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Abstract

In this work we are interested in the reconstruction of the subsurface compo-
sition of the earth, by recorded measurements taken at the surface. Among
the available electromagnetic (EM) sounding methods in geophysics, we fo-
cus on one technique, that consists of placing a magnetic dipole above the
surface, composed of a transmitter coil and different couples of adjacent re-
ceiver coils, placed at different distances. In this setting, the electromagnetic
induction effect, modelled by first-order linear Maxwell’s differential equa-
tions, produce eddy alternating currents in the soil which induce response
electromagnetic fields, that can be used to determine the conductivity profile
of the ground by meaning of an inversion procedure. By assuming that the
local subsurface structures are composed by horizontal and homogeneous
layers, general integral solutions of Maxwell equations can be derived and
represented as Hankel transforms, that, in general, are difficult to expressed
in closed form. Moreover, the slow decay of the oscillations determined by
the Bessel function makes the problem very difficult to handle, because tradi-
tional quadrature rules typically fail to converge. We consider two approaches
to numerically evaluate these integrals. The first one is based on the decom-
position of the integrand function in a first one for which the corresponding
Hankel transform is known exactly, and a second oscillating function that de-
cays exponentially. For realistic sets of parameters, the oscillations are quite
rapidly damped, and the corresponding integral can be accurately computed
by a classical quadrature rule. The second approach consists in the devel-
opment and application of a Gaussian quadrature rule for weight functions
involving fractional powers, exponentials and Bessel functions of the first
kind. Moreover, we derive an analytical approximation of these integrals
that has a general validity. Finally, by assuming as forward model a ho-
mogeneous layered earth, we consider the inverse problem of computing the
model parameters from a set of measured field values at different distances.
We employ two optimization algorithms. The first one is based on the BFGS
line-search method and, to reduce the number of integral evaluations, the
analytic approximation of these integrals is used in the initial iterations to
have a first estimate of the solution. For the second approach, based on
the reformulation of the minimization problem in the nonlinear least-squares
sense, we employ the damped Gauss-Newton method. To avoid the depen-
dence on the initial guess of the iterative procedure, we consider a set of
different initial models and use each one to solve the optimization problem.
The numerical experiments, carried out for the study of river-levees integrity,
allow to estimate the errors associated to these kinds of investigations, and
confirm the reliability of the techniques.



Introduction

The aim of electromagnetic (EM) sounding methods in geophysics is to obtain
information about the subsurface of the earth by recorded measurements
taken at the surface. In particular, the goal is to determine variations in
the electrical conductivity of the earth with depth by employing an inversion
procedure. Any sounding method involves receivers for measurements of
one or more components of electric or magnetic fields produced by some
natural or artificial source of electromagnetic energy, i.e., the transmitter.
Most EM techniques consist of measurements at a number of frequencies or
times using a fixed source and receiver. Alternatively, soundings can be made
by measuring the response at several source-receiver separations at a single
frequency or time.

In this work we focus on a particular technique of the latter type, that
consists of placing a magnetic dipole above the surface, composed of a trans-
mitter coil and various couples of adjacent receiver coils. The receiver cou-
ples are placed at different distances (offsets) from the transmitter coil. The
most common dipole geometry consists of transmitter and receiver loops that
can be horizontal co-planar (HCP configuration) and perpendicular (PRP
configuration). Other two settings consist in vertical co-planar loops (VCP
configuration) and in vertical coaxial loops (VCX configuration). In this
setting, the electromagnetic induction effect, modelled by first-order linear
Maxwell’s differential equations, produce eddy alternating currents in the soil
which induce response electromagnetic fields, that can be used to determine
the conductivity profile of the ground by means of an inversion algorithm.
A typical inversion strategy consists in an iterative procedure involving the
computation of the EM response of a layered model (forward modelling) and
the solution of the inverse problem. Then, the algorithm attempts to min-
imize the mismatch between the measured data and the predicted data, by
updating the model parameters at each iteration.

By assuming that the local subsurface structures are composed by hori-
zontal and homogeneous layers, general integral solutions of Maxwell’s equa-
tions (i.e., the EM fields) for vertical and horizontal magnetic dipoles, can be
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ii INTRODUCTION

derived (see [64]) and represented as Hankel transforms of order l, as follows,

If (r, p) =

∫ ∞

0

f(λ, p)Jl(λr)dλ, (1)

where r is the offset and Jl is the Bessel function of the first kind of order
l (we refer to [65] for an overview of Bessel functions). The function f(λ, p)
depends on the vector p characterizing the subsurface model parameters, i.e.,
the conductivity and the thickness of each layer.

In the case of conductivities of geological materials, only the imaginary
part of the complex function If (r, p) is considered. Indeed, while the instru-
ments used for experimental surveys collect both in-phase and quadrature
measurements of the magnetic field components, the former become impor-
tant only over highly conductive materials, and are particularly effective for
locating confined conductors, such as metal bodies, or boulders of graphite
or sulfide.

From a mathematical point of view, in general, the function If (r, p) is
difficult to express in closed form and therefore it is necessary to use a nu-
merical scheme. Anyway, the slow decay of the oscillations determined by
the Bessel function makes the problem very difficult to handle, because tra-
ditional quadrature rules typically fail to converge. The technique commonly
employed to evaluate numerically this kind of integrals is the digital filtering.
This method is essentially a standard quadrature rule, but the main differ-
ence is that the weights are computed by solving a linear equation obtained
by imposing the rule to be correct on a set of training functions that are not
polynomials and for which the corresponding integral (1) is known (see e.g.
[31]).

In this work we consider two different approaches (see [13] and [11]) to
evaluate integrals of type (1). The first one is based on the decomposition of
the function f(λ, p) as

f(λ, p) = f1(λ, p) + f2(λ, p),

where f1(λ, p) is such that If1(r, p) is known exactly, and the oscillating
function f2(λ, p) decays exponentially. For realistic sets of parameters, the
oscillations are quite rapidly damped and the corresponding integral If2(r, p)
can be accurately computed by a classical quadrature rule on finite intervals.
We remark that the frequency of the oscillations increases with r, so that the
evaluation of If (r, p) becomes more difficult. In this view the decomposition
of f(λ, p) allows to reduce the sensitivity with respect to r. The idea of
splitting the integral in two parts was introduced in [33] where, however, the
second integral is still approximated by digital filtering, without exploiting
the fast decay of the oscillations.
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The second approach we employ for the computation of the electromag-
netic fields is the application of a Gaussian quadrature formula. In particular,
we develop a Gaussian rule for weight functions involving fractional powers,
exponentials and Bessel functions of the first kind that can be used to eval-
uate integrals of type (1).

Moreover, we derive an analytical approximation of these integrals that
has a general validity and allows to overcome the limitations of common
methods based on the modelling of apparent conductivity in the low induction
number (LIN) approximation.

Having at our disposal a reliable method for evaluating (1), by assuming
as forward model a homogeneously layered earth, we also consider the inverse
problem of computing the model parameters (i.e., conductivity and thickness
of the layers) from a set of measured field values at different offsets. In
particular, we focus on the specific case of the DUALEM (DUAL-geometry
Electro-Magnetic; http://www.dualem.com) system, in which the receiver
couples are placed at 2, 4, 6 and 8 m from the transmitter coil, and typical
source-receiver geometries are the HCP and PRP configurations. Anyway,
the results can be generalized for applications at any scale. We employ two
optimization algorithms. The first one is based on the BFGS line-search
method ([6, 16, 26, 53]) and, in order to reduce as much as possible the
number of integral evaluations, the general analytic approximation of these
integrals is used in the initial iterations of the tomographic procedure, to
have a first estimate of the solution.

For the second approach we employ the damped Gauss-Newton method
[14]. To avoid the dependence on the initial guess of the iterative proce-
dure, we consider a grid of values of initial models and we use each one to
solve the optimization problem. After analyzing of the set of solutions, we
describe a strategy to obtain the approximate solution of the inverse prob-
lem. Anyway, this inversion algorithm can be very expensive in terms of
computational costs. The numerical experiments, carried out for the study
of river-levees integrity, an important environmental problem in Italy due to
the high hydrological risks, allow to estimate the errors associated to these
kind of investigations and confirm the reliability of the techniques.

The numerical methods and the associated simulations are implemented
in Matlab. Moreover, in order to accelerate the minimization procedure,
we run in parallel the simulations on a virtual machine equipped with the
NVIDIA A100 Tensor Core GPU.

This work, divided in four chapters, is organized as follows. In the first
chapter we introduce some notions of electromagnetic theory, state Maxwell’s
equations and describe how to derive their general solutions. In particular,
following [64], in the presence of a layered earth we write the integral solutions
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for vertical and horizontal magnetic dipoles and the exact solutions in the
case of a homogeneous earth model.

The second chapter deals with the forward problem, i.e., the computation
of the EM fields. After a brief review of the numerical techniques usually
employed, we propose and analyze a novel approach, based on the splitting
of the integrand function. Moreover, we develop the Gaussian quadrature
rule that can be used to evaluate integrals of type (1).

In Chapter 3, under the low induction number approximation, we present
the commonly used LIN approximation. Moreover, we also derive new ana-
lytical approximations of the integral representations of the fields.

Finally, in Chapter 4 we consider the inverse problem, consisting in the
computation of the unknown underground conductivity distribution from
a set of modeled magnetic fields components. In particular, we apply two
optimization algorithms based on line-search methods and provide numerical
experiments, carried out for the study of the internal composition of river
levees.

We remark that, for what concerns the notation, in the first chapter
we have used bold characters for 3D vectors, in line with the standards in
physics. In the remaining part of the work we have adopted the mathematical
standard (normal character) for all the vector quantities.



Chapter 1

Basic electromagnetic theory

In this chapter we treat the basic of electromagnetic theory necessary to
derive integral formulations of the fields. Moreover, for sake of clarity, all the
main results are collected in the form of propositions with relative proofs.
We refer to [64, 57] for a complete and exhaustive discussion of the covered
topics.

1.1 Maxwell’s equations

All electromagnetic phenomena are governed by Maxwell’s equations, which
are first-order linear differential equations. The first equation, which repre-
sents the physical law that electric fields result from time-varying magnetic
induction fields, is

∇× e(x, t) = −∂b(x, t)
∂t

, (1.1)

where x = (x, y, z) is the position vector in Cartesian coordinates, t is the
time, e is the electric field vector in (V/m), b is the magnetic induction
vector in (Wb/m2) and ∇× (·) is the curl operator (see Appendix A). The
second equation is used to represent the fact that the magnetic fields are
caused by electric current flow, and it is given by

∇× h(x, t) = j(x, t) +
∂d(x, t)

∂t
, (1.2)

where h is the magnetic field in (A/m), j is the current density in (A/m2)
and d is the electric displacement in (C/m2). This equation represents two
kinds of current flow: one, j, in which charge carries flow through a medium
without hindrance, and another, ∂d/∂t, in which charge separation, and
hence an impeding electric field, arises. The first type of current is called

1



2 CHAPTER 1. BASIC ELECTROMAGNETIC THEORY

ohmic or galvanic, while the second type is known by the name displacement
current. The four vectors e, b, d and h, which define an electromagnetic
field, are assumed to be continuous functions of position and time, with first
and second order continuous derivatives.

Two conditions satisfied by the vectors b and d may be deduced directly
from Maxwell’s equations. In fact, by taking the divergence ∇ · (·) (see
Appendix A) of equation (1.1), we obtain

∇ · (∇× e(x, t)) +∇ · ∂b(x, t)
∂t

= 0,

and hence, by (A.5) and due to the commutation of the operators ∇· (·) and
∂/∂t, we have

∇ · ∂b(x, t)
∂t

=
∂

∂t
∇ · b(x, t) = 0.

It follows that at every point in the field the divergence of b is constant. If
ever in its past history the field has vanished, this constant must be zero and,
since we may reasonably suppose that the initial generation of the field was
at a time not infinitely remote, we conclude that

∇ · b(x, t) = 0, (1.3)

and the field b is called solenoidal. Likewise, the divergence of equation (1.2)
leads to

∇ · j(x, t) + ∂

∂t
∇ · d(x, t) = 0.

Using the relation

∇ · j(x, t) + ∂ρ(x, t)

∂t
= 0, (1.4)

which expresses the conservation of charges in the neighborhood of a point,
we have

∂

∂t
(∇ · d(x, t)− ρ(x, t)) = 0.

If again we admit that at some time in its past or future history the field
may vanish, it is necessary that

∇ · d(x, t) = ρ(x, t). (1.5)

Therefore, the charges distributed with a density ρ constitute the sources
of the vector d. The divergence equations (1.3) and (1.5) are frequently
included as part of Maxwell’s system.
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1.2 The constitutive equations

At this point, the only assumptions that we made are that an electromagnetic
field is characterized by the four vectors e, b, d and h, which at ordinary
points satisfy Maxwell’s equations, and that the distribution of current that
gives rise to the field is such as to ensure the conservation of charge. In
order to make the system determinate, we are now forced to impose further
relationships, called constitutive equations.

Let us begin with the assumptions that at any point within the medium

j(x, t) = j(e(x, t)),

and that at any given point in the field, whether in free space or within
matter,

d(x, t) = d(e(x, t)) and h(x, t) = h(b(x, t)).

If the medium is isotropic, i.e., the physical properties are uniform in all
directions of the medium, j and d are parallel to e, and h is parallel to b.
Moreover, the relations between the vectors are linear in almost the soluble
problems of electromagnetic theory. Therefore, for the isotropic linear case,
we have the following conditions, called constitutive equations,

j(x, t) = σe(x, t), (1.6)

d(x, t) = ϵe(x, t), (1.7)

h(x, t) =
1

µ
b(x, t), (1.8)

where σ is the electrical conductivity in (S/m), ϵ is the dielectric permittivity
in (F/m) and µ is the magnetic permeability in (H/m). The relation (1.6)
is known as Ohm’s law. By definition, the electrical conductivity represents
the ability of the material to conduct electric current, while the electric per-
mittivity and the magnetic permeability are a measure of polarizability and
magnetization, respectively, of the medium. Moreover, the dielectric permit-
tivity and the magnetic permeability have well defined values even in the
absence of matter, that is,

ϵ0 = 8.854 · 10−12 F/m, (1.9)

µ0 = 4π · 10−7 H/m. (1.10)

By using the time domain Fourier transform (B.1) (see Appendix B for the
definitions of the Fourier transform and some useful properties), equations
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(1.6), (1.7) and (1.8) can be written in the frequency domain as

J(x, ω) = σE(x, ω),

D(x, ω) = ϵE(x, ω), (1.11)

H(x, ω) =
1

µ
B(x, ω). (1.12)

Also the Maxwell’s equations can be stated in the frequency domain as shown
in the following proposition.

Proposition 1 By assuming for the fields e, b, d and h the boundary con-
ditions

lim
t→±∞

e(x, t) = lim
t→±∞

b(x, t) = lim
t→±∞

d(x, t) = lim
t→±∞

h(x, t) = 0, (1.13)

the Maxwell’s equations in the frequency domain are given by

∇× E(x, ω) + iµωH(x, ω) = 0, (1.14)

and

∇×H(x, ω)− (σ + iϵω)E(x, ω) = 0. (1.15)

Proof. Applying the Fourier transformation (B.1) to equation (1.1) leads to

∇× E(x, ω) +

∫ ∞

−∞

∂b(x, t)

∂t
e−iωtdt = 0,

where, since b is assumed to be continuous with regard to position and time,
we have also used the commutation of the curl and integral operators. Then,
integrating by part and using boundary condition (1.13), we have

∇× E(x, ω) + iωB(x, ω) = 0.

Finally, by relation (1.12) we obtain equation (1.14). The derivation of equa-
tion (1.15) is analogous.

1.3 The wave equations

In this section, by assuming that the earth subsoil is composed by several jux-
taposed homogeneous isotropic linear regions, we derive the wave equations
used for each region directly from Maxwell’s equations.



1.3. THE WAVE EQUATIONS 5

Proposition 2 The wave equations for the electric and magnetic fields in
the time domain are given by

∇2e(x, t)− µϵ∂
2e(x, t)

∂t2
− µσ∂e(x, t)

∂t
= 0 (1.16)

and

∇2h(x, t)− µϵ∂
2h(x, t)

∂t2
− µσ∂h(x, t)

∂t
= 0. (1.17)

Proof. Taking the curl of (1.1) and (1.2), we obtain

∇× (∇× e(x, t)) +∇×
(
∂b(x, t)

∂t

)
= 0,

∇× (∇× h(x, t))−∇×
(
∂d(x, t)

∂t

)
= ∇× j(x, t),

and using relations (1.6), (1.7), (1.8) yields to

∇×∇× e(x, t) +∇×
[
∂

∂t
(µh(x, t))

]
= 0,

∇×∇× h(x, t)−∇×
[
∂

∂t
(ϵe(x, t))

]
= σ∇× e(x, t).

Since h and e are piecewise continuous with continuous first and second order
derivatives, we can write

∇×∇× e(x, t) + µ
∂

∂t
(∇× h(x, t)) = 0, (1.18)

∇×∇× h(x, t)− ϵ ∂
∂t

(∇× e(x, t)) = σ∇× e(x, t). (1.19)

Now, we observe that by (1.2), (1.6), (1.7),

∇× h(x, t) = j(x, t) +
∂d(x, t)

∂t
= σe(x, t) + ϵ

e(x, t)

∂t
,

and, from (1.1), (1.8),

∇× e(x, t) = −∂b(x, t)
∂t

= −µ∂h(x, t)
∂t

.

Hence, equations (1.18)-(1.19) becomes

∇×∇× e(x, t) + µϵ
∂2e(x, t)

∂2t
+ µσ

∂e(x, t)

∂t
= 0,

∇×∇× h(x, t) + µϵ
∂2h(x, t)

∂2t
+ µσ

∂h(x, t)

∂t
= 0.

Finally, using the vector identity (A.6) and since for homogeneous regions it
holds ∇ · e(x, t) = 0 and ∇ · h(x, t) = 0, we obtain the result.
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Corollary 1 In the frequency domain, the wave equations for the electric
and magnetic fields, called Helmholtz equations, are

∇2E(x, ω) + (µϵω2 − iµσω)E(x, ω) = 0 (1.20)

and
∇2H(x, ω) + (µϵω2 − iµσω)H(x, ω) = 0. (1.21)

Proof. The result follow straightfully by applying the Fourier transform
(B.1) to equations (1.16) and (1.17).

Remark 1 The quantity
√
µϵω2 − iµσω (cf. (1.20)-1.21)) is known as the

wave number and it is a function of three physical properties of the earth
and of the frequency. For all the following analysis we assume to work with
frequency less than 105 Hz. In this situation displacement currents are much
smaller than conductive currents, e.g. µϵω2 ≪ µσω. Therefore, without loss
of generality, we define the wave number as

k :=
√
−iµσω.

1.4 The polarization vectors

To describe the electromagnetic state of a matter, it is convenient to introduce
two auxiliar fields P and M, known respectively as the electric and magnetic
polarization. These fields are defined by

P(x, ω) := D(x, ω)− ϵ0E(x, ω)

and

M(x, ω) :=
1

µ0

B(x, ω)−H(x, ω).

We notice that these vectors vanish in free space (cf. (1.11), (1.12)). More-
over, P has the dimensions of D, while M and H are dimensionally alike.
The total observed polarization vectors are composed of source and induced
parts, that is,

P(x, ω) = PI(x, ω) +PS(x, ω)

and
M(x, ω) = MI(x, ω) +MS(x, ω).

For isotropic and linear earth media PI is parallel to and proportional to E,
while MI is parallel to and proportional to H. In particular, they are defined
by

PI(x, ω) := χeϵ0E(x, ω)
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and

MI(x, ω) := χmH(x, ω),

where

χe =
ϵ

ϵ0
− 1 and χm =

µ

µ0

− 1

are the electric and magnetic susceptibility of the medium, respectively, and
ϵ0 is the dielectric permittivity of vacuum (see (1.9)). Moreover, the electric
source current density and the magnetic source current density are respec-
tively described by

JSe (x, ω) = iωPS(x, ω) (1.22)

and

JSm(x, ω) = iµ0ωM
S(x, ω). (1.23)

1.5 Schelkunoff potentials

Maxwell’s equations (1.14) and (1.15) in the frequency domain are homo-
geneous equations that apply in source-free regions. In regions containing
sources they must be replaced by the inhomogeneous equations

∇× E(x, ω) + iµωH(x, ω) = −JSm(x, ω), (1.24)

and

∇×H(x, ω)− (σ + iϵω)E(x, ω) = JSe (x, ω), (1.25)

with JSm and JSe as in (1.22) and (1.23). A technique used to obtain the so-
lutions of equations (1.24) and (1.25) is that of expressing E and H in terms
of auxiliary functions known as potentials. The reason is that equations in
potentials sometimes are easier to solve than equations in fields. In the fol-
lowing we introduce a set of potentials due to Schelkunoff [50], which are very
convenient in solving wave equations in a space composed of homogeneous
regions. First of all, we assume that in each region the electric and magnetic
field are given by a superposition of sources of electric type and magnetic
type. Thus, let

E(x, ω) = Em(x, ω) + Ee(x, ω), (1.26)

and

H(x, ω) = Hm(x, ω) +He(x, ω), (1.27)

where Em, Hm and Ee, He refer to electromagnetic fields produced by mag-
netic and electric sources, respectively. By substituting (1.26) and (1.27) in
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(1.24) and (1.25), we obtain

∇× Em(x, ω) + iµωHm(x, ω) = −JSm(x, ω),
∇× Ee(x, ω) + iµωHe(x, ω) = −JSm(x, ω), (1.28)

∇×Hm(x, ω)− (σ + iϵω)Em(x, ω) = JSe (x, ω), (1.29)

∇×He(x, ω)− (σ + iϵω)Ee(x, ω) = JSe (x, ω).

Assuming moreover that in equations (1.28) and (1.29), the current densities
JSm and JSe are zero, we have that Em, Ee, Hm and He are solutions of

∇× Em(x, ω) = −JSm(x, ω)− iµωHm(x, ω), (1.30)

∇×Hm(x, ω) = (σ + iϵω)Em(x, ω), (1.31)

∇× Ee(x, ω) = −iµωHe(x, ω), (1.32)

∇×He(x, ω) = JSe (x, ω) + (σ + iϵω)Ee(x, ω). (1.33)

Taking the divergence of equations (1.30), (1.31), (1.32), (1.33) and using
again relation (A.5) yields to

∇ ·Hm(x, ω) = −
1

iµω
∇ · JSm(x, ω),

∇ · Em(x, ω) = 0, (1.34)

∇ ·He(x, ω) = 0, (1.35)

∇ · Ee(x, ω) = −
1

σ + iϵω
∇ · JSe (x, ω).

From equations (1.34) and (1.35), we have that Em and He are solenoidal
fields and hence may be represented as the curls of two vector functions F
and A (see (A.5)), that is,

Em(x, ω) = −∇× F(x, ω), (1.36)

and
He(x, ω) = ∇×A(x, ω), (1.37)

where the signs of the equalities are arbitrary.

Remark 2 We notice that F and A are not uniquely defined by (1.36) and
(1.37), because the equality of the curls of two vectors does not demand that
the vectors be identical. In fact, Em and He can be also written as

Em(x, ω) = −∇× (F(x, ω) +∇ψF (x, ω))

and
He(x, ω) = ∇× (A(x, ω) +∇ψA(x, ω)),

where ψF and ψA are arbitrary scalar functions of position and frequency.
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For homogeneous regions containing sources JSm and JSe , the following propo-
sition holds.

