Section 4.3.2.
We compare a deterministic NN, a deep ensemble NN (of size 100), and a BNN
(trained with VI). Attacks are performed on 1k test points from the MNIST
dataset. We observe that VI-trained network achieves better robustness against
PGD and FGSM.

4.4 Final Considerations
Our results guarantee that, in the overparameterized and infinite data limit,
BNNs’ posteriors are robust to gradient-based adversarial attacks even if each
neural network sampled from the posterior is vulnerable to such attacks.

We believe that the fact that Bayesian ensembles of NNs can evade a broad
class of adversarial attacks will be of great relevance. While promising, this result
comes with some significant limitations. First, our theoretical results hold in a
thermodynamic limit, which is never realised in practice. More worryingly, we
currently have no rigorous diagnostics to understand how near we are to the limit
case, and can only reason about this empirically. Moreover, learning accurate
BNNs on more complex datasets is extremely challenging, which makes the
Bayesian scheme currently not suitable for large-scale applications. This suggests
the need for further investigations on such matters, especially on sufficiently
accurate and scalable approximate inference methods for BNNs [170]. However,
in our experiments cheaper approximations, such as VI, also enjoyed a degree of
adversarial robustness.
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Random projections of the input samples into lower-dimensional spaces
have been extensively used for dimensionality reduction, but we are primarily
interested in using them as a defence strategy against adversarial attacks. Ran-
domization has been proven effective as a defence [73, 6], detection [48] and
regularization [51] strategy against adversarial attacks. [175] apply two random
transformations to the input images, [98] add random noise between the layers
of the architecture, [45] randomly prune activations between the layers, [178]
and [96] propose input denoising and feature denoising methods. The reasoning
behind these techniques is that NNs are usually robust to random perturba-
tions [134], thus incorporating them in the models might weaken adversarial
perturbations.

We also explore the geometrical properties related to randomization in a
high-dimensional setting and further investigate the role of codimension in
the generation of adversarial examples, which was already examined from a
Bayesian perspective in Chapter 4. We recall that [84] suggests that adversarial
perturbations mainly arise in the directions that are normal to the data manifold,
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hence as the codimension in the embedding space increases there is a higher
number of directions in which one could build adversarial perturbations. Our
framework is strongly influenced by this finding, as it suggests that by randomly
selecting directions it should be more likely to catch features that are significant
in the adversarial context. Moreover, we experimentally observe that projected
versions of the original data are easier to learn and lie in less complex regions of
the space.

We propose two training techniques to improve the robustness of deterministic
neural networks to adversarial attacks. Both methods are independent of the
chosen attack and leverage random projections of the original inputs, to exploit
both dimensionality reduction and some characteristic geometrical properties of
adversarial perturbations. The first technique is called RP-Ensemble and consists
of an ensemble of networks trained on multiple projected versions of the original
inputs. The second one, namely RP-Regularizer, leverages random projections
to build a regularization term for the training objective. We experimentally
observe that both techniques can catch relevant features of the inputs in terms
of adversarial robustness and improve the adversarial robustness of deterministic
architectures trained on MNIST and Fashion MNIST datasets via stochastic
gradient descent.

5.1 Random Projections Ensemble

Random Projection Ensemble (RP-Ensemble) model builds a neural network
ensemble upon a pre-trained model and can be interpreted as a fine-tuning
technique for adversarial robustness. RP-Ensemble projects the input data in
multiple lower dimensional spaces, each one determined by a random selection
of directions in the space, to exploit input features that are able to guarantee
robustness to the adversaries. Then, it trains a classifier on each projected dataset
and it classifies the original data by aggregating the individual predictions from
the ensemble and the original model.

We take into account N training examples from the data manifold M ⊂ Rd,
represented in matrix form as X ∈ RN×d. Let g : M× Rnw → RK be a pre-
trained neural network architecture with weights w ∈ Rnw , solving a classification
problem on K classes. First of all, we project the whole dataset X into p different
subspaces of dimension kj ≤ d, for kj = 1, . . . , p, using Gaussian random
projection matrices [41]. Each projection matrix Qj ∈ Rkj×d maps the input
data matrix X into its kj-dimensional projected version Pj(X) = XQT

j ∈ RN×kj ,
using kj randomly selected directions. The elements of each random matrix Qj

are independently drawn from a N (0, 1/kj) distribution. This particular choice
is motivated by the Johnson-Lindenstrauss lemma (Lemma 5.1), ensuring that
the Euclidean distance between any two points in the new low-dimensional space
is approximately equal to the distance between the same points in the original
high-dimensional space [41]. Any two independently randomly chosen vectors in
a high dimensional space are almost orthogonal and nearly have the same length
[83]; therefore, for any given number of sample points N , the kj-dimensional
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columns of a random matrix Qj generated from a Gaussian distribution are
approximately orthogonal to each other. This procedure yields a projection in
the kj-dimensional subspace generated by the columns of Qj .

Lemma 5.1 (Johnson-Lindenstrauss lemma). Given 0 < ϵ < 1/2, a set DN of
N data points from the data manifold M ⊂ Rd and an integer k > 8 logN/ϵ2,
let Q ∈ Rk×d be a matrix whose entries have been sampled independently from
N (0, 1/k). For any couple of points x1,x2 ∈ M the following inequality holds

P
h
(1− ϵ)||x1 − x2||2 ≤

����Qx1 −Qx2

����2 ≤ (1 + ϵ)||x1 − x2||2
i

≥ 1− 2e−(ϵ2−ϵ3)k/4.

Next, we train a classifier ψj : Rkj ×Rnwj → RK in each projected subspace
on the corresponding data projections Pj(X), where nwj

is the size of the j-th
weight space. The architecture of the ψj-s mirrors that of the pre-trained network
g, except for the first layer, whose size is adapted to the new input dimension
kj . We emphasize that the ψj-s do not share their weights nor the inputs, thus
backpropagation algorithm during the training phase stops at the projected
dataset Pj(X).

Finally, we perform an ensemble classification on the original high dimensional
data, by averaging the predictions from the projected classifiers ψj together with
the predictions from the pre-trained classifier g. Let pwj

, pg be the probability
mass functions for the classifiers ψj and g. The classification of an input sample
x ∈ DN is given by

argmax
y=1,...,K

� X

j=1,...,p

pwj
(y|Pj(x)) + pg(y|x)

�
.

Notice that the number of projections p and the size of projections kj for
j = 1, . . . , p are additional hyperparameters of the model.

5.2 Random Projections Regularizer

[60] show that regularization of the loss gradient on the inputs improves adversar-
ial robustness. In particular, they notice that the Total Variation regularization
[143] can be interpreted as the regularization induced by a single step of adver-
sarial training on gradient-based attacks.

Random Projections Regularizer (RP-Regularizer) is a variant of Total Vari-
ation (TV) regularization [143], a well-known denoising approach in image
processing, already used in [60] as a regularization term to improve adversarial
robustness. The general formulation of total variation for a real-valued continu-
ously differentiable function f involves integration over an open subset of Rd;
Therefore, to guarantee its tractability, it is usual practice to compute instead
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a numerical approximation on a finite set of points. In the image classification
setup, we consider the approximation

TV(f) ≈ 1

N

NX

i=1

��∇xL(f(xi,w), yi)
��,

on a labeled dataset DN = {(xi, yi)}i=1,...,N , where L is the training loss function
(e.g. cross-entropy loss) and N is the number of training samples.

Our regularization term builds upon TV regularization and random pro-
jections of the input points according to the following procedure. First, we
sample the components of the random matrices Rj ∈ Qkj×d from a Gaussian
distribution, with a randomly chosen projection sizes kj , for j = 1, . . . , p. Next,
we project the input data matrix X in the kj-dimensional subspaces

Pj(X) = XQT
j ∈ RN×kj ,

and we map the projections Pj(X) back into the original d-dimensional space
by means of the Moore-Penrose pseudo-inverse [127] R†

j of Rj . Specifically, we
apply it to the projected points

P†
j (Pj(X)) = XQT

j (Q
†
j)

T ∈ RN×d.

The pseudo-inverse is a generalized inverse matrix. It exists and is unique
for any given real rectangular matrix and the resulting composition QT

j (Q
†
j)

T

is an orthogonal projection operator on Rd. Figure 5.1 shows an example of
this procedure on the MNIST dataset [92]. In a nutshell, it builds on the two
projection operators

P : RN×d −→
pY

j=1

RN×kj

P† :
pY

j=1

RN×kj −→
pY

j=1

RN×d.

Figure 5.1: Original images x of size 28 × 28 from MNIST dataset (first row),
projections Pj(x) of size 25× 25 (second row) and inverse projections P†

jPj(x)
(third row).
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The last step allows us to define the penalty term for the objective function
in terms of the network’s weights at the current training step. Specifically,
given the training loss function L, we propose two distinct formulations for the
regularization term R(w) of the objective J(w) = L(w) + λ · R(w) on a set of
weights w. The first one, namely Rv1, adds a penalty which is proportional to
the expected norm of loss gradients computed on the projected data.

Rv1 = Ex

�
EP
h����∇xL(f(P†P(x),w), y)

����2
2

i�

≈ 1

Np

X

i=1,...,N
j=1,...,p

���
���∇xL(f(P†

jPj(xi),w), yi)
���
���
2

2
. (5.1)

The natural interpretation of Rv1 is that it allows us to minimize loss
variation across the inverse projections P†

jPj(xi)-s. Rv2, instead, minimizes
the variation of the loss gradients on the original inputs in randomly chosen
projected subspaces:

Rv2 = Ex

�
EP
h����P(∇xL(f(x,w), y))

����2
2

i�

≈ 1

Np

X

i=1,...,N
j=1,...,p

���
���Pj

�
∇xL(f(xi,w), yi)

����
���
2

2
. (5.2)

At each training step we perform a finite approximation of the expectations
on mini-batches of data, by randomly sampling the directions, the dimension of
the projected subspace and the number of projections.

5.2.1 Equivalence of the Regularizers

In this section we prove that the two regularization terms Rv1 and Rv2 are
equivalent as k → ∞.

Theorem 5.1. Let Rv1 and Rv2 be the regularization terms defined by Equa-
tion 5.1 and Equation 5.2, where P : Rd → Rk is a random projection such that
the elements of the orthogonal random matrix Q are sampled from N (0, 1/k). If
k ∈ O(d) then Rv1 ≈ Rv2 as k → ∞.

Let Q : Rd → Rk be a random projection matrix, Q† : Rk → Rd its pseudo-
inverse and x† := Q†Qx ∈ Rd for x ∈ Rd. For any given couple (x, y) ∈ Rd×RK

and projection matrix Q let us define

T1(R) :=
����∇xL

�
f(x†,w), y

�����2
2

T2(R) :=
����Q ·∇xL

�
f(x,w), y

�����2
2
.
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Proposition 5.1. Let Q be a random projection matrix whose elements are
sampled from N (0, 1/k) and whose columns are orthogonal. Suppose that x ∈
(kerQ)⊥ for all x ∈ Rd. Then

EQ

�
T2(Q)] =

d

k
EQ

�
T1(Q)

�
.

