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Abstract— The approximations of the Gaussian Q-function
found in the literature have been often developed with the goal
of obtaining high estimation accuracies in deriving the error
probability for digital modulation schemes. Unfortunately, the
obtained mathematical expressions are often too complex, even
difficultly tractable. A new approximation for the Gaussian Q-
function is presented in the form of the standard normal density
multiplied by a rational function. The rational function is simply
a linear combination of the first 5 integer negative powers of the
same term, linear in x, using only 4 decimal constants. In this
paper we make some considerations about the significant interval
where to consider the Q-function in telecommunication theory.
The relative error in absolute value of the given approximation
is less than 0.06% in the considered significant interval.

I. INTRODUCTION

The Gaussian Q-function is very widely used in com-

munication and information theory, since it plays a major

role in the performance analysis of many communication

systems. Usually, the bit error probability or the symbol error

probability in many communication systems are expressed

in terms of it. However, since there is no known closed-

form expression for Q(x) [1], the numerical values for this

function have been tabulated and often made available as

built-in functions in mathematical software tools. On the

other hand, the analytical problems associated with it have

raised a great interest in finding its closed-form bounds or

approximations for decades [2]-[9], in order to simplify the

handling of the mathematical expressions involving it [5],

[6]. In fact, exponential-type bounds or approximations are

often useful in the bit-error probability evaluation for the most

common communication and information theory problems,

such those involving coding (see, e.g., [10]-[12], addressing

low density parity check (LDPC) codes), fading (see, e.g.,

[13], considering the FPGA implementation of a burst error

and burst erasure channel emulator, being the error burst the

result of a temporary reduction in the power of the received

signal (fading), leading to a demodulation failure of a certain

number of symbols), and multichannel reception (see, e.g.,
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[14], considering a joint spectrum and energy efficient resource

allocation algorithm for D2D communications). These approx-

imations for the Gaussian Q-function have been developed

with the objective of obtaining high estimation accuracies, to

derive the error probability for digital modulation schemes.

Unfortunately, the obtained mathematical expressions are often

too complex and difficultly tractable.

Purpose of this paper is to modify two classical approxima-

tions due to Cooper [15] and to Hastings [4], respectively, to

obtain a simpler and more precise approximation for relative

errors. The proposed new approximation of the Gaussian

Q-function is in the form of the standard normal density

multiplied by a rational function. The rational function is

simply a linear combination of the first 5 integer negative

powers of the same term, linear in x, using only 4 decimal

constants. Moreover, we make some considerations about

the significant interval where to consider the Q-function in

telecommunication theory. The relative error in absolute value

of the given approximation is less than 0.06% in the considered

significant interval.

The paper is organized as follows. In Section II we recall

the Q-function and its several equivalent definitions, we recall

the domain of practical interest of the function Q(x) in

information and communications theory, and we present some

conjectures on the utility of absolute and relative errors as

means of evaluation of an approximation. In Section III we

recall some known approximations and bounds on Q(x) and

we present our new one, and in Section IV we make some

comparisons between our new approximation and the classical

ones in terms of complexity and error performance. Finally,

Section V summarizes the results of the paper.

II. THE SEVERAL EQUIVALENT DEFINITIONS OF Q(x)

Basically the Q-function expresses the integral of the right

tail of the standard normal density

φ(x) :=
1√
2π

e−
x2

2

whose graph is the classical Gaussian bell curve, and then its

meaning is essentially the probability that a standard normal

random variable X assumes a value greater than x.
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There are several equivalent definitions of Q(x), expressed

as integrals, series, and in terms of the function Φ(x), as these:

Q(x) :=

∫ +∞

x

φ(t) dt

(see Formula 26.2.3 of [4])

Q(x) :=
1

2
−

∫ x

0

φ(t) dt

(and notice that this integral is on a bounded interval)

Q(x) := 1−
∫ x

−∞

φ(t) dt = 1− Φ(x) (1)

where Φ(x) is the well known normal cumulative distribution

function, of fundamental importance in statistics, for which

you may find online lots of tables of numerical values by

searching images for “normal table”.

An equivalent definition of Q(x) based on continued frac-

tions is (see Formula (26.2.14) of [4])

Q(x) =
e−x2/2

√
2π

{ 1

x+

1

x+

2

x+

3

x+

4

x+
...
}

(2)

There are 2 other functions, classically considered, strictly

related to Q(x) and Φ(x):

1) Error function:

erf(x) :=

∫ x

−∞

2√
π
e−t2dt = 1− 2Q(x

√
2)

2) Complementary error function:

erfc(x) :=

∫ +∞

x

2√
π
e−t2dt = 2Q(x

√
2)

A. Domain of practical interest of the function Q(x) in

Information and Communications Theory

The Q-function is defined over R. However, in Information

and Communication Theory, only positive real numbers R>0

are significant.

