
(1)

(2)

Combining Geometric Semantic GP
with Gradient-Descent Optimization
Gloria Pietropolli1 , Luca Manzoni1 , Alessia Paoletti1 and
Mauro Castelli2

Dipartimento di Matematica e Geoscienze, Università degli Studi di
Trieste, Via Alfonso Valerio 12/1, 34127 Trieste, Italy
Nova Information Management School (NOVA IMS), Universidade
Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal

Abstract
Geometric semantic genetic programming (GSGP) is a well-known variant
of genetic programming (GP) where recombination and mutation operators
have a clear semantic effect. Both kind of operators have randomly selected
parameters that are not optimized by the search process. In this paper we
combine GSGP with a well-known gradient-based optimizer, Adam, in
order to leverage the ability of GP to operate structural changes of the
individuals with the ability of gradient-based methods to optimize the
parameters of a given structure.

Two methods, named HYB-GSGP and HeH-GSGP, are defined and
compared with GSGP on a large set of regression problems, showing that

1

https://doi.org/10.1007/978-3-031-02056-8_2
mailto:gloria.pietropolli@phd.units.it
mailto:lmanzoni@units.it
mailto:mcastelli@novaims.unl.pt

the use of Adam can improve the performance on the test set. The idea of
merging evolutionary computation and gradient-based optimization is a
promising way of combining two methods with very different – and
complementary – strengths.

1 Introduction
Genetic Programming (GP) [13] is one of the most prominent evolutionary
computation techniques, with the ability to evolve programs, usually
represented as trees, to solve specific problems given a collection of input
and output pairs. Traditionally, operators in GP have focused on
manipulating the syntax of GP individuals, like swapping subtrees for
crossover or replacing subtrees for mutation. While simple to describe,
these operations produce an effect on the semantics [25] of the individuals
that can be complex to describe, with small variations in the syntax that
may significantly affect the semantics. To address this problem, semantic
operators were introduced. In particular, geometric semantic operators, first
introduced in [15], have been used for defining Geometric Semantic GP
(GSGP), a new kind of GP where crossover and mutation operators have a
clear effect on the semantics. While in the original formulation GSGP was
only of theoretical interest, due to the size of the generated individuals, the
algorithm introduced in [24] provided a way for implementing GSGP
efficiently.

While the introduction of GSGP helped in establishing a clear effect of
recombination and mutation operators, also improving the quality of the
generated solutions, there is still a largely untapped opportunity of
combining GSGP with local search methods. In particular, we can observe
that, give two GP trees and , their recombination is given by

, and the mutation of one of them is given by
, where and are two random trees. As we can

observe, there are three parameters, , , and ms that are either
fixed or randomly selected during the evolution process. As long as each
function used in the generation of the individuals is derivable, we can
compute the gradient of the error with respect to the parameters used in
crossover and mutation. Thus, we can employ a gradient-based optimizer to
update the parameters of each crossover and mutation.

2

In this paper, we propose a way to combine GSGP and Adam, a well-
known gradient-based optimizer. In some sense, by combining GSGP with
a gradient-based optimizer, we are leveraging the strengths of each of the
two methods: GSGP (and GP in general) is good at providing structural
changes in the shape of the individuals, while gradient-based methods are
perfect for optimizing a series of parameters of the individuals that the
evolutionary process has difficulty in optimizing.

We experimentally show that the proposed method can provide better
performance with respect to plain GSGP, thus suggesting that a combination
of local search (via Adam) with GSGP is a new promising way to leverage
knowledge from other areas of artificial intelligence: Adam and the
gradient-based optimizers are well-studied in the area of neural networks,
representing the main tool to perform the learning process in a neural
network.