Proof. A random matrix Q and its pseudo-inverse Q† induce the direct sum
decompositions

Rd = (kerQ)⊥ ⊕ kerQ

Rk = rank Q⊕ (rankQ)⊥,

where kerQ is the kernel space of Q and rankQ is the rank space of Q. Moreover,
Q
��
(kerQ)⊥

is an isomorphism with inverse Q†��
rankQ

and Q†��
(rankQ)⊥

≡ 0. If
x ∈ (kerQ)⊥, then Qx ∈ rank Q and x† = Q†Qx = x, therefore

T1(Q) =
����∇xL

�
f(x,w), y

�����2
2

for all x ∈ (kerQ)⊥.
Let qi ∈ Rk be the orthogonal columns of Q. Then EQ

�
||Q||2

�
= d/k and

EQ

�
||Qx||22

�
=

dX

i,j=1

EQ

�
qTi qj

�
xixj =

dX

i=1

EQ

�
qTi qi

�
x2
i =

d

k
||x||22

for any x ∈ Rd. In particular EQ

�
T2(Q)

�
= d

kT1(Q).

Notice that when Rk is high dimensional we can assume that the columns of
any random matrix are orthogonal [165].

We now prove that Proposition 5.1 holds for an arbitrary x ∈ Rd.

Proposition 5.2. Let πR : Rd → (kerQ)⊥ be an orthogonal projection and
k = dim(kerQ)⊥. Then, for any x ∈ Rd and ϵ > 0

P
�
||πQ(x)− x||22 > ϵ ||x||22

�
≤

�
1− ϵ

π

�k

.

Proof. Suppose that {v1, . . . ,vk} ⊂ Rd is a basis for (kerQ)⊥, i.e. that
(kerQ)⊥ = span(v1, . . . ,vk). Then any x ∈ Rd can be decomposed as x =
πQ(x) + u, where πQ(x) ∈ (kerQ)⊥ and u ∈ kerQ.

Let αi be the angle between vi and x. First, we observe that the projection
πQ(x) is smaller than any other projection on a single direction vi

||πQ(x)− x||22 ≤ min
i

||πvi(x)− x||22
= min

i

�
||x||22| sinαi|

�

= ||x||22 min
i

| sinαi|.
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For any choice of ϵ > 0

P
�
||πQ(x)− x||22 > ϵ ||x||22

�
≤ P

�
||x||22 min

i
| sinαi| > ||x||22 ϵ

�

= P (min
i

| sinαi| > ϵ)

=
Y

i

P (| sinαi| > ϵ)

≤
Y

i

P (|αi| > ϵ)

=
�
1− ϵ

π

�k

.

Notice that 1− ϵ
π < 1, so

�
1− ϵ

π

�k → 0 as k goes to ∞. Therefore, from 5.2
we get x† = πQ(x) ≈ x and

∇xL
�
f(x†,w), y

�
≈ ∇xL

�
f(x,w), y

�

as k → ∞. This proves that Proposition 5.1 is true for an arbitrary x ∈ Rd

in the limit. Assuming that k = O(d) as k → ∞, e.g. d
k → M > 0, the two

regularization terms differ by a positive constant in the limit, i.e. they are
equivalent if weighted w.r.t. M . This proves Theorem 5.1.

Notice that this punctual property on Rv1 and Rv2 also holds in expectation
over the training data when x is uniformly sampled from a compact subset of
Rd. Therefore, the equivalence between the two regularization terms holds in
practice on mini-batches of training data.

5.3 Transferability of RP Defense Strategies
One of the simplest and most effective approaches to learn robust deterministic
NNs is adversarial training [66]. This process consists in training a classifier by
including adversarial examples in the training data, thus allowing to convert any
attack into a defense. The biggest limitation of this procedure is that it tends
to overfit the chosen attack, meaning that the adversarially trained model has
better performances against the attacks which they learned to defend from, but
might show poor results against other threats. This problem is easily tackled
by our methods, which are completely unaware of the nature of the attack, yet
able to improve robustness. Furthermore, adversarial training can be roughly
interpreted as a form of data augmentation, with significant differences w.r.t.
the more traditional approaches: instead of applying transformations that are
expected to occur in the test set (translations, rotations, etc.), only the most
unlikely examples are added to the training dataset. This produces a dilation
of the data manifold: adversarial examples are learned in a halo around the
surface, which makes the manifold smoother [50]. In this regard, we emphasize
that RP-Ensemble does not perform any data augmentation in the original
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high dimensional space, since the projected data samples lie in new subspaces.
RP-Regularizer, instead, produces new high-dimensional examples, which could
be intended as perturbations of the original samples, but not generated through
a specific attack methodology.

Moreover, the robustness of classifiers is strongly related to the geometry of
the learned decision boundaries. Indeed, to learn robust decision boundaries a
model has to correctly classify all the input points lying in a neighbourhood of the
data manifold. In particular, adversarially perturbed points always lie extremely
close to the decision boundaries [50], but robustness conditions change under
different p-norms, meaning that no single decision boundary can be optimally
robust in all norms [84]. For instance, if a classifier is trained to be robust under
L∞ norm, poor robustness under the L2 norm should be expected. In general,
no distance metric can be considered a perfect measure of similarity [34], so one
of the strengths of our RP methods is that they are independent of the norm
chosen for the attacks.

5.4 Experimental Results
We evaluate the proposed methods on neural networks for image classification
with 10 classes, using MNIST [92] and CIFAR-10 [88] datasets. Our baseline
models are Convolutional Neural Networks with ReLU activation functions.
We achieve 99.13% accuracy on MNIST and 76.52% accuracy on CIFAR-10.
Architectures and hyperparameters are reported in Table A.7 in the appendix.
The adversarial attacks in our tests are Fast Gradient Sign Method (FGSM),
Projected Gradient Descent (PGD), DeepFool, and Carlini and Wagner (C&W)
in the L∞ norm, presented in Section 3.4. Across all the experiments, the attack
strength is set to ϵ = 0.3 and L is the cross-entropy loss function.

Simulations1 are conducted on a machine with 34 single core Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30GHz processors and 200GB of RAM. We make an extensive
use of Tensorflow [1] and IBM adversarial-robustness-toolbox [118] libraries.

5.4.1 Improved Adversarial Robustness
To assess the improvement in robustness achieved by our techniques we perform
the following steps: (1) we build several adversarial attacks against a baseline
model; (2) we use the attacked training sets to perform adversarial training on
the baseline model; (3) we test the baseline model, the adversarially trained
model, our RP-Ensemble model and our models trained with RP-Regularizers
model against the original adversarial attacks. Employing this procedure we can
investigate the generalization capabilities of our methods, which are completely
unaware of the chosen attacks, and compare them to models that should exhibit
ideal performances against the adversaries, i.e. the adversarially trained ones.

We train multiple versions of RP-Ensemble, using different combinations of
the number of projections and the size of projections, as described in Table 5.1.

1Code is available at https://github.com/ginevracoal/adversarial_examples.



Experimental Results 67

Figure 5.2: Test accuracy of RP-Ensemble model and the adversarially trained
models against adversarial attacks crafted on MNIST dataset. The robust
models are the result of adversarial training performed on the perturbed training
sets. Multiple RP-Ensemble models are trained on different combinations of
the number of projections and the size of each projection. The evaluations are
performed on multiple adversarially perturbed versions of the test set, using
FGSM, PGD, DeepFool and Carlini & Wagner attacks.
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Figure 5.3: Test accuracy of RP-Ensemble model, the baseline model and
the adversarially trained models against adversarial attacks crafted on MNIST
dataset. The robust models are the result of adversarial training performed
on the perturbed training sets. Multiple RP-Ensemble models are trained on
different combinations of the number of projections and the size of each projection
(x axis). The evaluations are performed on multiple adversarially perturbed
versions of the test set, using DeepFool and Carlini & Wagner attacks.

In our experiments, each classifier ψj is indexed by the seed j used to sample
the projection matrix Qj . We train an RP-Regularized model on each dataset,
by uniformly sampling the number of projections and the size of projections at
each training step, as reported in Table B.4. To ensure numerical stability, we
compute the pseudo-inverse matrix Q†

j by means of the SVD decomposition of
Qj .

Dataset Number of projections Projection size

MNIST 6, 9, 12, 15 8, 12, 16, 20

CIFAR-10 3, 6, 9, 12 4, 8

Table 5.1: Number of projections and size of each projection used in RP-Ensemble
model.

Dataset Number of projections Projection size

MNIST n_proj ∼ U(2, 8) size_proj∼ U(15, 25)
CIFAR-10 n_proj= 1 size_proj∼ U(5, 10)

Table 5.2: Number of projections and size of each projection used in RP-
Regularized models.

We craft adversarial perturbations on the original test set using the baseline
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model, then test the robustness of RP-Ensemble to the adversaries in terms
of prediction accuracy. We perform the experiments on 10k test images from
MNIST (Figure 5.2) and CIFAR-10 (Figure 5.3) datasets. In Figure 5.2 we do
not report the prediction accuracy of the baseline model against the attacks,
since the very low values would affect the readability of the figure. However, we
report all the exact numerical values for the prediction accuracy in Tables B.1
and B.2 of the appendix. RP-Ensemble brings a general improvement in the
adversarial robustness of the baseline model. Adversarially trained robust models
show great results on their target attacks (i.e. the ones on which they were
trained) but perform poorly on the other ones, while RP-Ensemble preserves its
robustness across the different attacks.

Figure 5.4: Test accuracy of models trained with RP-Regularizer on MNIST.
We compare the baseline model, the adversarially trained robust models and the
models trained with the two RP-Regularizers, namely Rv1 (Eq. 5.1) and Rv2
(Eq. 5.2). Adversarial perturbations are produced on the baseline model using
FGSM, PGD, Deepfool and Carlini & Wagner attacks.

Models trained with RP-Regularizers are comparable to SOTA adversarially
trained models against the attacks performed on MNIST (Figure 5.4). Prediction
accuracies are higher on DeepFool and Carlini & Wagner attacks than on FGSM
and PGD, suggesting that this method performs better on algorithms which
are optimized to produce perturbations that are closer to the original samples
(e.g. C&W), rather than faster in computation (e.g. FGSM). The results are
less striking on CIFAR-10 (Fig. 5.5), but we stress that the robustness of
RP-Regularized models improves as the number of projections increases and
that in the case of CIFAR-10 we compromised on the choice of this parameter,
and always computed a single projection, intending to achieve good adversarial
robustness while also preserving computational efficiency. The trade-off between
these two objectives needs to be further explored.
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Figure 5.5: Test accuracy of models trained with RP-Regularizer on CIFAR-10.
We compare the baseline model, the adversarially trained robust models and the
models trained with the two RP-Regularizers, namely Rv1 (Eq. 5.1) and Rv2
(Eq. 5.2). Adversarial perturbations are produced on the baseline model using
FGSM, PGD, Deepfool and Carlini & Wagner attacks.

5.4.2 Computational Efficiency of RP-Ensemble
The classifiers ψj from PR-Ensemble are defined upon independent projected
subspaces, thus their training is completely parallelizable. This ensures the
computational efficiency of RP-Ensemble, indeed we observe a training time
close to that of the baseline, or even lower when the number of projections is
sufficiently small (Figure 5.6).