Proposition 3 The vector potentials F and A satisfy the inhomogeneous
Helmholtz equations

∇2F(x, ω) + k2F(x, ω) = −JSm(x, ω) (1.38)

and
∇2A(x, ω) + k2A(x, ω) = −JSe (x, ω). (1.39)

Proof. If we substitute (1.36)-(1.37) into (1.31)-(1.33), we obtain

Hm(x, ω) = −(σ + iϵω)F(x, ω)−∇U(x, ω), (1.40)

Ee(x, ω) = −iµωA(x, ω)−∇V (x, ω), (1.41)

where we have introduced the arbitrary functions U(x, ω) and V (x, ω) (c.f.
Remark 2). Moreover, equation (1.30), with the aid of equations (1.36) and
(1.40), becomes

∇×∇× F(x, ω) = JSm(x, ω)− iµω(σ + iϵω)F(x, ω)− iµω∇U(x, ω),

while, with (1.37) and (1.41), equation (1.33) becomes

∇×∇×A(x, ω) = JSe (x, ω)− iµω(σ + iϵω)A(x, ω)− iµω∇V (x, ω).

Using identity (A.6), from the above expressions we obtain

∇∇ ·F(x, ω)−∇2F(x, ω) = JSm(x, ω)− iµω(σ+ iϵω)F(x, ω)− iµω∇U(x, ω)
(1.42)

and

∇∇·A(x, ω)−∇2A(x, ω) = JSe (x, ω)− iµω(σ+ iϵω)F(x, ω)− iµω∇V (x, ω).
(1.43)

Since U and V are arbitrary, we may impose the relations

∇ · F(x, ω) = −iµωU(x, ω), (1.44)

and
∇ ·A(x, ω) = −(σ + iϵωV (x, ω), (1.45)

which are called Lorentz conditions. Finally, by substituting (1.44) and (1.45)
in (1.42) and (1.43) we obtain the result.

At this point, we can derive the expressions for the total electromagnetic
fields due both to JSm and JSe .
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Proposition 4 If only one source is present at a time, the electromagnetic
fields satisfy the set of equations

Ee(x, ω) = −iµωA(x, ω) +
1

σ + iϵω
∇(∇ ·A(x, ω)), (1.46)

He(x, ω) = ∇×A(x, ω), (1.47)

for electric sources, and

Em(x, ω) = −∇× F(x, ω), (1.48)

Hm(x, ω) = −
1

σ + iϵω
F(x, ω) +

1

iµω
∇(∇ · F(x, ω)), (1.49)

for magnetic sources.

Proof. We only need to prove equations (1.46) and (1.49), since relations
(1.48) and (1.47) were previously stated in (1.36)-(1.37). From equations
(1.41), (1.40) and by using conditions (1.44), (1.45), we have that

Ee(x, ω) = −iµωA(x, ω)−∇V (x, ω)

= −iµωA(x, ω)− 1

σ + iϵω
∇(∇ ·A(x, ω)),

and

Hm(x, ω) = −
1

σ + iϵω
F(x, ω)−∇U(x, ω)

= − 1

σ + iϵω
F(x, ω)− 1

iµω
∇(∇ · F(x, ω)).

In many problems in electromagnetic theory the vectors A and F have a
single component. Therefore, without loss of generality, for the following we
define

A(x, ω) := A(x, ω)uz (1.50)

and

F(x, ω) := F (x, ω)uz, (1.51)

where uz = (0, 0, 1) is the unit vector in the z-direction and A, F are scalar
functions. When relations (1.50), (1.51) are substituted into equations (1.46),
(1.48), (1.47) and (1.49), the electric and magnetic field components may be
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expressed as the sets

Ee(x, ω) = (Ee,x(x, ω), Ee,y(x, ω), Ee,z(x, ω))

=

(
1

σ + iϵω

∂2A(x, ω)

∂x∂z
,

1

σ + iϵω

∂2A(x, ω)

∂y∂z
,

1

σ + iϵω

(
∂2

∂z2
+ k2

)
A(x, ω)

)
,

(1.52)

He(x, ω) = (He,x(x, ω), He,y(x, ω), He,z(x, ω))

=

(
∂A(x, ω)

∂y
,−∂A(x, ω)

∂x
, 0

)
, (1.53)

Em(x, ω) = (Em,x(x, ω), Em,y(x, ω), Em,z(x, ω))

=

(
−∂F (x, ω)

∂y
,
∂F (x, ω)

∂x
, 0

)
, (1.54)

Hm(x, ω) = (Hm,x(x, ω), Hm,y(x, ω), Hm,z(x, ω))

=

(
1

iµω

∂2F (x, ω)

∂x∂z
,

1

iµω

∂2F (x, ω)

∂y∂z
,

1

iµω

(
∂2

∂z2
+ k2

)
F (x, ω)

)
. (1.55)

We notice that, the electromagnetic field [Ee,He] is a field for whichHz(x, ω) =
0, which means that it is transverse magnetic to z (TMz mode). Similarly,
the field [Em,Hm] is transverse electric to z (TEz mode). Thus, an arbitrary
field in a homogeneous source-free region can be expressed as the sum of
TMz and TEz modes. Moreover, all the components of the electromagnetic
fields E and H can be derived from the scalar potentials A and F (cf. (1.52),
(1.53), (1.54), (1.55)).

Remark 3 Since we are interesting in the study of the electromagnetic field
in the presence of a magnetic dipole, we focus on the computation of Em

and Hm. Hence, in the following, the analysis will involve only the scalar
potential F .

1.6 Boundary conditions

Each electromagnetic field must satisfy Maxwell’s equations with appropri-
ate conditions applied at the interfaces separating the homogeneous regions
involved in the problem. In this section we state these conditions, although
they can be derived from the integral forms of Maxwell’s equations (see [64,
Appendix A.1.2] for the details).

Consider two horizontally homogeneous layers that for simplicity we call
medium 1 and medium 2. At the interface separating medium 1 from medium
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2 the normal components Bn of B, Jn of J and the tangential components
Et of E, Ht of H are continuous, that is,

Bn1 = Bn2 ,

Jn1 = Jn2 ,

Et1 = Et2 ,

Bn1 = Bn2 .

Moreover, the normal component Dn of D is continuous at the interface due
to the accumulation of a surface-charge density ρs, i.e.,

Dn2 −Dn1 = ρs.

For the Schelkunoff potential F, in the case of a magnetic dipole, the bound-
ary conditions are given by

F1 = F2, (1.56)

1

µ1

∂F1

∂z
=

1

µ2

∂F2

∂z
. (1.57)

1.7 Integral general solutions

In this section we derive the EM fields Em and Hm for a vertical and hor-
izontal magnetic dipole in the presence of a homogeneous or layered earth.
As already said, in order to simplify the problem, we develop the analysis in
terms of the vector potential F, and then, by using relations (1.54), (1.55),
we compute the electric and magnetic fields components. Therefore, in this
setting the goal is to find F that satisfies equation (1.38), with boundary
conditions (1.56) and (1.57).

In general, the solution of a boundary-value problem is the sum of the
particular solution of the inhomogeneous differential equation and the com-
plementary solution of the homogeneous equation. We first derive the com-
plementary solution and then add the particular solution (accordingly to the
type of dipole).

By considering the case of a source-free region and from equation (1.38),
the potential F satisfies the partial differential equation

∇2F (x, ω) + k2F (x, ω) = 0.

Then, by using the spatial double Fourier transform (see (B.3))

F̃ (kx, ky, z) =

∫ +∞

−∞

∫ +∞

−∞
F (x, y, z)e−i(kxx+kyy)dxdy,
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we can convert the above equation into the ordinary differential equation

d2F̃ (z)

dz2
− u2F̃ (z) = 0, (1.58)

where u2 := k2x + k2y − k2. At this point, we have the following result.

Proposition 5 The solution of (1.58) is

F̃ (kx, ky, z) = F+(kx, ky)e
−uz + F−(kx, ky)e

uz.

Proof. The characteristic equation of (1.58) is

γ2 − u2 = 0.

Hence, we have that γ = ±u and the solution of (1.58) can be written as the
linear combination of a function c1(kx, ky)e

−uz, that decays downward, and
a function c2(kx, ky)e

uz, that decays upward. Finally, by defining

c1(kx, ky) := F+(kx, ky) and c2(kx, ky) := F−(kx, ky),

we obtain the result.
In a layer containing the source we must add the particular solution of

the inhomogeneous differential equations to the complementary solution.
In this setting, we first consider the scalar Green’s function G(x, y, z),

which is the response of a unit point source at the origin. In particular, G is
the solution of the scalar differential equation

∇2G(x, y, z) + k2G(x, y, z) = −δ(x)δ(y)δ(z), (1.59)

where δ is the Dirac delta function. Again, by using (B.3) we define G̃ and
˜̃G as the double and triple Fourier spatial transform, respectively, that is,

G̃(kx, ky, z) =

∫ +∞

−∞

∫ +∞

−∞
G(x, y, z)e−i(kxx+kyy)dxdy,

˜̃G(kx, ky, kz) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
G(x, y, z)e−i(kxx+kyy+kzz)dxdydz.

Now, for the transform G̃ the following result holds.

Proposition 6 The Fourier transform G̃ of the scalar Green’s function G
can be written as

G̃(kx, ky, z) =
e−u|z|

2u
. (1.60)
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Proof. Taking the triple Fourier transform (see (B.3)) of equation (1.59)
and using the derivative property of the Fourier transform (cf. Appendix B),
leads to

˜̃G(kx, ky, kz) =
1

k2x + k2y + k2z − k2
.

Now, we evaluate the inverse transform (see (B.4)) of the above expression

of ˜̃G by considering first integration with respect to kz, that is,

G̃(kx, ky, z) =
1

2π

∫ +∞

−∞

eikzz

k2z + k2x + k2y − k2
dkz.

Finally, from [15, Vol.1, p.118, n.6] and by remembering that

u2 = k2x + k2y − k2,

we obtain the result.
By Proposition 6, in the case of a point source placed at z = −H above

the earth, the particular solution in the air of the inhomogeneous equation

∇2F (x, ω) + k2F (x, ω) = Sp(x, ω)

can be written as

F̃p(kx, ky, z) = Fp(kx, ky)e
−u0|z+H|, (1.61)

where Fp is the amplitude of the incident field and depends on the source,
i.e. on the forcing term Sp.

Consider now a layered underground model as in Figure 1.1, where σn
and hn, n = 1, . . . , N , represent conductivity and thickness of the n-th layer,
respectively. The deeper layer is assumed to have infinite thickness.

In order to derive the mathematical formulation of the fields, it is conve-
nient to introduce a cylindrical polar coordinate system (ρ, ϕ, z), with the lon-
gitudinal axis downward directed, such that the ground plane coincides with
the plane z = 0. In this case, the solution in the n-th layer, n = 1, . . . , N−1,
is given by

F̃n(kx, ky, z) = F+
n (kx, ky)e

−uz + F−
n (kx, ky)e

uz,

where u2n = k2x + k2y − k2n and kn is the wave number of the n-th layer. We
observe that above the surface of the earth we can use only solutions that
decay upward, and in the N layer only solutions that decay downward (see
Figure 1.2).
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Figure 1.1: Layered underground conductivity model.

Figure 1.2: Solutions for the vector potentials Ã and F̃ in a N -layered earth.
Image taken from [64].
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Since we want to derive the EM field at the surface of the earth, we
only consider solutions that decay upward. Therefore, for the homogeneous
equation we are interested in solutions of the form

F̃0(kx, ky, z) = F−
0 (kx, ky)e

u0z.

Moreover, since the coefficient F−
0 can be written as

F−
0 (kx, ky) = R0Fp(kx, ky)e

−u0H ,

where R0 = R0(kx, ky) is the reflection coefficient, derived in the following
proposition, we have that

F̃0(kx, ky, z) = R0Fp(kx, ky)e
−u0Heu0z. (1.62)

Proposition 7 For a N-layered earth, the reflection coefficient R0 is given
by

R0 =
Y0 − Ŷ1
Y0 + Ŷ1

,

with

Yn =
un
iωµn

, n = 1, . . . N,

Ŷn = Yn
Ŷn+1 + Yn tanh(unhn)

Yn + Ŷn+1 tanh(unhn)
, n = 1, . . . N − 1,

ŶN = YN ,

where un = (k2x + k2y − k2n)
1
2 and k2n = −iωµnσn.

Proof. Since the electric vector is perpendicular to the plane of incidence,
choosing this plane to be the xz plane, the electric field has only a y compo-
nent and, for the n-th layer, it is a solution of the equation

(∇2 + k2n)Ey,n = 0.

The general solution is of the form

Ey,n = [ane
−un(z−zn) + bne

un(z−zn)]e−iλx,

where u2n = k2n − λ2, b0 is the amplitude of the reflected wave and bN = 0.
From Maxwell’s equations and since Hz = 0, we have that

Hx,n =
1

iµnω

∂Eny
∂z

= − un
iµnω

[ane
−un(z−zn) + bne

un(z−zn)]e−iλx.
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As far as reflections are concerned, we may ignore the factor e−iλx, since it
can only represents propagation parallel to interfaces.

Over the plane z = zn, we have that

Ey,n = an + bn and Hx,n = −Yn(an − bn),

where
Yn :=

un
iµnω

.

Therefore, we can write

an =
1

2

(
Ey,n −

1

Yn
Hx,n

)
and bn =

1

2

(
Ey,n +

1

Yn
Hx,n

)
. (1.63)

At z = zn−1, the boundary conditions of continuity of electric and magnetic
fields demand that

Ey,n = Ey,(n−1) and Hx,n = Hx,(n−1).

Thus,

Ey,(n−1) = ane
−un(zn−1−zn) + bne

un(zn−1−zn),

Hx,(n−1) = −Yn[ane−un(zn−1−zn) − bneun(zn−1−zn)].

Now, if we let zn − zn−1 = hn and substituting the expressions (1.63) for an
and bn, we obtain

Ey,(n−1) = Ey,n cosh(unhn)−
1

Yn
Hx,n sinh(unhn),

Hx,(n−1) = −YnEy,n sinh(unhn) +Hx,n cosh(unhn).

The impedance Ŷn−1 is defined as

Ŷn−1 = −
Hx,(n−1)

Ey,(n−1)

,

and, for an N -layered earth, we have that

Ŷn = Yn
Ŷn+1 + Yn tanh(unhn)

Yn + Ŷn+1 tanh(unhn)
, n = 1, . . . N − 1,

ŶN = YN .

Finally, the reflection coefficient R0 is defined as

R0 = −
Hx,0

Ey,0
=
Y0 − Ŷ1
Y0 + Ŷ1

.
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By combining the particular and complementary solutions (see (1.61),
(1.62)) between the source and the earth, we obtain

F̃ (kx, ky, z) = Fp(kx, ky)e
−u0He−u0z + Fp(kx, ky)R0e

−u0Heu0z

= Fp(kx, ky)e
−u0H(e−u0z +R0e

u0z). (1.64)

Finally, by using the inverse Fourier transform (cf. (B.4))

F (x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
F̃ (kx, ky, z)e

i(kxx+kyy)dkxdky,

the potential F is given by

F (x, y, x) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
Fp(kx, ky, z)e

−u0h(e−u0z+R0e
u0z)ei(kxx+kyy)dkxdky.

(1.65)
At this point, in order to compute integral expressions of the EM field compo-
nents, it remains to derive the amplitude of the incident field Fp, accordingly
to the particular source.

1.7.1 Vertical Magnetic Dipole

In the case of a vertical magnetic dipole, the magnetization vector (see (1.23))
is given by

MS(x, ω) = m(x, ω)δ(x)δ(y)δ(z),

where m is the magnetic moment of the dipole in (Am2). Hence, from
equations (1.38), (1.23) and the above expression, we have that

∇2F(x, ω) + k2F(x, ω) = −JSm(x, ω)
= −iµ0ωM

S(x, ω)

= −iµ0ωm(x, ω)δ(x)δ(y)δ(z),

where µ0 is the magnetic permeability of vacuum (see (1.10)). By (1.51) and
since the dipole is z-directed, the particular solution for a vertical magnetic
dipole of moment muz placed at z = −H above the surface of the earth
satisfies the differential equation

∇2F (x, ω) + k20F (x, ω) = −iµ0ωm(x, ω)δ(x)δ(y)δ(z +H).

The following proposition holds.
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Proposition 8 In the transform domain, the solution between the dipole and
the earth is given by

F̃ (kx, ky, z) = Fp(kx, ky, z)e
−u0He−u0z, (1.66)

where

Fp(kx, ky, z) =
iµ0ωm

2u0
(1.67)

is the amplitude of the incident field.

Proof. The result is obtained from equation (1.60) for the Green’s function
and from relation (1.64).

We observe that, due to the symmetry of the problem, currents flow only
horizontally. Therefore, there is no vertical component of electric field and
the EM field of a vertical magnetic dipole above a horizontally layered earth
is a TE field. Before going on, we need a preliminary lemma.

Lemma 1 It holds∫ +∞

−∞

∫ +∞

−∞
F (k2x + k2y)e

i(kxx+kyy)dkxdky = 2π

∫ ∞

0

F (λ)λJ0(λρ)dλ, (1.68)

with λ2 = k2x + k2y and ρ2 = x2 + y2.

Proof. By making the substitutions kx = λ cosψ, ky = λ sinψ, x = ρ cosϕ,
y = ρ sinϕ and then using the cylindrical coordinates (see Appendix A), we
have that∫ +∞

−∞

∫ +∞

−∞
F (k2x + k2y)e

i(kxx+kyy)dkxdky =

∫ ∞

0

F (λ)

∫ 2π

0

eiλρ cos(ψ−ϕ)dψλdλ.

By considering the integral representation (see [29, p.952, 8.411, n.1])∫ 2π

0

eiλρ cos(ψ−ϕ)dψ = 2πJ0(λρ),

where J0 is the Bessel function of the first type of order 0, we obtain the
result.

At this point, by substituting equation (1.67) into (1.65), we have the
following expression for the potential between the dipole and the earth:

F (x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

iµ0ωm

2u0
e−u0H(e−u0z +R0e

u0z)ei(kxx+kyy)dkxdky

=
iµ0ωm

8π2

∫ +∞

−∞

∫ +∞

−∞
[e−u0(z+H) +R0e

u0(z−H)]
1

u0
ei(kxx+kyy)dkxdky.
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Then, by using equation (1.68) we obtain

F (ρ, z) =
iµ0ωm

4π

∫ ∞

0

[e−u0(z+H) +R0(λ)e
u0(z−H)]

λ

u0
J0(λρ)dλ, (1.69)

where λ2 = k2x+k
2
y and ρ

2 = x2+y2. Finally, we can derive by differentiation
(see (1.54), (1.55)) the electromagnetic fields for a vertical magnetic dipole,
in the case of a N -layered earth. We denote them by E(N) and H(N),

In particular, due to symmetry, there will be only a ϕ component of
electric field. To evaluate it we use the fact that

E
(N)
ϕ = −y

ρ
E(N)
x +

x

ρ
E(N)
y =

y

ρ

∂F

∂y
+
x

ρ

∂F

∂x
,

where the last equality comes from (1.54) and the relations (see [1, p.361,
p.358])

∂J0(λρ)

∂x
= −λx

ρ
J1(λρ), (1.70)

∂J0(λρ)

∂y
= −λy

ρ
J1(λρ), (1.71)

where J1 is the Bessel function of the first type of order 1. Therefore, the ϕ
component of the electric field is given by

E
(N)
ϕ = −iµ0ωm

4π

∫ ∞

0

[e−u0(z+H) +R0(λ)e
u0(z−H)]

λ2

u0
J1(λρ)dλ. (1.72)

The horizontal magnetic field has only a radial component, that is,

H(N)
ρ =

x

ρ
H(N)
x +

y

ρ
H(N)
y =

x

ρ

1

iµ0ω

∂2F

∂x∂z
+
y

ρ

1

iµ0ω

∂2F

∂y∂z
,

where the last equality comes from (1.55). Hence, using relations (1.70) and
(1.71), we obtain

H(N)
ρ =

m

4π

∫ ∞

0

[e−u0(z+H) −R0(λ)e
u0(z−H)]λ2J1(λρ)dλ. (1.73)

Finally, using equation (1.55) and applying the relation

∂2

∂z2
+ k20 = u20 + k20 = λ2,

the vertical magnetic field component is given by

H(N)
z =

m

4π

∫ ∞

0

[e−u0(z+H) +R0(λ)e
u0(z−H)]

λ3

u0
J0(λρ)dλ. (1.74)
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Equations (1.72), (1.73) and (1.74), which are Hankel transforms of order
1 and 0, in general, can be evaluated only by numerical integration. If the
source and the receiver are on the surface of the earth, simply set H and z
to zero.

Remark 4 For the following we assume the magnetic permeability of the
earth to be that of the free space, i.e. µn = µ0. In this setting, the reflection
coefficient can be simplified as

R0 =
λ− û1
λ+ û1

,

with

ûn = un
ûn+1 + un tanh(unhn)

un + ûn+1 tanh(unhn)
, n = 1, . . . , N − 1,

ûN = uN .

Only for the case of the source and receiver on the surface of a homoge-
neous earth (N = 1, z = H = 0) under the quasi-static approximation (i.e.

k0 ≈ 0), we can derive analytic expressions for the fields H
(1)
z and H

(1)
ρ . In

this setting, first of all we have

R0 =
λ− u1
λ+ u1

,

and, after some computations, equations (1.72), (1.73) become

E
(1)
ϕ = −iωµ0m

2π

∫ +∞

0

λ2

λ+ u1
J1(λρ)dλ, (1.75)

H(1)
ρ =

m

2π

∫ +∞

0

λ2u1
λ+ u1

J1(λρ)dλ. (1.76)

Since λ2 − u21 = k21, multiplying the numerator and denominator of the inte-
grand function in (1.75) by the factor (λ− u1), leads to

E
(1)
ϕ = −iωµ0m

2πk21

∫ +∞

0

λ2(λ− u1)J1(λρ)dλ (1.77)

= − m

2πσ

[∫ +∞

0

λ3J1(λρ)dλ−
∫ +∞

0

λ2u1J1(λρ)dλ

]
, (1.78)

where σ is the conductivity of the homogeneous earth. Then, using relations
(1.70)-(1.71) for the Bessel functions, we have that

E
(1)
ϕ = − m

2πσ

∂

∂ρ

[∫ +∞

0

λ2J0(λρ)dλ−
∫ +∞

0

λu1J0(λρ)dλ

]
. (1.79)
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At this point, we can rewrite the first integral in the above expression as∫ +∞

0

λ2J0(λρ)dλ =

[∫ +∞

0

e−λzλ2J0(λρ)dλ

]
z=0

=

[
∂2

∂z2

∫ +∞

0

e−λzJ0(λρ)dλ

]
z=0

=

[
∂2

∂z2

(
1

r

)]
z=0

,

where the last equality comes from [29, p.707, 6.611, n.1] with r =
√
ρ2 + z2,

and the second integral as∫ +∞

0

λu1J0(λρ)dλ =

[∫ ∞

0

e−u1zλu1J0(λρ)dλ

]
z=0

=

[
∂2

∂z2

∫ +∞

0

e−u1zλu1J0(λρ)dλ

]
z=0

=

[
∂2

∂z2
e−ik1r

r

]
z=0

,

where we have also used the Sommerfeld identity (see [55])∫ +∞

0

λ

u1
e−u1zJ0(λρ)dλ =

e−ik1r

r
. (1.80)

Therefore, equation (1.79) becomes

E
(1)
ϕ = − m

2πσ

∂

∂ρ

[
∂2

∂z2

(
1

r

)
− ∂2

∂z2

(
e−ik1r

r

)]
z=0

=− m

2πσρ4
[
3−

(
3 + 3ik1ρ− k21ρ2

)
e−ik1ρ

]
. (1.81)

By using the above expression of E
(1)
ϕ and relation (1.14) in cylindrical coor-

dinates, that is,

H(1)
z = − 1

iωµ0

1

ρ

∂

∂ρ
(ρEϕ),

we obtain

H(1)
z =

m

2πk21ρ
5
[9− (9 + ik1ρ− 4k21ρ

2 − ik31ρ3)e−ik1ρ]. (1.82)

Now, let us consider the radial component H
(1)
ρ . From equation (1.76) and

by using again relations (1.70)-(1.71), we have

H(1)
ρ =

m

4π

∂

∂ρ

∫ +∞

0

λ− u1
λ+ u1

λJ0(λρ)dλ.
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Then, by multiplying the numerator and denominator of the above integrand
by the factor (λ+ u1), we obtain

H(1)
ρ =

mk21
4π

∂

∂ρ

∫ +∞

0

λ

(λ+ u1)2
λJ0(λρ)dλ, (1.83)

where we have also used the fact that λ2−u21 = k21. At this point, we rewrite
equation (1.83) as

H(1)
ρ =

m

4π

∂

∂ρ

[
1

4

∫ +∞

0

4λu1
(λ+ u1)2

J0(λρ)dλ

]
=

m

16π

∂

∂ρ

{∫ +∞

0

[
1−

(
u1 − λ
u1 + λ

)2
]

1

u1
J0(λρ)dλ

}

=
m

16π

∂

∂ρ

[∫ +∞

0

1

u1
J0(λρ)dλ−

∫ +∞

0

(
u1 − λ
u1 + λ

)2
1

u1
J0(λρ)dλ

]
.