As done in [16], since the bit error probability of the

binary phase shift keying (BPSK) modulation scheme over

the additive white Gaussian noise (AWGN) channel can be

expressed as

Pb(e) = Q(
√

2 γ)

being γ the signal-to-noise ratio (SNR), usually expressed in

dB, we can assume that a significant interval for the argument

γ in dB could be [−10 dB, 10 dB].
Taking γ = −10 dB, in absolute value we get γ = 10−1 =

1
10

and

√

2 γ =

√

2 · 1

10
≈ 0.45

Taking, at the other interval extreme, γ = 10dB, in absolute

value we get γ = 101 = 10 and

√

2 γ =
√
2 · 10 ≈ 4.47 ≈ 4.5

Thus, we concentrate on the approximation for Q(x) on the

interval

Isignificant := [0.45, 4.5]

B. Notes on absolute and relative errors

As observed in [16], in general, it may be said that when

comparing the accuracy of 2 approximations of a function, the

consideration of the relative error is more appropriate if that

function has a zero limit. In fact, for example, it is of little

interest to say that an approximate value of about 10−5 has

an absolute error less than 10−4.

All the 4 functions erf(x), erfc(x), Φ(x) and Q(x) have

limits 0 in their domain, but, if we consider Φ(x) for x ≥ 0,

its limits become
1

2
≤ Φ(x) < 1

and hence, for this function restricted to x ≥ 0, the con-

sideration of the absolute error is appropriate and generally

used in literature. (The approximation of Φ(x) for x ≤ 0
is essentially the problem of approximating Q(x) for x ≥ 0
because Φ(−x) = Q(x).)

Instead, for erfc(x) and Q(x) the consideration of relative

errors is more appropriate and generally used in literature.

III. SOME KNOWN APPROXIMATIONS AND BOUNDS OF

Q(x) AND OUR NEW ONE

A. 2 classical bounds and 2 classical approximations of Q(x)

The classical bounds

Q(x) <
1√
2π

e
−x2

2

x
(3)

and

Q(x) >
1√
2π

e
−x2

2

( 1

x
− 1

x3

)

(4)

have been published in [17] (Formula (2.121)).

It may be observed that the first convergent (truncation to

the first term) of (2) is exactly the upper bound (3) and the

second convergent

e−x2/2

√
2π

1

x+ 1
x

may be developed, for x > 1, as

e−x2/2

√
2π

1

x

(

1− 1

x2
+ ...

)

to be compared with the lower bound (4).

The approximation [15]

Q(x) ≈ 1√
2π

e
−x2

2

( 1

x
− 1

2x3

)

(5)

is the arithmetic mean of the 2 bounds (3) and (4).

A high precision approximation of Q(x) is immediately

obtained by complementation 1− (applying (1)) from a very

classical approximation of Φ(x) reported (with absolute error

less than 7.5 · 10−8, which is the same for Q(x)) in the
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classical book of Abramowitz and Stegun [4] (see Formula

(26.2.17)) in a chapter authored by M. Zelen and N.C. Severo,

and credited to C. Hastings, Jr., Approximations for digital

computers, (1955) Princeton Univ. Press, Princeton, N. J.

Q(x) ≈ e−x2/2
√
2π

(

b1 t+ b2 t
2 + b3 t

3 + b4 t
4 + b5 t

5
)

t := 1
1+p x p = 0.231 641 9

b1 = +0.319 381 53 b2 = −0.356 563 782
b3 = +1.781 477 937 b4 = −1.821 255 978
b5 = +1.330 274 429

(6)

This approximation is so widely used in practice, that

the advanced search tool of Google declares (June 2021)

about 2380 results searching (contemporarily) the 3 strings

0.2316419 0.31938153 1.781477937 (and at a glance the

results refers just to that formula).

B. New approximation with 4 decimal constants

Purpose of this paper is to modify (5) and (6) to obtain an

approximation

• more simple than (6);

• more precise than (6) for relative error in Isignificant.

This new approximation may be compared with the very

classical approximation (6) of Hastings, originally given for

Φ(x)), from which one immediately obtains the corresponding

approximation for Q(x).

Modifying the classical approximations (5) and (6) we

propose

Q(x) ≈ e−
x2

2
√
2π

(

1

(x+π
4 )

+ a

(x+π
4 )

2+

+ b

(x+π
4 )

3 + c

(x+π
4 )

4 + d

(x+π
4 )

5

)

a = 0.85512 b = −1.07

c = −0.02568 d = 0.32955

with maximum relative error in absolute value |εr| < 5.9·10−4

in [0.45, 4.5].
To get a better approximation, Hastings’ philosophy was

that of introducing a displacement p, so as to obtain an

approximation (6) that does not diverge in x = 0 as (5),

thanks to the term 1
1+p x . However, this approximation was not

designed to lower the relative error for Q(x), but to lower the

absolute error of Φ(x). Thus, on the basis of (6), a new search

of the coefficients was performed to obtain the minimization

of the relative error in absolute value, more appropriate to

evaluate the performance of a Q-function approximation, as

explained in Section II-B.