We emphasise that RP-Ensemble preserves high adversarial robustness de-
spite the heavy dimensionality reduction on the inputs. This is probably because,
thanks to Johnson-Lindenstrauss Lemma, pairwise distances between the pro-
jected points are nearly preserved in the projected subspaces, therefore the
projection classifiers ψj are able to maintain features which turn out to be a
significant defence strategy against the attacks.

5.5 Final Considerations
We empirically show that random projections of the training data act as attack-
independent adversarial features, that can be used to provide better resilience to
adversarial perturbations. We propose a fine-tuning method and a regularization
method, both based on the computation of random projections of the inputs. In
future work, we plan to improve the computational cost of RP-Regularizer and
to compare the performances of our methods to that of other attack-independent
defence strategies. We believe that further exploration of the connections between
random projections and the geometrical characterization of adversarial regions
could bring valuable insights to adversarial defence research.
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Figure 5.6: The training time of RP-Ensemble on MNIST and CIFAR-10. We
compare its efficiency to that of the baseline models and the adversarially trained
robust models.
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Adversarial machine learning has been extensively studied from the perspec-
tive of interpretability. Many works focus on adversarial manipulations of the
explanations [74, 63, 46], which consist in altering the explanations without
affecting models’ predictions. Interestingly, [137] notice that aggregations of
multiple explanation methods are less vulnerable to adversarial attacks. It has
been observed that there is a strong connection between adversarial robustness
and explainability of neural networks [157]. For instance, [47] use an adversarial
training [66, 102] to improve the interpretability of the representations, while
[140] present a regularization technique based on gradient smoothing, which
favours adversarial robustness and interpretability simultaneously. Adversarial
training is one of the most effective defence methods against attacks, but it has
also been used to improve the sensitivity of the explanations to input pertur-
bations [180]. In contrast to the previous studies, we provide a new concept
of robustness of the explanations, where we compare the interpretation of an
input to that of an adversarial attack in terms of common most relevant pixels
(Section 6.1).

We focus on LRP saliency interpretations, which are well known to be unstable
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under perturbations of the inputs [63, 85, 4, 184]. A recent work [24] investigates
how the stability of the interpretations could be improved by adding stochasticity
to the model weights. Their NoiseGrad method relies on a tempered Bayes
posterior [170] and aggregates the explanations provided by independent samples
to produce a Bayesian explanation. Our idea that Bayesian neural networks
could provide more stable explanations, instead, is motivated by the adversarial
robustness of BNNs to gradient-based attacks, proved in the previous chapter.
Hence, we focus on gradient-based attacks and also provide a formal proof for
the stability of LRP explanations (Corollary 6.1), which holds w.l.o.g. for any
other gradient-based attribution method. Furthermore, we empirically evaluate
our findings using VI and HMC approximate inference methods, presented in
Section 3.3.

Here we consider the problem of the stability of saliency-based explanations
of neural network predictions under adversarial attacks in a classification task.
Saliency interpretations of deterministic neural networks are remarkably brittle
even when the attacks fail, i.e. for attacks that do not change the classification
label. We empirically show that interpretations provided by Bayesian neural
networks are considerably more stable under adversarial perturbations of the
inputs and even under direct attacks to the explanations. By leveraging recent
results, we also provide a theoretical explanation of this result in terms of the
geometry of the data manifold. Additionally, we discuss the stability of the
interpretations of high-level representations of the inputs in the internal layers
of a network. Our results demonstrate that Bayesian methods, in addition to
being more robust to adversarial attacks, have the potential to provide more
stable and interpretable assessments of neural networks’ predictions.

6.1 LRP Robustness

We define the k-LRP robustness of relevance heatmaps to adversarial attacks
and use this measure to assess how adversarial perturbations of the inputs affect
the explanations.

Definition 6.1. Let x be an image with relevance heatmap R(x,w) and let x̃ be
an adversarial perturbation with relevance heatmap R(x̃,w). Let Topk(R) denote
the pixel indexes corresponding to the top k% most relevant pixels in the absolute
value of a heatmap R. The k-LRP robustness of x w.r.t. the attack x̃ is

k-LRP(x, x̃,w) :=
|Topk(R(x,w)) ∩ Topk(R(x̃,w))|

k
. (6.1)

In other words, the Topk(R) pixels have a strong positive or negative impact
on classification and k-LRP(x, x̃,w) is the fraction of common most relevant
pixels for x and x̃ in the top k%. Figure 6.1 gives an intuition of this computation.
Notice that the LRP robustness of a point depends only implicitly on the strength
ϵ of the attack, through the attacked point x̃.
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Figure 6.1: Topk pixels in an image x from Fashion MNIST dataset and an
FGSM adversarial perturbation x̃.

Figure 6.2: LRP heatmaps of an image x and an FGSM adversarial perturbation
x̃. Explanations are computed using the epsilon rule w.r.t. the learnable layers
of a deterministic network trained on the MNIST dataset. For each layer, we
show the 30% most relevant pixels for both the original image and its adversarial
counterpart, i.e. the ones selected for the computation of k-LRP(x, x̃,w, l) from
Equation (6.1).

Inner Layers Explanations We analyse the behaviour of LRP representations
in the internal layers of the network, thus we also extend the computation of LRP
heatmaps to any feature representation of the input x at a learnable layer l ∈ N.
We denote it by R(x,w, l), where l ≤ L and L is the total number of layers
available in the architecture. The corresponding LRP robustness will be denoted
by k-LRP(x, x̃,w, l). In such case, the robustness does not refer anymore to
explanations in the classification phase (pre-softmax layer), but rather to the
explanations in the learning phases, hence it gives an idea of the most relevant
pixels determining an internal representation.

Figure 6.2 shows an example of internal LRP heatmaps on a deterministic NN
with learnable layers indexed by l ∈ [0, 3, 7]. For illustrative purposes, heatmaps
appearing on the same row are normalized in [−1, 1] range before selecting the
Topk pixels, since numeric scales are significantly different across the different
internal representations.

Bayesian LRP Robustness The notion of LRP robustness can be natu-
rally generalised to the Bayesian setting using the concept of Bayesian model
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averaging introduced in Section 3.3. Hence, the LRP heatmap of a BNN is
computed as the average of all the deterministic heatmaps from the ensemble:
Ep(w|D)[k-LRP(x, x̃,w, l)]. In this regard, we emphasise that Bayesian interpre-
tations are affected by the chosen number of posterior samples drawn from the
learned distribution.

Figure 6.3: LRP heatmaps of an image x (second column) and an FGSM adver-
sarial perturbation x̃ (third column) which fails on a deterministic network and
a Bayesian network. The two models have the same fully connected architecture
and are both trained on the MNIST dataset. Explanations are computed using
the epsilon rule on the pre-softmax layer, i.e. layer index = 5. Bayesian LRP is
computed using 100 posterior samples. For each heatmap, we only show the 30%
most relevant pixels. The LRP robustness amounts to 0.46 in the deterministic
case and to 0.68 in the Bayesian case.

Results from Chapter 4 show that Bayesian neural networks are adversarially
robust to gradient-based attacks in the overparameterized and infinite data limit.
It is therefore of interest to investigate whether such robustness also extends to
the learned explanations. To do so, we compare the explanations of deterministic
NNs to that of Bayesian NNs against such attacks. Fig. 6.3 shows an example of
failed FGSM attack for a deterministic network and a Bayesian network with the
same architecture. Although the attack did not manage to change the overall
classification, we can see immediately a large difference between the deterministic
LRP explanation of the original image, R(x), and of the adversarial image, R(x̃)
(top row). On the other hand, in the Bayesian case (bottom row), the saliency
maps before and after the attack are essentially identical. We provide both a
theoretical explanation of this phenomenon (Section 6.2) and systematically
substantiate empirically (Section 6.3) the robustness of Bayesian explanations
to adversarial attacks.

6.2 Geometric Meaning of Adversarial Interpre-
tations

To better conceptualise the impact of a Bayesian treatment on LRP robustness,
it is convenient to consider the thermodynamic limit of infinite data and infinite
expressivity of the network, as formalised in Chapter 4. We recall that, for our
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discussion, the main ingredients are the data manifold M, a piecewise smooth
submanifold of the input space where the data lie, and the target function
f true : M → RK , which is assumed to be smooth and hence representable
through an infinitely-wide DNN (Section 3.2.3). Practically, this limit might be
well approximated on large data sets where the networks achieve high accuracy.
In this limit, it is proved [49, 107, 141] that the DNN f(x,w) trained via SGD will
converge to the true underlying function f true(x) over the whole data manifold
M. As in Chapter 4, w.l.o.g., we will consider a target function with values in
R. Because the data manifold is assumed to be piecewise smooth, it is possible
to define a tangent space to the data manifold almost everywhere, and therefore
to define two operators ∇⊥

x and ∇∥
x, representing the gradients along the normal

and tangent directions to the data manifold M at a point x, for any function
defined over the whole input space.

LRP and gradient-based adversarial strategies both share a reliance on
gradient information. In the case of adversarial attacks, one evaluates the
gradient of the loss function which, by the chain rule is given by

∇xL(f, f true) =
δL(f, f true)

δf

∂f

∂x
. (6.2)

The tangent components of the gradient of the prediction function f(x,w)
will coincide with the gradients of the true function f true(x), and therefore
represent directions of true sensitivity of the decision function, which are correctly
recognised as relevant. However, such directions might be confounded or dwarfed
by normal gradient components, which create directions of apparent relevance
that, by construction, are targeted by gradient-based adversarial attacks.

From the discussion in Section 4.2 we trivially obtain that BNNs in the
thermodynamic limit will only retain components that are tangent to the data
manifold.

Corollary 6.1. Let f(x,w) be an infinitely-wide BNN trained on a data set
DN composed by N data points with true underlying function f true : M → R.
Under the assumptions (1) and (2) in Theorem 4.1, for any x ∈ M it holds that

Ep(w|D)[R(x,w)] = Ep(w|D)[∇∥
xf(x

∗,w)] · (x− x∗)

as N → ∞.

Proof. The main result in Theorem 4.1 was to show that the orthogonal com-
ponent of the loss gradient has expectation zero under the posterior weight
distribution, therefore showing that BNNs are robust against adversarial attacks.
In the LRP setup, we instead consider gradients of the prediction function, as
opposed to the loss; nevertheless, the insight remains valid. From Theorem 4.1
we know that, under the assumption of a flat prior and for an infinitely wide
neural network f , for any x ∈ M

Ep(w|D)[∇⊥
x f(x,w)] → 0.
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Moreover, as described in Section 3.5, from the deep Taylor decomposition on a
root point x∗ ∈ M we obtain the expected LRP heatmap

Ep(w|D)[R(x,w)] = Ep(w|D)[∇xf(x
∗,w)] · (x− x∗).

Therefore, the orthogonal component of the gradient of the prediction function
vanishes in expectation under the posterior weight distribution and Bayesian
averaging of the relevance heatmaps naturally builds explanations in the tangent
space TxM.