(1.84)

For the first integral in (1.84), from [29, p.681, 6.552, n.1] we have∫ +∞

0

1

u1
J0(λρ)dλ =

∫ +∞

0

1√
λ2 + (ik1)2

J0(λρ)dλ = I0

(
ik1ρ

2

)
K0

(
ik1ρ

2

)
,

where I0 and K0 are the modified Bessel functions of order 0 of the first and
second kind, respectively. Now, since k41 = (λ2 − u21)2 = (u1 − λ)2(u1 + λ2)
and hence

(u1 − λ2) =
k41

(u1 + λ)2
,

the second integral in (1.84) becomes∫ +∞

0

(
u1 − λ
u1 + λ

)2
1

u1
J0(λρ)dλ =

∫ +∞

0

k41
(u1 + λ)4

1

u1
J0(λρ)dλ

= I2

(
ik1ρ

2

)
K2

(
ik1ρ

2

)
,

where the last equality comes from [15, Vol.II, p.8, n.16] and I2, K2 are the
modified Bessel functions of order 2 of the first and second kind, respectively.
Therefore, from (1.84) we obtain

H(1)
ρ =

mk21
16π

∂

∂ρ

[
I0

(
ik1ρ

2

)
K0

(
ik1ρ

2

)
− I2

(
ik1ρ

2

)
K2

(
ik1ρ

2

)]
.
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Finally, after differentiation, we can consider a simplified form of the above
expression given in [60], that is,

H(1)
ρ = −mk

2
1

4πρ

[
I1

(
ik1ρ

2

)
K1

(
ik1ρ

2

)
− I2

(
ik1ρ

2

)
K2

(
ik1ρ

2

)]
, (1.85)

where I1 and K1 are the modified Bessel functions of order 1 of the first and
second kind, respectively.

1.7.2 Horizontal Magnetic Dipole

Similar integral representations of the EM field can be formulated also for
a horizontal magnetic dipole in the case of a layered earth. In this section
we derive the Cartesian components of the magnetic fields for a horizontal,
x-directed magnetic dipole above or on the surface of the earth.

Remark 5 The fields for a y-directed dipole can be obtained by a simple
permutation of coordinates.

Following the same arguments of the previous section, the vector potential
for the particular solution between the dipole and the earth is given by (cf.
Proposition 8)

F̃ (x, ky, kz) = Fp(x, ky, kz)e
−u0(z+H),

with

Fp(x, ky, kz) =
iµ0ωm

2u0
.

Moreover, from (1.49) and since the dipole is x-directed, we obtain that the
vertical magnetic field is

H̃z =
1

iµ0ω

∂2F̃x
∂x∂z

= −ikx
m

2
e−u0(z+H), (1.86)

where we have also used the differentiation property of the Fourier transform
(see Appendix B). Now, in order to find the coefficient Fp for the particular
solution at z = −H, we impose (see (1.86) and (1.55))

ikx
m

2
=

1

iµ0ω

(
∂2

∂z2
+ k20

)
Fp.

Remembering that

∂2

∂z2
+ k20 = u20 + k20 = k2x + k2y,
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we obtain

Fp = −
iµ0ωm

2

ikx
k2x + k2y

.

Substituting the above expression in (1.65) leads to

F (x, y, z) = −iµ0ωm

8π2

∫ +∞

−∞

∫ +∞

−∞

[
e−u0(z+H) +R0e

u0(z−H)
] ikx
k2x + k2y

ei(kxx+kyy)dkxdky.

Then, by using (1.68) we have that

F (ρ, z) = −iµ0ωm

4π

∂

∂x

∫ ∞

0

[
e−u0(z+H) +R0e

u0(z−H)
] 1
λ
J0(λρ)dλ.

At this point, the magnetic fields can be derived from the above equation by
using formula (1.55) as follows:

H(N)
x =

1

iµ0ω

∂2F

∂x∂z

= −m
4π

∂2

∂x2

∫ ∞

0

∂

∂z

[
e−u0(z+H) +R0e

u0(z−H)
] 1
λ
J0(λρ)dλ

=
m

4π

∂2

∂x2

∫ ∞

0

[
e−u0(z+H) +R0e

u0(z−H)
]
J0(λρ)dλ,

H(N)
y =

1

iµ0ω

∂2F

∂y∂z

=
m

4π

∂2

∂x∂y

∫ +∞

0

[
e−u0(z+H) +R0e

u0(z−H)
]
J0(λρ)dλ,

H(N)
z =

1

iµ0ω

∂2

∂z2
F

=
m

4π

∂

∂x

∫ ∞

0

[
e−u0(z+H) +R0e

u0(z−H)
]
λJ0(λρ)dλ.

Interchanging the order of differentiation and integration and noting that

∂

∂x
=
x

ρ

∂

∂ρ
,

∂2

∂x2
=

(
1

ρ
− x2

ρ3

)
∂

∂ρ
+
x2

ρ2
∂2

∂ρ2
,

∂2

∂x∂y
= −xy

ρ3
∂

∂ρ
+
xy

ρ2
∂2

∂ρ2
,

∂J0(λρ)

∂ρ
= −λJ1(λρ),

∂2J0(λρ)

∂ρ
=
λ

ρ
J1(λρ)− λ2J0(λρ),
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we finally obtain

H(N)
x = −m

4π

(
1

ρ
− 2x2

ρ3

)∫ ∞

0

[
e−u0(z+H) +R0e

u0(z−H)
]
λJ1(λρ)dλ

− m

4π

x2

ρ2

∫ ∞

0

[
e−u0(z+H) +R0e

u0(z−H)
]
λ2J0(λρ)dλ, (1.87)

H(N)
y =

m

2π

xy

ρ3

∫ ∞

0

[
e−u0(z+H) +R0e

u0(z−H)
]
λJ1(λρ)dλ

− m

4π

xy

ρ2

∫ ∞

0

[
e−u0(z+H) +R0e

u0(z−H)
]
λ2J0(λρ)dλ, (1.88)

H(N)
z =

m

4π

x

ρ

∫ ∞

0

[
e−u0(z+H) +R0e

u0(z−H)
]
λ2J1(λρ)dλ. (1.89)

As before, we can derive analytic expressions for the fields only when
the transmitter and receiver are on the surface of a homogeneous earth (i.e.
N = 1 and z = H = 0) and by assuming k0 ≈ 0. In this setting we can write
the horizontal fields (1.87) and (1.88) as

H(1)
x = −m

4π

∂

∂x

(
x

ρ
Φ

)
(1.90)

and

H(1)
y = −m

4π

∂

∂y

(
x

ρ
Φ

)
, (1.91)

with

Φ = Φ(ρ) = 2

∫ ∞

0

λu1
λ+ u1

J1(λρ)dλ.

By multiplying the numerator and denominator of the integrand in the above
equation by the factor (λ− u1), we obtain

Φ = 2

∫ ∞

0

λu1(λ− u1)
λ2 − u21

J1(λρ)dλ =
2

k21

∫ ∞

0

(λ− u1)λu1J1(λρ)dλ

=
2

k21

∫ ∞

0

(λ2u1 − λu21)J1(λρ)dλ = Φ1 + Φ2 + Φ3, (1.92)

where

Φ1 =
2

k21

∫ ∞

0

λ2u1J1(λρ)dλ,

Φ2 = −
2

k21

∫ ∞

0

λ3J1(λρ)dλ,

Φ3 = 2

∫ ∞

0

λJ1(λρ)dλ.
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Now, differentiating the Sommerfeld identity (1.80) once with respect to ρ
and twice with respect to z, and setting z = 0, yields to

Φ1 =
2

k2ρ4
(
k2ρ2 − 3ikρ− 3

)
e−ikρ.

Then, differentiating the integral (see [29, p.707, 6.611, n.1])∫ ∞

0

e−λzJ0(λρ)dλ =
1

ρ
,

once with respect to ρ and setting z = 0 yields to an expression for Φ3, while
further differentiating twice with respect to z before setting z = 0, provide a
simple expression for Φ2, that is,

Φ2 =
6

k21ρ
4

and Φ3 =
2

ρ2
.

Using these results in (1.92), leads to

Φ =
2

k2ρ4
[
3 + k2ρ2 − (3 + 3ikρ− k2ρ2)e−ikρ

]
.

By substituting the above expression in equations (1.90) and (1.91), we can
write the horizontal magnetic fields in the following forms,

H(1)
x = −m

4π

∂

∂x

(
x

ρ
Φ

)
= −m

4π

(
∂

∂x

x

ρ
Φ +

x

ρ

∂Φ

∂x

)
= −m

4π

(
y2

ρ3
Φ +

x2

ρ2
∂Φ

∂ρ

)
= − m

4πρ3

(
y2Φ + x2ρ2

∂Φ

∂ρ

)
, (1.93)

and

H(1)
y = −m

4π

∂

∂y

(
x

ρ
Φ

)
= −m

4π

y

ρ

[
− x

ρ2
Φ +

x

ρ

∂Φ

∂ρ

]
= −m

4π

(
−xy
ρ3

Φ +
xy

ρ2
∂Φ

∂ρ

)
=

m

4πρ3

(
xyΦ− xyρ∂Φ

∂ρ

)
,

with

∂Φ

∂ρ
=

2

k21r
5

[
−2k21ρ2 − 12 + (−ik31ρ3 − 5k21ρ

2 + 12ik1ρ+ 12)e−ik1ρ
]
.

From expression (1.89), the vertical magnetic field is given by

H(1)
z = −m

4π

x

ρ

∂

∂ρ

∫ ∞

0

λ− u1
λ+ u1

λJ0(λρ)dλ.



28 CHAPTER 1. BASIC ELECTROMAGNETIC THEORY

Except for the sign, this expression is the same as the one for the radial
component of the magnetic filed due to a vertical magnetic dipole. In the
present case, however, we are evaluating the vertical magnetic field at a
distance x from a horizontal magnetic dipole. Hence, from (1.85),

H(1)
z =

mk2x

4πρ2

[
I1

(
ikρ

2

)
K1

(
ikρ

2

)
− I2

(
ikρ

e

)
K2

(
ikρ

2

)]
.



Chapter 2

The forward problem

In this chapter we present the commonly used techniques, together with some
novel approaches, to numerically evaluate the previously derived integral
representations of the fields.

2.1 Digital filtering algorithms

In Chapter 1 we have seen that the evaluation of EM fields involves the
computation of Hankel transforms of the type

If (ρ) =

∫ ∞

0

f(λ)Jl(λρ)dλ, (2.1)

where Jl is the Bessel function of order l = 0, 1 and f is a function that
decays exponentially. In this section we present the standard techniques,
commonly named digital filtering algorithms, for the numerical evaluation of
this kind of integrals (see e.g. [66] for a recent survey).

The first digital filtering algorithm, for the direct interpretation of geo-
electrical resistivity sounding measurements, was introduced in 1971 by Ghosh
[25]. One year later, the same method was used by Koefoed, Ghosh and Pol-
man [38] for the computation of the integrals that characterized the magnetic
field generated by a vertical oscillating magnetic dipole located at the surface
of a horizontally stratified earth. Later, in 1979 Anderson [2] presented a lin-
ear digital filtering algorithm for rapid and accurate numerical evaluation of
Hankel transform integrals. Below we summarize the steps that characterize
the methods. By using the change of variables

x = ln(ρ) and y = ln

(
1

λ

)
, (2.2)

29
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integral (2.1) becomes the convolution

If (x) =

∫ +∞

−∞
f(y)g(x− y)dy = (f ∗ g)(x), (2.3)

where g(x − y) = ex−yJl(e
x−y). At this point, it is known that the function

f can be written as (see e.g. [43])

f(y) =
+∞∑

n=−∞

f(nh)sinc

(
y − nh
h

)
, (2.4)

where

sinc

(
y − nh
h

)
=


sin(π(y−nh)

h )
π(y−nh)

h

y ̸= nh

1 y = nh
(2.5)

is the sinc function. Therefore, by substituting (2.4) in (2.3), one obtains

If (x) =
+∞∑

n=−∞

f(nh)In(x), (2.6)

where the integrals

In(x) =

∫ +∞

−∞
sinc

(
y − nh
h

)
g(x− y)dy (2.7)

are called the filter coefficients. In order to evaluate In(x), the idea is to first
consider a function F such that

IF (x) =

∫ +∞

−∞
F (y)g(x− y)dy (2.8)

is known. For example in [38] the integrals considered are∫ +∞

−∞

(
e−e

−y − e−2e−y
)
[ex−yJ0(e

x−y)]dy =
ex√

1 + e2x
− ex√

4 + e2x

and ∫ +∞

−∞
e−ye−e

−y

[ex−yJ1(e
x−y)]dy =

e2x

(1 + e2x)
3
2

,

(see [29, p.707, 6.611, n.1] and [29, p.711, 6.621, n.1]), while in [2] the fol-
lowing two Hankel transforms∫ +∞

0

λe−aλ
2

J0(bλ)dλ =
e−

b2

4a

2a
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and ∫ +∞

0

λ2e−aλ
2

J1(bλ)dλ =
be−

b2

4a

(2a)2
, (2.9)

with a > 0, b > 0, (see also [29, p.716, 6.631, n.4]), are selected and then
rewritten in convolutional form.

By considering the Fourier transform of equation (2.8) and by using the
convolution theorem (see Appendix B), one obtains

ÎF (ξ) = F̂ (ξ)ĝ(ξ) (2.10)

and hence

ĝ(ξ) =
ÎF (ξ)

F̂ (ξ)
. (2.11)

Then, the Fourier transform of (2.7), given by

În(ξ) = rect(ξ − nh)ĝ(ξ), (2.12)

where rect(ξ − nh) is the rectangular function, is considered. At this point,
In(x) is evaluated by substituting expression (2.11) in (2.12) and by taking
the inverse Fourier transform. Finally, the practical algorithm that imple-
ments the digital filter is obtained by following the above procedure in which
the functions F (y) and IF (x) are sampled by using a constant sampling in-
terval, and hence the Fourier transform is replaced by the discrete Fourier
transform (B.5).

As a further development of the above linear filter methods, in 1979
Johansen and Sorensen [34] presented a general theory for the numerical
evaluation of Hankel type integrals, by replacing the usual sinc interpolating
function with

a sin(πx)

sinh(aπx)
,

where a > 0 is a smoothness parameter. Moreover, they provided an upper
bound for the absolute error on the output function If (x). In particular,
they considered the Hankel integral (2.1) with f(λ) = k(λ)λ, in which k(λ)
is a generic function and l > −1. By the change of variables (2.2) and by
defining K(y) = e−yk(e−y), G(x) = exIf (e

x) and Hl(y) = eyJl(e
y), equation

(2.1) can be written as the convolution

G(x) =

∫ +∞

−∞
K(y)Hl(x− y)dy. (2.13)

By applying the convolution theorem, the above equation becomes

Ĝ(s) = K̂(s)Ĥl(s), (2.14)
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where

Ĥl(s) =

∫ +∞

−∞
Hl(x)e

−i2πxsdx (2.15)

is the Fourier transform of Hl(x) and the same for K̂ and Ĝ. The integral
in (2.15) can be evaluated explicitly. In fact, by using the change of variable
x = ln t, equation (2.15) becomes (see [1, p.486, eq.11.4.16])

Ĥl(s) =

∫ +∞

0

Jl(t)t
−i2πsdt = 2−i2πs

Γ
(
l+1
2
− iπs

)
Γ
(
l+1
2

+ iπs
) . (2.16)

At this point, the sampled and interpolated version of K is defined as

K⋆(y) =
+∞∑

n=−∞

K(nh)P

(
y − nh
h

)
, (2.17)

with

P (y) = a
sin(πy)

sinh(πay)
. (2.18)

The parameter a is such that

h

a
=Mπ, (2.19)

where M is a fixed positive integer. We notice that, for small values of a it
holds

P (y) ∼ sin(πy)

πy
= sinc(πy).

By substituting (2.17) in (2.13), an approximation G⋆ of G is obtained as

G⋆(x) =

∫ +∞

−∞
K⋆(y)Hl(x− y)dy =

+∞∑
n=−∞

K(nh)H⋆
l (x− nh), (2.20)

where

H⋆
l (x) =

∫ +∞

−∞
P
(y
h

)
Hl(x− y)dy. (2.21)

Considering only values of x = mh, m integer, the function

G⋆(mh) =
+∞∑

n=−∞

K(nh)H⋆
l [(m− n)h] (2.22)
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represents the discrete convolution between sampled values ofK and the filter
coefficients H⋆

l . Then, an approximation G⋆⋆(x) of G(x) can be construct by
the interpolation scheme

G⋆⋆(x) =
+∞∑

n=−∞

G⋆(mh)P

(
x−mh

h

)
. (2.23)

At this point, the goal is to derive the filter coefficients. The idea is to
express H⋆

l (x) as a Fourier integral and evaluate it as a contour integral in
the complex plane. In fact, by using the convolution theorem in (2.16) we
have that

H⋆
l (x) =

∫ +∞

−∞
hP̂ (hs)Ĥl(s)e

i2πxsds, (2.24)

where

P̂ (s) =
1

2
tanh

(
π

a

(
s+

1

2

))
− 1

2
tanh

(
π

a

(
s− 1

2

))
. (2.25)

In this setting, the choice of the function defined in (2.18) instead of the
sinc function allows to apply Cauchy residues theorem and hence to express
H⋆
l (x) as sums of residues. Moreover, it can be shown that the absolute error

in the calculation of G⋆ is given by

|G(x)−G⋆(x)| ≤ 4E(ω0, a, sc)max

∫ +∞

0

|k(λe±iω0)|dλ,

in which ω0 is such that k(λeiω) is analytic within the area |ω| < ω0, and

E(ω0, a, sc) =
asc

sin(2πascω0)
e−2πω0sc +

(2ascω0)
2

πω0

∞∑
p=1

(−1)p e−
pπ
a

p2 − (2ascω0)2
,

with sc =
1
2h
.

In 1990 Christensen [9] further developed the method of Johansen and
Sorensen for the calculation of the filter coefficients H⋆

l (x) without the re-
striction (2.19) on the smoothness parameter a.

A total different approach for the evaluation of Hankel type integrals
was considered by Koefoed and Dirks [37], Guptasarma [30], Guptasarma
and Singh [31], Singh and Mogi [54]. This method is essentially a standard
N -points quadrature rule, but the main difference is that the weights are
computed by solving a linear equation obtained by imposing the rule to
be correct on a set of training functions (not polynomials) for which the
corresponding integral is known. In particular, in [30] filters with 7, 11 and
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19 points are considered, while in [31] two filters for the Hankel J0 transform
(61 points and 120 points) and two filters for the Hankel J1 transform (47
points and 140 points) are designed.

In general, given a set of abscissas

λi =
1

ρ
10u+(i−1)v, i = 1, . . . , N,

where the parameters u and v are called the shift and the spacing, respec-
tively, Hankel integral transforms of type (2.1), with l = 0, 1, are approxi-
mated as

If (ρ) ∼=
1

ρ

N∑
i=1

f(λi)wi, (2.26)

where wi, i = 1, . . . , N , are the filter weights. In order to determine the
weights for a given value of N , the idea is to consider a known Hankel trans-
form and to construct from (2.26) a set of equations for different values of ρ.
For example, in [31] the following transforms are employed (see [29, p.711,
6.621, n.1] and [29, p.717, 6.631, n.4]):∫ ∞

0

λe−cλJ0(λρ)dλ =
ρ

(c2 + ρ2)
3
2

,∫ ∞

0

λee−cλ
2

J1(λρ)dλ =
ρe−ρ

2/4c

4c2
,∫ ∞

0

[
λe−cλ + αλ2e−cλ

2
]
J1(λρ)dλ =

ρ

(c2 + ρ2)
3
2

+ α
ρe−ρ

2/4c

4c2
,

with c, α > 0.
In particular, given a set of values {ρj}j=1,...,M , with M > N , and a

function f̃(λ) for which the corresponding integral If̃ (ρ) (see (2.1)) is known,
a set of training functions {If̃ ,j}j=1,...,M is defined such that If̃ ,j = If̃ (ρj).
Then, for assumed values of u and v, the method prescribes to solve in the
least-squares sense with respect to the filter coefficients wj, j = 1, . . . , N , the
overdetermined linear system

If̃ ,j =
1

ρ

N∑
i=1

f̃(λi)wi, j = 1, . . . ,M. (2.27)

We remark that, by taking M = N , the above system can be solved by using
for example the GMRES method (see e.g. [39]). Finally, the choice of the
parameters u and v was made empirically by considering a grid tabulation
and then by searching for the minimum of the root-mean-square relative error
computed over a certain range of ρ.
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Figure 2.1: Transmitter and receiver coil configurations: horizontal coplanar
loops (HCP), perpendicular loops (PRP), vertical coplanar loops (VCP) and
vertical coaxial loops (VCX).

2.2 A Gauss-Kronrod approach

In the previous section we have seen the standard technique commonly used
to evaluate the Hankel transform of a generic function f . Now, we focus on
the computation of the EM fields, for which the function f depends on the
reflection coefficient R0 (see Proposition 7). In this setting, we describe a
novel approach, developed in [13], for the evaluation of these fields.

Let us consider a layered underground model where σj and hj, j =
1, ..., N , represent conductivity and thickness of the j-th layer, respectively.
The deeper layer is assumed to have infinite thickness. Let ν and m be the
frequency of the transmitter and the magnetic moment, µ the magnetic per-
meability of vacuum and r the offset. The angular frequency is ω = 2πν
and the cylindrical polar coordinate system (ρ, ϕ, z) has the longitudinal axis
downward directed, such that the ground plane coincides with the plane
z = 0, the transmitter is located at z = −H and the receiver is placed along
the polar axis.

Referring to Figure 2.1, the most common loop configurations consist
in a horizontal transmitter loop (vertical dipole) and a receiver loop that
can be horizontal (both axes are vertical) or vertical (perpendicular axes).
These two configurations are called HCP (horizontal coplanar) and PRP
(perpendicular).

In this setting, the theoretical components of the magnetic field at the
receiver, that are the vertical H

(N)
z and radial H

(N)
ρ in the HCP and PRP

geometry, respectively, are obtained from equations (1.73), (1.74) by setting
ρ = r. Moreover, for the reflection term R0 we consider the following recur-
sion, obtained by Knight and Raich [36] under the quasi-static approximation
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k0 ≈ 0 (cf. Proposition 7 and Remark 4):

R0(λ) =
R1(λ) + ψ1(λ)

R1(λ)ψ1(λ) + 1

Rj(λ) =
Rj+1(λ) + ψj+1(λ)

Rj+1(λ)ψj+1(λ) + 1
e−2uj(λ)hj , j = 1, . . . , N − 1 (2.28)

RN(λ) = 0,

where

ψj(λ) =
uj−1(λ)− uj(λ)
uj−1(λ) + uj(λ)

, j = 1, . . . , N

in which u0(λ) = λ and uj(λ) =
√
λ2 − k2j , kj =

√
−iωµσj, for j = 1, . . . , N .