This paper is structured as follows: Sect. 2 provides an overview of the
applications of local search to evolutionary methods and GP in particular.
Section 3 recalls the reliant notions of GSGP (Sect. 3.1) and the Adam
algorithm (Sect. 3.2). Section 3.3 introduces the proposed hybridized
algorithms combining GSGP and the Adam algorithm. The experimental
settings and the dataset used in the experimental validation are described in
Sect. 4 and the results of the experimental campaign are presented in
Sect. 5. Section 6 summarizes the main contributions of the paper and
provides directions for further research.

2 Related Works
The combination of Evolutionary Algorithms (EAs) and local search
strategies received greater attention in recent years [5, 6, 17]. While EAs
can explore large areas of the search space, the evolutionary search process
improves the programs in a discontinuous way [20]. On the other hand,
when considering local optimizers, the solutions can be improved gradually
and steadily in a continuous way. Thus, as stated by Z-Flores et al. [7], a
hybrid approach that combines EAs with a local optimizer can result in a
well-performing search strategy. Such approaches are a simple type of
memetic search [5], and the basic idea is to include within the optimization
process an additional search operator that, given an individual, searches for
the local optima around it. Thanks to the possibility of fully exploiting the

3

local region around each individual, memetic algorithms obtained excellent
results over different domains [5, 17], and they outperform evolutionary
algorithms in multimodal optimisation [18]. Despite these results, the
literature presents a poor number of contributions dealing with GP [23],
thus indicating that the GP community may have not addressed the topic
adequately. Some examples are the works of Eskridge [8] and Wang [26]
that are domain-specific memetic techniques not addressing the task of
symbolic regression considered in this work. Muñoz et al. [16], proposed a
memetic algorithm that, given a regression (or classification) problem,
creates a new feature space that is subsequently considered for addressing
the underlying optimization problem. The algorithm, by maximizing the
mutual information [12] in the new feature space, shows superior results
with respect to other state-of-the-art techniques.

Focusing on the use of gradient descent in GP, the existing contributions
are focused on particular tasks or particular components of the solutions.
For instance, Topcyy et al. [22] analyzed the effectiveness of gradient
search optimization of numeric leaf values in GP. In particular, they tuned
conventional random constants utilizing gradient descent, and they
considered several symbolic regression problems to demonstrate the
approach’s effectiveness. Zhang et al. [27] applied a similar strategy to
address object classification problems and, also in this case, better results
were obtained compared to the ones achieved with standard GP. Graff et
al. [9] employed resilient backpropagation with GP to address a complex
real-world problem concerning wind speed forecasting, showing improved
results. In [21], the authors used gradient-descent search to make partial
changes of certain parts of genetic programs during evolution. To do that,
they introduced weight parameters for each function node, what the authors
call inclusion factors. These weights modulate the importance that each
node has within the tree. The proposed method, which uses standard genetic
operators and gradient descent applied to the inclusion factors,
outperformed the basic GP approach that only uses standard genetic
operators (i.e., without gradient descent and inclusion factors).

The aforementioned contributions are related to syntax-based GP. In the
context of semantics-based GP [25], the integration of a local search
strategy into GP was proposed by Castelli et al. [4] with the definition of a
specific semantic mutation operator. Experimental results showed excellent
performance on the training set, but with a severe overfitting [3]. To the

4

best of our knowledge, this is the only attempt to integrate a local optimizer
within semantic GP.

In this paper, we follow a different strategy, and, to create a hybrid
semantic GP framework, we rely on gradient descent optimization.

3 Gradient Descent GSGP
This section will discuss the two tools that will be combined later in this
work. First, Geometric Semantic GP is described. Later, Adam, one of the
most powerful gradient descent optimizers, is introduced and discussed.
Afterward, the main contribution of this paper, i.e., the first integration of a
gradient descent optimizer within GSGP, is presented.