It should be noticed that LRP heatmaps at layer l involve partial derivatives
w.r.t. x of the subnetwork f l(·,w) of f , which associates to an input x the
l-th activation from f(·,w). Consequently, the same vanishing property of the
gradients holds for explanations in the internal layers, which are therefore more
robust in the Bayesian case.

6.3 Experimental Results
We corroborate the insights described in Section 6.1 with an experimental
evaluation, training fully connected and convolutional NNs on MNIST [92] and
Fashion MNIST [174] benchmark data sets. We also extend the experiments
to a ResNet20 architecture trained on 3-channel images from CIFAR-10 [88],
which consists of 50.000 3-channels training images from ten classes. We do
not examine more complex data sets, such as ImageNet [43], because of the
high computational costs and the problems in convergence to the posterior
distribution for running Bayesian inference on deep networks trained on very
large data sets1. We train multiple DNNs and BNNs using both HMC and
VI, which allows us to contrast the effect of a locally Gaussian approximation
to the posterior against the asymptotically exact (but computationally more
expensive) approximation provided by HMC. Because we require high accuracy
to approximate the asymptotic conditions described in Section 6.1, different
architectures were used on the three data sets and between VI and HMC. In all
cases, however, the BNN is compared with a DNN with the same architecture,
to ensure the fairness of the comparisons. Details about the architectures are
reported in Tables A.10 and A.11 of the appendix. Adversarial attacks in our
tests are Fast Gradient Sign Method and Projected Gradient Descent (Section
3.4), with a maximum perturbation size of 0.2. Saliency attacks are target region
and top-k attacks [63] and beta attacks [46], presented in Section 3.5.3.

In Figure 6.5 and Figures B.4-B.9 in the appendix we also compare the
robustness distributions for adversarially trained and Bayesian Neural Networks
using Mann-Whitney U rank test. The asterisk notation (Table B.5 in the
appendix) denotes statistically significant p-values in favour of the alternative
hypothesis that the the distribution from the adversarially trained model is
stochastically lower than the distribution from the Bayesian model. For significant

1We do not experiment with scalable Monte Carlo dropout methods [61] here since there is
no guarantee that their uncertainty estimates can capture the full posterior [149].
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(a) (b)

Figure 6.4: LRP robustness differences for FGSM (a) and PGD (b) attacks
computed on 500 test points from Fashion MNIST dataset using the epsilon
rule. NNs in (a) have a convolutional architecture (Table A.12 in the appendix)
and the BNN is trained with VI. NNs in (b) have a fully connected architecture
(Table A.13 in the appendix) and the BNN is trained with HMC. BNNs are
tested using an increasing number of samples (10, 50, 100). Layer indexes refer
to the learnable layers in the architectures.

p-values the Bayesian model is significantly more robust than the deterministic
model.

Simulations2 are conducted on a machine with 36 cores, Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30GHz processors and 192GB of RAM. We use PyTorch [124]
and Pyro [15] libraries. We also rely on TorchLRP library3 for the computation
of LRP explanations and set ϵ = 0.1 in the Epsilon rule, γ = 0.1 in the Gamma
rule, α = 1 and β = 0 in the Alpha-Beta rule.

6.3.1 Resilience of Bayesian Interpretations

Our first significant result is that Bayesian explanations are more robust un-
der gradient and saliency-based attacks than deterministic architectures. For
multiple data sets, attacks, training techniques (deterministic training, adver-
sarial training, Bayesian inference) and approximate inference methods, LRP
robustness scores are considerably higher than their deterministic counterparts.
In Figure 6.4 and in Figures B.1, B.2, B.3 in the appendix we show the dis-
tribution of point-wise differences w.r.t. the deterministic baselines between
LRP robustness scores for MNIST and Fashion MNIST data sets, using the

2Code is available at: https://github.com/ginevracoal/BayesianRelevance.
3https://github.com/fhvilshoj/TorchLRP
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Figure 6.5: LRP robustness differences for FGSM attack attacks computed on
500 test points from MNIST (top row), Fashion MNIST (middle) and CIFAR-10
datasets (bottom) using epsilon, gamma and alpha-beta rules (columns) on the
Top20 pixels, for adversarially trained networks (left block) and BNNs (right
block). NNs for MNIST and Fashion MNIST have a fully connected architecture
(Table A.13) and the BNNs are trained with HMC. NNs for CIFAR-10 have a
ResNet20 architecture from Bayesian Torch library [87] and the BNN is trained
with VI. BNNs are tested using 100 posterior samples. Layer indexes refer to
the last learnable layer in each architecture. Parameters are described in the
main text.

epsilon rule. The bottom row of the figures is the standard LRP (computed from
the pre-softmax layer), while the top row is the initial feature representation
(after the first non-linear layer), and the middle row is the LRP of an internal
layer. We test Bayesian representations using an increasing number of posterior
samples, i.e. 10, 50, 100. We attack 500 randomly selected test images, whose
choice is balanced w.r.t. the available classes. The first notable observation is
that adversarially trained networks have low LRP robustness compared to BNNs:
this confirms empirically the conjecture of Section 6.2 that the components of
the gradient that are normal to the data manifold - and are therefore the ones
likely to be changed in an attack - are often major contributors to the relevance
in DNN. Conversely, the Bayesian averaging process greatly reduces the expected
relevance of such direction.

In Figures 6.5 and B.4-B.7 in the supplementary material we test the stability
of deterministic and Bayesian interpretations w.r.t. FGSM and PGD attacks
on 500 test inputs from MNIST, Fashion MNIST and CIFAR-10 datasets. In
Figure B.8 and Figure B.9 in the appendix, we also test LRP stability against
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top-k, target region and beta saliency attacks (Sec. 3.5.3). As the saliency
attacks are specifically designed to harm the interpretations, we consider them
as a proxy for the worst-case robustness of the interpretations in a neighbor of
the attacked point. Additionally, in Figure 6.5 and Section B.2 of the appendix,
we compare the robustness distributions for adversarially trained and Bayesian
NNs using the Mann-Whitney U rank test. We compute the relevance heatmaps
using gamma, epsilon and alpha-beta rules. BNNs are trained with HMC
and VI and evaluated using 100 samples from the posterior. The experiments
confirm that Bayesian explanations are more stable across multiple LRP rules,
gradient-based adversarial attacks and saliency attacks, also in the internal layers.
Experiments on CIFAR-10 images in Figure 6.5 (bottom row) with a ResNet20
architecture from bayesian_torch library [87] show only a modest improvement
in adversarial and LRP robustness, probably due to the conditions of Corollary
6.1 not being satisfied in this data set with higher complexity but relatively
small size.

6.3.2 Bayesian LRP Robustness Increases with Softmax
Robustness

A simple explanation for the improved LRP robustness of BNNs lies in the
fact that BNNs are provably immune to gradient-based attacks (Chapter 4).
Therefore, one might argue that the stability of the LRP is a trivial byproduct
of the empirical stability of the classifications. To explore this question more in
depth, we consider the relationship between the LRP robustness of a test point
(stability of the explanation, Section 6.1) and its softmax robustness (resilience of
the classification against an attack, Section 3.4). Figure 6.6 and Figure B.10 in
the appendix show scatterplots of these two quantities. An immediate observation
is that deterministic explanations are weak against adversarial perturbations even
when their softmax robustness is close to 1. Therefore, even in the cases where the
classification is unchanged, deterministic saliency heatmaps are fragile. Indeed,
there are no significant changes in LRP robustness between data points that
are vulnerable to attacks and data points that are robust to attacks. Bayesian
models, instead, show a strong positive correlation between LRP and softmax
robustness, especially as the number of posterior samples increases. While it is
immediately evident that Bayesian predictions are robust to adversarial attacks
(since most data points have softmax robustness greater than 0.5), it is also clear
from this correlation that attacks which are more successful (i.e. lower softmax
robustness) also alter more substantially the interpretation, and are likely to
represent genuine directions of change of the true underlying decision function
along the data manifold.

6.4 Final Considerations

We harness the geometric perspective to adversarial attacks introduced in Chap-
ter 4 to study the resilience of layer-wise relevance propagation heatmaps to
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(a) (b)

Figure 6.6: LRP vs softmax robustness of deterministic, adversarially trained
and Bayesian NNs trained on MNIST dataset and tested against FGSM (a)
and PGD (b) attacks. ρ denotes the Spearman correlation coefficient. LRP
Robustness is computed with the epsilon rule on the 20% most relevant pixels.
BNNs are trained with VI (a) and HMC (b) and are tested using an increasing
number of samples (50, 100). Layer indexes refer to the learnable layers in the
convolutional (a) and fully connected (b) architectures (Tables A.12 and A.13 in
the appendix).

adversarial attacks. The geometric analysis suggests a fundamental link be-
tween the fragility of DNNs against adversarial attacks and the difficulties in
understanding their predictions: because of the unconstrained nature of classi-
fiers defined on high dimensional input spaces but trained on low dimensional
data, gradients of both the loss function and the prediction function tend to
be dominated by directions which are orthogonal to the data manifold. These
directions both give rise to adversarial attacks and provide spurious explana-
tions which are orthogonal to the natural parametrization of the data manifold.
In the limit of infinite data, a Bayesian treatment remedies the situation by
averaging out irrelevant gradient directions in expectation. Not only BNN in-
terpretations are considerably more robust than deterministic DNN, but we
also observe a correlation between softmax (adversarial) robustness and LRP
robustness which suggests that indeed Bayesian interpretations capture the
relevant parametrization of the data manifold.
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We point out the presence of theoretical and practical limitations. The strong
assumptions in Theorem 6.1, which restrict the geometrical considerations to fully
trained BNNs in the limit of an infinite amount of weights and training data, do
not prevent us from observing the desired behaviour in practice, even when using
cheap approximate inference techniques (VI). Indeed, Bayesian interpretations are
considerably more robust than deterministic and adversarially trained networks.
However, performing Bayesian inference in large non-linear models is extremely
challenging. Nevertheless, we believe that the insights provided by a geometric
interpretation will be helpful towards a better understanding of both the strengths
and the weaknesses of deep learning.
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Adversarial Attacks on
Protein Language Models
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As introduced in Section 1, we search for biologically plausible perturbations of
a few amino acids in the original sequences that are maximally different in the 3D
structures (Figure 7.1). It is natural to interpret this reasoning through the lens of
adversarial attacks [67], where the goal is to craft small perturbations of the inputs
while inducing the most significant change in predictions. A similar approach
is presented in [80], where the authors already propose a notion of “adversarial
mutation” on amino acid sequences and use the perturbations to assess the
reliability of structure prediction on the RoseTTAFold [9] model. Specifically,
they use BLOSUM similarity to identify the space of similar protein sequences
and search for maximally distant perturbations in this space. Moreover, they
define a robustness measure for structure prediction based on the computation
of the inverse RMSD (Section 7.2) between original and perturbed coordinates
and use it to evaluate adversarial robustness. The fundamental novelty in our
approach is that the adversarial perturbations do not require direct knowledge

85



86 Adversarial Attacks on Protein Language Models

of the 3D coordinates, but only leverage the hidden representations provided by
language models (Section 3.6).

Figure 7.1: Adversarial mutations are alterations of a small set of amino acids
that induce a significant structural change.