In order to avoid redundancies and to reduce the length of some formulas, in
the sequel we simply write Rj, ψj, uj in place of Rj(λ), ψj(λ), uj(λ).

Therefore, we have

H(N)
z =

m

4π

∫ ∞

0

(1 +R0e
−2Hλ)λ2J0(λr)dλ, (2.29)

H(N)
ρ =

m

4π

∫ ∞

0

(1−R0e
−2Hλ)λ2J1(λr)dλ, (2.30)

with R0 as in (2.28). We observe that, if N = 1, representing the situation
of homogeneous earth, and H = 0, then R1 = 0, R0 = Ψ1 and analytic
expressions for (2.29) and (2.30) are given by (cf. (1.82) and (1.85) with
ρ = r)

H(1)
z =

m

2πk21r
5

[
9− (9 + 9ik1r − 4k21r

2 − ik31r3)e−ik1r
]
,

H(1)
ρ = −mk

2
1

4πr

[
I1

(
ik1r

2

)
K1

(
ik1r

2

)
− I2

(
ik1r

2

)
K2

(
ik1r

2

)]
.

Other two common configurations (see again Figure 2.1) consist in vertical
coplanar loop (both axes are horizontal and parallel, VCP configuration), and
in vertical coaxial loops (VCX configuration). In the VCX configuration the

measured field is the horizontal H
(N)
x given by equation (1.87) with y = 0,

ρ = r and then x = r. Hence, we have

H(N)
x = −m

4π

∫ ∞

0

(1−R0e
−2Hλ)λ2J0(λr)dλ+

m

4πr

∫ ∞

0

(1−R0e
−2Hλ)λJ1(λr)dλ.

(2.31)
Moreover, for N = 1 and H = 0, from (1.93) we obtain

H(1)
x = − m

2πk21r
5

[
−2k21r2 − 12 + (−ik31r3 − 5k21r

2 + 12ik1r + 12)e−ik1r
]
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In the VCP geometry we are in the case of y-directed horizontal magnetic
dipole. By Remark 5, the fields can be obtained by following the same analy-
sis of Section 1.7.2, but with a permutation of coordinates. Therefore, in this
configuration, the measured magnetic field at the receiver is the horizontal
H

(N)
y component given by setting x = 0 in equation (1.87), in which x should

be read y. Then, we obtain

H(N)
y = − m

4πr

∫ ∞

0

(1−R0e
−2Hλ)λJ1(λr)dλ (2.32)

and, for N = 1 and H = 0 (see (1.93)),

H(1)
y = − m

2πk21r
5

[
3 + k21r

2 − (3 + 3ik1r − k21r2)e−ik1r
]
. (2.33)

In this section, for simplicity, we assume H = 0, i.e., that the dipole is
located at the surface of the earth, even if, with some further complications,
the following analysis can be generalized also for H ̸= 0. Defining for l = 0, 1

gl (λ) = (R0 −Ψ1)λ
2Jl(λr), (2.34)

ql(λ) = [1 + (−1)lΨ1]λ
2Jl(λr), (2.35)

pl(λ) = [1−Ψ1(λ)]λ
2−lJl(λr), (2.36)

we can write (see (2.29), (2.30), (2.31), (2.32))

(1 +R0)λ
2J0(λr) = g0(λ) + q0(λ),

(1−R0)λ
2J1(λr) = q1(λ)− g1(λ),

(1−R0)λ
2J0(λr) = p0(λ)− g0(λ),

(1−R0)λJ1(λr) = p1(λ)− λ−1g1(λ).

Since ql(λ) and pl(λ) represent the integrand functions in the case N = 1
(R1 = 0 and hence gl(λ) = 0), we have that

m

4π

∫ ∞

0

q0(λ)dλ = H(1)
z ,

m

4π

∫ ∞

0

q1(λ)dλ = H(1)
ρ ,

−m
4π

∫ ∞

0

p0(λ)dλ+
m

4πr

∫ ∞

0

p1(λ)dλ = H(1)
x ,

− m

4πr

∫ ∞

0

p1(λ)dλ = H(1)
y ,
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and therefore

H(N)
z =

m

4π

∫ ∞

0

g0 (λ) dλ+H(1)
z , (2.37)

H(N)
ρ = −m

4π

∫ ∞

0

g1 (λ) dλ+H(1)
ρ , (2.38)

H(N)
x =

m

4π

∫ ∞

0

g0(λ)dλ−
m

4πr

∫ ∞

0

λ−1g1(λ)dλ+H(1)
x , (2.39)

H(N)
y =

m

4πr

∫ ∞

0

λ−1g1(λ)dλ+H(1)
y . (2.40)

Our strategy for the computation of H
(N)
z , H

(N)
ρ , H

(N)
x and H

(N)
y in the

general case of N layers is based on the observation that the functions gl(λ),
l = 0, 1, exponentially decay with respect to λ. To prove this behavior, some
preliminary results are necessary.

Lemma 2 It holds

R0 −Ψ1 = R1

(
1 +O

(
1

λ2

))
, as λ→ +∞.

Proof. Using the definitions of R0 and Ψ1 we have

R0 −Ψ1 =
4R1u1

R1k21 + (λ+ u1)2
λ. (2.41)

Since

u1 = λ

√
1− k21

λ2
= λ

(
1− k21

2λ2
+O

(
1

λ4

))
,

as λ→ +∞, we can write

R0 −Ψ1 =
4R1u1λ

R1k21 + (λ+ u1)2
=

4R1λ
2
(
1− k21

2λ2
+O

(
1
λ4

))
R1k21 + λ2

(
2− k21

2λ2
+O

(
1
λ4

))2
= R1

(
1 +O

(
1

λ2

))
.

Lemma 3 The function R1 can be written in the following form

R1 =
∑N−1

k=1
δk(λ) exp (−γkλ) , (2.42)
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where

γk =
∑k

i=1
ci > 0, k = 1, . . . , N − 1,

ci = 2hi

√
1 +

iωµσi
λ2

, i = 1, . . . , N − 1. (2.43)

Proof. In order to demonstrate (2.42), starting from j = 1, by induction we
show that

RN−j =

j∑
k=1

δ
(N−j)
k exp(−(γN+k−(j+1) − γN−(j+1))λ), for j = 1, . . . , N − 1,

(2.44)
in which γ0 = 0. We first observe that

2uihi = 2hi
√
λ2 + iωµσi = 2hi

√
1 +

iωµσi
λ2

· λ = ciλ.

Let j = 1. By (2.28) and defining

δ
(N−1)
1 = ΨN =

√
λ2 − k2N−1 −

√
λ2 − k2N√

λ2 − k2N−1 +
√
λ2 − k2N

, (2.45)

we have that (2.44) is correct for j = 1 because RN = 0. Assuming that
(2.44) is also correct for a given j < N − 1, by (2.28)

RN−(j+1) =
RN−j +ΨN−j

RN−jΨN−j + 1
e−cN−(j+1)λ

=

j+1∑
k=1

δ
(N−(j+1))
k exp(−(γN+k−(j+2) − γN−(j+2))λ),

(2.46)

in which we have defined

δ
(N−(j+1))
1 =

ΨN−j

RN−jΨN−j + 1
,

δ
(N−(j+1))
k =

δ
(N−j)
k−1

RN−jΨN−j + 1
, k = 2, . . . , j + 1.

(2.47)

Finally, setting δj = δ
(1)
j , j = 1, . . . , N − 1, we obtain the result.

Lemma 4 For λ→ +∞,

R1 =
N−1∑
k=1

k2k+1 − k2k
4λ2

(
1 +O

(
1

λ2

))
exp(−γkλ). (2.48)
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Proof. Starting from j = 1, by induction we show that

RN−j =

j∑
k=1

k2N+k−j − k2N+k−(j+1)

4λ2

(
1 +O

(
1

λ2

))
exp(−(γN+k−(j+1)−γN−(j+1))λ),

(2.49)
for j = 1, . . . , N − 1. We observe that, for i = 1, . . . , N

Ψi =

√
λ2 − k2i−1 −

√
λ2 − k2i√

λ2 − k2i−1 +
√
λ2 − k2i

=
k2i − k2i−1[

λ
(
1 +

k2i−1

2λ2
+O

(
1
λ4

))
+ λ

(
1 +

k2i−1

2λ2
+O

(
1
λ4

))]2
=

k2i − k2i−1

4λ2
(
1 +O

(
1
λ2

)) =
k2i − k2i−1

4λ2

(
1 +O

(
1

λ2

))
.

By (2.44) with j = 1 and (2.45), we have that

RN−1 = δ
(N−1)
1 exp(−(γN−1 − γN−2)λ)

=
k2N − k2N−1

4λ2

(
1 +O

(
1

λ2

))
exp(−(γN−1 − γN−2)λ).

Therefore, (2.49) holds true for j = 1. Assuming that (2.49) is also correct
for a given j < N − 1, by (2.46) we have

RN−(j+1) =

j+1∑
k=1

δ
(N−(j+1))
k exp(−(γN+k−(j+2) − γN−(j+2))λ),
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where by (2.47) and using the induction hypothesis on RN−j

δ
(N−(j+1))
1 =

ΨN−j

RN−jΨN−j + 1

=

k2N−j−k
2
N−j−1

4λ2

(
1 +O

(
1
λ2

))
O
(

1
λ2

) k2N−j−k
2
N−j−1

4λ2

(
1 +O

(
1
λ2

))
+ 1

=
k2N−j − k2N−j−1

4λ2

(
1 +O

(
1

λ2

))
,

δ
(N−(j+1))
k =

δ
(N−j)
k−1

RN−jΨN−j + 1

=

k2
N+k−(j+1)

−k2
N+k−(j+2)

4λ2

(
1 +O

(
1
λ2

))
O
(

1
λ2

) k2
N+k−(j+1)

−k2
N+k−(j+2)

4λ2

(
1 +O

(
1
λ2

))
+ 1

=
k2N+k−(j+1) − k2N+k−(j+2)

4λ2

(
1 +O

(
1

λ2

))
, k = 2, . . . , j + 1.

By using the above Lemmas we can prove the following result, which
finally expresses the asymptotic behavior of R1, and hence the one of R0−Ψ1

by Lemma 2.

Proposition 9 For λ→ +∞,

R1 =
N−1∑
k=1

k2k+1 − k2k
4λ2

exp(−γ̃kλ)
(
1 +O

(
1

λ

))
, (2.50)

where γ̃k = 2
∑k

i=1 hi.

Proof. First of all, by (2.43) we have

γk =
k∑
i=1

ci = 2
k∑
i=1

hi

(
1 +O

(
1

λ2

))
= γ̃k

(
1 +O

(
1

λ2

))
, for k = 1, . . . , N−1.

(2.51)
Therefore

exp(−γkλ) = exp

(
−γ̃kλ

(
1 +O

(
1

λ2

)))
= exp(−γ̃kλ)

(
1 +O

(
1

λ

))
,
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Figure 2.2: The imaginary part of the functions g1(λ) (a), q1(λ) (b), λ
−1g1(λ)

(c) and p1(λ) (d), in the case of a 3-layered underground model with r = 2
m, ν = 10 kHz, m = 1 A/m2 σ1 = 33 mS/m, σ2 = 20 mS/m, σ3 = 100
mS/m, h1 = 2.5 m, h2 = 0.5 m.

where the last equality comes from

exp

(
−γ̃kO

(
1

λ

))
= 1 +O

(
1

λ

)
.

The result then follows straighfully from Lemma 4.

By Lemma 2 and Proposition 9, we have that the functions gl (see (2.37),
(2.38), (2.39) and (2.40)), can be written as

gl = (R0 −Ψ1)λ
2Jl(λr)

=
N−1∑
k=1

k2k+1 − k2k
4

exp(−γ̃kλ)Jl(λr)
(
1 +O

(
1

λ

))
,

(2.52)

so that the oscillations due to the Bessel functions are rapidly damped.

Just to provide an example, in Figure 2.2 we plot the imaginary part of
g1(λ), q1(λ), λ

−1g1(λ) and p1(λ) for a given subsoil model. It is clear that
the oscillations are only retained by the terms q1(λ) and p1(λ).

This situation holds true in general and therefore, for suitable positive
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scalars sl, l = 0, 1, we can consider the following approximations

H(N)
z ≈ m

4π

∫ s0

0

g0 (λ) dλ+H(1)
z , (2.53)

H(N)
ρ ≈ −m

4π

∫ s1

0

g1 (λ) dλ+H(1)
ρ , (2.54)

H(N)
x ≈ m

4π

∫ s0

0

g0(λ)dλ−
m

4πr

∫ s1

0

λ−1g1(λ)dλ+H(1)
x , (2.55)

H(N)
y ≈ m

4πr

∫ s1

0

λ−1g1(λ)dλ+H(1)
y , (2.56)

in which we neglect the tail of the integrals.
Theoretically, the truncation error can be bounded as follows.

Proposition 10 For l = 0, 1 there exist constants c1 and c2 such that, for
sl large enough,∣∣∣∣∫ ∞

sl

gl(λ)dλ

∣∣∣∣ ≤ c1

√
1

8πr

N−1∑
k=1

|k2k+1 − k2k|γ̃−1
k e−γ̃ksls

− 1
2

l ,

and ∣∣∣∣∫ ∞

s1

λ−1g1(λ)dλ

∣∣∣∣ ≤ c2

√
1

8πr

N−1∑
k=1

|k2k+1 − k2k|γ̃−1
k e−γ̃ks1s

− 3
2

1 ,

In order to prove Proposition 10 we need the following lemma.

Lemma 5 For u→ +∞,∫ ∞

u

e−xx−νdx = u−νe−u
(
1 +O

(
1

u

))
.

Proof. By using [29, p.318, 3.381, n.6] and [1, p.505-504] respectively, we
have that ∫ ∞

u

e−x

xν
dx = u−

ν
2 e−

u
2W− ν

2
, 1−ν

2
(u)

= u1−νe−uU(1, 2− ν, u)

= u−νe−u
(
1 +O

(
1

u

))
,

where W is the Whittaker function and U is the Kummer’s confluent hyper-
geometric function.
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Now we can prove Proposition 10.
Proof. By (2.52) for l = 0, 1, we have∣∣∣∣∫ ∞

sl

gl(λ)dλ

∣∣∣∣ ≲ N−1∑
k=1

|k2k+1 − k2k|
4

∫ ∞

sl

e−γ̃kλ|Jl(λr)|dλ,∣∣∣∣∫ ∞

s1

λ−1g1(λ)dλ

∣∣∣∣ ≲ N−1∑
k=1

|k2k+1 − k2k|
4

∫ ∞

s1

λ−1e−γ̃kλ|J1(λr)|dλ.

Using the relation (see [1, p.364])

Jl(t) =

√
2

πt

[
cos

(
t− 1

2
lπ − 1

4
π

)
+O

(
1

t

)]
, for t→ +∞,

and Lemma 5, we obtain∫ ∞

sl

e−γ̃kλ|Jl(λr)|dλ ≲

√
2

πr

∫ ∞

sl

e−γ̃kλλ−
1
2dλ

=

√
2

πr

∫ ∞

γ̃ksl

e−tt−
1
2dt

≈
√

2

πr
γ̃−1
k e−γ̃ksls

− 1
2

l ,

and ∫ ∞

s1

λ−1e−γ̃kλ|J1(λr)|dλ ≲

√
2

πr

∫ ∞

s1

e−γ̃kλλ−
3
2dλ

≈
√

2

πr
γ̃−1
k e−γ̃ks1s

− 3
2

1 ,

where we have used the symbols ≈ and ≲ to neglect the factor 1+O
(
1
λ

)
.

In practice, sl can be taken relatively small to obtain reliable results by a
traditional quadrature formula on finite intervals, e.g., sl = 2÷3, for l = 0, 1.

Table 2.1 shows, for example, the results obtained with r = 2 m and
ν = 10 kHz, in the case of a subsurface model composed by 3 layers: σ1 = 333
mS/m, σ2 = 20 mS/m, σ3 = 100 mS/m, h1 = 2.5 m, h2 = 0.5 m. In Table
2.1, as well as in the sequel of this work, we have used the Gauss-Kronrod
quadrature technique, described in [52]. We refer to Appendix C for the gen-
eral theory concerning Gaussian quadrature rules and in particular to C.4 for
the Gauss-Kronrod method. Specifically, the algorithm is based on a pop-
ular scheme (see [35]) which combines a 7-point Gauss rule with a 15-point



2.2. A GAUSS-KRONROD APPROACH 45

sl
∫ s0
0
ℑ(g0(λ))dλ

∫ s1
0
ℑ(g1(λ))dλ

∫ s1
0
ℑ(λ−1g1(λ))dλ

(m−1) (A/m) (A/m) (A/m)

0.5 0.2340 · 10−3 0.7103 · 10−4 0.3000 · 10−3

1.0 0.2632 · 10−3 0.9482 · 10−4 0.3632 · 10−3

1.5 0.2634 · 10−3 0.9610 · 10−4 0.3665 · 10−3

2.0 0.2633 · 10−3 0.9613 · 10−4 0.3665 · 10−3

2.5 0.2633 · 10−3 0.9613 · 10−4 0.3665 · 10−3

3.0 0.2633 · 10−3 0.9613 · 10−4 0.3665 · 10−3

3.5 0.2633 · 10−3 0.9613 · 10−4 0.3665 · 10−3

4.0 0.2633 · 10−3 0.9613 · 10−4 0.3665 · 10−3

Table 2.1: Results of the Gauss-Kronrod quadrature for different values of sl,
with r = 2 m and ν = 10 kHz, in the case of a subsurface model composed
by 3 layers: σ1 = 333 mS/m, σ2 = 20 mS/m, σ3 = 100 mS/m, h1 = 2.5 m,
h2 = 0.5 m.

Kronrod rule. Because the Gauss points are incorporated into the Kronrod
points, a total of only 15 function evaluations are needed. Moreover, the
following adaptive procedure is implemented. Given a prescribed error toler-
ance, the Gauss-Kronrod quadrature is applied in the interval [0, sl] and then
the error is estimated as the modulus of the difference between the 7-point
Gaussian rule and the 15-point Gauss-Kronrod formula. If the tolerance is
not achieved, the interval [0, sl] is divided in 2 subintervals. For each subin-
terval the corresponding integral is calculated by using the Gauss-Kronrod
scheme and the error is estimated as described above. This procedure is re-
peated until the error tolerance or a given maximum number of intervals is
reached. In the example of Table 2.1 and in the sequel of the work, for the
Gauss-Kronrod method the relative error tolerance is set to 1e− 8.

We remark that, respect to the digital filtering approach, the method
described above allows, first of all, to estimate the quadrature error at each
step, and hence to achieve any prescribed accuracy. Moreover, by using an
adaptive procedure, the nodes and weights strongly depend on the behavior
of the integrand function, while for the digital filtering algorithms they are
fixed, independently of the values of the parameters.

In Figure 2.3 we compare, for two different underground models, the
imaginary part in logarithmic scale of the fields H

(3)
z , H

(3)
ρ , H

(3)
x and H

(3)
y ,

computed by using the Gauss Kronrod technique from the integral formula-
tions (2.53), (2.54), (2.55) and (2.56), with the results of the digital filtering
algorithm provided by Singh and Mogi [54]. The plots show the very good
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Figure 2.3: Comparison between the imaginary part of the fields H
(3)
z (a),

H
(3)
ρ (b), H

(3)
y (c) and H

(3)
x (d), in logarithmic scale, computed adopting the

Gauss-Kronrod quadrature technique (solid lines) and the numerical digital
filtering algorithm provided by Singh and Mogi [54] (symbols). Two under-
ground models are considered: σ1 = 50.0 mS/m, σ2 = 4.9 mS/m, σ3 = 18.2
mS/m, h1 = 2.5 m, h2 = 0.5 m (Model 1) and σ1 = 76.9 mS/m, σ2 = 32.3
mS/m, σ3 = 50.0 mS/m, h1 = 2.5 m, h2 = 0.5 m (Model 2). In all cases
ν = 10 kHz and m = 1 A/m2.

concordance of the two numerical approaches for both models. In particular,
the curves differ by less than 10−8 in absolute error. Using more subintervals
the error further decreases, but with higher computational costs.

2.3 An ad-hoc Gaussian rule for the EM fields

Let us consider the general integral solutions of Maxwell’s equations for ver-
tical and horizontal magnetic dipoles, placed at z = −H above the surface
of the earth, given by equations (2.29), (2.30), (2.31) and (2.32). By taking
the imaginary part of the fields and using the change of variable λr = x, we
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obtain

ℑ
(
H(N)
z

)
=

m

4πr3

∫ ∞

0

ℑ
(
R0

(x
r

))
e−

2H
r
xx2J0(x)dx, (2.57)

ℑ
(
H(N)
ρ

)
= − m

4πr3

∫ ∞

0

ℑ
(
R0

(x
r

))
e−

2H
r
xx2J1(x)dx, (2.58)

ℑ
(
H(N)
x

)
=

m

4πr3

[∫ ∞

0

ℑ
(
R0

(x
r

))
e−

2H
r
xx2J0(x)dx

−
∫ ∞

0

ℑ
(
R0

(x
r

))
e−

2H
r
xxJ1(x)dx

]
, (2.59)

ℑ
(
H(N)
y

)
=

m

4πr3

∫ ∞

0

ℑ
(
R0

(x
r

))
e−

2H
r
xxJ1(x)dx, (2.60)

where the symbol ℑ indicates the imaginary part. We notice that the inte-
grals in (2.57), (2.58), (2.59) and (2.60) can be written as

Iν,α,c(f) =

∫ ∞

0

f(x)xαe−cxJν(x)dx, (2.61)

with f(x) = ℑ
(
R0

(
x
r

))
, α = 1, 2, c = 2H

r
and ν = 0, 1. In this section we

present a Gaussian quadrature rule, developed in [11], for the computation
of integrals of type (2.61). Again, we refer to Appendix C for more details
concerning Gaussian quadrature formulae.

In particular, we use the following strategy. First of all, since for the
Bessel functions it holds |Jν(x)| ≤ 1, for ν ≥ 0, x ∈ R (see [1, p.362]), we
consider weight functions of the type

wν,α,c(x) = xαe−cx[Jν(x) + 1] on [0,+∞). (2.62)

Then, we rewrite (2.61) as

IJν,α,c(f)− ILα,c(f),

where

IJν,α,c(f) =

∫ ∞

0

f(x)xαe−cx[Jν(x) + 1]dx,

=

∫ ∞

0

f(x)wν,α,c(x)dx, (2.63)

and

ILα,c(f) =

∫ ∞

0

f(x)xαe−cxdx. (2.64)
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At this point, we notice that integral (2.64) can be accurately computed using
a slight modification of the Gauss-Laguerre quadrature rule (see (C.4)). In
this setting, our aim is to construct a Gaussian rule with respect to the func-
tion wν,α,c. Since we do not know the explicit expression of the corresponding
monic orthogonal polynomials, that we denote by πk, k ≥ 0, we employ the
Chebyshev and modified Chebyshev algorithm to derive the recurrence coef-
ficients αk and βk. Moreover, in addition to these standard techniques, we
present an alternative approach that is based on the preconditioning of the
moment matrix (that will be defined in what follows). In particular, since
the three-term recurrence coefficients can be written in terms of ratios of
determinants of the moment matrix or slight modifications of them (see [10,
Sect.2.7]), we exploit the Cramer rule to show that these coefficients can be
computed by solving a linear system with the moment matrix. Since the
weight function (2.62) can be interpreted as a perturbation of the weight
function of the generalized Laguerre polynomials, we use the moment matrix
of these polynomials as preconditioner. The numerical experiments show
that this technique is always (independently of the parameters ν, α, c) much
more stable than the modified Chebyshev algorithm.