In details, in Isignificant = [0.45, 4.5], the absolute error

|ε| and the relative error in absolute value |εr| of the new

approximation are:

|ε| < 2.0 · 10−4

|εr| < 5.9 · 10−4

1 2 3 4
x

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
relative_error

Fig. 1. The relative error in absolute value |εr| < 5.9 · 10−4 of the new
approximation in the significant interval Isignificant = [0.45, 4.5].

2 4 6 8 10
x

0.0005

0.0010

0.0015

relative_error

Fig. 2. The relative error in absolute value |εr| < 1.9 · 10−3 of the new
approximation in the interval I10 = [0.45, 10].

and also in the interval [0.45, 10] the performance is quite

good, |εr| < 1.9 · 10−3, and even in the interval [0.45, 100],
with |εr| < 2.1 · 10−3. The upper limit 10 for the domain of

Q(x) has been considered in telecommunication theory, for

example in [18].

In Figs. 1, 2 and 3 is reported the relative error in

absolute value |εr| of the new approximation in the inter-

vals Isignificant = [0.45, 4.5], I10 = [0.45, 10] and I100 =
[0.45, 100], respectively.

In Fig. 4 is reported the absolute error |ε| of the new

approximation in the interval [0.45, 10].
In Fig. 5 is reported the comparison between the Q(x)

complete distribution and the new approximation of the Q-

function in log scale of ordinate: the two curves are perfectly

superimposed.

IV. COMPARISON OF THE NEW APPROXIMATION WITH THE

TWO CLASSICAL APPROXIMATIONS (5) AND (6)

The computational complexity may be evaluated by count-

ing the number of non-rational functions applied to the ar-
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Fig. 3. The relative error in absolute value |εr| < 2.1 · 10−3 of the new
approximation in the interval I100 = [0.45, 100].
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Fig. 4. The absolute error |ε| < 2.0 ·10−4 of the new approximation in the
interval I10 = [0.45, 10]. The absolute error in x=0.45 is 0.0001908...

gument x. In this sense, the two classical approximations (5)

and (6), and our new one, all have the same computational

complexity equal to 1, since they all present only one non-

rational expression (i.e., e−
x2

2 ). Moreover, to evaluate the

complexity, it may be also useful to evaluate how many

decimal constants are present in an approximation. In this

sense, the approximation (6) is the most complicated, with

6 (longer) decimal constants, our new one has only 4 decimal

constants, whereas the approximation (5) is the simplest since

it does not present any decimal constant.

Clearly (5), despite its simplicity, is also the worst ap-

proximation from the point of view of the absolute error |ε|
and of the relative error in absolute value |εr|, presenting, in

Isignificant = [0.45, 4.5]:

|ε| < 1.6

|εr| < 4.6

i.e., a relative error in absolute value of the 461% (since it

diverges in x = 0).

2 4 6 8
x

-15

-10

-5

y_log10scale

Fig. 5. Comparison between the Q(x) complete distribution and the new
approximation of the Q-function in log scale of ordinate.

On the other hand (6), by [4] published for Φ(x) (which

tends to 1 and is always > 0.5) was designed to lower the

absolute error of Φ(x), and then of Q(x) (which is the same),

on the whole real axis. But, as explained above, values near 0

of x, of great interest for Φ(x) in statistics, are of no interest in

communication theory for Q(x). Notice that the approximation

was not designed to lower the relative error for Q(x). Thus,

as far as Hastings’ approximation (6) is concerned, we may,

in conclusion, observe that

• it is the most complicated, with 6 (longer) decimal

constants;

• the relative error in absolute value for Q(x) is < 9.3·10−4

in Isignificant = [0.45, 4.5], and < 2.0·10−2 in the interval

[0.45, 10], both higher/worse than those of the proposed

new approximation;

• it grants the lowest/best absolute error < 7.5 ·10−8 when

considered on the whole positive real axis, x ≥ 0, for

Φ(x) and correspondently for Q(x), thanks to its higher

complexity.

V. CONCLUSIONS

This paper proposes a new approximation for the Gaussian

Q-function presented in the form of the standard normal

density multiplied by a rational function. The rational function

is simply a linear combination of the first 5 integer negative

powers of the same term, linear in x, using only 4 decimal

constants. In this paper we make some considerations about

the significant interval where to consider the Q-function in

telecommunication theory. The relative error in absolute value

of the given approximation is less than 0.06% in the considered

significant interval [0.45, 4.5]. Even moving the upper limit of

the interval till 100, the proposed new approximation performs

quite well with a relative error in absolute value less than

0.21%.
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