In the large space of all possible 3D structures, only a small portion contains
biologically meaningful proteins. Moreover, high confident scores in structure
prediction using AlphaFold2 model do not necessarily guarantee the plausibility
of the native sequences [97]. Generative models [101, 82, 135, 97] tackle this
problem by learning the data distribution in the space of sequences. Hence, they
catch new evolutionary dependencies between the amino acids and generate new
samples from the learned distribution. Our method does not directly rely on a
generative architecture, but rather explores the space of hidden representations
while guaranteeing that a set of desired conditions are met. In what follows, we
discuss the approach behind our choices of target positions and mutant residues.

7.1 Methodology

In this section we describe the strategy behind our choice of target positions in
the original sequences and target residues in the alphabet.

7.1.1 Target Positions

Several recent works show that Transformer language models are able to recover
functional properties of protein sequences [131, 166, 138]. [166], in particular,
observe that attention scores capture structural information and that most of
the attention is directed to binding sites, i.e. amino acids that bind with other
molecules, such as proteins, natural ligands, and small-molecule drugs. We
use attention scores to identify token positions having the highest impact on
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Figure 7.2: Average attention matrix Eh,l[Ah,l(x)] ∈ RD×D over all attention
heads and layers for an input sequence from domain PF00627. Scores are
computed by MSA Transformer.

the surrounding context (i.e. on the remaining amino acids) and use them as
target positions for adversarial mutations. Let x = (x1, . . . , xD) ∈ AD be a
protein sequence, where A is the 25-character alphabet of amino acids1 and
D ∈ N is the length of the sequence. Given a fixed number of token substitutions
n < D, each attention head h ∈ {1, . . . , H} in a Transformer LM computes
a set of attention scores Ah,l(x) ∈ RD×D for each layer l ∈ {1, . . . , L} in the
architecture. We stress that the computation of the attention scores in model-
dependent, as explained later in Section 7.3. Figure 7.2 shows an example of
average attention heatmap over all heads and layers, where the i-th column is
the average attention Eh,l[Ah,l(xi)] ∈ RD for a single token xi and represents
the average importance attributed to the i-th token from all the other tokens
in the sequence. The resulting target tokens are the first n positional indexes
maximizing the Euclidean norm of the average attention across all layers and
heads, i.e. the first n values in arg sorti=1,...,D ||Eh,l[Ah,l(xi)]||2.

7.1.2 Target Residues

Once target token indexes are fixed, we use Block Substitutions Matrices (BLO-
SUM) (Section 7.2) [158] to assess the set of allowed substitutions of residues
at each position. The selection of amino acids at a given position is restricted
to residues with non-null BLOSUM62 scores, i.e. those with non-null frequency
in the reference alignments, to avoid biologically meaningless substitutions. We
also use BLOSUM62 matrix at evaluation time to assess the biological similarity
between perturbed and original sequences. The choice of target residues is
performed through a search over all plausible token substitutions that satisfy

120 characters for the standard amino acids and 5 characters for non-standard or unknown
amino acids [130].
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a desired “adversarial” property. Given a fixed set of target positions I in a

Figure 7.3: Visualization of maximum embedding distance (max_dist) and
maximum cosine similarity (max_cos) attacks in the first embedding space of a
protein language model.

wild-type sequence x, we propose multiple attack strategies to craft an adversar-
ial perturbation x̃, built upon different hidden representations of the original
sequence but with the common goal of causing a significant structural change:

• Let z and z̃ respectively denote the continuous embeddings of x and x̃
in the first embedding space, i.e. the positional embeddings. Maximum
distance perturbations indicate token substitutions z̃ that maximize the
L1 distance from z in the first embedding space, i.e. argmaxz̃(||z− z̃||1);

• Protein LMs are trained to solve a masked prediction task, meaning that
part of the input sequence is masked at random positions, and the model
has to predict missing residues from the surrounding context. Therefore,
given single candidate residue at a target position i, the LM outputs a
pseudo-likelihood score p(x|x̂i), denoting an approximate likelihood of the
full sequence with the chosen residue, where x̂i is the sequence masked at
position i. We define a loss function L(z) = maxi∈I p(z|ẑi) that penalizes
the highest pseudo-likelihood score attributed to the first embedding of the
original sequence z and use it to build a perturbation inspired by classical
gradient-based attacks in continuous spaces [67]. The goal of this loss
function is to increase uncertainty in masked prediction at the target token
positions in I. Maximum cosine similarity perturbations search
for residues that maximize the cosine similarity w.r.t. the loss gradient
direction in the first embedding space, i.e. they build perturbations in the
direction of greatest change in the loss function. More precisely, given a
gradient-based attack

z∗ = z+ ϵ · ∂L(z)
∂z
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in the first embedding space, they search for a perturbation x̃ such that
the first embedding z̃ maximizes

cos similarity(z∗ − z, z̃− z) = cos similarity
�∂L(z)

∂z
, z̃− z

�
.

Notice that this definition does not depend on the intensity ϵ of the attack;

• Protein LMs provide a reduced representation of the 3D structure, known
as contact map (Section 3.6.2), which consists of a heatmap of estimated
distances between all residue pairs in the 3D structure [169]. Maximum
contact map distance perturbations maximize the L2 distance between
original and perturbed contact maps:

argmax
x̃

||cmap(x)− cmap(x̃)||2;

• Additionally, we introduce maximum entropy perturbations for MSA
Transformer only. Given an input sequence x with an associated MSA
(Section 3.6.2) and a set of amino-acid substitutions {cmi ∈ A}i∈I at
target sites I, we use the substitution frequency pi(cmi

) of a residue cmi

at position i ∈ I in the MSA to compute the entropy of that substitution.
Then, we search for a perturbation that maximizes the entropy across all
positions:

max
{cmi

∈A:i∈I}

"
−
X

i∈I

pi(cmi) log2 pi(cmi)

#
.

7.2 Evaluation Scores for Adversarial Mutations
Since protein LMs for structure prediction could be insensitive to single point
mutations [23], we do not only rely on evaluation metrics on the structure [121],
but also examine several evaluation metrics on continuous embeddings of amino
acid sequences. The first natural evaluation metric for sequence similarity is the
L1 distance between original and perturbed embeddings in the first layer of a
protein LM, ||z− z̃||1, providing a preliminary geometric interpretation of the
distribution of continuous representations in the first embedding space. We point
out that the choice of the first embedding space to evaluate distances provides a
natural baseline for comparison (i.e. maximum distance perturbations), but it
would be interesting to extend this analysis to multiple layers of hidden repre-
sentations. Secondly, we leverage BLOSUM62 matrix to compute a biological
sequence similarity measure known as BLOSUM distance:

BLOSUM(x, x̃) =
X

i=1,...,D

(Bxi,xi
−Bxi,x̃i

),

where Bri,rj is the entry associated to a couple of residues (ri, rj) in BLOSUM62
matrix. BLOSUM distance is zero when x = x̃. Another fundamental information
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provided by protein LMs is the predicted contact map, thus we also compute
the L2 distance between contact maps of original and perturbed sequences. It is
usual practice to examine upper submatrices in a contact map and look at the
distances between long-range contacts. Therefore, we use an index k ∈ N>0 to
denote the diagonal index of an upper triangular submatrix in a full contact map
(k = 0), i.e. we select contacts that are at least k positions apart, and compute
a range of distances ||cmapk(x)− cmapk(x̃)||2 as k increases.

Figure 7.4: Upper triangular submatrices of original (left) and perturbed (right)
full contact maps.

On the structural side, let s and s̃ respectively denote original and perturbed
3D structures. We evaluate their similarity using both local and global similarity
measures to capture the relative orientation of the deviations as well as the global
superimposition between the structures. Let us briefly recall a few measures
already defined in Section 7.2. Local Distance Difference Test (LDDT) [105] is
a local score that measures the percentage of preserved distances between all
pairs of atoms in the target structure closer in space than a predefined cutoff.
In particular, it computes the mean fraction of preserved distances using four
different thresholds (0.5, 1, 2, 4 Å). Then, we use two popular global scores:
Root-Mean-Square-Deviation (RMSD) computes the average Euclidean distance
between matching atoms in the two structures; TM-score, instead, computes the
degree of match between corresponding Cα atoms, scaled by a length-dependent
distance parameter.

7.3 Experimental Results

Our experiments involve two Transformer models trained on Uniref50 database
[154], namely ESM-1b [138] and MSA Transformer [132]. ESM-1b takes as
inputs protein sequences and computes pairwise attention scores between all
couples of amino acids. The set of attention scores (Section 3.6.1) Rh,l(x) ∈ RD

from an attention head h in the l-th layer is called row attention, where x
is the input sequence and D is the length of the sequence. The resulting
attention score used to recover target positions is Ah(x) := El[Rh,l(x)], the
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average attention across all layers for head h. MSA Transformer, instead, works
on MSAs [36], i.e. on sets of aligned protein sequences. In this setting, self-
attention mechanism also computes column attention scores Ch,l(x) ∈ RD from
the input MSA and we select positions based on a weighted sum of the two scores:
Ah(x) := γ El[Rh,l(x)] + (1− γ)El[Ch,l(x)], where γ ∈ R. In the experiments,
we weight the two contributions equally by setting γ = 0.5. We use the hhfilter
method from HH-suite tool [151] to select a subset of most diverse sequences in
the alignment by means of a sequence similarity score based on the degree of
homology among sequences. We build a filtered MSA for each selected sequence
to be used as an input for MSA Transformer. Then, we craft the set of adversarial
perturbations presented in Section 7.1.2.

Figure 7.5: Visualization of row attention scores for ESM-1b Transformer model
(left) and combined row and column attention scores for MSA-Transformer model
(right).

In our first set of experiments, we build adversarial mutations on protein
families PF00533 and PF00627, both containing examples of structure disruptive
mutations not detected by AlphaFold2 model [23]. For the sake of brevity, we only
report the experiments performed on domain PF00627 in this chapter, where we
use MSA Transformer model to build 3 sites mutations on 100 native sequences
with input MSAs of depth 100. We observe a similar experimental behaviour on
domain PF00533 and include the additional experiments in Appendix B.3. Next,
we compare adversarial perturbations to those provided by ProTherm database
[119], containing more than 4k single-point mutations associated with high
changes in stability. Protein stability denotes the capability of a protein to retain
the native conformation under a stress condition (e.g. change in temperature
or pressure). Since high changes in stability are often associated with disease-
causing mutations and unfolding, we want to analyse their statistical properties
against those of adversarial mutations. To analyse the change in stability we
focus on ProTherm values of change in free energy ∆∆G, which is negative for
spontaneous reactions and positive for non-spontaneous reactions. Specifically,
we select the most stabilizing (highest ∆∆G) and destabilizing (lowest ∆∆G)
mutations by setting a threshold of 1kcal/mol on the minimum absolute value
of ∆∆G. In this case, we identify the reference sequences belonging to Pfam
families and build the associated filtered MSAs accordingly.
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We run the experiments2 on a machine with 48 cores, Intel(R) Xeon(R) Gold
6226 CPU @ 2.70GHz processors, 263GB of RAM and two Tesla V100-PCIE-
32GB GPUs. Our tests rely on HH-suite tool [151] for MSA filtering and on
ColabFold library [112] for structure prediction.