Finally, for the computation of (2.61), we use the approximation

IJν,α,c(f) ≈ IJn (f) =
n∑
i=1

wif(xi),

for integral (2.63). Then, denoting by tLi , w
L
i respectively the nodes and

the weights of the Gauss-Laguerre rule with respect to the weight function
wα(t) = tαe−t, α > −1, integral (2.64) is approximated by

ILα,c(f) =
1

cα+1

∫ ∞

0

f

(
t

c

)
tαe−tdt

≈ ILn (f) =
1

cα+1

n∑
i=1

wLi f

(
tLi
c

)
.

Finally, we thus have

Iν,α,c(f) ≈ IJn (f)− ILn (f). (2.65)

In the next section we derive a recursive relation for the practical evaluation
of the power moments.
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2.3.1 Computation of the moments

The moments relative to weight function (2.62) are defined as (see (C.5))

µk = µν,α,ck =

∫ ∞

0

xk+αe−cx[Jν(x) + 1]dx, k ≥ 0. (2.66)

First of all, we derive a recursive relation for the so called core moments

µk,0 = µν,α,ck,0 =

∫ ∞

0

xk+αe−cxJν(x)dx, k ≥ 0. (2.67)

We remark that the term core moment was first introduced by Gautschi in
[23, Sect.2.1].

Proposition 11 For k ≥ 0 it holds

µk,0 =
1

(
√
c2 + 1)k+α+1

Γ(k + α + ν + 1)P−ν
k+α

(
c√
c2 + 1

)
, (2.68)

where Γ is the Gamma function and P−ν
k+α is the associated Legendre function

(see e.g. [1, ch.8]) of order −ν and degree k + α.

Proof. We start from the general relation [29, p.713]∫ ∞

0

e−t cos θJν(t sin θ)t
k+αdt = Γ(k + α + ν + 1)P−ν

k+α(cos θ),

which holds for each k ≥ 0 whenever α > −1, ν ≥ 0. By the change of
variable s = t sin θ, we have that∫ ∞

0

e−s
cos θ
sin θ Jν(s)s

k+αds = sink+α+1(θ)Γ(k + α + ν + 1)P−ν
k+α(cos θ).

Setting θ = arctan
(
1
c

)
, 0 < θ < π

2
, so that c = cos θ

sin θ
, and using the relations

sin(arctanx) =
x√

1 + x2
, cos(arctanx) =

1√
1 + x2

,

we obtain the result.

Proposition 12 The following three-term recursion holds

µk+1,0 =
1

c2 + 1
{c [2(k + α) + 1]µk,0− [(k+α)2−ν2]µk−1,0}, k ≥ 1, (2.69)
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with

µ0,0 =
Γ(α + ν + 1)

(
√
c2 + 1)α+1Γ(ν + 1)

(√
c2 + 1 + c

)−ν
×

2F1

(
−α, α + 1; 1 + ν;

1

2
√
c2 + 1

(√
c2 + 1− c

)) , (2.70)

µ1,0 =
Γ(α + ν + 2)

(
√
c2 + 1)α+2Γ(ν + 1)

(√
c2 + 1 + c

)−ν
×

2F1

(
−α− 1, α+ 2; 1 + ν;

1

2
√
c2 + 1

(√
c2 + 1− c

)) , (2.71)

where 2F1 is the hypergeometric function.

Proof. From equation (2.68) and using the following three-term recursive
relation for the associated Legendre functions ([1, p.334])

(k + α + ν + 1)P−ν
k+α+1(z) = (2k + 2α + 1)zP−ν

k+α(z)− (k + α− ν)P−ν
k+α−1(z),

we can write

µk+1,0 =
1

(
√
c2 + 1)k+α+2

Γ(k + α + ν + 2)P−ν
k+α+1

(
c√
c2 + 1

)
=

Γ(k + α + ν + 2)

(
√
c2 + 1)k+α+2

[
2(k + α) + 1

k + α + ν + 1

c√
c2 + 1

P−ν
k+α

(
c√
c2 + 1

)

− k + α− ν
k + α + ν + 1

P−ν
k+α−1

(
c√
c2 + 1

)]
.

(2.72)

Rearranging (2.72) and using again (2.68) for µk,0 and µk−1,0, we obtain
relation (2.69). Equations (2.70) and (2.71) follow directly from (2.68) with
k = 0 and k = 1, respectively, and from the relation [29, p.999]

P−ν
k+α(x) =

1

Γ(ν + 1)

(
1 + x

1− x

)− ν
2

2F1

(
−k − α, k + α + 1; 1 + ν;

1− x
2

)
,

for x ∈ (0, 1).
Finally, we can derive a recursive relation for the moments.

Proposition 13 For k ≥ 1 it holds

µk+1 =
1

c2 + 1

{
c [2(k + α) + 1]µk −

[
(k + α)2 − ν2

]
µk−1

+
Γ(k + α)[(k + α)2 + (k + α)− c2ν2]

ck+α+2

}
,

(2.73)
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with

µ0 = µ0,0 +
Γ(α + 1)

cα+1
, µ1 = µ1,0 +

Γ(α + 2)

cα+2
.

Proof. By definition (2.66), the moments µk are given by

µk =

∫ ∞

0

xk+αe−cxJν(x)dx+

∫ ∞

0

xk+αe−cxdx

= µk,0 +
Γ(k + α + 1)

ck+α+1
,

where we have used [29, Sect.3.381, n.4]. Therefore, from relation (2.69) for
k ≥ 1, we can write

µk+1 = µk+1,0 +
Γ(k + α + 2)

ck+α+2

=
c[2(k + α) + 1]

c2 + 1

(
µk −

Γ(k + α + 1)

ck+α+1

)
− (k + α)2 − ν2

c2 + 1

(
µk−1 −

Γ(k + α)

ck+α

)
+

Γ(k + α + 2)

ck+α+2
.

After some simple manipulations, we obtain the result.
At this point, we employ the Chebyshev algorithm for the computation

of the coefficients αk and βk of the recurrence relation

πk+1(x) = (x− αk)πk(x)− βkπk−1(x), k ≥ 0 (2.74)

π−1(x) = 0, π0(x) = 1,

with βk > 0.
Below we present the results of some numerical experiments. The Matlab

routines that implement the Chebyshev algorithm and the Gauss-Laguerre
quadrature rule are taken from [24] and [59], respectively. Since for inte-
grals involving Bessel functions, exponentials and powers the exact solution
is known, in our simulations we choose f(x) = e−0.5x. In Figure 2.4 we con-
sider two examples, for different values of the parameters ν, α and c, and
plot the absolute error between the approximation obtained with the devel-
oped Gaussian rule and the exact solution (see [29, Sect.6.624, n.6] and [29,
Sect.8.704]) given by

Iν,α,d(f) =
Γ(d+ ν + 1)

(
√
c2 + 1)d+1Γ(ν + 1)

(√
c2 + 1 + c√
c2 + 1− c

)− ν
2

×

2F1

(
−d, d+ 1; 1 + ν;

1

2
− c

2
√
c2 + 1

)
,
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where d = c+ 0.5.
Moreover, since for the truncation error it holds (see [10, Sect.4.4])

En(f) = Iν,α,c(f)− (IJn (f)− ILn (f))
= (IJν,α,c(f)− IJn (f))− (ILα,c(f))− ILn (f))

=
f (2n)(ηJ)

(2n)!(kJn)
2
− f (2n)(ηL)

(2n)!(kLn )
2
, ηJ , ηL ∈ (0,∞),

where kJn and kLn are the leading coefficients of the corresponding orthonormal
polynomials of degree n, in Figure 2.4 we also provide the plot of the upper
bound of En(f) given by

|En(f)| ≤
∥f (2n)∥∞
(2n)!

(
1

(kJn)
2
+

1

(kLn )
2

)
. (2.75)

The coefficients kJn are numerically evaluated by using the relation (see [10,
Sect.2.7])

kJn =
1∏n

j=0

√
βj
,

while for kLn we employ the known explicit formulation

kLn =
1√

n!Γ(n+ α + 1)
.

2.3.2 The modified Chebyshev algorithm

The picture on the right of Figure 2.4 shows the stability problem when work-
ing with the power moments µk. Indeed the Chebyshev algorithm typically
starts to produce negative values of βk for k around 20 or even before. This
behavior is rather common and has been observed by many authors in the
past ([22], [28], [67]). As already mentioned, the problem is that the coef-
ficients αk and βk are extremely sensitive to small changes in the moments.
In fact, the nonlinear map

Kn : R2n → R2n

µ 7→ ρ

which maps the moment vector µ = [µ0, µ1, . . . , µ2n−1]
T to the vector ρ =

[α0, . . . , αn−1, β0, . . . , βn−1]
T of recursion coefficients becomes extremely ill

conditioned as n increases (see [22] for the complete analysis). To overcome
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Figure 2.4: Error behavior of (2.65) and error bound (2.75) with respect to
n for ν = 1, α = −0.5, c = 1 on the left and for ν = 0.5, α = 0.5, c = 0.2 on
the right. In both cases f(x) = e−0.5x.

this difficulty, in this section we employ the modified Chebyshev algorithm
with modified moments (see (C.6))

mk = mν,α,c
k =

∫ ∞

0

pk(x)wν,α,c(x)dx, k ≥ 0, (2.76)

and mixed moments (see (C.7))

σ̃kl =

∫ ∞

0

ϕk(x)pl(x)wν,α,c(x)dx, k, l ≥ −1.

In our case, since the weight function can be interpreted as a perturbation of
the weight function relative to the generalized Laguerre polynomials {Lαk}k≥0,
we choose as {pk}k≥0 the system {Lα,ck }k≥0 of the monic polynomials

Lα,ck (x) =
1

ck
L̃αk (cx), (2.77)

where L̃αk (t) = (−1)kk!Lαk (t) is the monic generalized Laguerre polynomial of
degree k. This system satisfies the relation

L̃αk+1(t) = (t− Ak) L̃αk (t)−BkL̃
α
k−1(t),

with
Ak = 2k + α + 1, Bk = k(k + α) k ≥ 1. (2.78)
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Proposition 14 The monic polynomials {Lα,ck }k≥0 defined by (2.77) are or-
thogonal with respect to the weight function xαe−cx and satisfy the three-term
recurrence relation

Lα,ck+1(x) =

(
x− Ak

c

)
Lα,ck (x)− Bk

c2
Lα,ck−1(x), (2.79)

in which Ak and Bk are defined in (2.78).

Proof. The orthogonality follows from the change of variable cx = t, that
leads to∫ ∞

0

Lα,ck (x)Lα,cl (x)xαe−cxdx =
1

ck+l
(−1)k+lk!l!

∫ ∞

0

Lαk (cx)L
α
l (cx)x

αe−cxdx

=
(−1)k+lk!l!
ck+l+1−α

∫ ∞

0

Lαk (t)L
α
l (t)t

αe−tdt.

Now, from the recursive relation for the monic generalized Laguerre polyno-
mials {L̃αk}k≥0

L̃αk+1(cx) = (cx− Ak)L̃αk (cx)−BkL̃
α
k−1(cx), (2.80)

by (2.77) we obtain

ck+1Lα,ck+1(x) = c

(
x− Ak

c

)
ckLα,ck (x)−Bkc

k−1Lα,ck−1(x),

and then (2.79).

Using the polynomials {Lα,ck }k≥0, the modified moments (see (2.76)) can
be written as

mk =

∫ ∞

0

Lα,ck (x)xαe−cxJν(x)dx+

∫ ∞

0

Lα,ck (x)xαe−cxdx.

Clearly, by orthogonality, the second integral is zero for k ≥ 1. Hence, for
k ≥ 1, by (2.77) and the following explicit expression for the generalized
Laguerre polynomials (see [1, p.775])

Lαk (x) =
k∑
j=0

(−1)j
(
k + α

k − j

)
1

j!
xj,
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we have that

mk =

∫ ∞

0

Lα,ck (x)xαe−cxJν(x)dx

=
(−1)kk!
ck

∫ ∞

0

Lαk (cx)x
αe−cxJν(x)dx

=
(−1)kk!
ck

k∑
j=0

(−1)j
(
k + α

k − j

)
1

j!
cj
∫ ∞

0

xα+je−cxJν(x)dx

=
(−1)kk!
ck

k∑
j=0

(−1)j
(
k + α

k − j

)
1

j!
cjµj,0, (2.81)

where the last equality comes from (2.67). Finally, for k = 0 we obtain

m0 = µ0,0 +
Γ(α + 1)

cα+1
,

by [29, Sect.3.381, n.4]. In Figure 2.5 we compare the results of Algorithm 6
and 7. We provide only two representative examples that, nevertheless, are
sufficient to say that Algorithm 7 in general allows to gain stability for further
5÷ 10 iterations but in many cases there is no effective improvement. In the
next section we present the alternative approach based on the preconditioning
of the moment matrix, using again the generalized Laguerre polynomials.
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2.3.3 A preconditioned Cramer based approach

Let

Mk =


µ0 µ1 · · · µk−1

µ1 µ2 · · · µk
...

...
...

µk−1 µk · · · µ2k−2

 ∈ Rk×k,

be the moment matrix, and

Nk =


µ0 µ1 · · · µk−2 µk
µ1 µ2 · · · µk−1 µk+1
...

...
...

...
µk−1 µk · · · µ2k−3 µ2k−1

 ∈ Rk×k.

It is known (see [10], [58]) that the recurrence coefficients in (2.74) can also
be written as

αk =
Fk+1

Dk+1

− Fk
Dk

, βk =
Dk−1Dk+1

D2
k

k ≥ 0, (2.82)

where

Dk = det(Mk), for k ≥ 1,

Fk = det(Nk), for k ≥ 2,

and

D0 = D−1 = 1,

F0 = 0, F1 = µ1.

Consider the linear system

Mk+1x
(k+1) = ek+1, (2.83)

where ek+1 = (0, . . . , 0, 1)T ∈ Rk+1. In the following, we denote by x
(k+1)
i the

i-th component of the solution of (2.83). First of all, we observe that, by
Cramer’s rule,

Dk

Dk+1

= x
(k+1)
k+1 .

Moreover, since

det(Nk) = − detMk+1,(k),
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in which Mk+1,(k) is the matrix Mk+1 with the k-th column substituted by
the vector ek+1, we have that

Fk
Dk+1

= −
detMk+1,(k)

detMk+1

= −x(k+1)
k .

Hence, we obtain

Fk
Dk

=
Fk
Dk+1

Dk+1

Dk

= −x
(k+1)
k

x
(k+1)
k+1

.

In this setting, the coefficients αk and βk can be expressed in terms of the
components of the solutions of appropriate linear systems as follows:

αk = −
x
(k+2)
k+1

x
(k+2)
k+2

+
x
(k+1)
k

x
(k+1)
k+1

, βk =
x
(k)
k

x
(k+1)
k+1

, k ≥ 1, (2.84)

with
α0 =

µ1

µ0

, β0 = µ0.

System (2.83) rapidly becomes severely ill conditioned, so that the pro-
cedure does not offer any improvement with respect to the Chebyshev algo-
rithm. Nevertheless, since Mk+1 is a symmetric positive definite matrix, the
idea is to consider a matrix C = HTH, called bilateral preconditioner, where
H is non singular. Then, the matrix H−TMk+1H

−1 is symmetric positive
definite and the system

H−TMk+1H
−1y(k+1) = H−T ek+1, (2.85)

with x(k+1) = H−1y(k+1), is equivalent to (2.83). Analogously to the choice
made for the modified Chebyshev approach, here we want to use as precon-
ditioner C the moment matrix corresponding to the generalized Laguerre
polynomials and as H its Cholesky decomposition.

Let ηk, k ≥ 0, be the moments relative to the weight function xαe−cx,
given by

ηk = ηα,ck =

∫ ∞

0

xk+αe−cxdx =
Γ(k + α + 1)

ck+α+1
,

where we have used again [29, Sect.3.381, n.4]. We can write

ηk =
1

cα+1

γk
ck
,

where

γk = γαk =

∫ ∞

0

xk+αe−xdx = Γ(k + α + 1) (2.86)
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are the moments relative to the generalized Gauss-Laguerre rule. Hence, we
can write the corresponding moment matrix

Mα,c
k =

 η0 η1 · · · ηk−1
...

...
...

ηk−1 ηk · · · η2k−2

 ∈ Rk×k,

as

Mα,c
k =

1

cα+1
EkM

α
k Ek,

where

Mα
k =

 γ0 γ1 · · · γk−1
...

...
...

γk−1 γk · · · γ2k−2

 ∈ Rk×k,

and Ek = diag
(
c0, c−1, . . . , c1−k

)
.

At this point, if we consider the Cholesky decomposition of Mα
k

Mα
k = (Rα

k )
TRα

k ,

we have

Mα,c
k =

1

cα+1
Ek(R

α
k )
TRα

kEk = (Rα,c
k )TRα,c

k ,

where

Rα,c
k =

1

(
√
c)α+1

Rα
kEk.

The following proposition provides the explicit expression for Rα
k , and there-

fore for Rα,c
k .

Proposition 15 The Cholesky decomposition of the matrix Mα
k is

Mα
k = (Rα

k )
TRα

k ,

with

Rα
ij =

(j − 1)!

(j − i)!
Γ(α + j)√
Γ(i)Γ(α + i)

, for i ≤ j ≤ k.

Proof. Since the matrix Mα
k is symmetric, we can restrict the analysis to

the case i ≤ j. By (2.86) we know that

(Mα
k )ij = Γ(i+ α + j − 1).
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Now,

((Rα
k )
TRα

k )ij =
i∑
l=1

Rα
ljR

α
li

= Γ(j)Γ(α + j)Γ(i)Γ(α + i)
i∑
l=1

1

(j − l)!(i− l)!Γ(l)Γ(α + l)
.

Writing (
x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
, (2.87)

with x = α + i− 1 and y = l − i, we have

1

Γ(α + l)(i− l)!
=

(
α + i− 1

i− l

)
1

Γ(α + i)
.

Moreover,
1

(j − l)!(l − 1)!
=

(
j − 1

l − 1

)
1

(j − 1)!
.

Using the above relations, we obtain

((Rα
k )
TRα

k )ij = Γ(α + j)Γ(i)
i∑
l=1

(
α + i− 1

i− l

)(
j − 1

l − 1

)
.

At this point, by the following slight modification of the Chu-Vandermonde
identity (see [4]),

q∑
u=1

(
t

u− 1

)(
s− t
q − u

)
=

(
s

q − 1

)
,

we obtain

((Rα
k )
TRα

k )ij = Γ(α + j)Γ(i)

(
α + j + i− 2

i− 1

)
.

Using again (2.87), with x = α + j + i− 2 and y = i+ 1, it holds(
α + j + i− 2

i− 1

)
=

Γ(i+ j + α− 1)

Γ(α + j)Γ(i)
,

and finally
((Rα

k )
TRα

k )ij = Γ(i+ α + j − 1).



60 CHAPTER 2. THE FORWARD PROBLEM

We observe that the matrix Rα
k can be written as

Rα
k = DkR̃

α
k ,

with

(R̃α
k )ij =

(j − 1)!Γ(α + j)

(j − i)!Γ(i)Γ(α + i)
, for i ≤ j,

and Dk diagonal matrix such that

(Dk)ii =
√
Γ(i)Γ(α + i).

Since
(Rα

k )
−1 = (R̃α

k )
−1(Dα

k )
−1,

and
(R̃α

k )
−1
ij = (−1)i+j(R̃α

k )ij,

we have that the explicit expression for (Rα
k )

−1 is given by

(Rα
k )

−1
ij = (−1)i+j

√
(j − 1)!Γ(α + j)

(j − i)!Γ(i)Γ(α + i)
, for i ≤ j.

Therefore, the matrix (Rα,c
k )−1 can be written as

(Rα,c
k )−1 = (

√
c)α+1E−1

k (R̃α
k )

−1(Dα
k )

−1,

with

(Rα,c
k )−1

ij =

√
c
α+1

ci−1(−1)i+j
√

(j − 1)!Γ(α + j)

(j − i)!Γ(i)Γ(α + i)
. (2.88)

Finally, the linear system (2.83) can be preconditioned as

(Rα,c
k+1)

−TMk+1(R
α,c
k+1)

−1y(k+1) = (Rα,c
k+1)

−T ek+1, (2.89)

with
x(k+1) = (Rα,c

k+1)
−1y(k+1). (2.90)

Since the matrix Mk+1 can be written as Mk+1 = Mα,c
k+1 + Mα,c

k+1,0, where
Mα,c

k+1,0 is the matrix of the core moments defined by equation (2.67), we
have that

(Rα,c
k+1)

−TMk+1(R
α,c
k+1)

−1 = (Rα,c
k+1)

−T (Mα,c
k+1 +Mα,c

k+1,0)(R
α,c
k+1)

−1

= (Rα,c
k+1)

−TMα,c
k+1(R

α,c
k+1)

−1 + (Rα,c
k+1)

−TMα,c
k+1,0(R

α,c
k+1)

−1

= Ik+1 + (Rα,c
k+1)

−TMα,c
k+1,0(R

α,c
k+1)

−1 := Qk+1, (2.91)
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k 5 10 15 20 25 30

κ2(Mk) 2.4e+ 13 7.8e+ 32 1.0e+ 51 2.2e+ 69 4.6e+ 88 1.1e+ 107
κ2(Qk) 1.0e+ 00 1.3e+ 00 1.4e+ 00 1.4e+ 00 1.5e+ 00 1.6e+ 00

Table 2.2: The Euclidean condition number of the matrix Mk and of the
preconditioned matrix Qk, defined in (2.91), for different values of k. In this
example ν = 0.9, α = 0.1 and c = 0.1.

where Ik+1 is the identity matrix. The system (2.89) becomes

(Ik+1 + (Rα,c
k+1)

−TMα,c
k+1,0(R

α,c
k+1)

−1)y(k+1) = (Rα,c
k+1)

−T ek+1.

In Table 2.2 we show the remarkable effect of the preconditioning.
We observe that, since (Rα,c

k+1)
−1 is an upper triangular matrix, the com-

ponents of the solution used in (2.82) can be written as

x
(k+1)
k = (Rα,c

k+1)
−1
kk y

(k+1)
k + (Rα,c

k+1)
−1
k,k+1y

(k+1)
k+1 , (2.92)

x
(k+1)
k+1 = (Rα,c

k+1)
−1
k+1,k+1y

(k+1)
k+1 . (2.93)

We notice that the numerical implementation of the procedure to calcu-
late αk and βk as in (2.84), by using expressions (2.92) and (2.93), starts to
show instability around k = 60 ÷ 70, depending on the parameters, when
x
(k+1)
k and x

(k+1)
k+1 are close to the underflow. In order to gain more stability

the idea is to rewrite the coefficients αk and βk, for k ≥ 1, in terms of the
components of the vectors y(k), y(k+1), y(k+2), defined in (2.90), and exploits
relation (2.88). Indeed, we observe that for i ∼ j ∼ k,

(Rα,c
k )−1

ij ∼
ck

k!
,

and therefore y
(k+1)
i ≫ x

(k+1)
i , for i = k, k + 1. By (2.82) and (2.88), we

obtain

αk = −
√

(k + 1)(α + k + 1)

c

(
y
(k+2)
k+1

y
(k+2)
k+2

−
√

(k + 1)(α + k + 1)

)

+

√
k(α + k)

c

(
y
(k+1)
k

y
(k+1)
k+1

−
√
k(α + k)

)
,

(2.94)

βk =

√
k(α + k)

c

(
y
(k)
k

y
(k+1)
k+1

)
. (2.95)
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The final procedure, explained in Algorithm 1, allows to work with 80÷90
points, dependently on the parameters.