3.1 Geometric Semantic GP
Traditional genetic programming investigates the space of programs
exploiting search operators that analyze their syntactic representation. To
improve the performance of GP, recent years have witnessed the integration
of semantic awareness in the evolutionary process [25]. The semantic of a
solution can be identified by the vector of its output values calculated on the
training data. Thus, we can represent a GP individual as a point in a real
finite-dimensional vector space, the so-called semantic space. Geometric
Semantic Genetic Programming (GSGP) is an evolutionary technique
originating from GP that directly searches the semantic space of the
programs. GSGP has been introduced by Moraglio and coauthors [15],
together with the definition of the correspondent Geometric Semantic
Operators (GSOs). These operators replace traditional (syntax-based)
crossover and mutation, inducing geometric properties on the semantic
space. GSOs induce on the training data a unimodal error surface for any
supervised learning problem where input data has to match with known
targets. More precisely: given two parents functions , ,
Geometric Semantic Crossover (GSC) generates the real function

, where is a random real functions
whose output range in the interval [0, 1]. Similarly, given a parent function

, Geometric Semantic Mutation (GSM) generates the real
functions where and are random
real functions whose output range in the interval [0, 1] and ms is a
parameter called mutation step. This means that GSC generates one

5

offspring whose semantics stands on the line joining the semantics of the
two parents in the semantic space, while GSM generates an individual
contained in the hyper-sphere of radius ms centred in the semantics of the
parent in the semantic space. An intrinsic GSGP’s problem is that this
technique leads to larger offsprings with respect to their parents. Due to this
issue, the algorithm becomes excessively unbearably slow generation after
generation, making it unsuitable for real-world applications. In [2, 24],
Vanneschi and coauthors introduced a GSGP implementation that solves
this problem and consists in storing only the semantic vectors of newly
created individuals, besides storing all the individuals belonging to the
initial population and all the random trees generated during the generations.
This improvement turn the cost of evolving g generations of n individuals
from to . The same idea was subsequently adopted to
reconstruct the best individual found by GSGP, thus allowing for its usage
in a production environment [1].

3.2 Adam Algorithm
Adam (Adaptive Moment Estimation) [11] is an algorithm for first-order
gradient-based optimization of stochastic objective functions, based on
adaptive estimates of lower-order models. Adam optimizer is efficient, easy
to implement, requires little memory usage for its execution, and is well
suited for problems dealing with a vast amount of data and/or parameters.
The steps performed by the Adam optimizer are summarized in
Algorithm 1. The inputs required for this method are the parametric
function , the initial parameter vector , the number of steps N, the
learning rate , the exponential decay rate of the first momentum , the
one for the second momentum , and , set by default at . At every
iteration, the algorithm updates first and second moment estimates using the
gradient computed with respect to the stochastic function f. These estimates
are then corrected to contrast the presence of an intrinsic initialization bias
through the divisions described in line 7 and 8, where stands for the
element-wise exponentiation. For further details about the implementation
of the Adam optimizer and the demonstration of its properties, the reader
can refer to [11].

6

3.3 GSGP Hybridized with Gradient Descent
The idea introduced in this work is to combine the strength of the two
methods presented above, i.e., GSGP and the Adam optimizer. Geometric
semantic GP, thanks to the geometric semantic operators, allows big jumps
in the solution space. Thus, new areas of the solution space can be explored,
with GSOs also preventing the algorithm to get stuck in a local optimum.
Adam optimizer, on the other hand, is a gradient-based optimization
technique. Thus, it performs small shifts in the local area of the solution
space. A combination of these techniques should guarantee a jump in
promising areas (i.e., where good-quality solutions lie) of the solution
space, thanks to the evolutionary search of GSGP and subsequent
refinement of the solution obtained with the Adam algorithm. Let’s describe
in more detail how to implement this combination. Let us consider an input
vector of n features, and the respective expected scalar value output y. By
applying GSGP, an initial random population of functions in n variables is
created. After performing the evolutionary steps involving GSM and GSC,
a new population of N individuals is obtained. The
resulting vector T is composed of derivable functions, as they are obtained
through additions, multiplications, and compositions of derivable functions.
At this point, to understand for which parameter we should differentiate T,
it is necessary to introduce an equivalent definition of the geometric
semantic operators presented in Sect. 3.1. In particular let us redefine the
Geometric Semantic Crossover as , where