Figure 7.6: Pseudo-likelihood of adversarial (columns 1-4) and masked prediction
(column 5) mutations at target token indexes. Values refer to 3 sites mutations
obtained from MSA Transformer on 100 sequences from domain PF00627.

7.3.1 Impact of Adversarial Mutations on Wild Type Se-
quences

We analyse the effect of adversarial perturbations using the evaluation metrics
described in Section 7.1.2. First of all, Figure 7.6 shows how adversarial per-
turbations are overall less likely compared to the residues selected by masked
predictions, suggesting that our method detects rare substitutions at fixed mu-
tant sites. This is an important argument in favour of the generation of new
and diverse disruptive mutations. We compare adversarial perturbations to
the ones obtained from all the discarded plausible token substitutions at the
chosen target positions, which we refer to as “other” in Figures 7.7a and 7.8a.
Figure 7.7 reports the L1 distances ||z− z̃||1 between original and perturbed
first layer embeddings, while Figure 7.8 shows BLOSUM distances between
original and perturbed sequences. Adversarial perturbations significantly depart
from the other plausible perturbations both in terms of embedding distance
(Figure 7.7a) and BLOSUM distance (Figure 7.8a), approaching perturbations
at maximum embedding distance in the first case. Adversarial embeddings are
at least as far from the reference as the most stabilizing and destabilizing em-
beddings in ProTherm (Figure 7.7b), while BLOSUM distances are comparable
(Figure 7.8b). Moreover, [80] observed that larger BLOSUM distances between
original and perturbed sequences lead to higher RMSD in predicted structures,
therefore we expect adversarial perturbations to produce a significant structural

2Code is available at https://github.com/ginevracoal/adversarial-protein-sequences.
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(a)

(b)

Figure 7.7: L1 distances ||z− z̃||1 between the embeddings of original and
perturbed sequences in the first embedding space. Perturbations are computed
using MSA Transformer model. In (a) we report mutations of 3 sites on domain
PF00627, while Figure (b) shows single mutations on ProTherm database. “Other”
refers to adversarial perturbations obtained from all the discarded plausible token
substitutions at the chosen target positions.

change. We stress that adversarial mutant positions for ProTherm are those
that maximize the attention scores and, in most cases, differ from ProTherm
mutation sites. Indeed, Figure 7.9 reports attention-based importance ranks
attributed to ProTherm token positions and shows that only a fraction of the
selected adversarial positions (i.e. those with zero rank) match ProTherm ones,
while in the other cases (higher rank) ProTherm indexes have lower average
attention scores. Nonetheless, adversarial sequences are able to significantly alter
embedding distances, BLOSUM distances and contact maps distances (see the
appendix for additional results), suggesting that our attention-based selection
method catches new relevant mutant positions.
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(a)

(b)

Figure 7.8: Blosum distances BLOSUM(x, x̃) between original and perturbed
sequences. Perturbations are computed using MSA Transformer model. In
(a) we report mutations of 3 sites on domain PF00627, while (b) shows single
mutations on ProTherm database. “Other” refers to adversarial perturbations
obtained from all the discarded plausible token substitutions at the chosen target
positions.

7.3.2 Predicted Adversarial Structures are Substantially
Altered and Highly Confident

We analyze the effect of adversarial perturbations on 3D structures predicted by
ColabFold [112], an extension of AlphaFold2 model. First, we select the 100 most
diverse sequences from domain PF00627 using hhfilter method, as explained at
the beginning of this chapter. Since our goal is to generate adversarial mutations
that are able to “fool” structure prediction models, the latter should be highly
confident in predictions. Therefore, we rely on the pLDDT confidence score for
structure prediction provided by AlphaFold2 model, and among the 100 original
sequences we select the ones whose average (over residues) pLDDT is greater than
80%, for a total of 37 sequences. Then, we build the adversarial perturbations,
predict their 3D structures and compare them to the original predicted structures.
Figure 7.10 reports LDDT, TM-score and RMSD (presented in Section 7.1)
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(a) (b)

Figure 7.9: Attention-based importance ranks attributed to ProTherm positions
using ESM-1b (a) and MSA-Transformer (b) models. The most important tokens,
i.e. those maximizing the average attention, are those with zero rank.

between original and perturbed 3D structures on among the selected sequences.
Figure B.16 in the appendix reports the resulting adversarial pLDDT scores, as
well as another accuracy measure for structure prediction, namely the pTM-score.
Adversarial mutations exhibit high confidence in structure prediction and produce
structures that are significantly distant from their references in terms of global
distance. In particular, low TM-scores and high RMSD scores, consistently across
the several attack techniques, indicate that adversarial structures deviate from
the original folding. As a matter of comparison, it is important to observe that
two structures with 50% sequence identity (i.e. the percentage of corresponding
amino acids) align within approximately 1Å RMSD [38] in the 3D structures,
and two proteins with even 40% sequence identity and at least 35 aligned residues
(w.r.t. optimal superimposition of the 3D structures) align with approximately
2.5Å RMSD [145]. Higher LDDT scores in Figure 7.10 instead show that local
atomic interactions in the original structure happen to be preserved in adversarial
structures, especially for maximum entropy perturbations.

7.4 Final Considerations

We showed how adversarial perturbations on protein language models produce
substantial changes according to several geometric, biological, and structural eval-
uation scores compared to the reference sequences. Additionally, they introduce
a new efficient attention-based method for the selection of target positions in the
reference sequences. Nonetheless, we point out the presence of some limitations,
which we plan to address in future versions of this work. Precisely, we intend
to: (1) propose a more extensive empirical evaluation on several protein families
and include structure prediction on databases of dysfunctional mutations; (2)
fine-tune protein LMs on adversarial sequences and test their sensitivity to a set



96 Adversarial Attacks on Protein Language Models

Figure 7.10: LDDT, TM and RMSD scores between original and perturbed
structures for 3 sites mutations on 100 sequences from domain PF00627. Adver-
sarial perturbations are computed by MSA Transformer model, while structure
predictions are performed by ColabFold model.

of known missense mutations.



Chapter 8

Conclusions

Adversarial examples show that many of the modern machine learning algorithms
can be fooled in unexpected ways. Both in terms of attacks and defences,
many theoretical problems remain open. Moreover, the most effective defence
techniques in the deterministic setting, e.g. adversarial training, are still too
computationally expensive or are not transferable to multiple attack strategies.
From a practical point of view, no one has yet designed a powerful defence
algorithm which could be suitable against a variety of attacks, with different
degrees of knowledge about the models under attack and their predictions.

In this work, we first analyse the geometry of adversarial attacks in the large-
data, overparameterized limit for Bayesian neural networks. We show that, in the
limit, vulnerability to gradient-based attacks arises as a result of degeneracy in
the data distribution, i.e., when the data lies on a lower-dimensional submanifold
of the ambient space. As a direct consequence, we demonstrate that in this limit
BNN posteriors are robust to gradient-based adversarial attacks. In particular,
we prove that the expected gradient of the loss with respect to the BNN posterior
distribution vanishes, even when each neural network sampled from the posterior
is vulnerable to gradient-based attacks. Experimental results in the finite data
regime with approximate Bayesian inference techniques support this line of
argument, showing that BNNs can display both high accuracies on clean data
and robustness to gradient-based and gradient-free adversarial attacks.

Next, we leverage the high codimension between the data manifold and the
embedding space to build low-dimensional representations of the input data -
precisely random projections of the inputs - that preserve relevant adversarial
features. Our defence methods are attack-independent, i.e. they have no
knowledge about the chosen attacks, yet they are comparable to state of the art
models in terms of adversarial robustness and still benefit from dimensionality
reduction on the computational side.

Additionally, we examine the stability of saliency interpretations under
targeted adversarial attacks that aim to change the classification under perturba-
tions of the input. We observe that, in the overparameterized regime, the DNN
function coincides with the true underlying function almost everywhere on the
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data manifold and therefore the tangent gradient of the loss function is (a.e.)
identically zero. The normal gradient of the loss, however, is unconstrained by
the data, and, particularly in a high dimensional setting, might achieve very
high values along certain directions, creating therefore weaknesses that may be
exploited by an adversarial attacker. Hence, we prove a trivial consequence
of the robustness of BNNs to gradient-based attacks: in the thermodynamic
limit, BNNs will only retain relevant directions along the data manifold, which
correspond to genuine directions of high relevance.

Lastly, we introduce adversarial mutations against protein language models,
designed with the twofold goal of altering the smallest amount of amino acids in
the original sequence while inducing a substantial change in the 3d structure.
Our experiments on single-sequence and MSA-based protein LMs examine the
effect how such mutations on the hidden representations of the LMs, according
to several geometrical and biological evaluation metrics, and on multiple protein
families. The resulting adversarial structures predicted in ColabFold [112]
significantly depart from their original counterparts, in terms of both local and
global distance measures, even in the case of single-point mutations.

8.1 Limitations and future directions

Theorem 4.1 has the natural consequence of protecting BNNs against all gradient-
based attacks, due to the vanishing average of the expectation of the gradients
in the limit. While promising, this result comes with some significant limitations;
indeed, the theorem holds under a set of strong theoretical assumptions, which
are also required for the robustness of saliency explanations under gradient-based
attacks (Corollary 6.1). First, the assumption of flat priors is needed for perfect
gradient cancellation; but in practice, unless the priors are too informative
with restrictive support, we do not expect a major deviation from the idealised
case. This is confirmed both from our experimental results and by the fact
that in the limit of infinite data the posterior is less influenced by the choice
of the prior [162]. Secondly, the averaging property holds when the ensemble
is drawn from the true posterior; nevertheless cheaper approximate Bayesian
inference methods which retain ensemble predictions, such as VI, may still
in practice provide good protection. Lastly, Theorem 4.1 and Corollary 6.1
only guarantee protection against gradient-based adversarial attacks, hence it is
not clear whether the robustness properties of BNNs also extend to any other
adversarial threat. However, in Section 4.3.4 we empirically show that the
vanishing gradient properties of BNNs also guarantee robustness to gradient-free
attacks.