Algorithm 1 Define α0, β0, β1, y
(1), y(2).

for k = 2, . . . , n− 1

calculate y(k+1) by solving (2.89)

βk ← y(k+1), y(k) by (2.95)

αk−1 ← y(k+1), y(k) by (2.94)

end

In Figure 2.6 we compare the results of Algorithm 6-7 (see Appendix C)
and Algorithm 1. For all the examples we can say that only the precondi-
tioned Cramer based approach allows to achieve an absolute error around
the machine precision, while the Chebyshev and modified Chebyshev algo-
rithms lose stability much earlier. In fact, as shown in Figure 2.7, Algorithm
6 and 7 start to provide inaccurate values of the coefficients αk and βk for k
around 15÷ 25, while Algorithm 1 is definitely more stable. Since the plot is
in logarithmic scale, the missing parts of the curves are relative to negative
entries. In conclusion, we can say that the numerical experiments confirm
the reliability of the preconditioned Cramer based approach and shows that
it is definitely more stable than the modified Chebyshev algorithm, since it
allows to work with further 40÷ 60 points, depending on the parameters.

We remark that, in principle, the approach can be applied to each weight
function that is not so far to the standard ones, because it is necessary to be
able to construct the preconditioner.

2.3.4 Application to electromagnetic fields

In the numerical experiments we use Algorithm 1 to evaluate fields (2.57),
(2.58), (2.59) and (2.60). As before, we still consider the case of a 3-layered
underground model with the same values of frequency and magnetic moment
as in the previous section. However, this time the dipole height H is such
that H ̸= 0. Referring to (2.61), in our examples we set ν = 0, 1, α = 0,
c = 2H

r
and fi(x) = ℑ

(
R0

(
x
r

))
xi, i = 1, 2. Regarding the choice of the

parameters σi and hi, i.e. of the underground models, we consider real life
values of river levees (see e.g. [17]). We point out that for these parameters
and by using double-precision arithmetic the method works with kmax ∼ 85,
but in order to get closer to the machine precision more points are necessary.
To overcome this issue, we adopt the symbolic computation and variable-
precision arithmetic (see e.g. [23]), as supplied, e.g., by the current release
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Figure 2.6: Error histories for ν = 1, α = 0.7, c = 0.3 on the left, for ν = 0.9,
α = 0.1, c = 0.1 in the middle and for ν = 1.5, α = 0.5, c = 0.2 on the right.
In all cases f(x) = e−0.5x.
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Figure 2.7: Plot of the coefficients αk (solid lines) and βk (dashed lines) for
ν = 0.9, α = 0.1 and c = 0.1.
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of Matlab. In this setting, we modify the routine that implements the pre-
conditioned Cramer based approach by using d-decimal digit arithmetic to
generate the first n recurrence coefficients. We remark that the number of
digits depends on the model parameters and increase with n. Finally, we
also point out that, similarly to the Gauss Laguerre rule, the weights decay
exponentially and therefore a truncated approach can also be introduced as
well. The idea is to fix a certain level of accuracy ϵ that we want to achieve
and then to find mn < n such that we can neglect the tails of the quadrature
formula. In particular, for each k = 1, . . . , n, we truncate the weights wi
such that wi <

ϵ
10
, i = 1, . . . , k, and define mk as the number of remaining

nodes. Alternatively, the quadrature error can be estimated by using the
averaged and generalized averaged Gaussian rules (see [41, 56]), which are
easy to construct and typically lead to quite accurate approximations of the
error ([48]). Moreover, to further improve the truncated approach, we re-
mark that, having at disposal a Gaussian quadrature rule allows to develop
an a priori analysis of the error behavior. In particular, following the work of
Barrett [5], it is possible to derive quite sharp error estimates, and hence to
known a priori the rate of convergence of the error. These ideas are currently
under development in [12].

In Figure 2.8-2.9-2.10-2.11 we provide the absolute error between the
approximated fields ℑ(H(3)

z ), ℑ(H(3)
ρ ), ℑ(H(3)

x ) and ℑ(H(3)
y ), and a corre-

sponding reference solution (see e.g. [31], [54]), with respect to the number
of quadrature points mn.
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Figure 2.8: Error history for the computation of ℑ(H(3)
z ) with respect to mn

for parameters H = 0.4 m, r = 8 m, h1 = 2.5 m, h2 = 0.5 m, σ1 = 0.05
S/m, σ2 = 0.0049 S/m, σ3 = 0.0182 S/m on the left and for parameters
H = 0.2 m, r = 8 m, h1 = 2.5 m, h2 = 0.5 m, σ1 = 0.033 S/m, σ2 = 0.1
S/m, σ3 = 0.01 S/m on the right.
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Figure 2.9: Error history for the computation of ℑ(H(3)
ρ ) with respect to mn

for parameters H = 0.4 m, r = 8 m, h1 = 2.5 m, h2 = 0.5 m, σ1 = 0.333
S/m, σ2 = 0.02 S/m, σ3 = 0.1 S/m on the left and for parameters H = 0.4
m, r = 8 m, h1 = 2.5 m, h2 = 0.5 m, σ1 = 0.033 S/m, σ2 = 0.1 S/m,
σ3 = 0.01 S/m on the right.
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Figure 2.10: Error history for the computation of ℑ(H(3)
x ) with respect to

mn for parameters H = 0.2 m, r = 8 m, h1 = 3 m, h2 = 2 m, σ1 = 0.033
S/m, σ2 = 0.2 S/m, σ3 = 0.01 S/m on the left and for parameters H = 0.1
m, r = 4 m, h1 = 2.5 m, h2 = 0.5 m, σ1 = 0.05 S/m, σ2 = 0.0049 S/m,
σ3 = 0.0182 S/m on the right.
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Figure 2.11: Error history for the computation of ℑ(H(3)
y ) with respect to mn

for parameters H = 0.5 m, r = 2 m, h1 = 3 m, h2 = 2 m, σ1 = 0.0769 S/m,
σ2 = 0.0323 S/m, σ3 = 0.05 S/m on the left and for parameters H = 0.5 m,
r = 2 m, h1 = 3 m, h1 = 2 m, σ1 = 0.333 S/m, σ2 = 0.02 S/m, σ3 = 0.01
S/m on the right.



Chapter 3

Approximations of the EM
fields

In this chapter, with the number of ground layers N = 2, 3 and the height of
the receptor H = 0, we derive useful analytical approximations of the fields
H

(N)
z , H

(N)
ρ , H

(N)
x and H

(N)
y , expressed by equations (2.37), (2.38), (2.39)

and (2.40). While these approximations can be used in general to have an
idea of the main features of the fields, our basic aim is to employ them for
the inverse problem, in which we want to compute the underground model
parameters from a set of observed data (see Chapter 4). We remark that,
with some efforts, the analysis can be extended to the case H ̸= 0.

3.1 General analytical approximations

In this section we provide an analytical approximation of the fields, only
based on mathematical considerations and without further hypothesis on
the physical properties of the underground model.

First, from (2.41) we have

gl (λ) =
4R1u1

R1k21 + (λ+ u1)2
λ3Jl(λr), l = 0, 1.

Moreover, for 0 ≤ i, j, ℓ ≤ N

(ui − uj)e−2uℓhℓ =
k2j − k2i√

λ2 − k2i +
√
λ2 − k2j

e−2
√
λ2−k2ℓhℓ

= O
(
e−2λhℓ

λ

)
, for λ→∞, (3.1)

69
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and the same holds true for (λ−uj)e−2uℓhℓ . Actually, this asymptotic behav-
ior is observed already for λ relatively small, because also the quantities ki
are very small. In order to derive approximations of H

(N)
z , H

(N)
ρ , H

(N)
x and

H
(N)
y , in what follows whenever possible we neglect the terms involving these

factors.
N = 2 - In this case we have

R2 = 0, R1 = Ψ2e
−2u1h1 =

u1 − u2
u1 + u2

e−2u1h1 ,

and therefore

4R1u1
R1k21 + (λ+ u1)2

=
4u1(u1 − u2)

(λ2 − u21)(u1 − u2)e−2u1h1 + (λ+ u1)2(u1 + u2)
e−2u1h1 .

By (3.1) we can consider the approximation

(λ2 − u21)(u1 − u2)e−2u1h1 ≈ 0.

Moreover, using the first order approximation

u1 =
√
λ2 + iωµσ1 = λ

√
1 +

iωµσ1
λ2

≈ λ

(
1 +

iωµσ1
2λ2

)
, (3.2)

we obtain

4R1u1
R1k21 + (λ+ u1)2

≈ 4u1(u1 − u2)
(λ+ u1)2(u1 + u2)

e−2u1h1 (3.3)

=
4u1(u1 − u2)2(λ− u1)2

(λ2 − u21)2(u21 − u22)
e−2u1h1

≈ iωµ(σ1 − σ2)
4λ3

(
1 +

iωµσ1
2λ2

)
e−2u1h1 . (3.4)

At this point, we use the non standard approximation

u1 =
√
λ2 + iωµσ1 ≈ λ+

√
iωµσ1. (3.5)

The main reason for this choice is that the standard (3.2) leads to final
approximation that does not allow to simplify the integrals with the existing
formulas. Anyway, approximation (3.5) is partially justified by observing
that

u1
λ+
√
iωµσ1

→ 1, for λ→ 0 and λ→ +∞.

Now, since

λ+
√
iωµσ1 = λ+

√
2

2

√
ωµσ1 + i

√
2

2

√
ωµσ1,
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we obtain

e−2u1h1 ≈ e−2λh1−h1
√
2ωµσ1 [cos(h1

√
2ωµσ1)− i sin(h1

√
2ωµσ1)]

≈ e−2λh1−h1
√
2ωµσ1 .

(3.6)

Using the above approximation in (3.4) we have

ℑ
(

4R1u1
R1k21 + (λ+ u1)2

)
≈ ωµ(σ1 − σ2)e−2λh1−h1

√
2ωµσ1

4λ3
.

Moreover, by the general formulas (see [29, p.707, 6.611, n.1] and [29, p.702,
6.623, n.3])∫ ∞

0

e−αxJν(βx)dx =
β−ν [

√
α2 + β2 − α]ν√
α2 + β2

, ℜ(ν) > −1, ℜ(α± iβ) > 0,∫ ∞

0

e−αx

x
Jν(βx)dx =

(
√
α2 + β2 − α)ν

νβν
, ℜ(ν) > 0, ℜ(α) > |ℑ(β)|,

where the symbol ℜ indicates the real part, we finally obtain, for the integral
in equation (2.37) and the first integral in equation (2.39), the approximation

ℑ
(∫ ∞

0

4R1u1
R1k21 + (λ+ u1)2

λ3J0(λr)dλ

)
≈ ωµ(σ1 − σ2)e−h1

√
2ωµσ1

4

∫ ∞

0

e−2λh1J0(λr)dλ

=
ωµ(σ1 − σ2)e−h1

√
2ωµσ1

4
√

4h21 + r2
,

while, for the integral in equation (2.40) and the second integral in equation
(2.39), we have

ℑ
(∫ ∞

0

4R1u1
R1k21 + (λ+ u1)2

λ2J1(λr)dλ

)
≈ ωµ(σ1 − σ2)e−h1

√
2ωµσ1

4

∫ ∞

0

e−2λh1

λ
J1(λr)dλ

=
ωµ(σ1 − σ2)e−h1

√
2ωµσ1(

√
4h21 + r2 − 2h1)

4r
.

Using the same arguments for H
(2)
ρ , the integral in equation (2.38) can be
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approximated as

ℑ
(∫ ∞

0

−4R1u1
R1k21 + (λ+ u1)2

λ3J1(λr)dλ

)
≈

≈ −ωµ(σ1 − σ2)e
−h1

√
2ωµσ1

4

∫ ∞

0

e−2λh1J1(λr)dλ

= −ωµ(σ1 − σ2)e
−h1

√
2ωµσ1(

√
4h21 + r2 − 2h1)

4r
√

4h21 + r2
.

Finally,

ℑ(H(2)
z ) ≈ m

4π

(
ωµ(σ1 − σ2)e−h1

√
2ωµσ1

4
√

4h21 + r2

)
+ ℑ

(
H(1)
z

)
,

ℑ(H(2)
ρ ) ≈ −m

4π

(
ωµ(σ1 − σ2)e−h1

√
2ωµσ1(

√
4h21 + r2 − 2h1)

4r
√

4h21 + r2

)
+ ℑ

(
H(1)
ρ

)
,

ℑ(H(2)
x ) ≈ m

4π

ωµ(σ1 − σ2)e−h1
√
2ωµσ1

4

(
1√

4h21 + r2
−
√

4h21 + r2 − 2h1
r2

)
+ ℑ(H(1)

x ),

ℑ(H(2)
y ) ≈ m

4πr

(
ωµ(σ1 − σ2)e−h1

√
2ωµσ1(

√
4h21 + r2 − 2h1)

4r

)
+ ℑ

(
H(1)
y

)
.

N = 3 - In this case we have

R3 = 0,

R2 = Ψ3e
−2u2h2 =

u2 − u3
u2 + u3

e−2u2h2 ,

R1 =
u2−u3
u2+u3

e−2u2h2 + u1−u2
u1+u2

u2−u3
u2+u3

u1−u2
u1+u2

e−2u2h2 + 1
e−2u1h1

=
(u1 + u2)(u2 − u3)e−2u2h2 + (u1 − u2)(u2 + u3)

(u2 − u3)(u1 − u2)e−2u2h2 + (u1 + u2)(u2 + u3)
e−2u1h1

≈ (u1 + u2)(u2 − u3)e−2u2h2 + (u1 − u2)(u2 + u3)

(u1 + u2)(u2 + u3)
e−2u1h1 ,
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where, as before, we have used (3.1). We obtain

4R1u1
R1k21 + (λ+ u1)2

=

= 4u1[(u1 + u2)(u2 − u3)e−2(u1h1+u2h2) + (u1 − u2)(u2 + u3)e
−2u1h1 ]×

[(u1 + u2)(u2 − u3)(λ2 − u21)e−2(u1h1+u2h2) + (u1 − u2)(u2 + u3)(λ
2 − u21)e−2u1h1

+(λ+ u1)
2(u1 − u2)(u2 − u3)e−2u2h2 + (λ+ u1)

2(u1 + u2)(u2 + u3)]
−1

≈ 4u1
(u1 + u2)(u2 − u3)e−2(u1h1+u2h2) + (u1 − u2)(u2 + u3)e

−2u1h1

(λ+ u1)2(u1 + u2)(u2 + u3)
(3.7)

=
4u1(u2 − u3)e−2(u1h1+u2h2)

(λ+ u1)2(u2 + u3)
+

4u1(u1 − u2)e−2u1h1

(λ+ u1)2(u1 + u2)
, (3.8)

where approximation (3.7) arises again from (3.1). We observe that the two
terms of (3.8) are very similar and, in particular, the second one corresponds
to (3.3) for N = 2. Therefore, using approximations (3.2) and (3.5) for u1,
u2 and u3, we obtain

ℑ
(∫ ∞

0

4R1u1
R1k21 + (λ+ u1)2

λ3J0(λr)dλ

)
≈ ωµe−h1

√
2ωµσ1

4

(
(σ2 − σ3)e−h2

√
2ωµσ2√

4(h1 + h2)2 + r2
+

σ1 − σ2√
4h21 + r2

)
,

and

ℑ
(∫ ∞

0

4R1u1
R1k21 + (λ+ u1)2

λ2J1(λr)dλ

)
≈

≈ ωµe−h1
√
2ωµσ1

4r

(
(σ2 − σ3)e−h2

√
2ωµσ2

[√
4(h1 + h2)2 + r2 − 2(h1 + h2)

]
+ (
√
4h21 + r2 − 2h1)(σ1 − σ2)

)
.

Analogously,

ℑ
(∫ ∞

0

−4R1u1
R1k21 + (λ+ u1)2

λ3J1(λr)dλ

)
≈

≈ ωµe−h1
√
2ωµσ1

−4r

(
(σ2 − σ3)e−h2

√
2ωµσ2 [

√
4(h1 + h2)2 + r2 − 2(h1 + h2)]√

4(h1 + h2)2 + r2

+
(
√

4h21 + r2 − 2h1)(σ1 − σ2)√
4h21 + r2

)
.
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Finally,

ℑ(H(3)
z ) ≈ m

4π

ωµe−h1
√
2ωµσ1

4

(
(σ2 − σ3)e−h2

√
2ωµσ2√

4(h1 + h2)2 + r2
+

σ1 − σ2√
4h21 + r2

)
+ ℑ

(
H(1)
z

)
,

(3.9)

ℑ(H(3)
ρ ) ≈ −m

4π

ωµe−h1
√
2ωµσ1

4r

((σ2 − σ3)e−h2√2ωµσ2 [
√

4(h1 + h2)2 + r2 − 2(h1 + h2)]√
4(h1 + h2)2 + r2

+
(
√
4h21 + r2 − 2h1)(σ1 − σ2)√

4h21 + r2

)
+ ℑ(H(1)

ρ ), (3.10)

ℑ(H(3)
x ) ≈ m

4π

ωµe−h1
√
2ωµσ1

4

[
(σ2 − σ3)e−h2

√
2ωµσ2

(
1√

4(h1 + h2)2 + r2

−
√

4(h1 + h2)2 + r2 − 2(h1 + h2)

r2

)
+ (σ1 − σ2)

(
1√

4h21 + r2

−
√

4h21 + r2 − 2h1
r2

)]
+ ℑ(H(1)

x ) (3.11)

and

ℑ(H(3)
y ) ≈ m

4πr

ωµe−h1
√
2ωµσ1

4r

(
(σ2 − σ3)e−h2

√
2ωµσ2

[√
4(h1 + h2)2 + r2 − 2(h1 + h2)

]
+
(√

4h21 + r2 − 2h1

)
(σ1 − σ2)

)
+ ℑ(H(1)

y ).

(3.12)

3.2 Low-frequency response and LIN approx-

imations

In this section we describe the commonly employed approximations of the
fields under the low induction numbers assumption.

In the case of a N -layered earth, when the frequency is sufficiently low,
more precisely at low induction numbers (LIN), the reflection term can be

approximated in order to obtain explicit expressions for the fieldsH
(N)
z , H

(N)
ρ ,

H
(N)
x and H

(N)
y , given by equations (2.29), (2.30), (2.31) and (2.32) (see [61],

[62] and [44]). In particular, the induction number is defined as

B =
r

d
,
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where

d =

√
2

ωµσ

is the skin depth and r is the source-receiver distance (offset). At LIN, B ≪ 1
and the eddy currents of each layer do not interact. Moreover, the secondary
field measured at the receiver is the sum of the independent fields from each
individual current loop. The approximation is equivalent to assume that the
frequency is low (around 10 kHz) and that the current flow at any point
is independent of the current flow at any other point, since the magnetic
coupling between all current loops is negligible.

As before, we work with N = 2, 3 and H = 0.
N = 2 - From (2.28) we have

R2 = 0, R1 = Ψ2e
−2u1h1 =

u1 − u2
u1 + u2

e−2u1h1

and therefore

R0 =
R1 +Ψ1

R1Ψ1 + 1
=

(λ+ u1)(u1 − u2)e−2u1h1 + (λ− u1)(u1 + u2)

(u1 − u2)(λ− u1)e−2u1h1 + (u1 + u2)(λ+ u1)
.

By (3.1) we can consider

(u1 − u2)(λ− u1)e−2u1h1 ≈ 0.

Moreover, using the first order approximation

uj =
√
λ2 + iωµσj = λ

√
1 +

iωµσj
λ2

≈ λ

(
1 +

iωµσj
2λ2

)
, j = 1, 2

and since ∣∣∣∣iωµσjλ2

∣∣∣∣≪ 1, j = 1, 2,

we obtain

R0 ≈
(λ+ u1)(u1 − u2)e−2u1h1 + (λ− u1)(u1 + u2)

(u1 + u2)(λ+ u1)

≈ −iωµσ1 + iωµσ1e
−2u1h1 − iωµσ2e−2u1h1

4λ2
.

Finally, by the approximation

e−2u1h1 ≈ e−2h1λ, (3.13)

we have that

R0 ≈
−iωµσ1(1− e−2h1λ)− iωµσ2e−2h1λ

4λ2
. (3.14)
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Remark 6 We notice that approximation (3.13) represent the main differ-
ence with respect to the general analytical approximation of Section 3.1 (c.f.
formula (3.6)).

Using result (3.14) in (2.29), (2.30), (2.31) and (2.32), we obtain

ℑ
(
H(2)
z

)
≈ −ωµm

16π

[
σ1

∫ ∞

0

J0(λr)dλ+ (σ2 − σ1)
∫ ∞

0

e−2h1λJ0(λr)dλ

]
,

ℑ
(
H(2)
ρ

)
≈ ωµm

16π

[
σ1

∫ ∞

0

J1(λr)dλ+ (σ2 − σ1)
∫ ∞

0

e−2h1λJ1(λr)dλ

]
,

ℑ
(
H(2)
x

)
≈ −ωµm

16π

[
σ1

∫ ∞

0

J0(λr)dλ+ (σ2 − σ1)
∫ ∞

0

e−2h1λJ0(λr)dλ

]
+
ωµm

16πr

[
σ1

∫ ∞

0

J1(λr)

λ
dλ+ (σ2 − σ1)

∫ ∞

0

e−2h1λ

λ
J1(λr)dλ

]
and

ℑ
(
H(2)
y

)
≈ −ωµm

16πr

[
σ1

∫ ∞

0

σ1
J1(λr)

λ
dλ+ (σ2 − σ1)

∫ ∞

0

e−2h1λ

λ
J1(λr)dλ

]
.

At this point, from [29, p.665, 6.511, n.1], [29, p.707, 6.611, n.1], [29, p.702,
6.623, n.3] and [29, p.676, 6.561, n.14], we have

ℑ
(
H(2)
z

)
≈ −ωµm

16π

(
σ1
r

+
σ2 − σ1√
r2 + 4h21

)
,

ℑ
(
H(2)
ρ

)
≈ ωµm

16πr

[
σ1 + (σ2 − σ1)

(
1− 2h1√

r2 + 4h21

)]
,

ℑ
(
H(2)
x

)
≈ ωµm

16π

[
(σ2 − σ1)

(√
4h21 + r2 − 2h1

r2
− 1√

4h21 + r2

)]
and

ℑ
(
H(2)
y

)
≈ −ωµm

16πr

[
σ1 + (σ2 − σ1)

√
4h21 + r2 − 2h1

r

]
.

N = 3 - From (2.28) we have

R3 = 0,

R2 = Ψ3e
−2u2h2 =

u2 − u3
u2 + u3

e−2u2h2 ,

R1 =
u2−u3
u2+u3

e−2u2h2 + u1−u2
u1+u2

u2−u3
u2+u3

u1−u2
u1+u2

e−2u2h2 + 1
e−2u1h1

=
(u1 + u2)(u2 − u3)e−2(u1h1+u2h2) + (u1 − u2)(u2 + u3)e

−2u1h1

(u1 − u2)(u2 − u3)e−2u2h2 + (u1 + u2)(u2 + u3)
.
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Therefore, following the same kind of approximations of the case N = 2, we
obtain

R0 ≈
2λiωµ(σ2 − σ3)e−2(h1+h2)λ + 2λiωµ(σ1 − σ2)e−2h1λ − 2λiωµσ1

8λ3

= −iωµ
σ1
(
1− e−2h1λ

)
+ σ2

(
e−2h1λ − e−2(h1+h2)λ

)
+ σ3e

−2(h1+h2)λ

4λ2
.