, and the Geometric Semantic Mutation as
, where . As the values of and m

7

are randomly initialised, we can derive T with respect to ,
and m. Therefore, the Adam optimizer algorithm can be applied,
considering as objective function the generation considered, while the
parameter vector becomes . Thus, GSGP and Adam
optimizer can be applied together to find the best solution for the problem at
hand. We propose and investigate two ways to combine them:

– HYB-GSGP: the abbreviation stands for Hybrid Geometric Semantic
Genetic Programming. Here, one step of GSGP is alternated to one step
of the Adam optimizer.

– HeH-GSGP: the abbreviation stands for Half et Half Geometric Semantic
Genetic Programming. Here, initially, all the GSGP genetic steps are
performed, followed by an equal number of Adam optimizer steps.

In the continuation of the paper, we will refer to these two methods
using the abbreviations just introduced.

4 Experimental Settings
This section describes the datasets considered for validating our technique
(Sect. 4.1) and provides all the experimental settings (Sect. 4.2) to make the
experiments completely reproducible. The code, for the complete
reproducibility of the proposed experiments, is available at https:// github.
com/ gpietrop/ GSGP-GD [19].

4.1 Dataset
To assess the validity of the technique proposed in Sect. 3.3, real-world,
complex datasets, ranging from different areas, have been considered and
tested. All of them have been widely used as benchmarks for GP, and their
properties have been discussed in [14]. Table 1 summarizes the
characteristics of the different datasets, such as the number of instances and
the number of variables. The objective of the first group of datasets is the
prediction of pharmacokinetic parameters of potential new drugs. Human
oral bioavailability (%F) measures the percentage of initial drug dose that
effectively reaches the system blood circulation; Median lethal dose
(LD50) measures the lethal dose of a toxin, radiation, or pathogen required
to kill half the members of a tested population after a specified test
duration; Protein-plasma binding level (%PPB) corresponds to the

8

https://github.com/gpietrop/GSGP-GD

percentage of the initial drug dose that reaches the blood circulation and
binds the proteins of plasma. Also, datasets originating from physical
problems are considered: Yacht hydrodynamics (yac) measures the
hydrodynamic performance of sailing yachts starting from its dimension
and velocity; Concrete slump (slump) measures the value about the slump
flow of the concrete; Concrete compressive strength (conc) measures values
about the compressive strength of concrete; Airfoil self-noise (air) is a
NASA dataset obtained from a series of aerodynamic and acoustic test of
airfoil blade sections.

Table 1. Principal characteristics of the considered datasets: the number of variables, the number of
instances, the domain, and the task request.

Dataset Variables Instances Area Task

%F 242 359 Pharmacokinetic Regression

LD50 627 234 Pharmacokinetic Regression

%PPB 627 131 Pharmacokinetic Regression

yac 7 308 Physics Regression

slump 10 102 Physics Regression

conc 9 1030 Physics Regression

air 6 1503 Physics Regression

4.2 Experimental Study
For all the datasets described in Sect. 4.1, samples have been split among
train and test sets: of randomly selected data has been used as a
training set, while the remaining has been used as a test set. For each
dataset, 100 runs have been performed, each time with a random train/test
split.

To assess the performance of HYB-GSGP and HeH-GSGP, the results
obtained within these methods are compared to the ones achieved with
classical GSGP. The comparison with the performance achieved by
standard GP is not reported, because after some preliminary tests it has been
observed that standard GP is non competitive against GSGP. We considered
two hyperparameters settings to evaluate our methods’ performance with
different values assigned to the learning rate of the Adam algorithm. Both
of them are compared against 200 generations of standard GSGP. To make
the comparison fair, the total number of fitness evaluations must be equal

9

for every method considered: 200 generations in the standard GSGP routine
correspond to a combination of 100 generations of GSGP plus 100 steps of
Adam optimizer, both for HYB-GSGP and HeH-GSGP.