Furthermore, and perhaps more importantly, performing Bayesian inference
on complex datasets and large architectures is extremely challenging, therefore
we restricted our empirical analysis on BNNs to a set of fairly simple settings,
compared to the current research in image processing. To this end, we hope
that our work will spark interest in the development of efficient Bayesian infer-
ence algorithms. Nonetheless, we point out that our random projections-based
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ensemble method could also be applied to more complex scenarios.
Finally, our analysis of the behaviour of protein LMs for structure prediction

against adversarial mutations is promising, yet still preliminary. First of all,
to assess the biological implications of our results we would need to perform a
thorough comparison with known mutations causing misfolding or dysfunction.
Secondly, it would be interesting to fine-tune state of the art protein LMs on
our adversarial mutations and then check if they can correctly predict the 3d
structures of some known disruptive mutations which are currently undetected by
the models [80]. Despite such limitations, we believe that adversarial mutations
could help to improve the sensitivity of protein LMs to dysfunctional mutations,
therefore opening a new path for a deeper understanding of the connection
between protein stability and variations in the 3d structures.
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Appendix A

Architectures and
Hyperparameters

Half moons grid search

Posterior samples {250}
HMC warmup samples {100, 200, 500}
Training inputs {5000, 10000, 15000}
Hidden size {32, 128, 256, 512}
Nonlinear activation Leaky ReLU
Architecture 2 fully connected layers

Table A.1: Hyperparameters for training BNNs in Figure 4.2

HMC training hyperparameters for Chapter 4

Dataset MNIST Fashion MNIST
Training inputs 60k 60k
Architectures Fully connected Fully connected
Hidden size 512 1024
Nonlinear activation Leaky ReLU Leaky ReLU
Warmup samples 100 100
Numerical Integrator Stepsize 0.5 0.5
Number of steps for Numerical Inte-
grator

10 10

Table A.2: Hyperparameters for training BNNs using HMC in Figures 4.4 and
4.5.
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VI training hyperparameters for Chapter 4

Dataset MNIST Fashion MNIST
Training inputs 60k 60k
Architecture Convolutional Convolutional
Hidden size 512 1024
Nonlinear activations Leaky ReLU Leaky ReLU
Training epochs 5 15
Learning rate 0.01 0.001

Table A.3: Hyperparameters for training BNNs using VI in Figures 4.3, 4.4 and
4.5.

HMC MNIST/Fashion MNIST grid search for Chapter 4

Posterior samples {250, 500, 750*}
Numerical Integrator Stepsize {0.01, 0.005*, 0.001, 0.0001}
Numerical Integrator Steps {10*, 15, 20}
Hidden size {128, 256, 512*}
Nonlinear activation {relu*, tanh, sigmoid}
Architecture {1*,2,3} fully connected layers

Table A.4: Hyperparameters for training BNNs with HMC in Figure 4.6. *
denotes the parameters used in Table 1 of the main text.

SVI MNIST/Fashion MNIST grid search for Chapter 4

Learning Rate {0.001*}
Minibatch Size {128, 256*, 512, 1024}
Hidden size {64, 128, 256, 512, 1024*}
Nonlinear activation {relu*, tanh, sigmoid}
Architecture {1*,2,3} fully connected layers
Training epochs {3,5*,7,9,12,15} epochs

Table A.5: Hyperparameters for training BNNs with SVI in Figure 4.7. * denotes
the parameters used in Table 1 of the main text.
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SGD MNIST/Fashion MNIST grid search for Chapter 4

Learning Rate {0.001, 0.005, 0.01, 0.05}
Hidden size {64, 128, 256, 512}
Nonlinear activation {relu, tanh, sigmoid}
Architecture {2, 3, 4, 5} fully connected layers
Training epochs {5, 10, 15, 20, 25} epochs

Table A.6: Hyperparameters for training BNNs with SGD in Figures 4.6 and
4.7.

SGD training hyperparameters for Chapter 5

Dataset MNIST CIFAR-10
Training inputs 60k 60k
Architectures Convolutional Convolutional
N. of learnable layers 4 8

Nonlinear activations ReLU ReLU

Table A.7: Hyperparameters for training deterministic NNs in Chapter 5. Archi-
tectures are reported in Tables A.8 and A.9

MNIST architecture for Chapter 5

Layer in_channels out_channels kernel_size

2D Conv. 784 32 3

2D Conv. 32 64 3

F.c. 64 128 -
F.c. 128 10 -

Table A.8: Learnable layers for the Keras architecture trained on MNIST in
Chapter 5. Training hyperparamters are reported in Table A.7.
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Fashion MNIST architecture for Chapter 5

Layer in_channels out_channels kernel_size

2D Conv. 784 32 3

2D Conv. 32 32 3

2D Conv. 32 64 3

2D Conv. 64 64 3

2D Conv. 64 128 3

2D Conv. 128 128 3

F.c. 128 128 -
F.c. 128 10 -

Table A.9: Learnable layers for the Keras architecture trained on Fashion MNIST
in Chapter 5. Training hyperparamters are reported in Table A.7.

HMC hyperparameters for Chapter 6

Dataset MNIST Fashion MNIST
Training inputs 60k 60k
Architecture Fully Connected Fully Connected
Hidden size 1024 1024
Nonlinear activation ReLU ReLU
Warmup samples 100 100
Posterior Samples 500 500
Numerical Integrator Stepsize 0.002 0.001
Number of steps for Numerical
Integrator

10 10

Table A.10: Hyperparameters for training BNNs using HMC in Figures 4.3 and
4.4.

VI hyperparameters for Chapter 6

Dataset MNIST Fashion MNIST
Training inputs 60k 60k
Architecture Convolutional Convolutional
Hidden size 512 1024
Nonlinear activation Leaky ReLU Leaky ReLU
Training epochs 5 10
Learning rate 0.01 0.001

Table A.11: Hyperparameters for training BNNs using VI in Figures 4.3 and 4.5.
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Convolutional architectures in Chapter 6

Idx Layer Parameters

0 2D Conv.
in_channels = 784
out_channels = 32
kernel_size = 5

3 2D Conv.
in_channels = 32

out_channels = hidden size
kernel_size = 5

7 F.c. in_features = hidden size
out_features = 10

Table A.12: Learnable layers and corresponding indexes in PyTorch for the
convolutional architecture used in Chapter 6. Hidden size is reported in Tables
A.10 and A.11.

Fully connected architectures in Chapter 6

Idx Layer Parameters

1 F. c. in_features = 784
out_features = hidden size

3 F. c. in_features = hidden size
out_features = hidden size

5 F. c. in_features = hidden size
out_features = 10

Table A.13: Learnable layers and corresponding indexes in PyTorch for the fully
connected architecture used in Chapter 6. Hidden size is reported in Tables A.10
and A.11.
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Appendix B

Additional Experiments

In this section we present additional empirical results from Chapters 5-7. Pre-
cisely, we test:

• the prediction accuracy of RP-Ensemble model against FGSM, PGD,
DeepFool and C&W attacks (Section B.1);

• the LRP robustness SVI and HMC-trained Bayesian NNs on MNIST
and Fashion MNIST datasets under FGSM and PGD attacks, with LRP
parameters set to ϵ = 0.1, γ = 0.1,α = 1,β = 0 (Section B.2);

• the change in hidden representations and 3D coordinates induced by
adversarial mutations using ESM-1b and MSA Transformer models on
domains PF00533 and PF00627 and on ProTherm database (Section B.3).
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B.1 Prediction accuracy of RP-Ensemble

Prediction
accuracy (%)

Test set FGSM PGD DeepFool C&W

Baseline model
99.13 5.91 0.71 34.83 28.96

Adversarially trained models
FGSM 99.13 98.91 32.55 96.08 95.82

PGD 99.10 44.60 99.02 98.34 97.19

DeepFool 99.03 23.11 35.55 99.20 95.70

C&W 99.10 14.74 3.85 94.63 99.06

RP-Ensemble on (n_proj, size_proj) combinations
(6, 8) 97.66 59.71 53.68 93.94 92.12

(9, 8) 97.57 61.55 56.23 94.37 92.73

(12, 8) 97.45 62.93 58.85 94.61 92.97

(15, 8) 97.47 64.82 60.30 94.62 93.12

(6, 12) 98.12 57.29 52.12 95.72 93.75

(9, 12) 98.02 59.30 55.52 95.82 94.25

(12, 12) 97.97 60.54 57.77 95.96 94.39

(15 , 12 ) 97.91 61.65 59.95 95.84 94.42

(6, 16) 98.22 57.09 51.90 96.26 94.36

(9, 16) 98.33 58.10 53.77 96.43 94.95

(12, 16) 98.32 58.93 55.78 96.54 95.13

(15, 16) 98.26 59.85 57.42 96.62 95.11

(6, 20) 98.49 54.37 50.02 96.51 94.89

(9, 20) 98.42 56.28 52.60 96.63 95.18

(12, 20) 98.40 57.56 54.52 96.67 95.24

(15, 20) 98.40 57.91 55.57 96.80 95.29

Table B.1: Test accuracy of the baseline, its robust versions and RP Ensemble
model on MNIST dataset. The robust models are the result of adversarial
training on the perturbed training sets. RP Ensemble model is been trained on
multiple combinations of number of projections and size of each projection. The
evaluations are performed on the original test set and its adversarially perturbed
versions.
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Prediction
accuracy (%)

Test set
DeepFool

attack
C&W
attack

Baseline model
76.52 39.77 0.00

Adversarially trained models
DeepFool training set 83.16 83.01 81.67

C&W training set 83.44 83.23 82.79

RP-Ensemble model
on (n_proj, size_proj) combinations
(3, 4) 67.93 58.52 48.48

(6, 4) 64.59 58.81 53.78

(9, 4) 63.15 59.06 55.48

(12, 4) 61.93 58.65 56.07

(3, 8) 67.66 61.00 53.61

(6, 8) 64.83 60.86 57.21

(9, 8) 63.36 60.35 58.03

(12, 8) 62.99 60.81 58.75

Table B.2: Prediction accuracy (%) of the baseline, its robust versions and
RP-Ensemble model on CIFAR-10 dataset. The robust models are the result
of adversarial training on the perturbed training sets. RP-Ensemble model is
been trained on multiple combinations of number of projections and size of
each projection. The evaluations are performed on the original test set and its
adversarially perturbed versions.
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Prediction
accuracy (%)

Test set FGSM PGD DeepFool C&W

Baseline model
99.13 5.91 0.71 34.83 28.96

Adversarially trained models
FGSM 99.13 98.91 32.55 96.08 95.82

PGD 99.10 44.60 99.02 98.34 97.19

DeepFool 99.03 23.11 35.55 99.20 95.70

C&W 99.10 14.74 3.85 94.63 99.06

RP-Regularizer model
Rv1, λ = 0.4 97.92 62.34 38.96 93.24 90.75

Rv2, λ = 0.4 97.82 63.25 42.37 93.86 91.56

Rv1, λ = 0.5 97.53 69.12 52.39 94.44 91.96

Rv2, λ = 0.5 98.06 60.64 36.28 93.92 91.05

Rv1, λ = 0.6 97.80 62.78 42.61 94.05 91.73

Rv2, λ = 0.6 97.69 65.25 45.77 93.45 90.70

Table B.3: Test accuracy of RP-Regularizer on MNIST. We compare the baseline
model, the adversarially trained robust models and two different versions of RP-
Regularizer model, namely Rv1 (5.1) and Rv2 (5.2). Adversarial perturbations
are produced on the baseline model using FGSM, PGD, Deepfool and Carlini &
Wagner attacks.
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Prediction
accuracy (%)

Test set DeepFool C&W

Adversarially trained models
76.52 39.77 0.00

Adversarially trained models
DeepFool 83.16 83.01 81.67

C&W 83.44 83.23 82.79

RP-Regularizer model, λ = 0.5

Rv1 56.51 55.20 54.29
Rv2 57.10 57.85 56.47

Table B.4: Test accuracy of RP-Regularizer on MNIST. We compare the baseline
model, the adversarially trained robust models and two different versions of RP-
Regularizer model, namely Rv1 (5.1) and Rv2 (5.2). Adversarial perturbations
are produced on the baseline model using Deepfool and Carlini & Wagner attacks.
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B.2 Bayesian LRP robustness

p-value symbol

p > 0.05 n.s.
p ≤ 0.05 *
p ≤ 0.01 **
p ≤ 0.001 ***
p ≤ 0.0001 *****

Table B.5: Asterisk notation for Mann-Whitney test.
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(a) (b)