Finally, by substituting the above expression in (2.29), (2.30), (2.31) and
(2.32) and by using again [29, p.665, 6.511, n.1], [29, p.707, 6.611, n.1], [29,
p.702, 6.623, n.3] and [29, p.676, 6.561, n.14], we have

ℑ
(
H(3)
z

)
≈ −ωµm

16π

(
σ1
r

+
σ2 − σ1√
r2 + 4h21

+
σ3 − σ2√

r2 + 4(h1 + h2)2

)
, (3.15)

ℑ
(
H(3)
ρ

)
≈ ωµm

16πr

[
σ1 + (σ2 − σ1)

(
1− 2h1√

r2 + 4h21

)

+ (σ3 − σ2)

(
1− 2(h1 + h2)√

r2 + 4(h1 + h2)2

)]
, (3.16)

ℑ
(
H(3)
x

)
≈ ωµm

16π

[
(σ2 − σ1)

(√
4h21 + r2 − 2h1

r2
− 1√

4h21 + r2

)

+ (σ3 − σ2)

(√
4(h1 + h2)2 − 2(h1 + h2)

r2
− 1√

4(h1 + h2)2 + r2

)]
(3.17)

and

ℑ
(
H(3)
y

)
≈ −ωµm

16πr

[
σ1 + (σ2 − σ1)

√
4h21 + r2 − 2h1

r

+ (σ3 − σ2)
√

4(h1 + h2)2 − 2(h1 + h2)

r

]
. (3.18)

3.3 Some numerical examples

To conclude this chapter, in Figure 3.1 we compare the imaginary part of
the fields H

(3)
z , H

(3)
ρ , H

(3)
y and H

(3)
x , in logarithmic scale, computed from the

integral formulations (2.53), (2.54), (2.55) and (2.56) by using the Gauss
Kronrod technique, with the analytical approximations (3.9), (3.10), (3.11),
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Figure 3.1: Comparison between the imaginary part of the fields H
(3)
z (a),

H
(3)
ρ (b), H

(3)
y (c) and H

(3)
x (d), in logarithmic scale, computed adopting the

Gauss-Kronrod quadrature technique (solid lines) and the approximations
of Section 3.1 and 3.2 (symbols). Two underground models are considered:
σ1 = 50.0 mS/m, σ2 = 4.9 mS/m, σ3 = 18.2 mS/m, h1 = 2.5 m, h2 = 0.5
m (Model 1) and σ1 = 76.9 mS/m, σ2 = 32.3 mS/m, σ3 = 50.0 mS/m,
h1 = 2.5 m, h2 = 0.5 m (Model 2). In all cases ν = 10 kHz and m = 1
A/m2.

(3.12) of Section 3.1 and the LIN approximations (3.15), (3.16), (3.17), (3.18)
of Section 3.2, for two different underground models. In particular, the plots
relative to the fields H

(3)
ρ and H

(3)
y (Figure 3.1 (b)-(c)) show a very good con-

cordance between the numerical representation and the two approximations.
As for the field H

(3)
z (Figure 3.1 (a)), we have that the approximations are

rather good for small offsets but not so much for greater offsets. Finally, Fig-
ure 3.1 (d) shows a bad concordance between the numerical representation

of the field H
(3)
x and the approximations, especially for increasing offsets.



Chapter 4

The inverse problem

4.1 Mathematical formulation

In this final chapter we deal with the inverse problem of computing the
model parameters (i.e., conductivity and thickness of the layers) from a set
of measured field values at different offsets, in the case of a homogeneous
layered earth. Specifically, we consider the electromagnetic response of the
DUALEM (DUAL-geometry Electro-Magnetic) system placed at the surface
of the earth. For this instrument the dipole geometry consists of a trans-
mitter loop (T) and many dual receiver loops (Rz, Rρ) that are horizontal
co-planar (HCP configuration) and perpendicular (PRP configuration). Fig-
ure 4.1 represents an example of dual-coil configuration inside the DUALEM,
where the offset is 2 m and 2.1 m between T and the first couple of receivers
Rz, Rρ, respectively. Other couples of receivers are located at 4, 6 and 8 m
offset. In this setting, the theoretical components of the magnetic field at
the receiver location on the surface are given by (cf. (2.29) and (2.30) with
H = 0)

H(N)
z =

m

4π

∫ ∞

0

(1 +R0)λ
2J0(λr)dλ, (4.1)

H(N)
ρ =

m

4π

∫ ∞

0

(1−R0)λ
2J1(λr)dλ. (4.2)

In this case, it is possible to generalize the inversion procedure for H ̸= 0, by
extending the results of Section 3.1 and 2.2. Alternatively, one can consider
an air layer, with conductivity almost zero, that separates the DUALEM
from the ground and work with H = 0. We remark that usually, in practice,
the DUALEM system is 40÷50 cm above the surface of the earth. However,
the instrument can also be placed directly on the ground to take repeated
measurements. So it is not restrictive to consider the case H = 0.

79
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Figure 4.1: Layered underground conductivity model and dual-coil configu-
ration inside the DUALEM instrument.

Now, let p = (σ1, ..., σN , h1, ..., hN−1) ∈ R2N−1 be the vector of under-
ground parameters. The components of the magnetic field at the surface are
functions of these parameters and the offset r, thus H

(N)
z = H

(N)
z (p, r) and

H
(N)
ρ = H

(N)
ρ (p, r). Given a vector of observations d = (dz,1, ..., dz,k, dρ,1, ..., dρ,k)

T ,
corresponding to distances r1, ..., rk (2k > 2N − 1), the inverse problem can
be formulated as

min
p

k∑
i=1

{[
ℑ(H(N)

z (p, ri))− dz,i
]2

+
[
ℑ(H(N)

ρ (p, ri))− dρ,i
]2}

. (4.3)

We remark that other kinds of minimization are of course possible, that is, by
using a different norm, and possibly a regularization term may be included to
reduce the effect of noise on the measurements. By definingH : R2N−1 → R2k

as

H(p) =
(
ℑ(H(N)

z (p, r1)), ...,ℑ(H(N)
z (p, rk)),ℑ(H(N)

ρ (p, r1)), ...,ℑ(H(N)
ρ (p, rk))

)T
,

(4.4)
problem (4.3) can be rewritten in the compact form

min
p
∥H(p)− d∥2 , (4.5)

where ∥ · ∥ denotes the Euclidean norm.
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σ(S/m)

Clay 0.2 [8]
Sand/Silt grains 0.01 [8]
Tap water 0.1 [63]
Air 0.0001 [47]

Table 4.1: Material electrical conductivity

4.2 Underground models

Regarding the choice of the underground models for the simulations, we
consider a specific application related to the internal composition of river
levees, which may collapse due to the condition of the soils that form the
embankments. Particularly, the presence of gravel lenses inside the embank-
ment body constitutes a critical factor for the structural levee stability. We
assume that the subsoil models are composed by three layers (referring to
previous section, N = 3), representing a highly porous gravel level embedded
in sediments of clay and silty sands. Two (extreme) cases are considered (see
Table 4.2): the first case (Models 1 and 3) represents a dry levee (summer
conditions) and the second case (Models 2 and 4) represents a wet levee (win-
ter conditions). Moreover, different layer thicknesses are taken into account.
The subsoil conductivities are computed with the complex refractive index
model (CRIM) and the material properties shown in Table 4.1 and Table
4.2. The CRIM model for a shaly sandstone with negligible permittivity and
partially saturated with gas, can be expressed as [51, 7]

σ = [(1− ϕ)(1− C)σγq + (1− ϕ)Cσγc + ϕSwσ
γ
w + ϕ(1− Sw)σγa ]1/γ, (4.6)

with γ = 1/2 and where σq, σc, σw and σa are the sand-grain (quartz), clay,
water and air conductivities, C is the clay content, ϕ is the porosity and
Sw is the water saturation. If γ is a free parameter, the equation is termed
Lichtnecker-Rother formula. It is based on the ray approximation. The travel
time in each medium is inversely proportional to the electromagnetic veloc-
ity, which in turn is inversely proportional to the square root of the complex
dielectric constant. At low frequencies, displacement currents can be ne-
glected and equation (4.6) is obtained. For zero clay content, and neglecting
σq and σc, equation (4.6) is exactly Archie’s law [32]. The computed values
in Table 4.2 represent typical conductivities of shallow sediments, frequently
measured on river embankments (e.g., [68, 17]).
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Medium Layer C (%) ϕ (%) Sw (%) σ (mS/m) h (m) Lithology

Model 1
1 50 20 3 50.0 2.5 Dry silt and clay
2 1 37 1 4.9 0.5 Dry gravel lens
3 25 30 2 18.2 Dry sand/silt and clay

Model 2
1 50 20 92 76.9 2.5 Wet silt and clay
2 1 37 98 32.3 0.5 Wet gravel lens
3 25 30 98 50.0 Wet sand/silt and clay

Model 3
1 50 20 3 50.0 3.0 Dry silt and clay
2 1 37 1 4.9 2.0 Dry gravel lens
3 25 30 2 18.2 Dry sand/silt and clay

Model 4
1 50 20 92 76.9 3.0 Wet silt and clay
2 1 37 98 32.3 2.0 Wet gravel lens
3 25 30 98 50.0 Wet sand/silt and clay

Table 4.2: Petrophysical properties of the river levees models used in the
numerical forward simulations.
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4.3 The BFGS approach

Due to the complexity of the function H(p) (see (4.4)), whose computation
requires the evaluation of integrals, it is necessary to employ a derivative free
minimization algorithm based, for example, on a BFGS (Broyden-Fletcher-
Goldfarb-Shanno) line-search method ([6, 16, 26, 53]). In particular, starting
from an initial guess p0 ∈ R2N−1 and letting f(p) = ∥H(p)− d∥2, the method
is defined by the iteration

pj+1 = pj − λjA−1
j ∇f(pj), (4.7)

whereAj is a symmetric positive definite approximation of the Hessian matrix
of f at pj, given by the BFGS update

Aj+1 = Aj +
yjy

T
j

yjsj
−
Ajsjs

T
j Aj

sTj Ajsj
, (4.8)

with sj = pj+1−pj, yj = ∇f(pj+1)−∇f(pj) and A0 a generic approximation
of the Hessian matrix at the initial guess. Moreover, the parameters λj > 0
in (4.7) represent the steps and are chosen to satisfy the Armijo-Goldstein
conditions [3, 27]

f(pj+1) ≤ f(pj) + α∇f(pj)T (pj+1 − pj), (4.9)

∇f(pj+1)
T (pj+1 − pj) ≥ β∇f(pj)T (pj+1 − pj), (4.10)

for some α ∈ (0, 1) and β ∈ (α, 1) suitable chosen. The above conditions
prevent the use of steps too large or too small. Specifically, the term line
search refers to any procedure for selecting λj. In practice, (4.10) generally is
not necessary if a backtracking strategy, described by the following algorithm,
is used.

Algorithm 2 (Backtracking line search) Given α ∈ (0, 1), 0 < l < u <
1,

1. set λj = 1,

2. while (4.9) does not hold, set λj = ρλj, for some ρ ∈ [l, u],

3. calculate pj+1 as in (4.7).

Since the line search is included, Algorithm 2 is proven to be globally con-
vergent if it is applied to a strictly convex function (see e.g., [14, Theorem
9.5.1]). However, the method is very demanding in terms of computational
resources and elaboration time. In order to overcome this issue, by using the
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approximations given in the previous chapter (see Section 3.1), we present
below a more efficient algorithm to solve (4.5) for the underground models
of Section 4.2, in which N = 3.

Let p = (σ1, σ2, σ3, h1, h2) ∈ R5 be the vector of the underground param-

eters and consider the fields H
(3)
z = Hz and H

(3)
ρ = Hρ, defined by equations

(4.1) and (4.2). From the previous chapter, ℑ(Hz) and ℑ(Hρ) can be ap-
proximated using equations (3.9) and (3.10) at different offsets r1, . . . , rk.
We indicate these approximations as Lz and Lρ.

Suppose the underground model to be characterized by the parameters
vector p⋆ = (σ⋆1, σ

⋆
2, σ

⋆
3, h

⋆
1, h

⋆
2) ∈ R5. The observations vector d is computed

using integral formulations (2.53) and (2.54), being numerical simulations
the best representation of realistic EM surveys. Given an initial guess p0 of
p⋆, we search for a certain p̄ ∈ R5 such that

p̄ = (σ̄1, σ̄2, σ̄3, h̄1, h̄2) = argmin
p

∥∥H̄(p)− d∥∥2 , (4.11)

where H̄ : R5 → R2k is defined as

H̄(p) = (Lz(p, r1)), ..., Lz(p, rk)), Lρ(p, r1)), ..., Lρ(p, rk)))
T .

At this point we use p̄ as initial guess for a second minimization procedure
with integral formulations (2.53) and (2.54) instead of analytical approxima-
tions (3.9) and (3.10). Therefore, we look for p̂ ∈ R5 such that

p̂ = (σ̂1, σ̂2, σ̂3, ĥ1, ĥ2) = argmin
p
∥H(p)− d∥2 , (4.12)

where H : R5 → R2k is defined by (4.4). Finally, the approximate solution
of the inverse problem is given by the vector p̂ ∈ R5.

The above procedure can be summarized by the following algorithm.

Algorithm 3 Given p0 ∈ R5 and d ∈ R2k, using the BFGS iteration (4.7)

1. solve problem (4.11) to find p̄,

2. solve problem (4.12), with p̄ as initial guess, to find p̂.

Since H̄(p) ≈ H(p) is a quite good approximation (see the examples in
the previous chapter), the double step minimization allows to considerably
reduce the computational cost because H̄ does not require the evaluation of
integrals.
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4.3.1 Numerical examples

To solve minimization problems (4.11) and (4.12), we use the quasi-Newton
method BFGS together with the line search technique explained by Algo-
rithm 2, with step tolerance and termination tolerance in the order of the
machine precision. As initial guess A0 in (4.8) we take the identity matrix
and empirically set α = 0.01, ρ = 0.9 as parameters of the line search in
Algorithm 2. Moreover, the gradient ∇f (cf. (4.7)) is calculated by partial
derivatives using a numerical differentiation method via finite differences.
We apply Algorithm 3 to the observations vector d, obtained from the mod-
els defined in Table 4.2, and calculate the relative percentage error between
the approximate solution p̂ and the real underground model parameters p⋆.
The examples aim to simulate an EM acquisition on river levees using the
DUALEM system (https://dualem.com), for which the offsets are r1 = 2 m,
r2 = 4 m, r3 = 6 m and r4 = 8 m, and the frequency is about f = 10 kHz.
The observation data vector d ∈ R8 is generated by

d = H(p⋆) + η,

where η is a random white noise vector such that the Noise-to-Signal Ratio
(NSR) is ϵ = ∥η∥

∥d∥ . We first consider a noise free example (i.e., ϵ = 0) and then

two values of percentage NSR, ϵ = 0.1%, 0.5%. These values are compatible
with the results of laboratory test, showing that environmental RMS noise
levels, in terms of apparent conductivity measurements at 8 m offset, are
typically less than 1 mS/m (see https://dualem.com). The solution errors
are averaged over 20 simulations for each model, in order to have an estimate
of the parameters expectation values. The results of the simulations are
shown in Tables 4.3-4.4-4.5, where we report the mean relative error over 20
experiments for each model in order to reduce the random dependence on the
data. The optimization solver always converges for all the simulations and
the errors are mainly due to the presence of a large number of local minima
in the objective function. The simulations without random noise (Table 4.3)
show the best results, with the maximum average error around 5 %. Then,
as expected, the errors increase with increasing NSR, reaching an average
maximum error of ≈ 35% for NSR = 0.5 (Table 4.5). The conductivity and
thickness of the intermediate layer are affected by the larger errors. Moreover,
thinner layers show larger errors.

4.4 The Gauss-Newton approach

The BFGS method is known to be very sensitive to the choice of the initial
guess A0 in (4.8) (see [14, Theorem 9.5.1]). In order to overcome this issue,
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Mean relative error
Conductivity Thickness

(%) (%)

Model 1
0.1 0.0
5.4 5.4
0.1

Model 2
0.1 0.2
2.0 1.1
0.1

Model 3
0.7 1.0
53.0 23.8
1.8

Model 4
0.0 0.3
1.7 6.2
0.5

Average error 5.4 4.75

Table 4.3: Results of the EM inversions using the BFGS method. The NSR
is ϵ = 0.
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Mean relative error
Conductivity Thickness

(%) (%)

Model 1
16.3 11.2
24.2 5.5
9.2

Model 2
8.3 9.5
7.6 14.8
2.6

Model 3
9.4 7.5
15.2 21.0
3.4

Model 4
5.2 4.0
1.8 7.0
6.2

Average error 9.12 10.0

Table 4.4: Results of the EM inversions using the BFGS method. The NSR
is ϵ = 0.1%.
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Mean relative error
Conductivity Thickness

(%) (%)

Model 1
21.0 16.2
35.2 4.5
12.6

Model 2
11.0 13.2
21.5 20.7
4.5

Model 3
16.7 12.3
29.1 19.2
4.8

Model 4
15.7 11.6
13.7 8.5
18.4

Average error 17.02 13.28

Table 4.5: Results of the EM inversions using the BFGS method. The NSR
is ϵ = 0.5%
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we consider a second minimization strategy based on the observation that
(4.5) is actually a nonlinear least-squares problem.

As before, let p = (σ1, . . . , σN , h1, . . . , hN−1) ∈ R2N−1 be the vector of

underground parameters, H
(N)
z (p, r), H

(N)
ρ (p, r) the components of the mag-

netic field at the surface and d = (dz,1, . . . , dz,k, dρ,1, . . . , dρ,k)
T a vector of

observations. Then, given the residual function R : R2N−1 → R2k defined by

R(p) = H(p)− d, (4.13)

withH(p) as in (4.4), we consider the nonlinear least-squares problem, equiv-
alent to the one in (4.5),

min
p
R(p) = min

p

1

2
R(p)TR(p) =

1

2

2k∑
i=1

Ri(p)
2, (4.14)

where Ri(p) denotes the i-th component of R(p). In order to solve (4.14), we
employ the Gauss-Newton method with line search, whose generic iteration
is defined as

pj+1 = pj − λj(J(pj)TJ(pj))−1J(pj)
TR(pj), (4.15)

in which λj is selected by the backtracking procedure (steps 1-2 of Algorithm
2) and J(p) ∈ R(2N−1)×2j is the Jacobian matrix relative to R. The above
method, commonly named damped Gauss-Newton algorithm, is usually glob-
ally convergent but may be very slow. Moreover, it is not well defined if J(pj)
does not have full column rank. We refer to [14, Chapter 10] for more details.

Before going on, we observe that the experiments presented in Section
4.3.1 strongly depend on the initial guess p0 (see also Algorithm 3). In order
to avoid this empirical choice, we decide to solve problem (4.14), for the
underground models described in Section 4.2, starting from a grid of values
of p0.

As before, let p = (σ1, σ2, σ3, h1, h2) ∈ R5 and p⋆ = (σ⋆1, σ
⋆
2, σ

⋆
3, h

⋆
1, h

⋆
2) ∈

R5 be the vector of the underground parameters and the real subsoil model,
respectively. Moreover, consider the fields H

(3)
z = Hz and H

(3)
ρ = Hρ and a

noise free observation data vector d, computed by using integral formulations
(2.53) and (2.54). Then, we search for p̄ ∈ R5 such that

p̄ =
(
σ̄1, σ̄2, σ̄3, h̄1, h̄2

)
= argmin

p

1

2
R(p)TR(p), (4.16)

where R is defined in (4.13). At this point, for each parameter (i.e., the
components of the vector p) we consider a grid tabulation. Particularly,
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we set a minimum and a maximum value σmin, σmax and hmin, hmax for con-
ductivities and thicknesses, respectively, and then, for each of the five pa-
rameters, we generate a vector of M linearly spaced points between these
values. In this way, we obtain M5 possible combinations of initial models{
p
(i)
0

}
i=1,...,M5

. Then, we employ each p
(i)
0 as initial guess for method (4.15)

and call
{
p̃(i)
}
i=1,...,M5 the set of results of the minimization procedures. Fi-

nally, we find the approximate solution p̄ by solving the problem

min
p̃(i)∈{p̃(i)}

i=1,...,M5

1

2
R
(
p̃(i)
)T
R
(
p̃(i)
)
. (4.17)

The above strategy is summarized in the following algorithm.

Algorithm 4 Given σmin, σmax, hmin, hmax,M, d ∈ R2k,

1. tabulate the parameters σ1, σ2, σ3, h1, h2 and generate the set
{
p
(i)
0

}
i=1,...,M5

of possible initial models,

2. for each p
(i)
0 , solve problem (4.16) to find the set

{
p̃(i)
}
i=1,...,M5,

3. find p̄ by solving (4.17).

4.5 Numerical experiments

In order to solve minimization problem (4.16), we implement the damped
Gauss-Newton method (4.15), with α = 0.01 and ρ = 0.5 as parameters
of the line search (see Algorithm 2). The Jacobian matrix is numerically
evaluated via finite differences and d = H(p⋆) is the noise free observation
data vector. As in Section 4.3.1, the examples aim to simulate the DUALEM
system, hence d ∈ R8. Moreover, the procedure stops if a given tolerance
on the residual ∥R(p) − d∥ (in the order of 1e − 6) or a maximum number
of iterations (50) is achieved. Then, we apply Algorithm 4, with σmin = 2
mS/m, σmax = 85 mS/m, hmin = 0.04 m, hmax = 4 m and M = 7, to the
observations vector d, obtained from the models defined in Table 4.2, and
calculate the relative percentage error between the approximate solution p̄
and the real underground model parameters p⋆. We notice that, respect to
the previous experiments in which there was a single inversion to perform
(see Section 4.3.1), this time we deal with 75 = 16807 inversion procedures.
Therefore, in this case, the employment of a virtual machine equipped with
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Relative error
Conductivity Thickness

(%) (%)

Model 1
2.7e− 11 6.8e− 8
7.5e− 6 2.0e− 6
4.6e− 9

Model 2
1.2e− 9 1.7e− 6
2.8e− 5 4.0e− 5
5.7e− 8

Model 3
1.2e− 10 1.6e− 9
6.7e− 8 8.8e− 8
1.7e− 8

Model 4
6.0e− 12 1.3e− 7
1.0e− 6 2.7e− 6
2.0e− 7

Average error 3.0e− 6 5.8e− 6

Table 4.6: Results of the noise free EM inversions using the damped Gauss-
Newton method.

the NVIDIA A100 Tensor Core GPU is fundamental to accelerate the com-
putational performance. By using this resource, the average running time of
Algorithm 4 is less than 30 minutes.

The results of the simulations are shown in Table 4.6 and confirm the
reliability of Algorithm 4. In fact the average errors of the models considered
are in the order of 10−6 and the value of the objective function R(p) at the
solution is less than 10−30.

At this point, we want to add noise to the simulations, but, this time we
can not look for p̄ by solving problem (4.17). Hence, we should modify
the inversion procedure. Before going on, some further observations are
necessary.

First of all, we notice that R(p) is characterized by the presence of many
local minima, even in the noise free case. This behavior is confirmed by the
histograms plots of the results of the inversions. Specifically, given the set{
p̃(i)
}
i=1,...,M5 , we consider the histogram in frequency of each underground

parameter. An example, relative to Model 2 (cf. Table 4.2) and M = 3, is
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(a)

(b)

Figure 4.2: Histogram plots of the frequency distribution of conductivities
(a) and thicknesses (b), in the case of Model 2.

provided in Figure 4.2, where we can see the presence of more than one peak
of frequency, corresponding to a local minimum. Nevertheless, we notice that
for some parameters, e.g. σ1, σ3 and h1, there is only one clear distribution
of values around the exact solution.

Hence, to have a clear view of the behavior of the objective function, we set
σ1 = σ⋆1, σ3 = σ⋆3, h1 = h⋆1 and then plot R (p) with respect to σ2 and h2. An
example, still in the case of Model 2, is shown in Figure 4.3. In particular,
we can identify the presence of a global minimum of the objective function
(inside the red rectangle), provided by a pair of underground parameters
σ2, h2 that corresponds to the exact solution.

After these considerations, the idea is to follow the first two steps of Al-
gorithm 4, with d affected by a certain noise, then analyze the histograms,
fix in some way the values of σ1, σ3, h1 and finally study the plot of the ob-
jective function to determine a confidence zone of the remaining parameters
σ2, h2. As for the solution of problem (4.16), we still employ the damped
Gauss-Newton method but with the addition of a regularization parameter
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Figure 4.3: The objective function R (p), with respect to σ2 and h2, in the
case of Model 2.