The first learning rate value we considered is 0.1 and we will refer to
HYB-GSGP and HeH-GSGP where Adam optimizer used this
hyperparameter as, respectively, HYB-0.1 and HeH-0.1. The second
learning rate value we considered is 0.01 and we will refer to HYB-GSGP
and HeH-GSGP where Adam optimizer used this hyperparameter as,
respectively, HYB-0.01 and HeH-0.01. The population size for all the
considered systems is set to 50, and the trees of the first generation are
initialized with the ramped half and half technique. Further details
concerning the implementation of the semantic system and the Adam
optimization algorithm are reported in Table 2. The considered fitness
function is the Root Mean Squared Error (RMSE).

Table 2. Experimental settings. A horizontal line separates the parameters belonging to GSGP
algorithm and the ones belonging to the Adam technique.

Parameter Value

Function Set , −, , //

Max. Initial Depth 6

Crossover Rate 0.9

Mutation Rate 0.3

Mutation step 0.1

Selection Method Tournament of size 4

Elitism Best individuals survive

Learing Rate - A () 0.1

Learing Rate - B () 0.01

Exponential Decay Rate - First Momentum () 0.9

Exponential Decay Rate - Second Momentum () 0.99

5 Experimental Results
Table 3. Training and testing fitness (RMSE) for the considered benchmark problems. Bold font
indicates the best results.

10

GSGP HYB-0.1 HYB-0.01 HeH-0.1 HeH-0.01GSGP HYB-0.1 HYB-0.01 HeH-0.1 HeH-0.01

%F Train 38.08 37.74 36.80 39.61 40.60

Test 40.15 40.48 39.61 40.85 41.23

LD50 Train 2118.00 2086.56 2128.22 2144.27 2161.00

Test 2214.78 2203.25 2229.87 2221.72 2215.09

%PPB Train 30.15 27.00 24.32 34.79 33.26

Test 328.1 401.43 263.81 213.86 235.53

yac Train 11.83 11.92 12.48 12.28 12.31

Test 11.92 11.83 12.52 12.38 12.48

slump Train 4.56 3.47 2.92 5.19 4.41

Test 5.08 3.63 3.32 5.77 4.76

conc Train 9.62 8.86 8.50 10.59 10.05

Test 9.65 8.88 8.69 10.47 10.07

air Train 27.76 31.54 21.98 30.37 30.46

Test 27.94 31.71 21.97 30.15 30.53

11

12

Fig. 1. Boxplots of Testing RMSE obtained over 100 independent runs of the considered benchmark
problems. (a) %F, (b) LD50, (c) %PPB, (d) yac, (e) slump, (f) conc, (g) air.

13

14

Fig. 2. Median of training fitness over 100 independent runs for the considered benchmark
problems. (a) %F, (b) LD50, (c) %PPB, (d) yac, (e) slump, (f) conc, (g) air.

15

16

Fig. 3. Median of testing fitness over 100 independent runs for the considered benchmark problems.
(a) %F, (b) LD50, (c) %PPB, (d) yac, (e) slump, (f) conc, (g) air.

As stated in Sect. 3.3, the goal of this study is to compare the
performance of GSGP against the one obtained by the proposed methods.

For each problem, the median of the fitness (calculated over the 100
runs performed), for both the training and the validation sets, is displayed in
Table 3. The corresponding statistical analysis is reported Fig. 1 (for the test
set), thorough letter-value plots. Letter-value plots are a particular kind of
box-plots, introduced for the first time in [10]. We preferred them, over
traditional box-plots, because they provide information not only about the
distribution of the data but also about the tail behavior beyond the quartiles.
Finally, the median fitness, at each generation, for the training and
validation set, is displayed, respectively, in Fig. 2 and in Fig. 3. Training
results are reported for the sake of completeness. Anyway, to compare the
performance of the proposed methods against GSGP, we focus our analysis
on the results achieved on the test set.