Figure B.1: LRP robustness differences for FGSM (a) and PGD (b) attacks
computed on 500 test points from Fashion MNIST dataset using the Epsilon
rule. NNs in (a) have a fully connected architecture and the BNN is trained
with HMC. NNs in (b) have a convolutional architecture and the BNN is trained
with VI. BNNs are tested using an increasing number of samples (10, 50, 100).
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(a) (b)

Figure B.2: LRP robustness differences for FGSM (a) and PGD (b) attacks
computed on 500 test points from MNIST dataset using the Epsilon rule. NNs
have a convolutional architecture. BNNs are trained with VI and tested using an
increasing number of samples (10, 50, 100). Layer indexes refer to the learnable
layers in the architectures.
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(a) (b)

Figure B.3: LRP robustness differences for FGSM (a) and PGD (b) attacks
computed on 500 test points from MNIST dataset using the Epsilon rule. NNs
have a fully connected architecture. BNNs are trained with HMC and tested
using an increasing number of samples (10, 50, 100).
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(a) (b)

Figure B.4: LRP robustness differences for FGSM attacks computed on 500 test
points from MNIST dataset using Epsilon, Gamma and Alpha-Beta rules on
the Top20 pixels. NNs in (a) have a convolutional architecture, while NNs in (b)
have a fully connected architecture. The BNN in (a) is trained with VI and the
BNN in (b) is trained with HMC; Both are tested using 100 posterior samples.
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(a) (b)

Figure B.5: LRP robustness differences for FGSM attacks computed on 500 test
points from Fashion MNIST dataset using Epsilon, Gamma and Alpha-Beta
rules on the Top20 pixels. NNs in (a) have a convolutional architecture, while
NNs in (b) have a fully connected architecture. The BNN in (a) is trained with
VI and the BNN in (b) is trained with HMC; Both are tested using 100 posterior
samples.
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(a) (b)

Figure B.6: LRP robustness differences for PGD attacks computed on 500 test
points from Fashion MNIST dataset using Epsilon, Gamma and Alpha-Beta
rules on the Top20 pixels. NNs in (a) have a convolutional architecture, while
NNs in (b) have a fully connected architecture. The BNN in (a) is trained with
VI and the BNN in (b) is trained with HMC; Both are tested using 100 posterior
samples.

Figure B.7: LRP robustness differences for PGD attacks computed on 500 test
points from CIFAR-10 dataset using Epsilon, Gamma and Alpha-Beta rules on
the Top20 pixels. NNs have a ResNet20 architecture from bayesian_torch library
[87]. The BNN is trained with VI and tested using 100 posterior samples.
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(a) (b)

Figure B.8: LRP robustness differences for top-k (a) and target region (b) attacks
[63] (Sec. 3.5.3) computed on 500 test points from MNIST (a) and Fashion
MNIST (b) datasets using Epsilon, Gamma and Alpha-Beta rules on the Top20

pixels. NNs in (a) have a convolutional architecture, while NNs in (b) have a
fully connected architecture. BNNs are trained with VI and tested using 100
posterior samples.
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Figure B.9: LRP robustness differences for target beta attacks [46] (Sec. 3.5.3)
computed on 500 test points from MNIST dataset using Epsilon, Gamma and
Alpha-Beta rules on the Top60 pixels. NNs have a fully connected architecture
(Tab. A.13). The BNN is trained with HMC and tested using 100 posterior
samples.
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(a) (b)

Figure B.10: LRP vs softmax robustness of deterministic, adversarially trained
and Bayesian NNs trained on Fashion MNIST dataset and tested against FGSM
attacks. ρ denotes the correlation coefficient. LRP Robustness is computed with
the Epsilon rule on the 20% most relevant pixels. BNNs are trained with VI (a)
and HMC (b) and are tested using an increasing number of samples (50, 100).
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B.3 Structural change induced by adversarial mu-
tations

Figure B.11: Pseudo-likelihood of adversarial (columns 1-3) and masked pre-
diction (column 4) mutations at target token indexes. Values refer to 3 sites
mutations obtained from ESM-1b on 100 sequences from domain PF00533.
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(a)

(b)

Figure B.12: L1 distances ||z− z̃||1 between the embeddings of original and
perturbed sequences in the first embedding space (a) and Blosum distances
BLOSUM(x, x̃) between original and perturbed sequences. Adversarial mutations
on 3 sites are computed using ESM-1b model on domain PF00533. “Other” refers
to adversarial perturbations obtained from all the discarded plausible token
substitutions at the chosen target positions.
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(a)

(b)

Figure B.13: Distances between upper submatrices of contact maps of original
and perturbed sequences, as the index k of upper triangular submatrices increases.
Adversarial perturbations at 3 sites are computed by ESM-1b model 100 sequences
from domain PF00533 in (a) and by MSA Transformer model on 100 sequences
from domain PF00627 in (b).
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(a)

(b)

Figure B.14: Pseudo-likelihood of ProTherm (first column) and adversarial
(other columns) mutations at target token indexes. Values refer to single residue
mutations obtained on ProTherm database using ESM-1b model in (a) and MSA
Transformer model in (b).
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(a)

(b)

Figure B.15: L1 distances ||z− z̃||1 between the embeddings of original and
perturbed sequences in the first embedding space (a) and Blosum distances
BLOSUM(x, x̃) between original and perturbed sequences. Adversarial mutations
on 3 sites are computed using ESM-1b model on ProTherm database.
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Figure B.16: Confidence scores for structure prediction performed in ColabFold
on adversarial sequences from PF00627 such that pLDDT > 80 on the original
structures.

Figure B.17: Confidence scores for structure prediction performed in ColabFold
on adversarial sequences from PF00533 such that pLDDT > 80 on the original
structures.
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Figure B.18: LDDT, TM and RMSD scores between original and perturbed
structures for 3 sites mutations on 100 sequences from domain PF00533. Adver-
sarial perturbations are computed by MSA Transformer model, while structure
predictions are performed in ColabFold.
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Notation

Acronyms

NN Neural Network
DNN Deep Neural Network
BNN Bayesian Neural Network
SGD Stochastic Gradient Descent
VI Variational Inference
HMC Hamiltonian Monte Carlo
FGSM Fast Gradient Sign Method
PGD Projected Gradient Descent
C&W Carlini & Wagner
ZOO Zeroth Order Optimization
TV Total Variation
RP Random Projections
LRP Layer-wise Relevance Propagation
LM Language Model
PDB Protein Data Bank
Pfam Protein family database
BLOSUM BLOcks SUbstitutions Matrix
MSA Multiple Sequence Alignment
ESM Evolutionary Scale Modeling
ProTherm Thermodynamic Database for Proteins and Mutants
Cmap Contact map
LDDT Local Distance Difference Test
TM-score Template Modeling score
RMSD Root-Mean-Square Deviation
CPU Central Processing Unit
RAM Random Access Memory
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Abbreviations

e.g. Exempli gratia (“for the sake of example”)
i.e. Id est (“that is”)
s.t. Such that
w.r.t. With respect to
w.l.o.g. Without loss of generality
a.e. Almost everywhere
a.s. Almost surely
i.i.d. Independent and identically distributed

Neural network architecture and training

S ⊂ Rd Ambient space
M ⊂ S Smooth closed data manifold
x ∈ M Point on the data manifold
|| · ||p p-norm in a real vector space
f true : M → RK Target function
f : S × Rnw → RK Neural network with L+ 1 layers and nm neu-

rons in each layer
w ∈ Rnw Vector of weights and biases in the neural net-

work, where nw = n0 + . . . + nL is the total
number of weights across the L+ 1 layers

f∞ : M → RK Infinitely wide architecture
DN = {(xi, yi)}i=1,...,N Set of N training points x ∈ M and with labels

y

L(x,w) = ℓ(f(x,w), f true(x)) Training loss function
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Bayesian neural networks and Bayesian inference

p(w) Prior distribution over w

p(D) Data distribution on M
p(D|w) Likelihood of D given w

p (w|D) ∝ p (D|w) p (w) Posterior distribution of the weights w

f : M× Ω → RK Bayesian Neural Network with weights w ∈
Ω ⊂ Rnw

p(f(·,w)|D) = Ep(w|D)[f(·,w)] Posterior predictive distribution for a BNN
f trained on a dataset D, where Ep(w|D)[·]
denotes the expectation under the posterior
distribution

TxM Tangent space to the data manifold M at x ∈
M

TxM⊥ Orthogonal complement of TxM in S
∇xL(x,w) Gradient of the loss function L w.r.t. x

Adversarial attacks

x̃ Generic adversarial attack on x against f

x̃ = x+ ϵ · sgn ∇xL(x,w) FGSM adversarial attack against a determin-
istic NN f with training loss L and attack
strength ϵ

x̃ = x+ ϵ · sgn Ep(w|D)

�
∇xL(x,w)

�
FGSM adversarial attack against a BNN f
with training loss L and attack strength ϵ

Random projections

X ∈ RN×d N training points from the data manifold M ⊂ Rd,
represented in matrix form

Qj ∈ Rkj×d Random projection matrix from Rd to Rkj , whose
weights are independently drawn from N (0, 1/kj)

Pj(X) = XQT
j ∈ RN×kj kj-dimensional projection of the data matrix X

ψj : Rkj × Rnwj → RK Classifier trained on projections Pj(X), where nwj is
the size of the j-th weight space

Q†
j ∈ Rd×kj Moore-Penrose pseudo-inverse of Qj

Rv1,Rv2 RP-Regularizers
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Saliency explanations

R(x,w) Relevance heatmap of an image x w.r.t. the weights
w

Topk(R) = Topk(R(x,w)) Top k percent most relevant pixel indexes in the
absolute value of a heatmap R

k-LRP(x, x̃,w) k-LRP robustness of the relevance heatmap R(x,w)
w.r.t an adversarial attack x̃

k-LRP(x, x̃,w, l) k-LRP robustness of x at a learnable layer l

Ep(w|D)[k-LRP(x, x̃,w, l)] Bayesian k-LRP robustness of x at a learnable layer l

Adversarial mutations

x = (x1, . . . , xD) ∈ AD Protein sequence of length D on the 25-character
alphabet A of amino acids

z Continuous embedding of a sequence x in the first
embedding space

h ∈ {1, . . . ,H} Attention head index in a Transformer architecture
l ∈ {1, . . . , L} Layer index in a Transformer architecture
Ah,l(x) Attention scores of x at layer l and head h

Rh,l(x) Row attention scores of x at layer l and head h

Ch,l(x) Column attention scores of x at layer l and head h

x̂i Sequence masked at position i ∈ {1, . . . , D}
p(x|x̂i) Pseudo-likelihood of x w.r.t. masked prediction at

position i ∈ {1, . . . , D}
cmap(x) Contact map of x
∆∆G Change in free energy