ℓ > 0, that is (cf. (4.15)),

pj+1 = pj − λj(J(pj)TJ(pj)− ℓ2Ij)−1J(pj)
TR(pj), (4.18)

where Ij ∈ R2j×2j is the identity matrix. This strategy is summarized by the
following algorithm.

Algorithm 5 Given σmin, σmax, hmin, hmax,M, d ∈ R2k,

1. tabulate the parameters σ1, σ2, σ3, h1, h2 and generate the set
{
p
(i)
0

}
i=1,...,M5

of possible initial models,

2. for each p
(i)
0 , solve problem (4.16) to find the set

{
p̃(i)
}
i=1,...,M5,

3. retrieve the parameters σ1, σ3, h1 from the histogram plots,

4. plot the objective function R(p), with respect to σ2 and h2, and look for
its minimum.

To solve problem (4.16) in presence of noise, we apply Algorithm 5 to
the models described in Table 4.2. The parameters of the line search, the
stopping criteria and the values of σmin, σmax, hmin, hmax and M are the same
of the noise free experiments. As for the regularization parameter in (4.18),
we empirically take ℓ = 1e − 6, while the observation vector is obtained as
in Section 4.3.1 with NSR ϵ = 0.1%. In Figure 4.4 we report the histogram
plots, relative to Model 3, that we obtained after the inversion procedures.
We notice that we can deduce only the values of σ1, σ3, h1 (see Table 4.7).
Specifically, for each of these parameters, we consider the bin with highest
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(a)

(b)

Figure 4.4: Histogram plots of the frequency distribution of conducivities (a)
and thicknesses (b), in the case of Model 3, with NSR ϵ = 0.1%.

Retrieved values
σ1 σ3 h1

(mS/m) (mS/m) (m)

Model 1 49 18.1 2.46
Model 2 76.8 49 2.4
Model 3 49.5 17.9 3.02
Model 4 76.9 49.5 3.03

Table 4.7: Retrieved values of the parameters σ1, σ3, h1 after the inversions.



4.5. NUMERICAL EXPERIMENTS 95

Figure 4.5: The objective function R(p), with respect to σ2, h2, in the case
of Model 1.

frequency and take the average of the values inside the bin. At this point, we
fix these values and plot the objective function R(p) with respect to σ2, h2.
The results are shown in Figure 4.5-4.6-4.7-4.8. We observe that, unlike the
noise free example (Figure 4.3), in this case we can only identify a confidence
zone (the red rectangle in Figure 4.5-4.7-4.8) around the exact solution, cor-
responding to the area in which the objective function assumes the lowest
values. Particularly, for Model 2 (Figure 4.6) it is not even possible to locate
the confidence region, but only a curve of possible solutions. Furthermore,
thinner layers show larger errors. In conclusion, Figures 4.5-4.6-4.7-4.8 reveal
the ill-conditioning of the inverse problem respect to the parameters σ2, h2.

Finally, we point out that, for the detection of the confidence zone of the
exact solution, some imaging techniques can be introduced as well.
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Figure 4.6: The objective function R(p), with respect to σ2, h2, in the case
of Model 2.

Figure 4.7: The objective function R(p), with respect to σ2, h2, in the case
of Model 3.



Figure 4.8: The objective function R(p), with respect to σ2, h2, in the case
of Model 4.



98 CHAPTER 4. THE INVERSE PROBLEM



Conclusions

In this thesis we have studied the numerical and analytical estimation of
the electromagnetic fields in a stratified medium, together with the inverse
problem of retrieving the underground parameters from a set of recorded
measurements taken at the surface.

For the forward problem, that is, the computation of the integrals in-
volved in the solution of the Maxwell equations, we have presented two novel
methodologies. The first one is based on the splitting of the reflection term
and on the application of the Gauss-Kronrod technique. The second ap-
proach consists in the derivation and application of a Gaussian quadrature
formula for weight functions involving fractional powers, exponentials and
Bessel functions of the first kind. For the computation of the coefficients of
the three-term recurrence relation for the corresponding orthogonal polyno-
mials, we have developed an alternative and very stable approach, based on
the preconditioning of the moment matrix. In particular, we have presented
an algorithm which exploits the Cramer rule to compute the coefficients by
solving a linear system with the moment matrix and that allows to work
with further 40 ÷ 60 points, depending on the parameters, with respect to
the techniques commonly employed (i.e., the standard and modified Cheby-
shev algorithm). Moreover, in order to work with even more points, we
have adopted the symbolic computation and variable-precision arithmetic.
We have estimated the validity of both approaches for the computation of
the components of the EM field and the results are in good agreement with
those of the commonly used digital filtering methods. On the other hand, the
approach based on the splitting of the reflection term has also allowed the
derivation of general analytical approximations of the integral formulations
of the EM fields, that can be employed to speed up the solution of the inverse
problem and are only based on mathematical considerations without further
hypotheses on the ground’s physical properties.

As for the solution of the inverse problem, in the first approach we have
considered the specific electromagnetic response of the DUALEM system
placed at the surface of the earth, in which the receiver couples are placed
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at 2, 4, 6 and 8 m from the transmitter coil, and typical source-receiver ge-
ometries are the HCP and PRP configurations. We have introduced two
minimization procedures: the first one, enhanced by the analytical approxi-
mations, is based on a line-search BFGS method. For the second approach
we have employed the damped Gauss-Newton method. Moreover, we have
developed an optimization strategy that allows to avoid the dependence on
the initial guess of the iterative procedure. In this setting, the use of the
NVIDIA A 100 Tensor Core GPU have been proved to be crucial in acceler-
ating the minimization algorithm. We have carried out numerical simulations
to study the integrity of river levees,an important environmental problem in
Italy, due to the high hydrological risks. Our results confirmed the reliability
of the techniques and pointed out a possible application also to real data.



Appendix A

Vector calculus

Because of the number of vectors operations used in electromagnetic bound-
ary valued problems, we give a quick reference to definitions and expressions
for several operators, both in Cartesian and cylindrical coordinates.

First of all, we denote by x = (x, y, z) the three dimensions Cartesian
coordinate system with euclidean metric and by ux = (1, 0, 0), uy = (0, 1, 0)
and uz = (0, 0, 1) the unit vectors in the x, y and z directions, respectively.
Then, given a scalar-valued function ψ and a vector function A, we have the
following definitions.

Definition 1 Let ψ : R3 → R be a twice-differentiable function. Then, the
gradient ∇ψ : R3 → R3 and the Laplacian ∇2ψ : R3 → R are respectively
defined by

∇ψ =
∂ψ

∂x
ux +

∂ψ

∂y
uy +

∂ψ

∂z
uz (A.1)

and

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
. (A.2)

Definition 2 Let A = (Ax, Ay, Az) : R3 → R3 be a continuously differen-
tiable function. Then, the divergence ∇ · A : R3 → R3 and the curl ∇ ×
A : R3 → R3 are respectively defined as

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(A.3)

and

∇×A =

(
∂Az
∂y
− ∂Ay

∂z

)
ux+

(
∂Ax
∂z
− ∂Az

∂x

)
uy+

(
∂Az
∂x
− ∂Ax

∂y

)
uz. (A.4)
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Moreover, the divergence of the curl of any vector vanishes identically, that
is,

∇ · (∇×A) = 0. (A.5)

and the following vector identities hold:

∇×∇×A = ∇(∇ ·A)−∇2A, (A.6)

∇2(∇ ·A) = ∇ · (∇2A). (A.7)

Now, let (ρ, ϕ, z) be a cylindrical polar system such that its reference plane
is the Cartesian xy-plane and the cylindrical axis is the Cartesian z-axis. In
this setting, the conversion between cylindrical and Cartesian coordinates is

x = ρ cosϕ,

y = ρ sinϕ,

z = z.

Moreover, if uρ, uϕ and uz are the unit vectors in the ρ, ϕ and z-directions,
expressions (A.1), (A.2), (A.3) and (A.4) become

∇ψ =
∂ψ

∂ρ
uρ +

1

ρ

∂ψ

∂ϕ
uϕ +

∂ψ

∂z
uz,

∇2ψ =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2
∂2ψ

∂ϕ2
+
∂2ψ

∂z2
,

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aϕ
∂ϕ

+
∂Az
∂z

,

∇×A =
1

ρ

[
∂Az
∂ϕ
− ∂Aϕ

∂z

]
uρ +

[
∂Aρ
∂z
− ∂Az

∂ρ

]
uϕ +

1

ρ

[
∂

∂ρ
(ρAϕ)−

∂Aϕ
∂z

]
uρ.



Appendix B

Fourier transforms

There are several conventions for defining the Fourier transform of an inte-
grable function both in the time and in the space domain. In this work we
employ the following ones.

Definition 3 Given an integrable function f : R→ C, the Fourier transform
of f in the frequency domain and its inverse in the time domain are defined
respectively by

F (ω) =

∫ +∞

−∞
f(t)e−iωtdt, (B.1)

and

f(t) =
1

2π

∫ +∞

−∞
F (ω)eiωtdω, (B.2)

where t is the time and ω is the angular frequency.

Definition 4 In an Euclidean space of dimension n, for an integrable func-
tion f(x) the Fourier transform and its inverse are respectively defined as

f̃(ξ) =

∫
Rn

f(x)e−ix·ξdx (B.3)

and

f(x) =
1

(2π)n

∫
Rn

f̃(ξ)eix·ξdξ, (B.4)

where x · ξ is the dot product. Moreover, if f is an absolutely continuous
differentiable function, the Fourier transform of the m-th derivative f (m) is
given by

˜f (m)(ξ) =

(
iξ

2π

)m
f̃(ξ).
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The following theorem states that the Fourier transform translates between
convolution and multiplication of functions.

Theorem 1 (Convolution Theorem) If f(x) and g(x) are integrable func-
tions with Fourier transforms f̃(ξ) and g̃(ξ) respectively, then the Fourier
transform of the convolution is given by the product of the Fourier trans-
forms, that is, if

h(x) = (f ∗ g)(x) =
∫ +∞

−∞
f(y)g(x− y)dy,

where ∗ denotes the convolution operation, then

h̃(ξ) = f̃(ξ) · g̃(ξ).

If we deal with a finite sequence of equally spaced samples of a function, we
need the following definition.

Definition 5 The discrete Fourier transform of a sequence of N complex
numbers {x}n=0,...,N−1 is the sequence {Xk}k=0,...,N−1 defined by

Xk =
N−1∑
n=0

xne
−i 2π

N
kn

=
N−1∑
n=0

xn

[
cos

(
2π

N
kn

)
− i sin

(
2π

N
kn

)]
.

(B.5)

Moreover, the inverse discrete Fourier transform is given by

xn =
1

N

N−1∑
k=0

Xke
i 2π
N
kn

=
1

N

N−1∑
k=0

Xk

[
cos

(
2π

N
kn

)
+ i sin

(
2π

N
kn

)]
.



Appendix C

Gaussian integration rules

In this section we give a general background of integration rules of Gauss type
(see e.g. [10], [24] for a complete and exhaustive discussion of the covered
topics).

Consider integrals of the form

I(f) =

∫ b

a

w(x)f(x)dx,

where w(x) is assumed to be continuous, non negative and integrable over a
finite or infinite interval [a, b]. Such a function w(x) is said to be a weight
function. The general idea is to approximate I(f) through th n-point quadra-
ture rule

I(f) ∼= In(f) =
n∑
i=1

wif(xi), (C.1)

where xi and wi > 0 are respectively the nodes and weights. Denoting by Πm

the class of polynomials of degree at most m, we have that the quadrature
formula (C.1) has order m if it is exact for all polynomials of class Πm, that
is,

I(f) = In(f), ∀f ∈ Πm.

The idea of a Gaussian quadrature rule is to properly define xi and wi such
that (C.1) has order 2n−1. In this setting we need some preliminary notions
and results.

Let

L2,w =

{
f : [0,∞)→ R

∣∣∣∣∣
∫ b

a

f 2(x)w(x)dx < +∞

}
,

and

⟨f, g⟩w =

∫ b

a

f(x)g(x)w(x)dx. (C.2)
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It is known that (C.2) is a scalar product with corresponding norm

∥f∥w = ⟨f, f⟩
1
2
w ,

and hence L2,w is a Hilbert space. Moreover, two functions f and g are
orthogonal over [a, b], with respect to the weight w(x), if ⟨f, g⟩w = 0. In
particular, for a given weight w(x), it is possible to determine a sequence of
polynomials {ϕk}k≥0, ϕk ∈ Πk, which are orthogonal, that is,

⟨ϕm, ϕn⟩w = 0, for m ̸= n

and
⟨ϕm, ϕn⟩w > 0, for m = n.

They are uniquely defined up to the leading coefficient and are called monic
if the leading coefficient is equal to 1. The normalization of each ϕk(x) with
respect to ∥ · ∥w leads to the set of orthonormal polynomials {ϕ⋆k}k≥0, that is

⟨ϕ⋆m, ϕ⋆n⟩w =

{
0 if m ̸= n

1 if m = n
.

Moreover, the zeros of orthogonal polynomials are real, simple and located
in the interior of [a, b]. The following theorem defines the nodes and weights
of the n-point Gaussian rule.

Theorem 2 Let w(x) ≥ 0 be a weight function defined on [a, b] with corre-
sponding orthonormal polynomials {ϕ⋆n}n≥0. Let the zeros of ϕ⋆n(x) be

a < x1 < x2 < . . . < b.

Then, positive constants w1, . . . , wn can be found such that∫ b

a

w(x)ϕ(x)dx =
n∑
k=1

wkϕ(xk), (C.3)

whenever ϕ(x) is a polynomial of class Π2n−1. The weights wk have the
explicit representation

wk = −
kn+1

kn

1

ϕ⋆n+1(xk)(ϕ
⋆)′n(xk)

,

where kn+1 and kn are the leading coefficients of ϕ⋆n+1 and ϕ⋆n, respectively.

When nodes and weights have been determined as in this theorem, we say
that the resulting integration rule (C.1) is of Gauss type. We remark that,
by (C.3) rule (C.1) is exact for polynomials of class Π2n−1.
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C.1 The Gauss-Legendre quadrature rule

In the case of the weight w(x) = 1 over [−1, 1], we have the Gauss-Legendre
integration rule, that is, ∫ 1

−1

f(x)dx ∼=
n∑
k=1

wkf(xk),

where the nodes xk, k = 1, . . . , n, are the zeros of the Legendre polynomials
Pn(x), recursively defined by

P0(x) = 1,

P1(x) = x,

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x), n ≥ 2,

and the weights are given by

wk =
2(1− x2k)

[nPn−1(xk)]2
, k = 1, . . . , n.

We remark that, for an arbitrary interval [a, b], the nodes and weights can
be scaled as follows:

x̃k =
xk + 1

2
(b− a) + a,

w̃k = wk
b− a
2

.

C.2 The Gauss-Laguerre quadrature rule

An example of Gaussian rule on [0,+∞) is the Gauss-Laguerre formula given
by ∫ ∞

0

e−xf(x)dx ∼=
n∑
k=1

wkf(xk),

for which w(x) = e−x. Here the nodes are the zeros of the Laguerre polyno-
mial Ln(x), recursively defined by

L0(x) = 1,

L1(x) = 1− x,

Ln+1(x) =
(2n+ 1− x)Ln(x)− nLn−1(x)

n+ 1
, n ≥ 1,
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whereas the weights are given by

wk =
(n!)2xk

[Ln+1(xk)]2
.

A generalization of the above rule is obtained by considering the weight
function w(x) = xαe−x, α > −1. This choice leads to the formula∫ ∞

0

xαe−xf(x)dx ∼=
n∑
k=1

wkf(xk), (C.4)

where xk are the zeros of the generalized Laguerre polynomial Lαn(x), recur-
sively defined by

Lα0 (x) = 1,

Lα1 (x) = 1 + α− x,

Lαn+1(x) =
(2n+ 1 + α− x)Lαn(x)− (n+ α)Lαn−1(x)

n+ 1
, n ≥ 1,

and

wk =
n!Γ(n+ α + 1)xk

[Lαn+1(xk)]
2

,

in which Γ denotes the Gamma function.

C.3 Construction of a Gaussian rule

We notice that, in order to compute the nodes and weights as in Theorem
2, we need to know the zeros of ϕ⋆n(x) and the explicit representation of the
orthogonal polynomials ϕ⋆k, k = 1, . . . , n+1. This is not always possible, but
a way to overcome such issue is to determine the Gaussian rule through the
recurrence relation defined in the following theorem.

Theorem 3 Given a system {ϕk}k≥0 of monic orthogonal polynomials, the
following three term recurrence relation holds:

ϕk+1(x) = (x− αk)ϕk(x)− βkϕk−1(x), k ≥ 0,

ϕ−1(x) = 0, ϕ0(x) = 1,

where αk and βk > 0 are called the recurrence coefficients.
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Given αk and βk, the corresponding matrix

J =


α0

√
β1 0√

β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

√
βn−1

0
√
βn−1 αn−1

 ∈ Rn×n,

is called the Jacobi matrix. In particular, J contains the coefficients of the
three term recurrence relation for the orthonormal polynomials, that is,√

βk+1ϕ
⋆
k+1(x) = (x− αk)ϕ⋆k(x)−

√
βkϕ

⋆
k−1(x), k ≥ 0,

ϕ⋆−1(x) = 0, ϕ⋆0(x) =
1√
β0
.

In order to construct the Gauss quadrature rule, the central problem is to
generate the coefficients αk and βk. In fact, the eigendecomposition of the
matrix J provides the nodes xi and the weights wi, i = 1, . . . , n, of the
n-point Gaussian rule (see e.g. [10, Sect.2.7] and the reference therein).
This step is efficiently implemented by the Golub and Welsch algorithm [28]
which exploits the Q-R algorithm of Francis [18] for the computation of the
eigenvalues and eigenvectors of a symmetric matrix. Some alternatives to
this algorithm have been later developed and we refer to [42] for a general
discussion and a rich bibliography. Then, the coefficients αk and βk can be
derived by computing the associated power moments, defined as,

µk =

∫ ∞

0

xkw(x)dx, k ≥ 0, (C.5)

and by using the Chebyshev algorithm (see [19, Sect.2.3] and [21]). Given
the first 2n moments µ0, . . . , µ2n−1, the algorithm uniquely determines the
first n recurrence coefficients αk and βk, k = 0, . . . , n−1, by using the mixed
moments

σkl =

∫ ∞

0

ϕk(x)x
lw(x)dx, k, l ≥ −1.

The Chebyshev algorithm is summarized in Algorithm 6.

Algorithm 6 Initialization

α0 =
µ1

µ0

, β0 = µ0,

σ−1,l = 0, l = 1, 2, . . . , 2n− 2,

σ0,l = µl, 0, 1, . . . , 2n− 1,
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for k = 1, 2, . . . , n− 1

for l = k, k + 1, . . . , 2n− k − 1

σk,l = σk−1,l+1 − αk−1σk−1,l − βk−1σk−2,l,

αk =
σk,k+1

σk,k
− σk−1,k

σk−1,k−1

, βk =
σk,k

σk−1,k−1

.

Nevertheless, it is well known (see e.g. [22]) that the computation of the
recurrence coefficients can be inaccurate for growing k because the problem
is severely ill conditioned when starting from the power moments (C.5). In
order to overcome this difficulty, the so called modified Chebyshev algorithm
(advanced by Gautschi in [19, Sect.2.4]) can be employed. It is based on the
use of the modified moments

mk =

∫ ∞

0

pk(x)w(x)dx, k ≥ 0, (C.6)

and on the mixed moments

σ̃kl =

∫ ∞

0

ϕk(x)pl(x)w(x)dx, k, l ≥ −1, (C.7)

where {pk}k≥0 is a given system of orthogonal polynomials, chosen to be close
to the desired polynomials {ϕk}k≥0, which satisfies the three-term recurrence
relation

pk+1(x) = (x− ak)pk(x)− bkpk−1(x), k ≥ 0

p−1(x) = 0, p0(x) = 1,

with coefficients ak ∈ R, bk ≥ 0 that are known. We remark that the idea of
using modified moments was introduced by Sack and Donovan in [49], who
developed an algorithm similar to the one of Gautschi. The same technique
was independently obtained by Wheeler in [67]. The modified Chebyshev
algorithm is summarized in Algorithm 7. We notice that the case ak = bk = 0
yields pk(x) = xk, and Algorithm 7 reduces to Algorithm 6.

Algorithm 7 Initialization

α0 = a0 +
m1

m0

, β0 = m0,

σ−1,l = 0, l = 1, 2, . . . , 2n− 2,

σ0,l = ml, 0, 1, . . . , 2n− 1,

for k = 1, 2, . . . , n− 1
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for l = k, k + 1, . . . , 2n− k − 1

σk,l = σk−1,l+1 − (αk−1 − al)σk−1,l − βk−1σk−2,l + blσk−1,l−1,

αk = ak +
σk,k+1

σk,k
− σk−1,k

σk−1,k−1

, βk =
σk,k

σk−1,k−1

.

We remark that this approach may be efficient in general but not always
when working with unbounded intervals of integration (see [21] and [22]).

C.4 The Gauss-Kronrod quadrature formu-

lae

In 1964 Kronrod [40] proposed to extend the n-point Gauss quadrature for-
mula for the Legendre weight function to a (2n+1)-point formula by inserting
n + 1 additional nodes such that the new formula has maximum degree of
exactness. The purpose was to estimate the error of the n-point Gauss-
Legendre rule. In this section we give a brief description of integration rules
of Gauss-Kronrod type.

Let w(x) be a non negative weight function on [a, b] and consider the
corresponding Gauss quadrature formula∫ b

a

f(x)w(x)dx ∼=
n∑
k=1

wkf(xk), (C.8)

where xk = x
(n)
k are the zeros of the n-th degree (monic) orthogonal poly-

nomial πn relative to the weight function w on [a, b]. The Gauss-Kronrod
quadrature formula, extending (C.8), has the form∫ b

a

f(x)w(x)dx ∼=
n∑
k=1

γkf(xk) +
n+1∑
j=1

γ⋆j f(x
⋆
j), (C.9)

where xk are the Gauss nodes, while the new nodes x⋆j = x
⋆(n)
j , called the

Kronrod nodes, and all weights γk = γ
(n)
k , γ⋆j = γ

⋆(n)
j are chosen such that

formula (C.9) has maximum degree of exactness 3n + 1. In this setting,
the nodes x⋆j are the zeros of a (monic) polynomial π⋆n+1, orthogonal to all
polynomials of lower degree with respect to the variable-sign weight function
w⋆(x) = πn(x)w(x) on [a, b], that is∫ b

a

π⋆n+1(x)x
kπn(x)w(x)dx = 0, k = 0, 1, . . . , n.
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The polynomial π⋆n+1 is referred to as the Stieltjes polynomial relative to the
weight function w on [a, b]. The weights of formula (C.9) are given by

γk = wk +
∥πn∥2

π′
n(xk)π

⋆
n+1(xk)

, k = 1, 2, . . . , n,

γ⋆j =
∥πn∥2

πn(x⋆j)(π
⋆
n+1)

′(x⋆j)
, j = 1, 2, . . . , n+ 1,

where ∥ · ∥ is the L2-norm for the weight function w on [a, b]. Moreover, all
γ⋆j are positive if and only if the nodes xk and x⋆j interlace, that is,

x⋆n+1 < xn < x⋆n < . . . < x⋆2 < x1 < x⋆1. (C.10)

We notice that, since the polynomial π⋆n+1 is orthogonal with respect to a
variable-sign weight function, it does not follow the usual theory for orthog-
onal polynomials. Therefore, all the known results have been derived for
specific weight functions (see e.g. [46, 20] for complete and exhaustive sur-
veys). In particular, for the Legendre weight function, in 1975 Szegő [58] was
able to conclude that al nodes xk, x

⋆
j are real, contained in [−1, 1] and that

property (C.10) holds. Moreover, in 1978, Monegato [45], relying on Szegő’s
work, proved that all weights γk, γ

⋆
j are positive, ∀n ≥ 1.
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