Table 3 shows that HYB-GSGP outperforms standard geometric
semantic GP, while, most of the time, the HeH-GSGP method produces
higher errors with respect to the two competitors.

Table 4. P-values returned by the Wilcoxon ran-sum test under the alternative hypothesis that the
median errors obtained from classical GSGP are smaller or equal than the median errors of other
methods considered, i.e. HYB-0.1, HYB-0.01, HeH-0.1, HeH-0.01

%F LD50 %PPB yac slump conc air

HYB-0.1 Train 0.01484 0.0 0.0 0.9512 0.0 0.0 1.0

Test 0.5978 0.4143 0.6716 0.9512 0.0 0.0 1.0

HYB-0.01 Train 0.5978 0.3820 0.0 0.8948 0.0 0.0 0.0

Test 0.0631 0.6862 0.2158 1.0 0.0 0.0 0.0

HeH-0.1 Train 0.9998 1.0 1.0 1.0 0.9998 0.9998 1.0

Test 0.8384 0.5445 0.0018 1.0 0.9989 0.9992 1.0

HeH-0.01 Train 1.0 0.9984 1.0 1.0 0.4805 0.9573 1.0

Test 1.0 0.6923 0.0074 1.0 0.4805 0.9652 1.0

Considering the %F dataset (Fig. 1(a)), it is possible to see that the best
results are achieved with the HYB-GSGP method in which the learning rate
of the Adam algorithm is 0.01. This performance improvement is achieved

17

after 25 epochs and is maintained throughout all the epochs performed, as
shown in Fig. 3(a).

With respect to the LD50 problem (Fig. 1(b)), HYB-GSGP outperforms
standard GSGP. In this case, the performance improvement is achieved with
a learning rate of 0.1. However, on this benchmark, all the considered
techniques perform similarly, with the fitness values on the test set that do
not differ significantly.

Concerning the %PPB dataset (Fig. 1(c)), it is clear that all the models
are affected by overfitting. Hence, our expectation would suggest that lower
error on the training set should lead to higher error on the test set. However,
the HYB-GSGP method is able to perform better than GSGP, both in the
training and validation set. Thus, HYB-GSGP seems to be capable of
(slightly) reducing overfitting.

Taking into account the yac problem (Fig. 1(d)), the best results on the
test set are obtained with HYB-0.1 and, again, this method reaches such a
performance improvement in approximately 25 epochs. As shown in
Fig. 3(d), the test fitness of GSGP decreases linearly, while for HYB-0.1
fitness decreases more rapidly, leading the hybrid method to a faster
converge.

For the slump dataset (Fig. 1(e)), the combination of GSGP and Adam
optimizer is successful, as HYB-GSGP outperforms standard GSGP for
both the considered learning rate values. Moreover, also HeH-0.01 achieved
better fitness values with respect to GSGP. Also in this case, it is interesting
to highlight that the performance improvement provided by HYB-GSGP is
achieved in a few epochs (Fig. 3(e)). A similar behaviour can be observed
for the conc dataset (Fig. 1(f)): HYB-GSGP outperforms classical GSGP
after a few epochs. Concerning the air problem (Fig. 1(g)), the HYB-GSGP
method with the Adam’s learning rate of 0.01 leads to a significant
improvement in terms of test fitness. On the other hand, the other hybrid
methods introduced in this work are characterized by some instability.

Table 4 reports a statistical significance assessment of the result
achieved. In particular, Table 4 displays the p-values obtained from the
Wilcoxon rank-sum test for pairwise data comparison, with ,
applied under the alternative hypothesis that the median errors resulting
from the considered techniques are smaller or equal than the median errors
obtained with classical GSGP. The statistical tests show that, on the test set,

18

the HYB method, in particular HYB-0.01, obtains better results than GSGP
on three benchmark problems.

While there is no clear superiority of one method with respect to the
others, it is interesting to note, especially in Fig. 1, how the distribution of
the results obtained by the hybrid methods is usually as tight or tighter than
the distribution produced by GSGP, showing consistent results that are, in
some cases, better than GSGP. Thus, it appears that using half of the
“evolutionary” iterations coupled with local search via gradient-descent
optimization can actually improve the results.

6 Conclusions
This paper investigates the possibility of integrating a gradient-based
optimization method, the Adam algorithm, within a genetic programming
system, GSGP. The idea behind this work relies on the possibilities of
exploiting and combining the advantages of these two methods to achieve
faster convergence of the evolutionary search process.

Two different ways of combining these methods have been investigated.
In the former, denoted as HYB-GSGP, a step of GSGP is alternated to a step
of Adam. In the latter, denoted as HeH-GSGP, first, all the GSGP steps are
performed, and, subsequently, the refinement with Adam is executed. The
results achieved with these two methods were compared against classical
GSGP on eight real-world complex benchmark problems belonging to
different applicative domains. The experiments were performed considering
two different values of the learning rate, which is the most relevant
parameter of the Adam algorithm.

Experimental results show that, in each of the considered benchmarks,
HYB-GSGP outperforms classic GSGP in both training and test sets (with a
statistically significant difference on the test set on three problems). These
results corroborate our hypothesis: the combination of GSGP with the
Adam optimizer can improve the performance of GSGP. Moreover, HYB-
GSGP converges to good-quality solutions faster than classical GSGP. In
more detail, HYB-GSGP requires fewer epochs to converge, and the
performance achieved by GSGP at the end of the evolutionary process is
worse than the one achieved by the proposed hybrid method after a few
fitness evaluations. On the contrary, the HeH-GSGP does not outperform
GSGP even if it generally ensures good quality results on the test set. Thus,

19

the results suggest that a combination of one step of GSGP and one step of
Adam is the best way to mix these techniques.

This work represents the first attempt to create a hybrid framework
between GSGP and a gradient descent-based optimizer. Considering the
promising results obtained in this first analysis, this work paves the way to
multiple possible future developments focused on improving the benefits
provided by this kind of combination.

References
1. Castelli, M., Manzoni, L.: GSGP-C++ 2.0: a geometric semantic genetic programming

framework. SoftwareX 10, 100313 (2019)

2. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic
programming. Genet. Program Evolvable Mach. 16(1), 73–81 (2015)
[Crossref]

3. Castelli, M., Trujillo, L., Vanneschi, L.: Energy consumption forecasting using semantic-based
genetic programming with local search optimizer. Comput. Intell. Neurosci. 2015 (2015)

4. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z-Flores, E., Legrand, P.: Geometric semantic
genetic programming with local search. In: Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, pp. 999–1006 (2015)

5. Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE
Trans. Evol. Comput. 15(5), 591–607 (2011)
[Crossref]

6. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a
survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)
[Crossref]

7. Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: Evaluating the effects of local search in
genetic programming. In: Tantar, A.-A., et al. (eds.) EVOLVE - A Bridge between Probability,
Set Oriented Numerics, and Evolutionary Computation V. AISC, vol. 288, pp. 213–228.
Springer, Cham (2014). https:// doi. org/ 10. 1007/ 978-3-319-07494-8_ 15
[Crossref]

8. Eskridge, B.E., Hougen, D.F.: Imitating success: a memetic crossover operator for genetic
programming. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat.
No. 04TH8753), vol. 1, pp. 809–815. IEEE (2004)

9. Graff, M., Pena, R., Medina, A.: Wind speed forecasting using genetic programming. In: 2013
IEEE Congress on Evolutionary Computation, pp. 408–415. IEEE (2013)

10. Hofmann, H., Kafadar, K., Wickham, H.: Letter-value plots: boxplots for large data. Technical
report, had.co.nz (2011)

20

https://doi.org/10.1007/s10710-014-9218-0
https://doi.org/10.1109/TEVC.2011.2132725
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1007/978-3-319-07494-8_15
https://doi.org/10.1007/978-3-319-07494-8_15

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

12. Kojadinovic, I.: On the use of mutual information in data analysis: an overview. In: Proceedings
International Symposium Applied Stochastic Models and Data Analysis, pp. 738–47 (2005)

13. Koza, J.R., Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of
Natural Selection, vol. 1. MIT Press, Cambridge (1992)

14. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the
14th Annual Conference on Genetic and Evolutionary Computation, pp. 791–798 (2012)

15. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello,
C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol.
7491, pp. 21–31. Springer, Heidelberg (2012). https:// doi. org/ 10. 1007/ 978-3-642-32937-1_ 3
[Crossref]

16. Muñoz, L., Trujillo, L., Silva, S., Castelli, M., Vanneschi, L.: Evolving multidimensional
transformations for symbolic regression with M3GP. Memetic Comput. 11(2), 111–126 (2019)
[Crossref]

17. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review.
Swarm Evol. Comput. 2, 1–14 (2012)
[Crossref]

18. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms outperform evolutionary algorithms in
multimodal optimisation. Artif. Intell. 287, 103345 (2020)
[MathSciNet][Crossref]

19. Pietropolli, G.: GSGP-GD (2022). https:// github. com/ gpietrop/ GSGP-GD

20. Smart, W., Zhang, M.: Continuously evolving programs in genetic programming using gradient
descent. Technical report, CS-TR-04-10, Computer Science, Victoria University of Wellington,
New Zealand (2004)

21. Smart, W., Zhang, M.: Continuously evolving programs in genetic programming using gradient
descent. In: Proceedings of The Second Asian-Pacific Workshop on Genetic Programming,
Cairns, Australia, p. 16pp (2004)

22. Topchy, A., Punch, W.F., et al.: Faster genetic programming based on local gradient search of
numeric leaf values. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), vol. 155162. Morgan Kaufmann (2001)

23. Trujillo, L., et al.: Local search is underused in genetic programming. In: Riolo, R., Worzel, B.,
Goldman, B., Tozier, B. (eds.) Genetic Programming Theory and Practice XIV. GEC, pp. 119–
137. Springer, Cham (2018). https:// doi. org/ 10. 1007/ 978-3-319-97088-2_ 8
[Crossref]

24. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic
GP and its application to problems in pharmacokinetics. In: Krawiec, K., Moraglio, A., Hu, T.,
Etaner-Uyar, A.Ş, Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer,
Heidelberg (2013). https:// doi. org/ 10. 1007/ 978-3-642-37207-0_ 18
[Crossref]

21

https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/s12293-018-0274-5
https://doi.org/10.1016/j.swevo.2011.11.003
http://www.ams.org/mathscinet-getitem?mr=4116108
https://doi.org/10.1016/j.artint.2020.103345
https://github.com/gpietrop/GSGP-GD
https://doi.org/10.1007/978-3-319-97088-2_8
https://doi.org/10.1007/978-3-319-97088-2_8
https://doi.org/10.1007/978-3-642-37207-0_18
https://doi.org/10.1007/978-3-642-37207-0_18

25.
Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming.
Genet. Program Evolvable Mach. 15(2), 195–214 (2014)
[Crossref]

26. Wang, P., Tang, K., Tsang, E.P., Yao, X.: A memetic genetic programming with decision tree-
based local search for classification problems. In: 2011 IEEE Congress of Evolutionary
Computation (CEC), pp. 917–924. IEEE (2011)

27. Zhang, M., Smart, W.: Genetic programming with gradient descent search for multiclass object
classification. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP
2004. LNCS, vol. 3003, pp. 399–408. Springer, Heidelberg (2004). https:// doi. org/ 10. 1007/ 978-
3-540-24650-3_ 38
[Crossref]

22

https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/978-3-540-24650-3_38
https://doi.org/10.1007/978-3-540-24650-3_38

	Long Presentations
	Combining Geometric Semantic GP with Gradient-Descent Optimization

